2015 IRP Schedule: Major Project Phases and Milestones #### The 2015 IRP process is intended to ensure transparency and enable stakeholder involvement. ### Key tasks/milestones in this study timeline include: - Establish stakeholder group and hold first meeting (Nov 2013) - Complete first modeling runs (June 2014) - Publish draft Supplemental Environmental Impact Statement (SEIS) and IRP (Nov 2014) - Complete public meetings (Jan 2015) - Final publication of SEIS and IRP and Board approval (exp. Spring 2015) ## **RERC Proposed Engagement: 2015 IRP** **TVA Board** ## Scenarios and Strategies Establish the Planning Framework #### **Scenarios** - Describe potential outcomes of factors (uncertainties) outside of TVA's control - Represent possible conditions and are not predictions of the future - Include uncertainties that are volatile and could significantly impact operations such as: - Commodity prices - Environmental regulations ### **Planning Strategies** - Test various business options within TVA's control - Defined by a combination of resource assumptions such as: - EEDR portfolio - Nuclear expansion - Energy storage - Consider multiple viewpoints - Public scoping period comments - Assumptions that would have the greatest impact on TVA long-term ### TVA's Process for Building Scenarios - Uncertainties: trends and factors that could potentially affect its business environment - Selected ones with the biggest impact on TVA's business - Use uncertainties to frame potential future conditions that matter to TVA - Scenario: story that describe the plausible futures - Defined the list of scenarios and grouped them by common "themes" - Evaluate scenarios to ensure they consider a wide range of possible futures - Obtain input from internal and external stakeholders - Select scenarios that cover a wide range of possible futures and critical uncertainties # **Description of Critical Uncertainties** | Uncertainty | Description | | | | |---|---|--|--|--| | TVA Sales | The customer energy requirements (GWh) for the TVA service territory including losses; it represents the load to be served by TVA | | | | | Natural Gas Prices | ◆ The price (\$/MMBtu) of the commodity including transportation | | | | | Wholesale Electricity Prices for TVA | The hourly price of energy (\$/MWh) at the TVA boundary; used as a proxy for market price of power | | | | | Coal Prices | The price (\$/MMBtu) of the commodity including transportation | | | | | Regulations | All regulatory and legislative actions, including applicable codes and standards, that
impact the operation of electric utilities excluding CO2 regulations | | | | | CO2 Regulation/Price | The cost of compliance with possible CO2 related regulation and/or the price of cap-and-trade legislation, represented as a \$/Ton value | | | | | Distributed Generation Penetration | National trending of distributed generation resources and potential regional activity by
customers or third party developers (not TVA) | | | | | Nat'l Energy Efficiency
Adoption | An estimate of the adoption of energy efficiency measures by customers nationally; a measure of interest/commitment of customers in general to adopt EE initiatives, recognizing the impacts of both technology affordability and electricity price on willingness to adopt efficiency measures | | | | | Economic Outlook
(National/Regional) | All aspects of the regional and national economy including general inflation, financing considerations, population growth, GDP and other factors that drive the overall economy | | | | ## TVA is Considering 9 Scenarios Grouped Around 5 Themes ### A Declining Economy - Major Industry Leaves the Valley - Prolonged Stagnant National Economy - Stringent Environmental Regulations Lead to Weak Energy Sales #### **Economic Growth** - Economic Boom - Game-Changing Technology Increased Load ### Stringent Environmental Requirements - De-carbonized Energy Future - Southeast Hot & Dry ### **Changing Paradigm** • Customer-Driven Competitive Resources #### Other Possible Futures Existing Coal Exploited ### **Critical Uncertainties** | TVA Sales | | | |---|--|--| | Natural Gas Prices | | | | Wholesale Electricity Prices into TVA | | | | Coal Prices | | | | Regulations (non CO2) | | | | CO2 Regulations/Price | | | | Distributed Generation | | | | National Energy Efficiency | | | | Economic Outlook
(National/Regional) | | | # **Scenario Descriptions** | Scenario* | Description | |---|--| | Major Industry Leaves
the Valley | A major valley industry becomes obsolete or moves overseas (e.g., paper or chemical industries) Sales are reduced, but the national economy is largely unaffected TVA revenues are impacted, while commodity prices and GDP increase as planned Decreased capacity need leads to delayed expansion for new generation | | Prolonged Stagnant
National Economy | Prolonged, stagnant economy results in low to negative growth and delayed expansion of new generation Stringent environmental regulations are delayed due to concerns of adding further pressure to the economy Cost of capital is decreased, inflation increases | | Stringent Environmental
Regulations Lead to
Weak Energy Sales | Stringent environmental regulations are passed and implemented quickly. Increased federal subsidies of distributed generation (DG) High cost of production, due to fracking and environmental legislation for gas and CO2 allowances, increases electricity prices significantly Federal renewable portfolio standards are implemented with new, more stringent MATS regulations US based industry is non-competitive in global markets and leads to economic downturn | | The Economic Boom | Rapid economic growth translates into higher than forecasted energy sales and energy expansion Increasingly positive public attitude toward adoption of energy efficiency programs and new technology Advances in electric vehicles make it cheaper to buy electric than gas cars Tightened environmental legislation with increased focus on cost-efficient energy efficiency choices and pressure for retirement of existing coal assets Ambient and water temperatures remain normal. Gas, oil, and coal are more costly due to regulations | | Game Changing
Technology Increases
Load | Technology driven growth-more plug-ins; flatter load shape enabled by storage, end-use technology, Hybrid/EV, renewables generation storage, smart-meters/appliances Moderately higher economic growth during and after the tech shift; expected growth in first 10 years Advances in electric vehicles make it cheaper to buy electric than gas Renewable generation technology cost becomes more competitive due to innovation in storage technology A neutral or tightened position on green house gases but other regulations remain neutral | # Scenario Descriptions (Cont'd) | Scenario* | Description | | |---------------------------------------|---|--| | De-carbonized Energy
Future | Increasing climate-driven effects create strong federal push to curb GHG emissions: new legislation caps and penalizes CO2 emissions from the utility industry and incentivizes non-emitting technologies Compliance with new rules increases energy prices and US based industry becomes less competitive; later in the decade, the US economy begins another downward turn and loads begin to decline Fracking regulations never materialize but gas contends with the CO2-adder New expansion units are necessary to replace existing CO2-emitting fleet and not to meet load growth | | | Southeast Hot & Dry | Persistent drought conditions develop over the next decade, reducing output from TVA's hydro resources and the availability of water for cooling fossil and nuclear units Steady load growth persists due to higher temperatures, with more constrained options to meet it TVA electric prices increase causing greater penetration of distributed energy resources | | | Customer Driven Competitive Resources | Customers' awareness of growing competitive energy markets and the rapid advance in energy technologies produce unexpected high penetration rates in DG and energy efficiency (EE) Utilities are no longer the only source of generation and multiple options are available to customers (solar, wind, hydro, Wal-Mart, Distributed Generation, First Solar, Solar City, Google, etc.), causing the load to diminish Growing implementation of DG and EE resources by customers lead to a continual decrease in supply-side generation sources and an increased need for transmission infrastructure and utilization planning | | | Existing Coal Exploited | Due to environmental issues and increased regulatory restrictions, fracking becomes increasingly costly and drilling is restricted. Supply diminishes and costs increase Nuclear option requires increasing capital costs (e.g., storage issues, safety requirements) and permitting timeframes become excessive CO2 regulations take a backseat to natural gas fracking and nuclear safety and storage regulations making existing coal the most viable and economic option | | ## Scenario Ranking Shows Clear Preferences ### Composite Weighted Average Ranking - The preferred scenarios based on the composite ranking are: - Customer-Driven Competitive Resources (CP1) - De-carbonized Energy Future (SE1) - Prolonged Stagnant National Economy (DE2) - Stringent Environmental Regulations Lead to Weak Energy Sales (DE3) - Major Industry Leaves the Valley (DE1) - Composite results show a bias for scenarios with lower sales, even though both IRPWG-only and TVA-only rankings included at least one scenario with higher sales Composite weighted average results are based on a 50/50 weighting of scores from 17 stakeholders and 8 TVA executives. ## Scenario Design Example: De-Carbonized Energy Future #### Scenario Narrative - Increasing climate-driven effects create strong federal push to curb GHG emissions: new legislation caps and penalizes CO2 emissions from the utility industry and incentivizes non-emitting technologies - Compliance with new rules increases energy prices and US based industry becomes less competitive; later in the decade, the US economy begins another downward turn and loads begin to decline - ◆ Fracking regulations never materialize but gas contends with the CO2-adder - ◆ New expansion units are necessary to replace existing CO2-emitting fleet and not to meet load growth | Uncertainty | Level Of Impact (*) | Rationale | |---|---------------------|---| | TVA Sales | Low | CO2 penalties drive industry to non-emitting technologies; raising prices and leading to economic decline later in the decade | | Natural Gas Prices | High | Demand for gas increases spiking prices | | Whole Sale Electricity Prices for TVA | High | Rush to switch to lower-emitting/non-emitting technologies results in increase in energy prices | | Coal Prices | Same | Demand decreases and keeps prices in current forecasted range | | Regulations | Same | No additional coal requirements/controls | | CO2 Regulation/Price | Very High | Stringent federal CO2 penalties | | Distributed Generation Penetration | High | DG resources increase due to higher energy prices and CO2 penalties | | Nat'l Energy Efficiency Adoption | High | Higher energy prices drive EE | | Economic Outlook
(National/Regional) | Low | Higher energy prices make US less competitive and economy downturns | ## **Preferred Scenarios Demonstrate Adequate Diversity** - ◆ The Diversity Range value for a particular scenario is calculated as the total sum of the value of the uncertainties (Very Low = 1, Very High = 5) compared with the maximum (45) and minimum (9) potential values; the result is expressed as a percentage - The results show that there is a good dispersion of values in the composite ranking results ### Scenarios Diversity Range ^{*} Note: The IRPWG results are based on 17 of 18 members participating. The TVA results are based on all 8 members participating. **IRP Update: Scenarios** Comments or observations about the current scenario designs? # TVA ## What's Next for the Project - Scenarios will be refined based on feedback from the stakeholders at the January 13th meeting - Some scenarios may be merged - An economic growth scenario will be considered for inclusion in the short list - The focus will then shift to development of the proposed set of planning strategies - IRP stakeholders will rank preferred strategies using a similar method to the ranking of scenarios (February) - Modeling inputs will be reviewed with the IRP stakeholders in March & April, including scorecard metrics - ◆ The forecasts for key drivers (the scenario uncertainties) will be presented in May - Actual case runs should begin in June ## RERC Proposed Engagement – 2015 IRP