

2019 IRP Working Group

Meeting 3: April 26, 2018

Safety Moment

Building Emergency Plan

Agenda

8:30	Welcome	Jo Anne Lavender
8:35	Recap of Meeting 2	Brian Child
8:50	2019 IRP Scoping Summary	Ashley Pilakowski
9:20	Examination of Peer Utilities' IRPs – Uncertainties and Scenarios	Randy McAdams
9:50	BREAK	
10:05	Uncertainties & Scenarios: Feedback and Additional Group Discussion	Hunter Hydas / Jo Anne Lavender and Group
12:00	Lunch	
1:00	Discuss Comments	Hunter Hydas and Group
1:30	Finalize List of Scenarios	Jo Anne Lavender & Brian Child
2:45	BREAK	
3:00	Overview of Attributes & Strategies	Brian Child
3:30	Next Steps	Jo Anne Lavender
3:45	River Forecasting Center Tour	James Everett
4:30	Adjourn	

IRPWG Meeting 2 Recap

Brian Child

March 29, 2018 Meeting Highlights

- Distributed Energy Resources Overview
- Current Forecasts Load, Economics & Commodities
- Uncertainties & Scenarios
 - Introduction
 - Working Group brainstorm & feedback
 - Possible 2019 IRP scenarios
- Tour of System Operations Center and Commercial Operations Center (trading floor)

2019 IRP Focus Areas

- Distributed Energy Resources
- System flexibility
- Portfolio diversity

2019 IRP Schedule: Schedule & Milestones

The 2019 IRP Study Approach is intended to ensure transparency & enable stakeholder involvement

(** indicates timing of Valley-wide public meetings)

Key Tasks/Milestones in this study timeline include:

- Establish stakeholder group and hold first meeting (Feb 2018)
- Initial modeling (June 2018)
- Publish draft EIS and IRP (Feb 2019)
- Complete public meetings (April 2019)
- Board approval and final publication of EIS and IRP (expected Summer 2019)

IRP Working Group Meeting Objectives

February 28th	March 29th	April 26th	June 7th	July 12th
 IRPWG orientation General overview of process 	 Overview of scenario design process Review uncertainties, current forecasts, and brainstorm/review scenarios IRPWG feedback 	 Discuss IRPWG feedback Discuss proposed scenarios Develop short list of scenarios for voting Overview of strategy design process 	 Finalize scenarios Review attributes and brainstorm/review strategies Discuss proposed strategies and develop short list Introduce resource options 	 Finalize strategies Planning assumptions Modeling constraints
			e on Vote arios Strate	

TVA

2019 Integrated Resource Plan Scoping Summary

Ashley Pilakowski

The Purpose of Public Scoping

Scoping is process to define how the IRP study will be done with help from the general public, TVA customers, organizations and agencies.

Topics in	ncluded:
-----------	----------

- An overview of the IRP Process
 - TVA's methodology for resource planning
 - Why resource planning is important
 - Rationale for 2019 IRP
 - How IRP results will be used
- Schedule for 2019 IRP study
- · Overview of the environmental impact assessment method

Comment

Forms

Here

Results are used to define:

- · The sources TVA will use to generate power
- How TVA will manage the demand for power
- How conditions in the TVA territory could change during the planning period
- The important environmental topics to be evaluated

Scoping Questions

How do you think energy usage will change in the next 20 years in the Tennessee Valley Region? Should the **diversity** of the current power **generation mix** (e.g., coal, nuclear, power, natural gas, hydro, renewable resources) **change**? If so, how?

How should energy efficiency and demand response be considered in planning for future energy needs?

And how can TVA directly affect electricity usage by consumers? How should Distributed Energy Resources (DER) be considered in TVA planning?

How will the resource decisions discussed above affect the **reliability**, **dispatchability** (ability to turn on or off energy resources) and **cost of electricity**?

2019 IRP Public Scoping: Effort and Responses

Scoping period: 2/15/2018 to 04/16/2018

7 media outlets received news releases throughout TVA region

2,500 scoping notices sent to people, agencies and organizations on 2019 IRP mailing list

Scoping meeting:

2/27/2018

Chattanooga, TN

Comments from

Efforts

Responses

- 7 Valley states (40% from TN)
 9 other states
- Several undisclosed

Commenters self-ID:

Webinar held:

2/21/2018

Link

• 28 business,

- 30 self/ individual,
- 4 government agencies
- 2 educational institution,
- 23 civic or other organizations

120 attendees

Scoping meeting:

3/5/2018

Memphis, TN

87 Scoping comment received

Major themes

Encouragement of clean energy initiatives, renewable energy, R&D on DERs

Call for special attention to environmental justice/ affected environment analyses on impacts to limited income households

General interest in energy efficiency measures and energy storage alternatives

General input on modeling, metrics/ calculations and evaluation criteria

General comments on fuel diversification options

Scoping Comments: IRP Assumptions & Method

Comments on the IRP analysis itself addressed the following themes:

- Climate change impacts & risks
- General scenario design goals
- Adequate evaluation of environmental costs for technologies and fuel types
- Treatment of rate impacts
- Inclusion of robust research on innovative renewable energy technologies & fuel options
- · Recognition of macroeconomic and socioeconomic aspects of the strategies

Commenters raised questions considered outside the scope of the IRP, e.g.

- Operational and business planning topics such as beneficial reuse of fly ash from fossil plants
- Concerns and opposition related to the recent rate restructure.

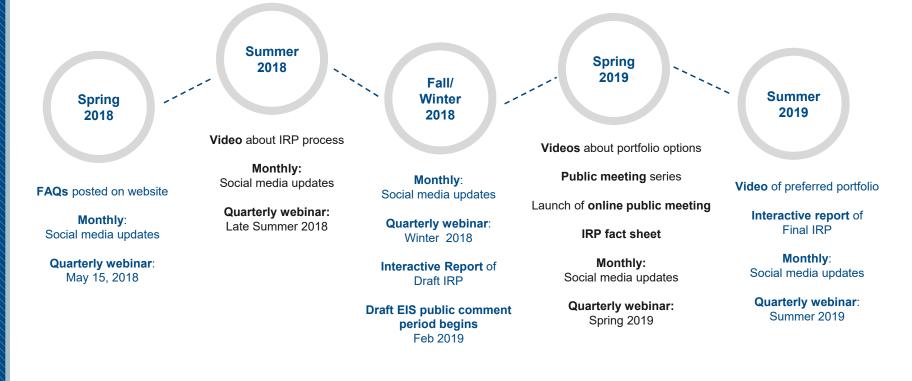
IRP Planning

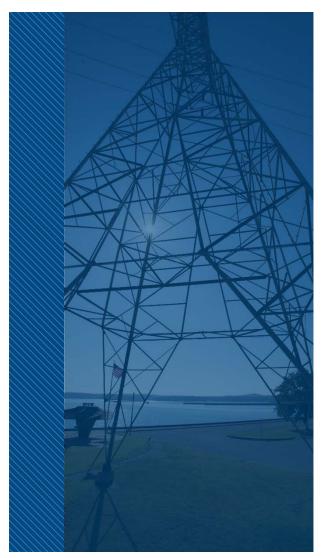
Allocations of funding	Renewable Energy	Scenarios	Strategies/ Alternatives
------------------------	------------------	-----------	-----------------------------

Energy Resources

Coal	Natural Gas	Nuclear	Renewable Energy
		INTEGRA	TED Resource Plan 2019 16

Energy Resources


Solar	Wind	Biomass
Energy Efficiency/ Demand Response	Distributed Energy Resources	Energy Storage


Environmental Impact Statement (EIS)

Wildlife/T&E Species	Land Use	Socioeconomics/ Environmental Justice	Water

Upcoming IRP Public Outreach

Next Steps

- TVA is compiling a report summarizing the scoping input.
- The scoping report will describe how TVA is responding to scoping input during the development of the IRP and the EIS.
- The scoping report will also describe scenarios, strategies, and energy resources being carried forward in the IRP and IRP EIS analysis.
- The scoping report is scheduled for posting to the IRP website in early July 2018.

Examination of Peer Utilities' Integrated Resource Plans

Use of Scenario Planning in IRP Development April 2018

Overview of Peer Utility IRP Benchmarking

- Approach and Peer Utilities Examined
- IRP Development Process
- Summary of Scenario Planning Observations
- Comparison of Peer Uncertainties to TVA
- Comparison of Peer Scenarios to TVA
- Appendix Scenario Approaches Employed by Peer Utilities

Overview of Peer Utility IRP Benchmarking

- ScottMadden examined IRPs most recently released by 10 peer utilities
- IRPs were examined for approaches, results, and themes
- Industry developments, including the evolving IRP process in California, were reviewed along with recent planning documents from SMUD and PG&E
- Today's Objectives: Share observations on use of scenario planning by peer IRPs

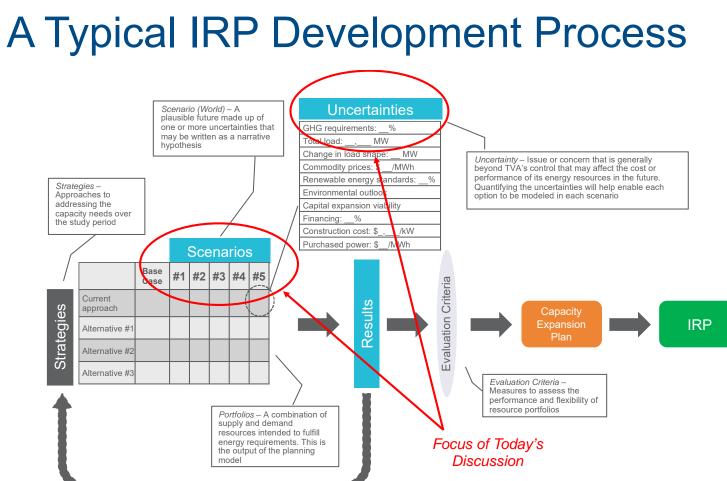
Peer Panel Company Profiles

	🜔 aps	Dominion Energy*		DUKE ENERGY. FLORIDA	DUKE ENERGY. PROGRESS
Description	Using a balanced energy mix that is nearly 50% carbon-free, APS has one of the country's cleanest energy portfolios	One of the nation's largest producers and transporters of energy, with one of the nation's largest natural gas storage systems	Regulated public utility primarily engaged in the generation, transmission, distribution, and sale of electricity in portions of NC and SC	Regulated public utility primarily engaged in the generation, transmission, distribution, and sale of electricity in portions of Florida	DEP owns nuclear, coal- fired, natural gas, renewables, and hydroelectric generation, providing service within portions of NC and SC
Total Revenue (\$000,000,000)	\$3.6B	\$12.9B	\$7.4B	\$4.7B	\$5.2B
IRP Filing Date/ Filing Frequency	April 2017 / Annually	May 2017 / Biennially	Sept. 2017 / Annually	April 2017 / Annually	Sept. 2017 / Annually
IRP Planning Horizon	15 Years	25 Years	15 Years	10 Years	15 Years
Customers	1,221,485	2,588,084	2,571,820	1,800,000	1,556,402
Capacity	6,450 MW	26,268 MW	20,475 MW	9,869 MW	14,197 MW

Peer Panel Company Profiles (Cont'd)

	Entergy.	FPL	📥 Georgia Power		PGE
Description	Integrated energy company engaged primarily in electric power production and retail distribution operations	A subsidiary of Juno Beach, Florida-based NextEra Energy, Inc., FLP is the third-largest electric utility in the U.S.	The largest electric subsidiary of Southern Company, with a diverse and innovative generation mix	A subsidiary of Berkshire Hathaway Energy, the electric utility serves customers across six states	Vertically integrated electric utility that serves customers in the Portland / Salem metropolitan area of Oregon
Total Revenue (\$000,000,000)	\$11.4B	\$12.0B	\$8.3B	\$2.3B	\$2.0B
IRP Filing Date/ Filing Frequency	Aug. 2015 / Every Three Years	April 2017 / Annually	Jan. 2016 / Every Three Years	April 2017 / Biennially	Nov. 2016 / Every Three Years
IRP Planning Horizon	20 Years	10 Years	20 Years	20 Years	25 Years
Customers	2,884,881	4,922,000	2,515,131	1,867,000	875,000
Capacity	24,168 MW	27,122 MW	16,422 MW	1,132 MW	4,005 MW

INTEGRATED Resource Plan 2019 | 24


TVA

Peer Panel Company Profiles (Cont'd)

	PGSE	SMUD [°]	TVA
Description	A subsidiary of PG&E Corp., PG&E serves Californians across a 70,000 square mile service area in Northern California	Sixth-largest community- owned electric service provider, with a power mix that is 50% non-carbon emitting	Federally owned agency providing electricity, flood control, navigation, land management, and economic development in seven states
Total Revenue (\$000,000,000)	\$17.2B	\$1.6B	\$10.7B
IRP Filing Date/ Filing Frequency	N/A	N/A	Aug 2015 / Every Four Years
IRP Planning Horizon			20 Years
Customers	5,384,525	628,953	>9,000,0001
Capacity	7,715 MW	1,043 MW	36,153 MW

¹TVA customer counts reflect retail customers serviced by independent power distributors

Summary of Scenario Planning Observations Uncertainties Contained in Scenarios

- Whether included as part of a named scenario or tested as independent variables, all peer IRPs include uncertainties of CO₂ compliance costs, natural gas prices, and load growth rate; Peer Benchmarking conducted in 2009 and 2014 identified the same three as common to all peer IRPs
- The majority of peer IRPs include uncertainties of capital cost and availability, technology cost and performance, and non-CPP regulations and policies
- Only four peers (APS, ETR, PCQ, and PGE) identified distributed generation penetration as an uncertainty
- For all peers, capacity expansion tools (e.g., System Optimizer, Strategist) are essential to model and analyze increasing numbers of uncertainties, scenarios, technologies, and portfolios

Summary of Scenario Planning Observations Development and Use of Scenarios

- Terminology and approaches to modeling future scenarios differ widely between the peers
- Four peers developed alternative portfolios without creating scenarios; single and multivariable sensitivity tests determined the preferred portfolio (APS, DOM, DEF, and FPL)
- Peers that created scenarios modeled as few as four (DEC, DEP, and ETR) to as many as 23 (PGE)
- Four of the six peers who created scenarios modeled a base case that reflected current trends for key uncertainties
- PGE documented the most comprehensive creation and modeling of varying possible scenarios

Six of the 10 peers created scenarios to test strategies or portfolios

INTEGRATED Resource Plan 2019 | 28

ТИ

Summary of Scenario Planning Observations Scenario Selection

- Peers did not document the process for selection of scenarios, but load growth, fuel prices and regulations (related to both CPP and RPS) are included in the construction of most scenarios
- Despite increasing focus on DER, only ETR created a scenario to identify heavy penetration of DG as a possible future; others (e.g., APS, PCQ) created uncertainty cases to test the impact of DG penetration on portfolios
- DEC and DEP share a single modeling work group, and identified four common scenarios
- Most peers that were included in the 2014 benchmarking exercise maintained a similar approach to the use and number of scenarios
- DOM modeled four scenarios in the 2013 IRP but bypassed scenario creation for 2017, utilizing sensitivity case testing on eight portfolios

Summary of Scenario Planning Observations PUC and Stakeholder Engagement

- For eight of the peers, state PUCs require periodic filing of IRPs, ranging from annually to every four years
- Two of the peers, DEF and FPL, are required to file an annual Ten Year Site Plan, which includes a limited section for integrated resource plan
- The PUC requirements for IRP content differ significantly between peers (e.g., PGE's IRP is over 850 pages, while ETR a utility more than five times larger, filed an IRP with less than 100 pages)
- The level of stakeholder engagement varied widely, with most peers not describing details of stakeholder involvement in the development process
- PGE and PCQ describe well-developed stakeholder engagement processes, including at least eight public meetings held throughout the development process

Possible TVA IRP Uncertainties

Uncertainty	Description
Electricity Demand	The customer energy requirements (GWh) for the TVA service territory including losses; it represents the load to be served by TVA
Market Power Price	The hourly price of energy (\$/MWh) at the TVA boundary; used as a proxy for market price of power
Natural Gas Prices	The price (\$/MMBtu) of the commodity including transportation
Coal Prices	The price (\$/MMBtu) of the commodity including transportation
Solar Prices	The price (\$/MWh) of solar power purchase agreements delivered to TVA
Storage Prices	The price (\$/kW) of storage new builds
Regulations	All regulatory and legislative actions, including applicable codes and standards, that impact the operation of electric utilities excluding CO2 regulations
CO2 Regulation/Price	The cost of compliance with possible CO2 related regulation and/or the price of cap-and-trade legislation, represented as a \$/Ton value
Distributed Generation Penetration	National trending of distributed generation resources and potential regional activity by customers or third party developers (not TVA)
Energy Efficiency Adoption	An estimate of the adoption of energy efficiency measures by customers nationally; a measure of interest/commitment of customers in general to adopt EE initiatives, recognizing the impacts of both technology affordability and electricity price on willingness to adopt efficiency measures
Economic Outlook (National/Regional)	All aspects of the regional and national economy, including general inflation, financing considerations, population growth, GDP and other factors that drive the overall economy

Shaded uncertainties reflect potential additions to the 2015 IRP uncertainties

Comparison of Peer Uncertainties to TVA

Uncertainty	TVA	APS	DOM	DEC	DEF	DEP	ETR	FPL	GPC	PCQ	PGE
Load Growth Forecasts	✓	√	\checkmark	~	~	\checkmark	~	\checkmark	√	\checkmark	\checkmark
Natural Gas Prices	✓	~	\checkmark	~	~	\checkmark	~	\checkmark	~	~	\checkmark
CO ₂ Regulations / Costs	✓	~	\checkmark	~	~	~	~	\checkmark	~	~	\checkmark
Capital Availability, Costs, & Escalation ¹	✓	✓		~		~			~	✓	\checkmark
Technology Costs & Performance ²	✓	~	~	~	~	~	~	\checkmark			\checkmark
Policies and Regulations (excl. CO ₂)	✓	√	\checkmark	~		~	~	\checkmark			\checkmark
Nat'l EE Adoption and EE Costs	✓			~		~					
Coal Price	✓		\checkmark						~		\checkmark
Distributed Generation Penetration	✓	√					~			~	\checkmark
Economic Outlook ¹	✓	√									\checkmark
Market Power Price	~										
Demand Side Management Achievement		✓	\checkmark	~		~		\checkmark	✓		
Renewables Energy Requirements			\checkmark	~		~		\checkmark			\checkmark
Generation In-Service Delays/Retirement			\checkmark				~		~		
Resource Selection Constraints					~						~
PPA Availability / Costs									~	\checkmark	
Regional Gen and Load Imbalance								\checkmark			

¹TVA intends to capture *Capital Cost and Escalation* as part of the *Economic Uncertainty* scenario

²TVA identified individual uncertainties for Storage and Solar Costs

Comparison of Peer Uncertainties to TVA (Cont'd)

Uncertainty	TVA	APS	DOM	DEC	DEF	DEP	ETR	FPL	GPC	PCQ	PGE
Nuclear Challenges				\checkmark		\checkmark					\checkmark
Externalities (monetizing SO ₂ , NOX, etc.)		\checkmark							\checkmark		
Renewable Tax Credits							~				
Construction Capacity Additions									\checkmark		
Future Reserve Margins		\checkmark					~				
Generator Forced Outage Rates							\checkmark		~		

Comparison of Peer Uncertainties to TVA – Key Takeaways

- On balance, TVA's uncertainties are comprehensive and align with industry peers
- Seven of TVA's 11 uncertainties are modeled by a majority of peers; Only one uncertainty, *Market Power Price,* is unique to TVA
- Ten uncertainties are included by at least one, but less than five, of the peers and are not among TVA's uncertainties. Basis for inclusion of these uncertainties appears to be driven by environmental, regulatory or operational priorities that may differ from those of TVA

Peer Scenario Comparisons

Company	Curren	thoment fconor	Root Econol	nic own cas	Prices Carbon	las Renews	otes capit	al Cost Load	Browth Wate	Sostants Distributed are	
Duke Energy Carolinas (DEC)	✓	✓	~	С	~						
Duke Energy Progress (DEP)	✓	✓	~	С	~						
Entergy (ETR)	✓	✓			~					~	
Georgia Power Company (GPC)				~	~						
Portland General Electric (PGE)	✓			~	~	~	~	~	~		
PacifiCorp (PCQ)				~	~						
Arizona Public Service (APS)	APS tested individual uncertainties (e.g., load, gas price carbon tax, cost of capital) against seven portfolios										
Dominion (DOM)	DOM tested individual uncertainties (e.g., load, gas price carbon tax, construction costs) against eight portfolios										
Duke Energy Florida (DEF)	DEF did not	DEF did not describe scenarios but used a "highest probability of outcome" to inform portfolio design									
Florida Power & Light (FPL)	FPL did not create scenarios but built portfolios based on costs, environmental constraints, and regulatory requirements										

C – Included as a component within one or more of the named scenarios

PCQ created six scenarios based on variations of gas prices and carbon emission limits

GPC created nine scenarios based on variations of gas prices and carbon tax

Possible Alternative TVA IRP Scenarios

Declining Economy

Weak Economy

Economic Growth

Strong Economy

Stringent Environmental

- CO2 Regulation/Legislation
- Limited Natural Gas Extraction
- Water Scarcity

Changing Paradigm

- Advanced Manufacturing
- Decarbonized Society
- No Nuclear Extensions

Emerging Technology

- High DER
- Technology Breakthrough

Observations

- Similar to four of the peers, TVA modeled a Current Outlook scenario (not shown) that reflects current trends in addition to the ten alternative scenarios
- Four of the six peers who utilized scenarios modeled six scenarios or less
- For the 2015 IRP, TVA evaluated ten scenarios and selected five to be modeled

INTEGRATED Resource Plan 2019 | 36

TVA

Comparison of Peer Scenarios to TVA

Company	Curre	outpot teone	nic com	Profession Col. Rec	sublicition internation	Cast actions	Scarcity Lava	andacturing Decard	Society No Hu	test sons Hi	and the recting of the
Duke Energy Carolinas (DEC)	~	×	×	×							
Duke Energy Progress (DEP)	×	~	~	~							
Entergy (ETR)	1		~	~						~	
Georgia Power Company (GPC)				~							
Portland General Electric (PGE)	~			~		~					
PacifiCorp (PCQ)			~	~						~	
Arizona Public Service (APS)	APS tested	individual u	ncertainties	(e.g., load,	gas price ca	rbon tax, cos	st of capital)	against sev	en portfolios		
Dominion (DOM)	DOM tested	individual	uncertaintie	s (e.g., load,	gas price c	arbon tax, co	instruction c	osts) agains	t eight portfo	lios	
Duke Energy Florida (DEF)	DEF used a	"highest pr	obability of	outcome" to	inform portf	olio design, a	and perform	ed sensitivit	/ analysis		
Florida Power & Light (FPL)	FPL did not	create scer	narios but bu	uilt portfolios	based on c	osts, environ	mental con	straints, and	regulatory r	equirements	3

- Four of the six peers who created scenarios included a Base Case / Current Outlook model
- PCQ created six scenarios based on variations of gas prices and carbon emission limits, and 18 others based on variations on uncertainties

INTEGRATED Resource Plan 2019 | 37

TVA

Comparison of Peer Scenarios to TVA – Key Takeaways

- TVA's eleven possible scenarios provide a comprehensive set of futures that match or exceed peer IRP scenarios
- Three of TVA's possible scenarios were modeled by most peers who created scenarios (i.e., *Current Trends, Economic Boom, CO2 Regulation / Legislation*)
- Three of TVA's scenarios were modeled by one or two peers (i.e., *Economic Slowdown, Water Scarcity, High DER*)
- Five scenarios were not included by any of the peers (i.e., *Limited Natural Gas Extraction, Advanced Manufacturing, Decarbonized Society, No Nuclear Expansion, Technology Breakthrough*)
- Opportunities exist to combine / reduce scenarios to five to seven, and to address any additional future variables through sensitivity testing

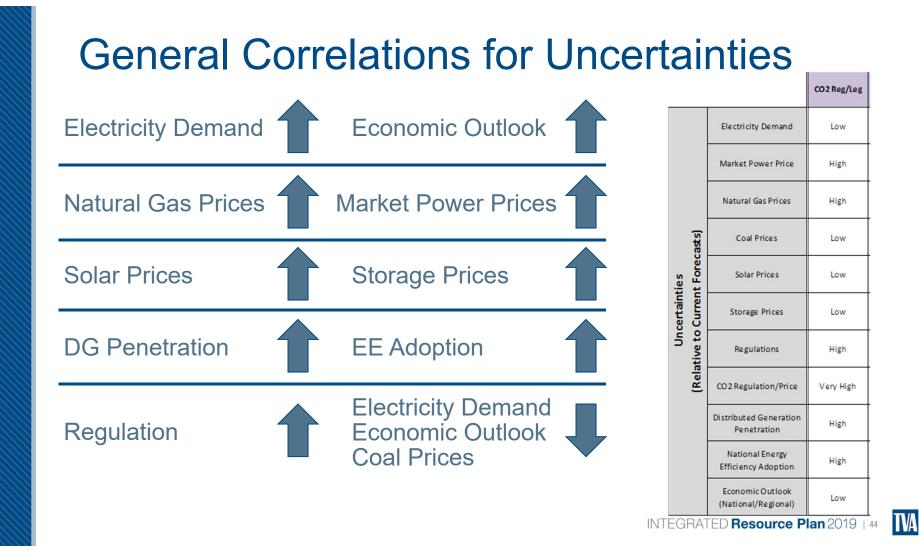
Feedback on Uncertainties & Scenarios

Hunter Hydas

Scoping Comments: IRP Scenarios

Themes from Public Scoping Comments on Scenarios:

- Renewable Energy
 - Expanded renewables at all scales
 - DER (specifically distributed solar plus storage)
- Utility-Scale Storage
- Carbon Policy
 - Follow examples of Paris Agreement, CA, or RGGI
- Electrification
 - Higher EV penetration
 - C&I, Direct-served electrification



2019 IRP Proposed Uncertainties

Uncertainty	Description
Electricity Demand	The customer energy requirements (GWh) for the TVA service territory including losses; it represents the load to be served by TVA
Market Power Prices	The hourly price of energy (\$/MWh) at the TVA boundary; used as a proxy for market price of power
Natural Gas Prices	The price (\$/MMBtu) of the commodity including transportation
Coal Prices	The price (\$/MMBtu) of the commodity including transportation
Solar Prices	The price (\$/MWh) of solar power purchase agreements delivered to TVA
Storage Prices	The price (\$/kW) of storage new builds
Regulations	All regulatory and legislative actions, including applicable codes and standards, that impact the operation of electric utilities excluding CO2 regulations
CO2 Regulation/Price	The cost of compliance with possible CO2 related regulation and/or the price of cap-and-trade legislation, represented as a \$/Ton value
Distributed Generation Penetration	National trending of distributed generation resources and potential regional activity by customers or third party developers (not TVA)
Energy Efficiency Adoption	An estimate of the adoption of energy efficiency measures by customers nationally; a measure of interest/commitment of customers in general to adopt EE initiatives, recognizing the impacts of both technology affordability and electricity price on willingness to adopt efficiency measures
Economic Outlook (National/Regional)	All aspects of the regional and national economy, including general inflation, financing considerations, population growth, GDP and other factors that drive the overall economy

Current Outlook

Uncertainty	Outlook
Electricity Demand	Growth in customer count and large commercial & industrial offset by increased energy efficiency and distributed generation, leading to slightly declining energy sales and slightly increasing peaks
Market Power Prices	Average prices determined by marginal natural gas generators
Natural Gas Prices	Near term natural gas prices below \$3.00/MMBtu and longer term average around \$3.25/MMBtu
Coal Prices	Low gas prices drive lower growth in coal prices, and coal becomes more competitive in the long term as nuclear units begin to retire
Solar Prices	Solar prices becoming competitive with traditional resources
Storage Prices	Storage prices declining but still more expensive than traditional resources
Regulations	Little to no change in stringency of environmental regulations, and assume current projection of tariffs and tax credits
CO2 Regulation/Price	Given TVA's diverse portfolio and current state of regulations, carbon price of \$0/ton assumed
Distributed Generation Penetration	Limited DG penetration in the Valley compared to other areas of the country, with 4% of residential and commercial customers projected to have distributed solar by 2038
Energy Efficiency Adoption	Energy efficiency gains from EIA projected saturation of codes and standards currently on the books
Economic Outlook (National/Regional)	Gross Domestic Product growth of 2% per year
	INTEGRATED Resource Plan 2019 43

Potential Plausible Futures Brainstorming Session March 2018

IRPWG members were asked to consider:

- How technology is changing
- How electricity demand is likely to change in the future
- How **customer preferences** are evolving and impacting the demand for electricity
- How the **regulatory environment** may affect the future (regulation overall, not TVA specific regulation)
- How the economy will change

Summary of Brainstorming Ideas

Technology:

-Costs of solar decline - IOT / Fiber - EV's and EE - CHP - Grid Technologies / System Controls - Microgrids - DR - SMRs

Electricity Demand:

- -Lots of positive and negative influences
- EV raises demand can we control it?
- Younger people will have different
- practices
- High Tech telecom demand
- Rural to Urban shift
- Rate Structure
- Water system efficiency
- Off grid defection

Customer Preferences

- Low cost / cost predictability
- Raise flexibility / menu of options
- wants: Instant service / controls / privacy / rate options / green/perception of green / do it themselves / keep up with the Jones/
- Corporate mandates
- LPC controls
- Reliability
- Greater Customer Diversity
- Equity concerns

Regulatory Environment

-Environmental Regulations -Codes/Standards -Transmission Access -Cyber Security Policy -Reliability / Cyber / Physical

Economy

-Global Conflict -Regional disparities / Urban/Rural / Rationality / Growth areas more granule

- Impact of regulations
- Tax structure
- Recession modeling
- Interplay of economy and customer demographics

Possible 2019 IRP Scenarios

- Declining Economy
- Weak Economy
- Economic Growth
- Strong Economy
- Stringent Environmental
- CO2 Regulation/Legislation
- Limited Natural Gas Extraction
- Water Scarcity

Changing Paradigm

- Advanced Manufacturing
- Decarbonized Society
- No Nuclear Extensions

Emerging Technology

- High DER
- Technology Breakthrough
- High EV Penetration *New from IRPWG*

Scenario Group 1: Declining Economy

Weak Economy

- Prolonged, stagnant economy results in negative growth and delayed expansion of new generation
- Ballooning budget deficits and rising public debt hits record levels
- More tariffs on imports are followed by retaliatory tariff on exports
- Stringent environmental regulations are delayed due to concerns of adding further pressure to the economy
- Weaker demand drives lower cost of new construction, lower productivity and lower real prices
- Comment: Reduced disposable income and earnings increases adoption of energy efficiency as a means of reducing cost

Scenario Group 2: Economic Growth

Economic Boom

- Rapid economic growth translates into higher than forecasted energy sales and energy expansion
- Rebound in commodity exports (gas and other material)
- Strong growth in emerging markets and developing economies, driving productivity growth and lower inflation
- Increasingly positive public attitude toward adoption of energy efficiency programs and distributed generation
 - Comment: Disagree. Historically, energy efficiency has been less of a priority during economic booms (e.g., when people have more disposable income they drive more, turn the AC/Heat up, buy bigger SUVs and homes, etc.)
- Advances in electric vehicles make it cheaper to buy electric than gas cars
 - Comment: Advances in EVs should be grouped somewhere else, as EV development isn't necessarily linked with the strength of the economy (e.g., the Nissan Leaf and Tesla Model S were introduced at the height of the recession in 2008-2009.)

Scenario Group 3: Stringent Environmental

CO2 Regulation/Legislation

Scenario Narrative

- Increasing climate-driven effects create strong federal push to curb GHG emissions, driving CO₂ emission penalties for the utility industry and incentives for non-emitting technologies
- Compliance with new rules increases energy prices and US-based industry becomes less competitive, resulting in lagging U.S. economic growth that fails to rebound to trend levels
 - Comment: Regulation of CO2 does not necessarily mean a hit on the economy long-term (e.g. CAA 1970s)
- Fracking regulations never materialize, but gas demand is impacted by the CO₂ penalty
- New expansion units are necessary to replace existing CO₂ -emitting fleet
 - Question: With what type of expansion?

Scenario Group 3: Stringent Environmental

Limited Natural Gas Extraction

- Increasing concern with fossil fuel production and use drive regulations to limit natural gas extraction along with more stringent water regulations
- New legislation moderately penalizes CO₂ emissions from the utility industry and incentivizes non-emitting technologies
- Compliance with new rules increases energy prices and US-based industry becomes less competitive, resulting in lagging U.S. economic growth that fails to rebound to trend levels
- New expansion units are necessary to replace existing CO₂ -emitting fleet
 - Question: With what type of expansion?

Scenario Group 3: Stringent Environmental

Water Scarcity

Scenario Narrative

- Climate variability leads to prolonged drought and reduced hydro generation as well as hydrothermal limitations for plants that depend on water for cooling
 - Comment: Future water availability is location specific and varies significantly through the year. Therefore, impact across the Tennessee Valley will vary significantly.
- Population and demographic changes lead to increasing demand for water in urban areas, contributing to localized water scarcity
 - Comment: Drought and drought conditions are likely to impact rural and non-urban communities more than urban cities. The vast majority, if not all, of the major urban centers are located on major river systems which provide water supply.

Comment: Heavy precipitation events could contribute to flooding

 Public and political sensitivity to large water users and natural ecosystem impacts drives penalty on water use.

Scenario Group 4: Changing Paradigm

Advanced Manufacturing

Scenario Narrative

- Automation and artificial intelligence drive increased labor productivity, boosting economic growth and lowering inflation
- Increased penetration of artificial intelligence and advanced manufacturing leads to higher energy use in the manufacturing sector and increased need for improved reliability, power quality and reactive capability
 - Comment: Could also result in no net change to energy consumption due to reduced transportation of workers and manufacturing space heating/cooling. Also, AI could be cloud-based with servers located outside the Valley.
 - New facilities proactively incorporate energy efficiency and renewable technology

Feedback to consider removing scenario if impacts immaterial <u>or</u> moving scenario to Emerging Technology category

Scenario Group 4: Changing Paradigm

Decarbonized Society

- Driven by customer preference, transportation and other sectors are electrified, resulting in increased sales
- Preference for lower emissions, DER and energy efficiency drives lower demand for emitting generation, resulting in lower gas and coal prices
 - Comment: Demand for natural gas could increase in the near term as it acts as a "bridge fuel" until solar, SMRs, etc. are cheaper
- U.S. economy in slight decline due to higher electricity prices
 - Comment: What is the basis for the link between higher electricity prices and economic decline?
 - U.S. economy performs similarly with higher electricity prices offset by reduced spending on gasoline

Scenario Group 4: Changing Paradigm

No Nuclear Extensions

- Driven by desire for national energy security and resiliency, relicensing of existing and construction of new large scale nuclear both cease in favor of technologies that are more secure, modular, and flexible
 - Comment: Not necessarily. A "desire for energy security and resiliency" would demand that baseload nuclear generation is relicensed and possibly increased, not retired.
- National energy policy drives carbon regulation and legislation and promotes small modular reactor technology through subsidies to drive SMR technology breakthrough and improved economics
 - Question: Why would no new large nukes result in lower economic growth given growth of SMRs?

Scenario Group 5: Emerging Technology

High DER

- Consumer growing awareness of and preference for energy choice, coupled with rapid advances in energy technologies, drive high penetration of distributed generation, storage and energy efficiency
- Utilities are no longer the only source of generation and multiple options are available to consumers
- Market shift results in lower loads, decreased need for supply-side generation, but potential impacts to transmission and distribution planning and infrastructure

Scenario Group 5: Emerging Technology

Technology Breakthrough

- Technology breakthrough in the cost and capability of storage technology, small modular reactors, carbon capture, and energy management
- Technology enables clean fossil generation with a reduced emission profile along with emission-free technologies for a lower-emitting diverse portfolio

Scenario Group 5: Emerging Technology

High EV Penetration

- High penetration of electric vehicles (including light duty, medium duty, and heavy duty passenger vehicles to buses to class 4-8 trucks)
- High penetration of EV shifts vehicle fuel source from petroleum to electricity, which results in increase in electricity demand
- Higher number of battery EVs results in lower battery prices due to economies of scale
- With multiple auto manufacturers located within the TVA region, EVs present an economic growth opportunity

Summary of Scenarios & Uncertainties

						Pot	ential Scena	arios					
		Declining Economy	Economic Growth	Strin	gent Environm	ental	с	hanging Paradig	m	Em	nerging Technolo	ogy	
		Weak Economy	Strong Economy	CO2 Reg/Leg	Limited NG Extraction	Water Scarcity	Advanced Manufacturing	Decarbonized Society	No Nuclear Extensions	High DER	Technology Breakthrough	High EV Penetration	
	Electricity Demand	Very Low	Very High	Low	Low	Low	High	High	Same	Same	Same	Very High	Would electricity demand be lower in these scenarios?
	Market Power Price	Low	High	High	Very High	Very High	High	High	High	Very Low	High	Low	
	Natural Gas Prices	Low	High	High	Very High	Very High	High	Low	High	Very Low	Same	Same	
casts)	Coal Prices	Low	Same	Low	High	Very High	Same	Low	Same	Very Low	Same	Same	Would coal prices be very low?
t Fore	Solar Prices	High	Same	Low	Low	Low	Same	Low	Same	Low	Very Low	Same	Would solar and storage
Uncertainties • to Current Forecasts)	Storage Prices	High	Same	Low	Low	Low	Same	Low	Same	Low	Very Low	Low	prices remain unchanged in a weak economy?
Und (Relative to	Regulations	Low	Same	High	Very High	Very High	Same	Same	High	Same	Same	Same	
(Rela	CO2 Regulation/Price	Same	Same	Very High	High	Very High	Same	Very High	High	Same	High	Same	
	Distributed Generation Penetration	Low	High	High	High	High	High	High	High	Very High	Very High	Same	
	National Energy Efficiency Adoption	Low	High	High	High	High	High	High	High	Very High	Very High	Same	Would EE move opposite of economy?
	Economic Outlook (National/Regional)	Very Low	Very High	Low	Low	Low	High	Same	Low	Same	Same	High	Would economy remain unchanged? Duration?
										-	INTEG	RATED	esource Plan 2019 59

Proposed Scenario: Emerging Technology

			Scenario Narrative
		High EV Penetration	High penetration of Electric Vehicles (including light duty, medium duty, and heavy duty passenger vehicles to buses to class-4-8 trucks)
		Level of Impact relative to the Current Outlook	Rationale
	Electricity Demand	Very High	High penetration of EV shifts vehicle fuel source from petroleum to electricity, which results in significant increase in electricity demand.
	Market Power Prices	Low	Load growth allows TVA/LPCs to allocate fixed costs over higher number of kWh, therefore reducing unit costs.
	Natural Gas Prices	Same	Load growth met by baseload nuclear, hydro, and natural gas.
ists)	Coal Prices	Same	
ies t Foreca	Solar Prices	Same	
Uncertainties to Current Fc	Storage Prices	Low	Higher number of battery EVs results in lower battery prices due to economies of scale.
Uncertainties (Relative to Current Forecasts)	Regulations	Same	
(Rel	CO2 Regulation/Price	Same	
	Distributed Generation Penetration	Same	
	National Energy Efficiency Adoption	Same	
	Economic Outlook (National/Regional)	High	With mulitple auto manufacturers located within TVA region, EVs present an economic growth opportunity.

INTEGRATED Resource Plan 2019 | 60

TVA

Individual Feedback on Scenarios

Jo Anne Lavender

Individual Feedback on Scenarios

- 1. If you have a <u>question or concern</u>, please write it on a sticky note and place it on the appropriate Scenario.
- 2. After lunch, we will work through all the questions and concerns together as a group.

Discussion of Comments

Hunter Hydas

Group Discussion

Jo Anne Lavender

Small Group Discussion Questions

1. Are Scenarios distinct from each other? Should any be combined?

2. Do the proposed scenarios capture the probable futures?

3. What, if anything, is missing?

Check In – Scenario List

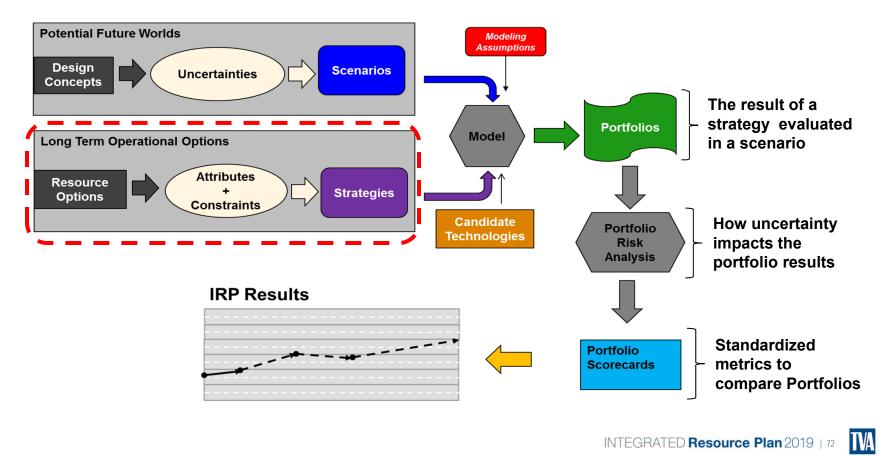
Jo Anne Lavender

Next Steps - Scenarios

Hunter Hydas

Next Steps on Scenarios

- Are there any final questions about scenarios?
- Our goal is to get the final list down to ~5 scenarios in addition to the Current Outlook.
- Voting process:
 - By April 30, the final scenario list, narratives, and uncertainty matrix will be provided to the IRPWG along with a ranking template.
 - You will rank scenarios in order of preference for inclusion in the IRP and email ranking back to us by May 11.
 - Scenarios will be finalized based on IRPWG ranking and TVA ranking and results will be presented at the June meeting.



Overview of Attributes & Strategies

Brian Child

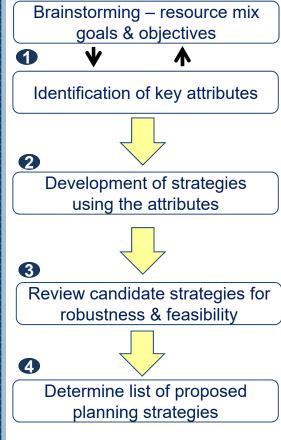
How Integrated Resource Planning Works

Scenarios and Strategies Establish Framework

Scenarios Outside TVA's Control

- Describe potential outcomes of factors (uncertainties) outside of TVA's control
- Represent possible conditions and are not predictions of the future
- Include uncertainties that could significantly impact operations, such as:
 - Load forecasts
 - > Commodity prices
 - Environmental regulations
- · Lends insight to riskiness of portfolio choices

Strategies Within TVA's Control


- Test various business options within TVA's control
- Defined by a combination of resource assumptions, such as:
 - > DER portfolio
 - > Nuclear expansion
 - Energy storage
- Consider multiple viewpoints
 - > Public scoping period comments
 - Assumptions that would have the greatest impact on TVA long-term

A well-designed strategy will perform well in many possible scenarios

INTEGRATED Resource Plan 2019 | 73

TVA

Process for Building Strategies

- The key questions in developing our list of potential strategy attributes are
 - Is this attribute something we want to evaluate in this IRP?
 - Is this attribute something we need to define? Or can this aspect of the resource portfolio be an outcome of the modeling?
 - Does this attribute capture an existing policy of TVA?
 - Does this attribute capture work done outside the IRP to meet goals or objectives of TVA?
- Describe the intent of each candidate strategy by defining the "value" of each attribute for that strategy
- Review attributes within the strategy for correlation; also compare attribute variability across all candidate strategies to ensure robust resource portfolios will be possible
- TVA & IRPWG select a short list of strategies to be modeled
 - Define each of the proposed planning strategies including objectives and key characteristics

10 Attributes used in 2015 IRP

Attributes	Description
Existing Nuclear	Constraints related to the existing nuclear fleet; EPU's are considered part of existing nuclear
Nuclear Additions	Limitations on technologies and timing related to the addition of new nuclear capacity; Watts Bar 2, SMRs, A/P 1000s and BLN are considered in this category
Existing Coal	Constraints related to the existing coal fleet; the current schedule plan of coal unit idling is considered as an input
New Coal	Limitations on technology and timing on new coal-fired plants; includes CCS on conventional coal plus IGCC technology
Gas Additions	Limitations on technologies and timing related to the expansion options fueled by natural gas (CT, CC)
EEDR	Considers energy efficiency and demand response programs that are incentivized by TVA and/or LPC's (excludes impacts from naturally occurring efficiency/ conservation)
Renewables (Utility Scale)	Limitations on technologies and timing of renewable resources; considers options that would be pursued by TVA or in collaboration with LPC's
Purchased Power Agreements (PPA)	Level of market reliance allowed in each strategy; no limitation on the type of energy source (conventional or renewable)
DG/DER	Includes customer-driven resource options or third party projects that are distributed in nature
Transmission	Type and level of transmission infrastructure required to support resource options in each strategy

2015 IRP Selected Strategies

 * Traditional" Least Cost Planning Resources select This lower emission will be set as a re Additional existing Lean on the Market • Most new capacit arrangements • TVA makes a min • In order to establi energy target for 	ns available for selection; traditional utility "least cost optimization" case ed to create lower emitting portfolio instead of focusing only on a traditional least cost approach ons plan will be based on an emission rate target or level using CO2 as the emissions metric (the target duction from current emissions forecast) g unit retirements may be included in the plan.
Meet an Emission Target • This lower emission will be set as a regime of the set as a regim	ons plan will be based on an emission rate target or level using CO2 as the emissions metric (the target duction from current emissions forecast) g unit retirements may be included in the plan.
Meet an Emission Target will be set as a reference of the set as a reference	duction from current emissions forecast)
Additional existing Additional existing Most new capacit arrangements TVA makes a min In order to establi energy target for	
Lean on the Market • TVA makes a min • In order to establi energy target for	y needs are met using market resources and/or third-party assets acquired through PPA or other bilateral
Lean on the Market arrangements • TVA makes a min • In order to establi energy target for	y needs are met using market resources and/or third-party assets acquired through PPA or other bilateral
TVA makes a min In order to establi energy target for	
energy target for	imal investment in owned assets (deployment of EEDR to meet resource needs will continue)
Doing More EEDR • Renewable energy	sh TVA as a regional energy efficiency leader, a majority of capacity needs are met by setting an annual EEDR (e.g., minimum contribution of 1% of sales)
	y and gas are secondary options with no coal or nuclear additions permitted
	sh TVA as a regional renewable leader, a majority of new capacity needs are met by setting immediate
A utility-scale app resource type by	ewable energy targets (e.g., 20% by 2020 and 35% by 2040), including hydroelectric energy
EEDR and gas ar	roach is targeted initially with growing transition to distributed generation as the dominant renewable

Next Steps on Strategies

- Review strategies from 2015 IRP
- Consider whether these attributes and strategies are still relevant or if they should be modified.
- Next meeting will focus on brainstorming and selecting a short list for voting between the June and July meeting

Wrap Up and Tour

Thank you!

