

# 2019 IRP Working Group

Meeting 4: June 6 - 7, 2018









## **Building Emergency Plan**



## Agenda – June 6, 2018

| 12:00 | Lunch                                        |                  |
|-------|----------------------------------------------|------------------|
| 12:45 | Welcome and Introductions<br>Today's Program | Jo Anne Lavender |
| 12:50 | Broad Overview – Resource Planning           | Jane Elliott     |
| 1:30  | BREAK and Set Up Panels                      |                  |
| 1:45  | Panel 1: Utility Scale Resources             | Panels           |
| 3:30  | BREAK                                        |                  |
| 3:45  | Panel 2: Distributed Energy Resources        | Panels           |
| 5:00  | Networking Time                              |                  |
| 5:30  | Adjourn                                      |                  |



## Agenda – June 7, 2018

| 8:30  | Welcome                                                          | Jo Anne Lavender                          |
|-------|------------------------------------------------------------------|-------------------------------------------|
|       | Recap of Meeting 3                                               | Brian Child                               |
| 9:00  | About Today's Agenda                                             | Ashley Pilakowski                         |
| 9:30  | BREAK                                                            |                                           |
| 9:45  | Scenarios Recap and Voting Results<br>Working Group Observations | Hunter Hydas / Jo Anne Lavender and Group |
| 10:30 | Attributes Overview and Discussion                               | Hydas and Group                           |
| 11:30 | Benchmarking Analysis                                            | Randy McAdams / John Gray                 |
| 12:00 | Lunch                                                            |                                           |
| 1:00  | Strategies Overview and Discussion                               | Lavender, Hydas and Group                 |
| 2:00  | BREAK                                                            |                                           |
| 2:15  | Group Process to Finalize Strategies list for Voting             | Lavender, Hydas and Group                 |
| 4:00  | Summary of Technology Resources                                  | Jane Elliott                              |
| 4:20  | Closing Comments                                                 | Child/Lavender                            |
| 4:30  | Adjourn                                                          |                                           |

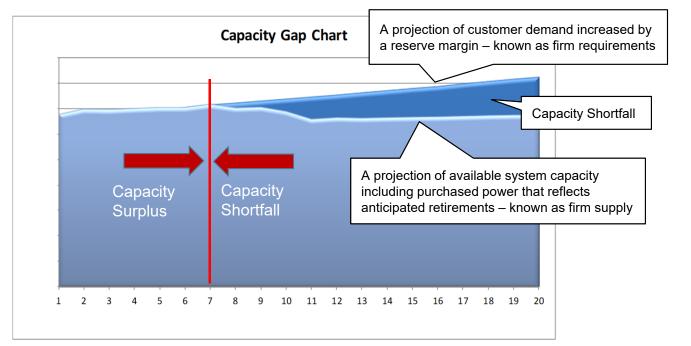




# **Resource** Planning

Jane Elliott

## Goals for an Optimal Resource Plan






## Resource Planning Addresses Future Capacity Needs

Resource planning is about optimizing the mix of future capacity.

Projections of capacity needed are filled by the most cost-effective resource.



Recommended path provides low cost, reliability, diversity and flexibility



## Finding the Least Cost (Optimal) Resource Plan

• Using the reliability limit as a constraint, we optimize by minimizing the customer's delivered cost of power

**Planning Objective Function:** 

Minimize Expected Present Value of Revenue Requirements

#### Components

- > Optimization
- Time value of money
- > Uncertainty

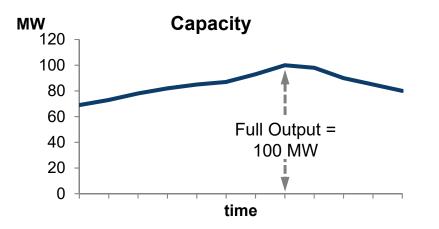


#### Constraints

Planning reserve

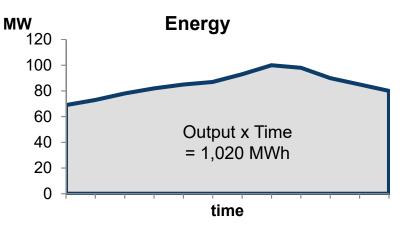
#### **Revenue Requirements**

- Operating expenses
- Return of and on capital


Objective is to find the capacity mix that produces the minimum cost over the planning horizon



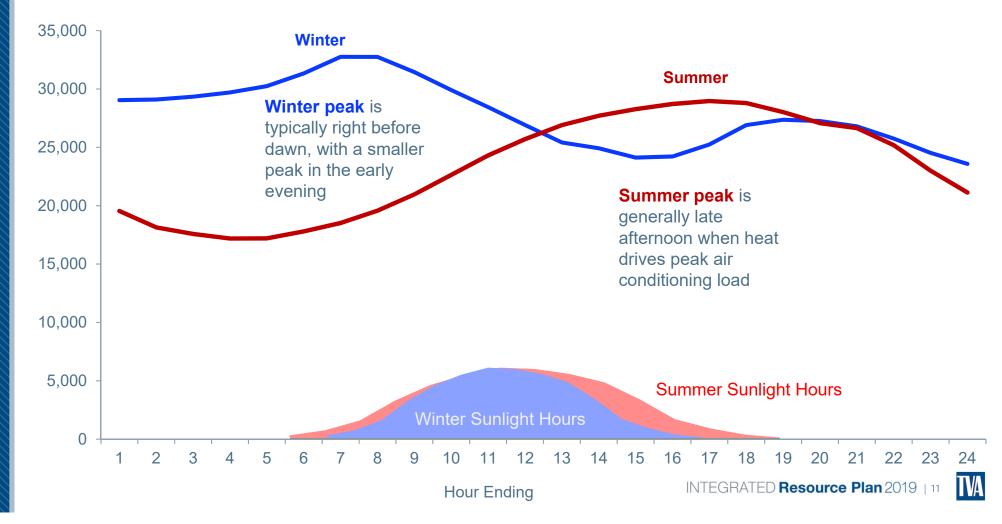



### Definitions

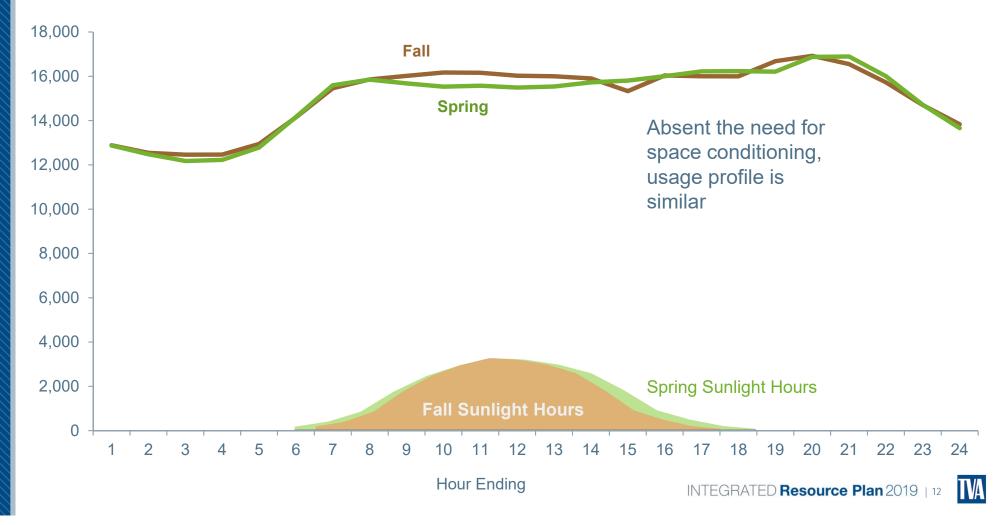
**Capacity** is the maximum electric output an electricity generator can produce under specific conditions **Energy** (or generation) is the amount of electricity a generator produces over a specific period of time



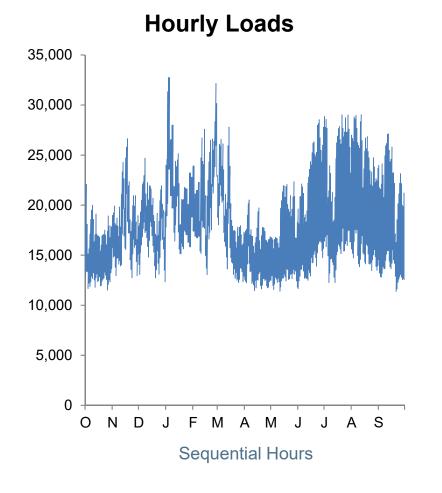


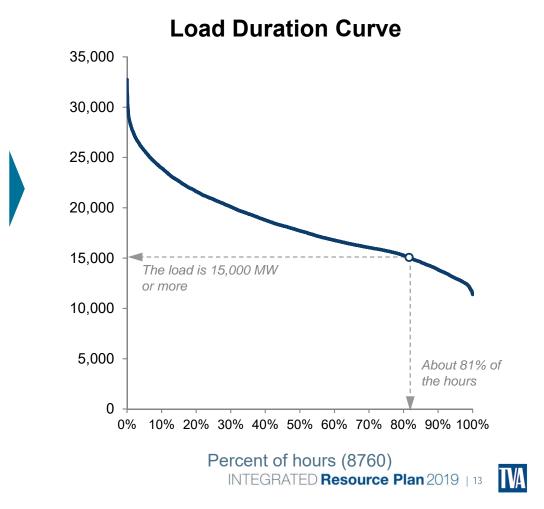

- Nameplate Capacity Manufacturer-defined output under standard conditions
- Net Dependable Capacity expected unit output during specific seasonal conditions (e.g., temperature)




#### Variations

 Capacity Factor – Energy as a percent of the maximum output a unit could have produced over a period of time


### Winter and Summer Have Unique Profiles




### Fall and Spring Have Similar Profiles



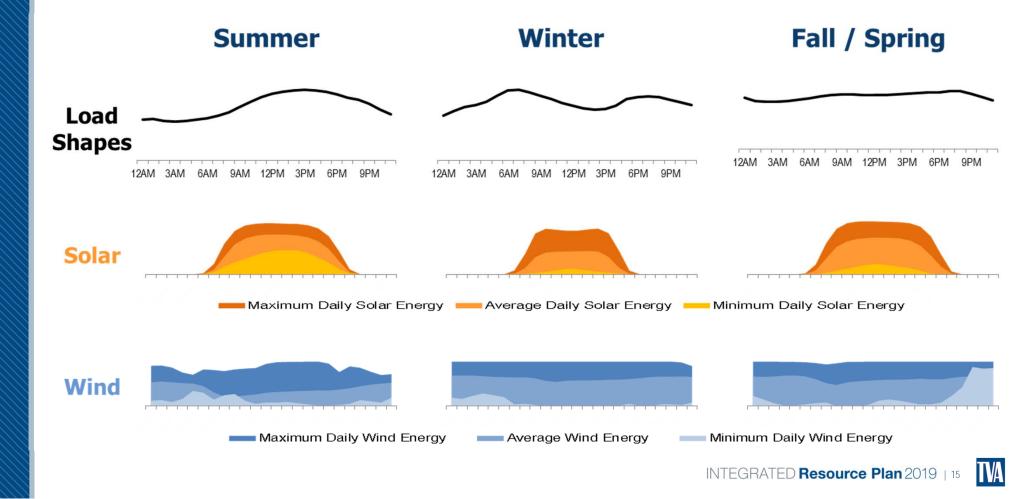
### **Annual Load Profile**



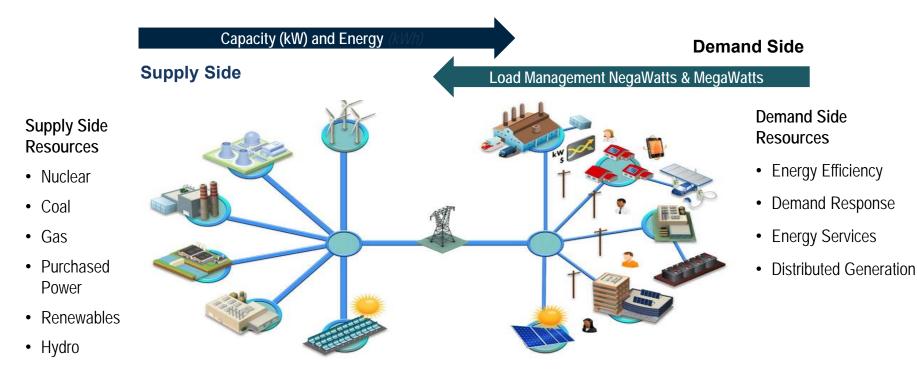


### **Generating Unit Operating Characteristics**

| ltem              | Measure                           |  |
|-------------------|-----------------------------------|--|
| Output (capacity) | MW (max dependable)               |  |
|                   | MW (minimum)                      |  |
| Availability      | Outage Rates                      |  |
| Flexibility       | Ramp rate                         |  |
| Duty Cycle        | Base, peaking                     |  |
| Control           | Dispatchable,<br>non-dispatchable |  |
| Fuel              | Types of fuel, limits             |  |
| Emissions         | lbs per kWh                       |  |
| Other             | Regulations &<br>Constraints      |  |


#### Physical

#### Economic

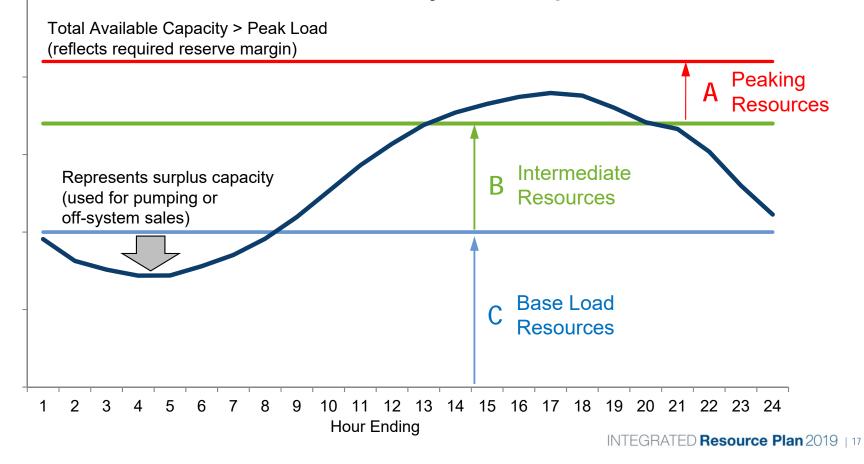

| Item           | Measure               |  |
|----------------|-----------------------|--|
| Capital Cost   | \$ - Installed cost   |  |
| Efficiency     | Heat rate (Btu/kWh)   |  |
| Operating Cost | Fixed (\$)            |  |
|                | Variable (\$/kWh)     |  |
| Fuel Cost      | \$/Btu                |  |
| Emissions Cost | \$/lb – as applicable |  |



### Seasonal Solar and Wind Shapes

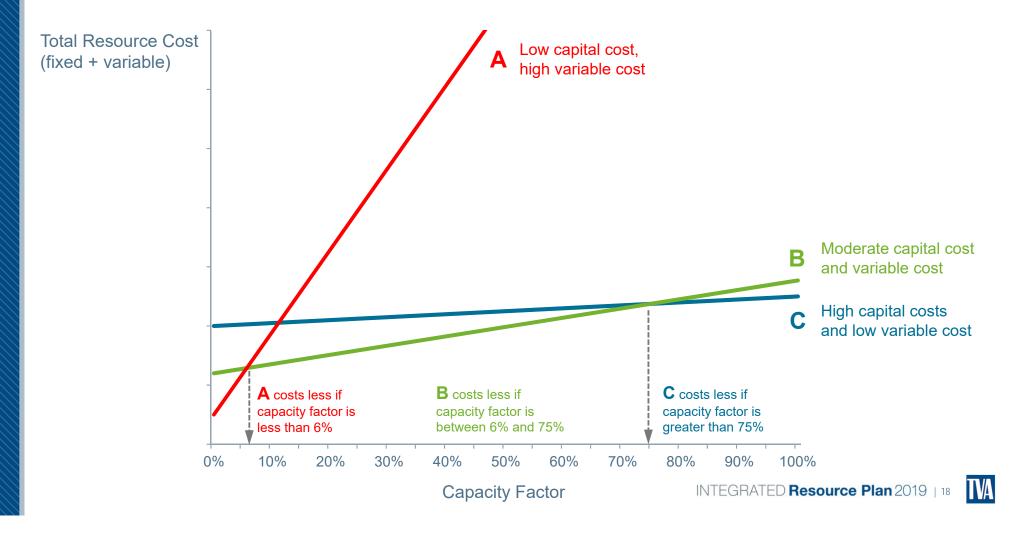


### **Distributed Energy Resources**

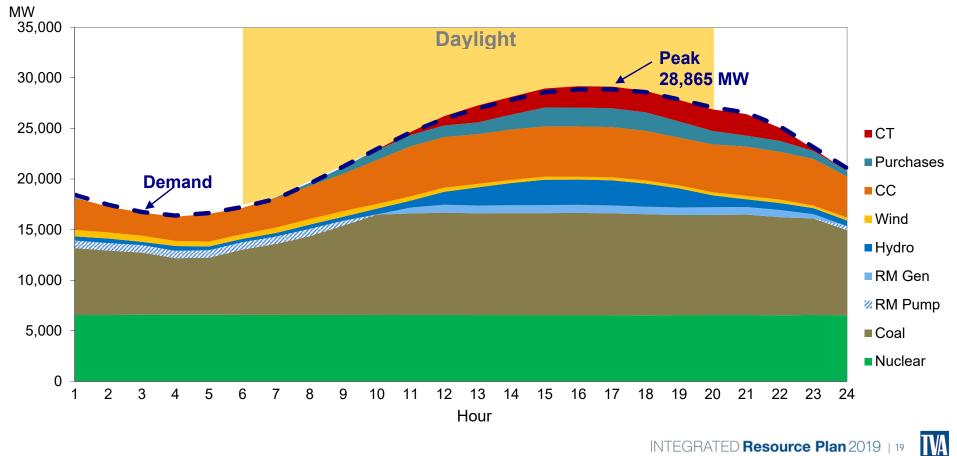



• Other Assets

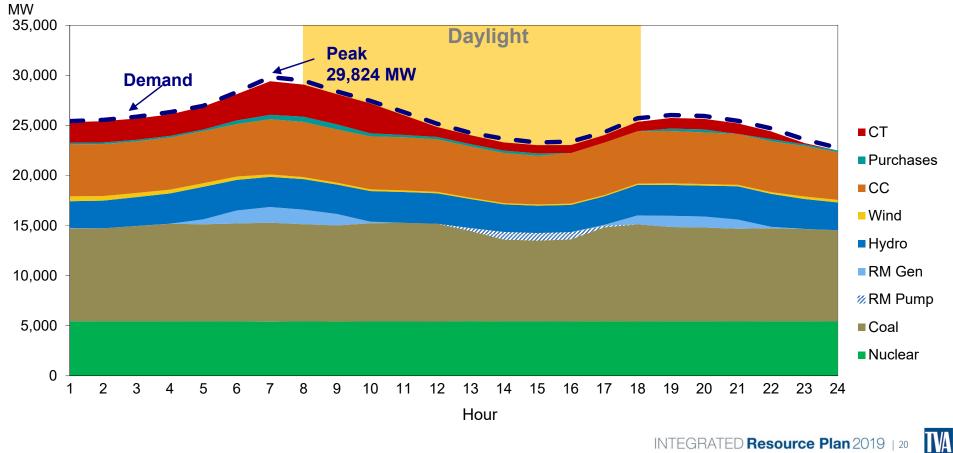



### Load Shapes: Understanding Resource Needs

#### **Summer Day Load Shape**

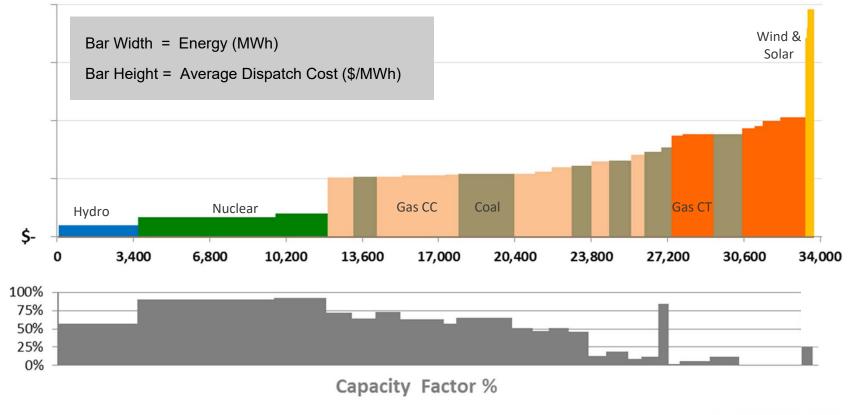






### Selecting Appropriate Resource Types

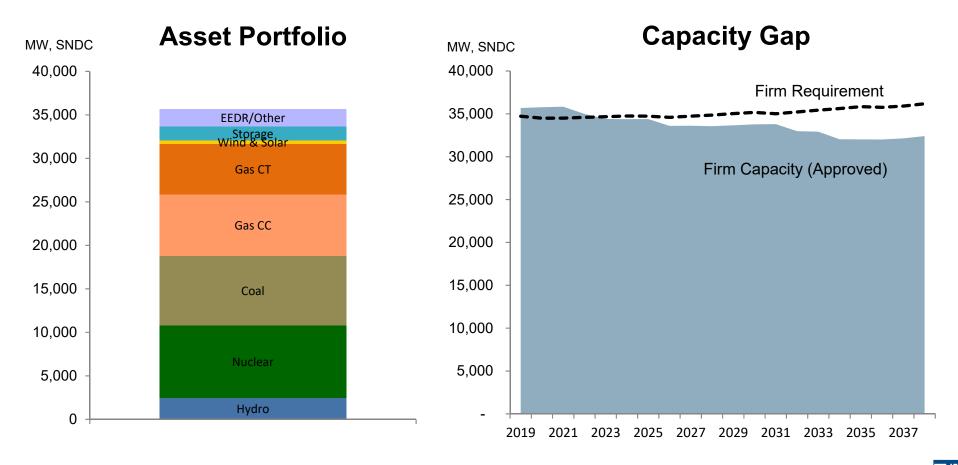


### Load Dispatch on Typical Summer Day




### Load Dispatch on Typical Winter Day

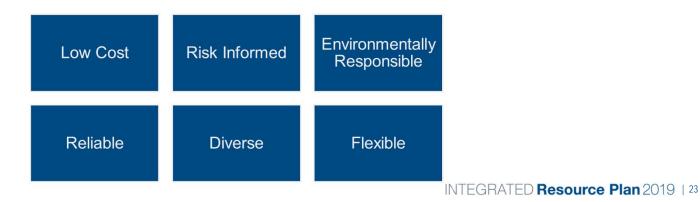



### Load Dispatch to Meet Annual Demand

#### Dispatch Cost (\$/MWh)






### Current Portfolio and Projected Gap (Base Case)






## Key Takeaways

- A diverse asset mix helps meet load economically and reliably over the long run
- Candidate resource technologies should be mature enough to model and select
- System flexibility enables integration of renewables and DER
- Environmental metrics can be evaluated across portfolios
- Testing the bounds with scenarios informs risk



IМ





# Panel 1: Utility Scale Resources

## Panel 1: Utility Scale Resources

**Moderator: Melanie Farrell** 

- Lignite Coal David Liffrig/ North American Coal
- Small Modular Reactors Sherri Buchanan / TVA
- Biomass Randy Johnson/Johnson Energy Solutions
- Utility Solar- John Kemp/ E.on and TenneSEIA Board
- Aero Derivatives Natural Gas Mike Hoy / TVA
- Utility Scale Storage Steve Baxley / Southern Company
- Wind Swaraj Jammalamadaka/ Apex Wind





## Panel 2: Distributed Energy Resources

## Panel 2: Distributed Energy Resources

**Moderator: Dale Harris** 

- Storage Steve Baxley / Southern Company
- CHP Ben Edgar / White Harvest Energy
- Small Solar Chris Koczaja / LightWave Solar and TenneSEIA
- Energy Efficiency Mandy Mahoney / SEEA
- Demand Response Clayton Pierce/ EnerNOC





# Wrap Up



# 2019 IRP Working Group

Meeting 4: June 6 - 7, 2018









## **Building Emergency Plan**



## Agenda – June 7, 2018

| 8:30  | Welcome                                                          | Jo Anne Lavender                          |
|-------|------------------------------------------------------------------|-------------------------------------------|
|       | Recap of Meeting 3                                               | Brian Child                               |
| 9:00  | About Today's Agenda                                             | Ashley Pilakowski                         |
| 9:30  | BREAK                                                            |                                           |
| 9:45  | Scenarios Recap and Voting Results<br>Working Group Observations | Hunter Hydas / Jo Anne Lavender and Group |
| 10:30 | Attributes Overview and Discussion                               | Hydas and Group                           |
| 11:30 | Benchmarking Analysis                                            | Randy McAdams / John Gray                 |
| 12:00 | Lunch                                                            |                                           |
| 1:00  | Strategies Overview and Discussion                               | Lavender, Hydas and Group                 |
| 2:00  | BREAK                                                            |                                           |
| 2:15  | Group Process to Finalize Strategies list for Voting             | Lavender, Hydas and Group                 |
| 4:00  | Summary of Technology Resources                                  | Jane Elliott                              |
| 4:20  | Closing Comments                                                 | Child/Lavender                            |
| 4:30  | Adjourn                                                          |                                           |





# IRPWG Meeting 3 Recap and Today's Session

**Brian Child** 

## April 26, 2018 Meeting Highlights

- Highlights and Themes from Scoping Comments
- Peer Utility Benchmarking on Uncertainties & Scenarios
- Group Discussion and Final List of Scenarios for Voting
- Overview of Attributes & Strategies
- Tour of River Forecast Center



## 2019 IRP Focus Areas

- Distributed Energy Resources
- System flexibility
- Portfolio diversity









#### 2019 IRP Schedule: Schedule & Milestones

The 2019 IRP Study Approach is intended to ensure transparency & enable stakeholder involvement



(\*\* indicates timing of Valley-wide public meetings)

#### Key Tasks/Milestones in this study timeline include:


- Establish stakeholder group and hold first meeting (Feb 2018)
- Initial modeling (June 2018)
- Publish draft EIS and IRP (Feb 2019)
- Complete public meetings (April 2019)
- Board approval and final publication of EIS and IRP (expected Summer 2019)



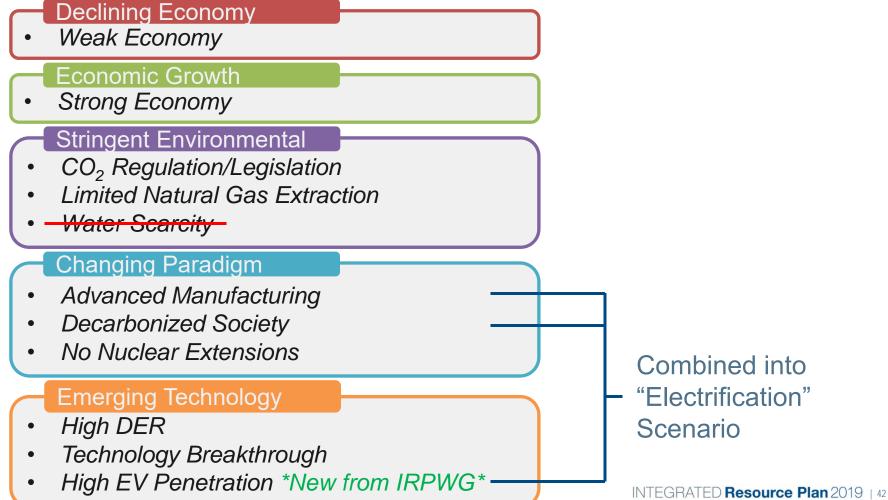
# **IRP Working Group Meeting Objectives**

| February 28th                                                              | March 29th                                                                                                                                                        | April 26th                                                                                                                                                                                              | June 7th                                                                                                                                                                                                                   | July 12th                                                                                                   |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>IRPWG orientation</li> <li>General overview of process</li> </ul> | <ul> <li>Overview of scenario design process</li> <li>Review uncertainties, current forecasts, and brainstorm/review scenarios</li> <li>IRPWG feedback</li> </ul> | <ul> <li>Discuss IRPWG<br/>feedback</li> <li>Discuss proposed<br/>scenarios</li> <li>Develop short list<br/>of scenarios for<br/>voting</li> <li>Overview of<br/>strategy design<br/>process</li> </ul> | <ul> <li>Finalize scenarios</li> <li>Review attributes<br/>and<br/>brainstorm/review<br/>strategies</li> <li>Discuss proposed<br/>strategies and<br/>develop short list</li> <li>Introduce resource<br/>options</li> </ul> | <ul> <li>Finalize strategies</li> <li>Planning<br/>assumptions</li> <li>Modeling<br/>constraints</li> </ul> |
|                                                                            |                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                            | e on<br>egies                                                                                               |








# Scenarios: Recap & Voting Results

Hunter Hydas

#### **Current Outlook**

| Uncertainty                             | Outlook                                                                                                                                                                                               |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electricity Demand                      | Growth in customer count and large commercial & industrial offset by increased energy efficiency and distributed generation, leading to slightly declining energy sales and slightly increasing peaks |
| Market Power Prices                     | Average prices determined by marginal natural gas generators                                                                                                                                          |
| Natural Gas Prices                      | Near term natural gas prices below \$3.00/MMBtu and longer term average around \$3.25/MMBtu                                                                                                           |
| Coal Prices                             | Low gas prices drive lower growth in coal prices, and coal becomes more competitive in the long term as nuclear units begin to retire                                                                 |
| Solar Prices                            | Solar prices becoming competitive with traditional resources                                                                                                                                          |
| Storage Prices                          | Storage prices declining but still more expensive than traditional resources                                                                                                                          |
| Regulations                             | Little to no change in stringency of environmental regulations, and assume current projection of tariffs and tax credits                                                                              |
| CO2 Regulation/Price                    | Given TVA's diverse portfolio and current state of regulations, carbon price of \$0/ton assumed                                                                                                       |
| Distributed Generation<br>Penetration   | Limited DG penetration in the Valley compared to other areas of the country, with 4% of residential and commercial customers projected to have distributed solar by 2038                              |
| Energy Efficiency Adoption              | Energy efficiency gains from EIA projected saturation of codes and standards currently on the books                                                                                                   |
| Economic Outlook<br>(National/Regional) | Gross Domestic Product growth of 2% per year                                                                                                                                                          |

#### Possible 2019 IRP Scenarios





### Possible 2019 IRP Scenarios

#### Economics

- Weak Economy
- Strong Economy

#### Regulatory

- CO<sub>2</sub> Regulation/Legislation
- Limited Natural Gas Extraction
- No Nuclear Extensions

#### **Technology**

- Electrification
- High DER
- Technology Breakthrough



#### **Scenario Ranking Results**

|    | Weak<br>Economy | Strong<br>Economy | CO2 | NG | NUKE Electrification |   | High DER | Utility Scale<br>Tech |
|----|-----------------|-------------------|-----|----|----------------------|---|----------|-----------------------|
| 1  | 7               | 8                 | 4   | 6  | 5 1                  |   | 1 2      |                       |
| 2  | 6               | 8                 | 2   | 1  | 7                    | 5 | 3        | 4                     |
| 3  | 3               | 6                 | 4   | 7  | 8                    | 1 | 2        | 5                     |
| 4  | 3               | 4                 | 6   | 5  | 8                    | 2 | 1        | 7                     |
| 5  | 5               | 7                 | 2   | 8  | 6                    | 4 | 1        | 3                     |
| 6  | 6               | 4                 | 8   | 7  | 1                    | 5 | 3        | 2                     |
| 7  | 1               | 5                 | 3   | 8  | 7                    | 6 | 4        | 2                     |
| 8  | 5               | 4                 | 7   | 3  | 1                    | 6 | 2        | 8                     |
| 9  | 1               | 4                 | 5   | 6  | 7                    | 3 | 2        | 8                     |
| 10 | 7               | 8                 | 5   | 1  | 2                    | 4 | 3        | 6                     |
| 11 | 6               | 7                 | 4   | 2  | 3                    | 8 | 1        | 5                     |
| 12 | 6               | 2                 | 8   | 7  | 5                    | 3 | 1        | 4                     |
| 13 | 1               | 5                 | 6   | 3  | 8                    | 7 | 2        | 4                     |
| 14 | 1               | 2                 | 4   | 5  | 3                    | 6 | 7        | 8                     |
| 15 | 2               | 3                 | 8   | 7  | 6                    | 4 | 1        | 5                     |
| 16 | 3               | 7                 | 2   | 4  | 1                    | 5 | 6        | 8                     |
| 17 | 3               | 4                 | 2   | 7  | 5                    | 1 | 8        | 6                     |
| 18 | 1               | 6                 | 4   | 3  | 7                    | 5 | 2        | 8                     |
| 19 | 2               | 1                 | 7   | 8  | 5                    | 4 | 3        | 6                     |
| 20 | 8               | 7                 | 5   | 3  | 4                    | 1 | 2        | 6                     |
| 21 | 1               | 2                 | 4   | 8  | 5                    | 7 | 3        | 6                     |
| 22 | 1               | 2                 | 4   | 7  | 8                    | 5 | 3        | 6                     |
| 23 | 7               | 6                 | 4   | 1  | 3                    | 5 | 2        | 8                     |
| 24 | 2               | 4                 | 6   | 8  | 3                    | 5 | 1        | 7                     |
| 25 | 2               | 3                 | 7   | 6  | 5                    | 4 | 1        | 8                     |
| 26 | 5               | 1                 | 8   | 7  | 6                    | 3 | 4        | 2                     |
| 27 | 7               | 1                 | 5   | 3  | 4                    | 8 | 2        | 6                     |
| 28 | 1               | 6                 | 8   | 7  | 4                    | 5 | 2        | 3                     |
| 29 | 1               | 2                 | 8   | 5  | 4                    | 6 | 3        | 7                     |
| 30 | 1               | 2                 | 5   | 8  | 7                    | 6 | 4        | 3                     |
| 31 | 1               | 2                 | 8   | 7  | 4                    | 6 | 3        | 5                     |
| 32 | 6               | 7                 | 3   | 2  | 1                    | 5 | 4        | 8                     |

- Participants were asked to rank the scenarios between 1 and 8, with 1 being the most preferred
- We received results from 32 participants (20 IRPWG and 12 TVA)

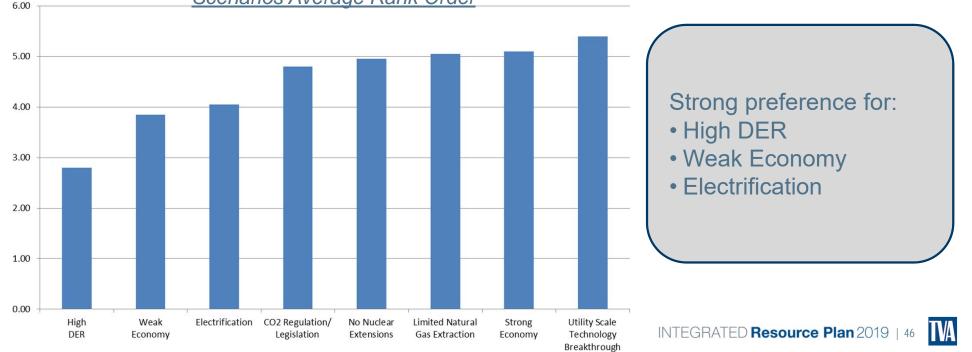


### **Scenario Ranking Results**

The heat maps report the number of occurrences of each rank for each of the scenarios- e.g., in the IRPWG table, Strong Economy was ranked #1 only once, while Weak Economy was ranked #1 five times

|   | Weak<br>Economy | Strong<br>Economy | CO2 | NG | NUKE | Electrification | High DER | Utility Scale<br>Tech |
|---|-----------------|-------------------|-----|----|------|-----------------|----------|-----------------------|
| 1 | 5               | 1                 | 0   | 2  | 3    | 4               | 5        | 0                     |
| 2 | 2               | 2                 | 4   | 1  | 1    | 1               | 7        | 2                     |
| 3 | 4               | 1                 | 1   | 4  | 2    | 2               | 4        | 2                     |
| 4 | 0               | 5                 | 5   | 1  | 1    | 4               | 1        | 3                     |
| 5 | 2               | 2                 | 3   | 2  | 4    | 4               | 0        | 3                     |
| 6 | 4               | 2                 | 2   | 2  | 2    | 3               | 1        | 4                     |
| 7 | 2               | 4                 | 2   | 5  | 4    | 1               | 1        | 1                     |
| 8 | 1               | 3                 | 3   | 3  | 3    | 1               | 1        | 5                     |

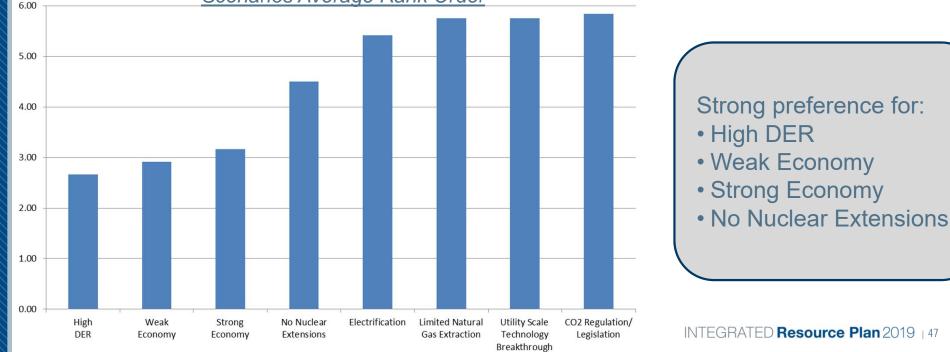
IRPWG Sum of Occurrences by Rank Order


#### TVA Sum of Occurrences by Rank Order

|   | Weak<br>Economy | Strong<br>Economy | CO2 | NG | NUKE | Electrification | High DER | Utility Scale<br>Tech |
|---|-----------------|-------------------|-----|----|------|-----------------|----------|-----------------------|
| 1 | 6               | 2                 | 0   | 1  | 1    | 0               | 2        | 0                     |
| 2 | 2               | 5                 | 0   | 1  | 0    | 0               | 3        | 1                     |
| 3 | 0               | 1                 | 1   | 1  | 2    | 1               | 4        | 2                     |
| 4 | 0               | 1                 | 3   | 0  | 4    | 1               | 3        | 0                     |
| 5 | 1               | 0                 | 2   | 1  | 2    | 5               | 0        | 1                     |
| 6 | 1               | 2                 | 1   | 1  | 1    | 3               | 0        | 3                     |
| 7 | 2               | 1                 | 1   | 4  | 1    | 1               | 0        | 2                     |
| 8 | 0               | 0                 | 4   | 3  | 1    | 1               | 0        | 3                     |



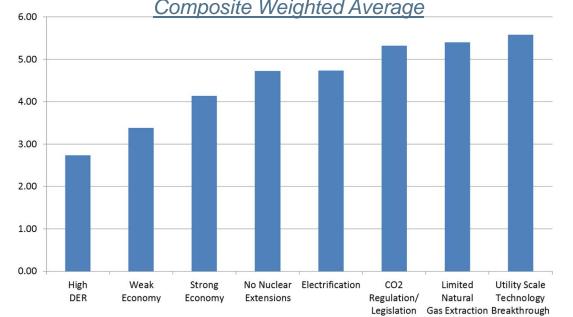
#### Ranking Results by IRPWG


- The Average Rank Order is calculated as the sum of the ranking values (between 1 and 8) received by a particular scenario divided by the number of people performing the ranking (12 in the case of TVA and 20 in the case of the IRPWG)
- Since scenarios are ranked with values between 1 and 8, the lower the Average Rank Order reflects a higher preference for a particular scenario



Scenarios Average Rank Order

# Ranking Results by TVA


- The Average Rank Order is calculated as the sum of the ranking values (between 1 and 8) received by a particular scenario divided by the number of people performing the ranking (12 in the case of TVA and 20 in the case of the IRPWG)
- Since scenarios are ranked with values between 1 and 8, the lower the Average Rank Order reflects a higher preference for a particular scenario



Scenarios Average Rank Order

#### **Composite Ranking Results**

|   | Weak<br>Economy | Strong<br>Economy | CO2 | NG | NUKE | Electrification | High DER | Utility Scale<br>Tech |  |
|---|-----------------|-------------------|-----|----|------|-----------------|----------|-----------------------|--|
| 1 | 11              | 3                 | 0   | 3  | 4    | 4               | 7        | 0                     |  |
| 2 | 4               | 7                 | 4   | 2  | 1    | 1               | 10       | 3                     |  |
| 3 | 4               | 2                 | 2   | 5  | 4    | 3               | 8        | 4                     |  |
| 4 | 0               | 6                 | 8   | 1  | 5    | 5               | 4        | 3                     |  |
| 5 | 3               | 2                 | 5   | 3  | 6    | 9               | 0        | 4                     |  |
| 6 | 5               | 4                 | 3   | 3  | 3    | 6               | 1        | 7                     |  |
| 7 | 4               | 5                 | 3   | 9  | 5    | 2               | 1        | 3                     |  |
| 8 | 1               | 3                 | 7   | 6  | 4    | 2               | 1        | 8                     |  |
|   |                 |                   |     |    |      |                 |          |                       |  |



- The weighted average score is based on a 50/50 weighting between IRPWG and TVA
- Strong preference for: –High DER
  - -Weak Economy
  - -Strong Economy



### **Combinations/Considerations**

| Original Scenarios                      | Final Scenarios           | Comments                                  |
|-----------------------------------------|---------------------------|-------------------------------------------|
| Current Outlook                         | Current Outlook           | Reference Case                            |
| 1 High DER                              | <b>Rapid DER Adoption</b> |                                           |
| 2 Weak Economy                          | Economic Downturn         |                                           |
| 3 Strong Economy                        | Valley Load Growth        | Will incorporate Electrification          |
| 4 No Nuclear Extensions                 |                           | Handle as a Sensitivity, SMR Sensitivity  |
| 5 Electrification                       |                           | Incorporate into Valley Load Growth       |
| 6 CO2 Regulation/Legislation            | <b>De-carbonization</b>   | Proxy for CO2 regulation/legislation, RPS |
| 7 Limited Natural Gas Extraction        |                           | Handle as a Sensitivity on gas price      |
| 8 Utility Scale Technology Breakthrough |                           | Eliminate                                 |

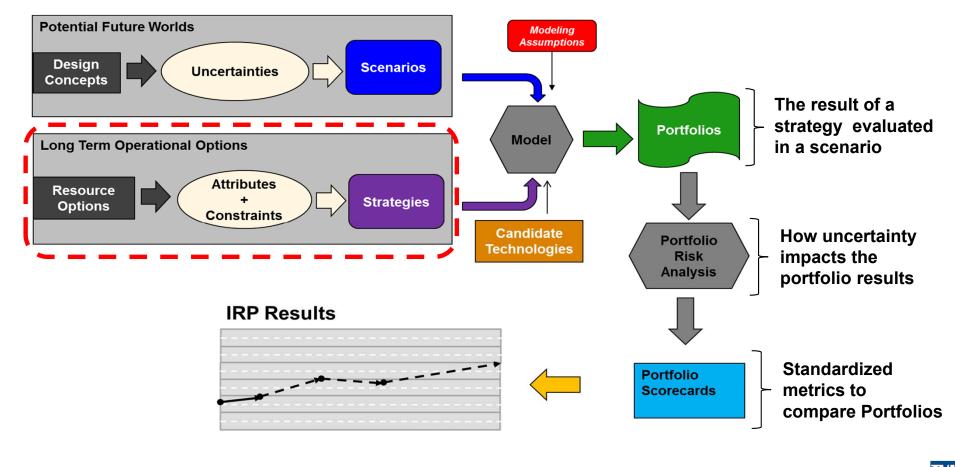


### **Recommended 2019 IRP Scenarios**

# Reference Case Current Outlook Economics Economic Downturn Valley Load Growth Regulatory De-Carbonization Technology Rapid DER Adoption



#### **Next Steps on Scenarios**


- Scenario Design- TVA will develop forecasts for each uncertainty and bring them to the IRPWG for review
- What do we mean by "Very High," "High," "Low," and "Very Low?"
- Ensure we are stretching the bounds



# Attributes Overview and Discussion

Hunter Hydas

#### How Integrated Resource Planning Works

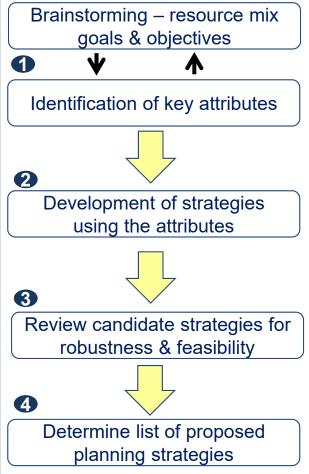




# Scenarios and Strategies Establish Framework

#### Scenarios Outside TVA's Control

- Describe potential outcomes of factors (uncertainties) outside of TVA's control
- Represent possible conditions and are not predictions of the future
- Include uncertainties that could significantly impact operations, such as:
  - Load forecasts
  - Commodity prices
  - Environmental regulations
- · Lends insight to riskiness of portfolio choices


#### Strategies Within TVA's Control

- Test various business options within TVA's control
- Defined by a combination of resource assumptions, such as:
  - DER portfolio
  - > Nuclear expansion
  - Energy storage
- · Consider multiple viewpoints
  - Public scoping period comments
  - Assumptions that would have the greatest impact on TVA long-term

A well-designed strategy will perform well in many possible scenarios



#### **Process for Building Strategies**



- The key questions in developing our list of potential strategy attributes are
  - Is this attribute something we want to evaluate in this IRP?
  - Is this attribute something we need to define? Or can this aspect of the resource portfolio be an outcome of the modeling?
  - Does this attribute capture an existing policy of TVA?
  - Does this attribute capture work done outside the IRP to meet goals or objectives of TVA?
- Describe the intent of each candidate strategy by defining the "value" of each attribute for that strategy
- Review attributes within the strategy for correlation; also compare attribute variability across all candidate strategies to ensure robust resource portfolios will be possible
- TVA & IRPWG select a short list of strategies to be modeled
  - Define each of the proposed planning strategies including objectives and key characteristics



# **TVA is Proposing 9 Attributes**

| Attributes                        | Description                                                                                                                                                             |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Existing Nuclear                  | Constraints related to the existing nuclear fleet; EPU's are considered part of existing nuclear                                                                        |
| Nuclear Additions                 | Limitations on technologies and timing related to the addition of new nuclear capacity; A/P 1000s and SMRs are considered in this category                              |
| Existing Coal                     | Constraints related to the existing coal fleet                                                                                                                          |
| New Coal                          | Limitations on technology and timing on new coal-fired plants; includes CCS on conventional coal plus IGCC technology                                                   |
| Gas Additions                     | Limitations on technologies and timing related to the expansion options fueled by natural gas (CT, CC)                                                                  |
| EEDR                              | Considers energy efficiency and demand response programs that are incentivized by TVA and/or LPC's (excludes impacts from naturally occurring efficiency/ conservation) |
| Renewables (Utility Scale)        | Limitations on technologies and timing of renewable resources; considers options that would be pursued by TVA or in collaboration with LPC's                            |
| Storage (Utility Scale)           | Limitations on technologies and timing of storage resources; considers utility scale storage options varying in size or storage capacity                                |
| Distributed<br>Generation/Storage | Includes customer-driven resource options or third party projects that are distributed in nature                                                                        |



Group Discussion - Attributes

# Did we miss any attributes that you think are important?






# Examination of Peer Utilities' Integrated Resource Plans

Strategy Planning and Use for IRP Development

Randy McAdams / John Gray

#### **Topics for Discussion**

- Approach and Peer Utilities Examined
- IRP Development Process
- Summary of Strategy Planning Observations
- Comparison of Peer Strategies to TVA
- Appendix Strategy Approaches Employed by Peer Utilities





#### **Overview of Peer Utility IRP Benchmarking**

- ScottMadden examined IRPs most recently released by 10 peer utilities
- IRPs were examined for approaches, results, and themes
- Industry developments, including the evolving IRP process in California, were reviewed along with recent planning documents from SMUD and PG&E

#### **Today's Objectives:**

- Share observations on the development and use of strategies by peer IRPs
- Discuss comparisons to TVA's approach



### **Peer Panel Company Profiles**

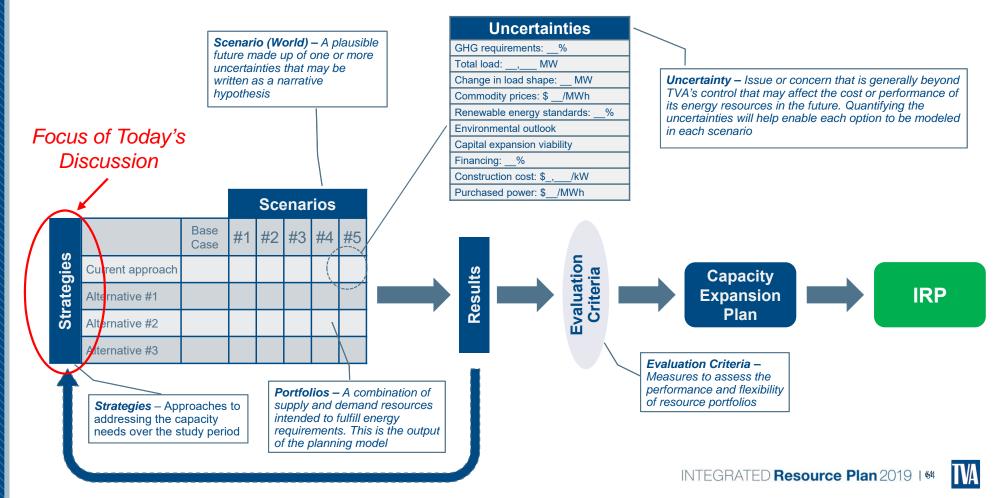
|                                      | 🜔 aps                                                                                                                           | Dominion<br>Energy <sup>®</sup>                                                                                                            |                                                                                                                                                           | DUKE<br>ENERGY.<br>FLORIDA                                                                                                                              | DUKE<br>ENERGY.<br>PROGRESS                                                                                                                         |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                          | Using a balanced energy<br>mix that is nearly 50%<br>carbon-free, APS has one<br>of the country's cleanest<br>energy portfolios | One of the nation's largest<br>producers and transporters<br>of energy, with one of the<br>nation's largest natural gas<br>storage systems | Regulated public utility<br>primarily engaged in the<br>generation, transmission,<br>distribution, and sale of<br>electricity in portions of NC<br>and SC | Regulated public utility<br>primarily engaged in the<br>generation, transmission,<br>distribution, and sale of<br>electricity in portions of<br>Florida | DEP owns nuclear, coal-<br>fired, natural gas,<br>renewables, and<br>hydroelectric generation,<br>providing service within<br>portions of NC and SC |
| Total Revenue<br>(\$000,000,000)     | \$3.6B                                                                                                                          | \$12.9B                                                                                                                                    | \$7.4B                                                                                                                                                    | \$4.7B                                                                                                                                                  | \$5.2B                                                                                                                                              |
| IRP Filing Date/<br>Filing Frequency | April 2017 /<br>Annually                                                                                                        | May 2017 /<br>Biennially                                                                                                                   | Sept. 2017 /<br>Annually                                                                                                                                  | April 2017 /<br>Annually                                                                                                                                | Sept. 2017 /<br>Annually                                                                                                                            |
| IRP Planning<br>Horizon              | 15 Years                                                                                                                        | 25 Years                                                                                                                                   | 15 Years                                                                                                                                                  | 10 Years                                                                                                                                                | 15 Years                                                                                                                                            |
| Customers                            | 1,221,485                                                                                                                       | 2,588,084                                                                                                                                  | 2,571,820                                                                                                                                                 | 1,800,000                                                                                                                                               | 1,556,402                                                                                                                                           |
| Capacity                             | 6,450 MW                                                                                                                        | 26,268 MW                                                                                                                                  | 20,475 MW                                                                                                                                                 | 9,869 MW                                                                                                                                                | 14,197 MW                                                                                                                                           |



#### Peer Panel Company Profiles (Cont'd)






#### Peer Panel Company Profiles (Cont'd)

|                                      | PG&E                                                                                                                             | SMUD <sup>®</sup>                                                                                                      | TVA                                                                                                                                               |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                          | A subsidiary of PG&E<br>Corp., PG&E serves<br>Californians across a<br>70,000 square mile service<br>area in Northern California | Sixth-largest community-<br>owned electric service<br>provider, with a power mix<br>that is 50% non-carbon<br>emitting | Federally owned agency<br>providing electricity, flood<br>control, navigation, land<br>management, and<br>economic development in<br>seven states |
| Total Revenue<br>(\$000,000,000)     | \$17.2B                                                                                                                          | \$1.6B                                                                                                                 | \$10.7B                                                                                                                                           |
| IRP Filing Date/<br>Filing Frequency | N/A                                                                                                                              | N/A                                                                                                                    | Aug 2015 /<br>Every Four Years                                                                                                                    |
| IRP Planning<br>Horizon              |                                                                                                                                  |                                                                                                                        | 20 Years                                                                                                                                          |
| Customers                            | 5,384,525                                                                                                                        | 628,953                                                                                                                | >9,000,0001                                                                                                                                       |
| Capacity                             | 7,715 MW                                                                                                                         | 1,043 MW                                                                                                               | 36,153 MW                                                                                                                                         |

<sup>1</sup>TVA customer count reflects retail customers serviced by independent power distributors



# **A Typical IRP Development Process**



# Summary of Strategy Planning Observations Development and Use of Strategies

- The majority of peers created strategies (in some cases referred to as 'portfolios') as a means to test different scenarios and uncertainties
  - The results from each test case enabled the identification of optimal portfolios of supply and demand resources
- In some cases, the peers elected to bypass the creation of separate strategies and focused instead on directly testing their scenarios against a range of uncertainties and assumptions
  - This method also allowed for developing optimal portfolios but through broad testing
- Every peer used a traditional least cost planning strategy as a base case for evaluating performance or utilized least cost analysis as part of alternative strategy evaluation
- Due to the high level of complexity involved with evaluating strategies against a range of scenarios, most analysis was performed via some type of simulation software (e.g., AuroraXMP, System Optimizer)



#### Summary of Strategy Planning Observations Characteristics of Peer Strategies

- About half of the peer companies, in particular those in the regulated southeast region (DOM, DEP, DEC), included a strategy to ensure compliance with the CPP or to meet the intent of that regulation in the event the CPP is modified or not enforced
- Almost every peer included one or more strategies that were focused on the growth of renewables and distributed generation resources
- Some strategies identified specific emerging resource and technology options like energy efficiency, demand response, storage, and direct load control (APS, DEC, DEP, PCQ, PGE)
- Traditional base sources, including coal and nuclear, were generally absent from the developed strategies, but gas remains a potential option for several peers



# Summary of Strategy Planning Observations Strategy Use in Portfolio Selection

- Peers typically perform an analysis to assess the performance of each strategy against each scenario
  - The lowest cost strategy that meets demand is generally selected for the portfolio
- In the case of ETR, a scorecard was developed that established a ranking of each strategy based on its performance under the varying scenarios
- In the case of PCQ, a complex Planning and Risk analysis encompassing 200 studies, each tested through 50 iterations, resulted in over 10,000 simulation runs to inform portfolio development
- In the case of DEF, a single Integrated Optimal Plan (IOP) was created and then tested with various sensitivities to refine and develop the composition for the final portfolio



#### **Peer Strategy Comparisons**

| IRP Strategy Theme                | APS          | DOM  | DEC                    | DEF              | DEP | ETR                                | FPL                | GPC               | PCQ  | PGE                                    |
|-----------------------------------|--------------|------|------------------------|------------------|-----|------------------------------------|--------------------|-------------------|------|----------------------------------------|
| "Traditional" Least Cost Planning | $\checkmark$ | ~    | $\checkmark$           | $\checkmark$     | ~   | ~                                  | $\checkmark$       | ~                 | ~    | ~                                      |
| Do Gas Only / Focus on Gas        |              |      | $\checkmark$           |                  | ~   | $\checkmark \checkmark \checkmark$ |                    |                   |      |                                        |
| Doing More EE / DR                | ~            |      | ~                      |                  | ~   |                                    |                    |                   |      | ~                                      |
| Flexible Resources                |              |      |                        | eq               |     |                                    | eq                 | ed v              | ~~   |                                        |
| Promoting Renewables              | $\checkmark$ |      | $\checkmark$           | sider<br>e       | ~   | $\checkmark$                       | sider<br>e         | e<br>e            | ~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Focus on Nuclear                  | $\checkmark$ | ~    |                        | Consi<br>liable  |     |                                    | Consi<br>liable    | Consi<br>liable   |      |                                        |
| Direct Load Control               |              |      |                        | gies (<br>t Avai |     |                                    |                    |                   | ~    |                                        |
| CPP Compliance                    | $\checkmark$ | ~~~~ | $\checkmark\checkmark$ | ateg<br>Not /    | ~~  |                                    | ategies<br>Not Ava | ategie:<br>Not Av |      |                                        |
| CPP Compliance with Trading       |              | ~~   |                        | Str              |     |                                    | Stra               | Stra              |      |                                        |
| Coal Retirement                   | $\checkmark$ |      |                        | ailed            |     |                                    | Detailed           | ailed             |      |                                        |
| Energy Storage Systems            | $\checkmark$ |      |                        | Detai            |     |                                    | Deta               | Deta              |      |                                        |
| Efficiency Capacity               |              |      |                        |                  |     |                                    |                    |                   |      | ~~                                     |

Multiple checks indicate a number of strategies with the same theme



#### **Possible TVA IRP Strategic Options**

#### Emissions

• Meet an Emission Target

#### Market Reliance

• No TVA Builds

#### Renewables/DER

- Promote DER
- Promote Renewables
- Promote Resiliency

#### Flexibility

- Promote Efficient Energy Usage
- Add Small, Agile Capacity



# Narratives for Proposed TVA Strategies

| Strategy                          | Narrative                                                                                                                                                                                                                                                                                          |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meet an Emission<br>Target        | TVA makes a commitment to meet a long-term carbon emission target consistent with customer expectations and international climate agreements. New coal builds are excluded, while existing coal and gas additions are limited due to their carbon emissions.                                       |
| No TVA Builds                     | TVA makes a decision to rely on the market to meet incremental capacity and energy needs as opposed to building assets. TVA builds and acquisitions are limited to PPAs only instead of self builds. Transmission build out may be required to make the PPAs a fully deliverable firm product.     |
| Promote DER                       | TVA incents DER to achieve high-end of long-term penetration levels. Existing coal is limited and new coal is excluded.<br>All other technologies are available while EEDR and distributed generation and storage are promoted.                                                                    |
| Promote Renewables                | TVA makes a commitment to renewables at all scales to meet growing prospective or existing customer demands for renewable energy. Existing coal is limited and new coal is excluded. All other technologies are available while renewables are promoted.                                           |
| Promote Resiliency                | TVA promotes resiliency as a pursuit of a more sustainable future. Nuclear additions (SMRs), gas additions (aero derivatives, RICE), DR, storage, and distributed generation are promoted. Flexible loads and DERs are aggregated to provide synthetic reserves to the grid to promote resiliency. |
| Promote Efficient<br>Energy Usage | TVA incents electrification, demand and energy management to minimize peaks and troughs across a daily load shape and promote efficient energy usage. All technologies are available, but those that minimize load swings are promoted (e.g., EEDR, storage, distributed generation).              |
| Add Small, Agile<br>Capacity      | TVA adds small, agile capacity to minimize flexibility. All technologies are available while gas additions (aero derivatives, RICE), demand response, and distributed generation/storage are promoted.                                                                                             |



# Comparison of Peer Strategies to TVA

| Company                          | West ar a table how all a promote the promote alles promote promote the state and |                 |                  |                     |    |              |   |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------|----|--------------|---|
|                                  | Emissions                                                                                                             | Market Reliance | Renewables / DER |                     | t  | Flexibility  |   |
| Tennessee Valley Authority (TVA) | ✓                                                                                                                     | ✓               | $\checkmark$     | ✓                   | ✓  | $\checkmark$ | ✓ |
| Arizona Public Service (APS)     | ✓                                                                                                                     |                 |                  | ✓                   |    | ✓            |   |
| Dominion (DOM)                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                |                 |                  |                     |    |              |   |
| Duke Energy Carolinas (DEC)      | ✓                                                                                                                     |                 |                  | ✓                   |    | ✓            |   |
| Duke Energy Progress (DEP)       | ~~                                                                                                                    |                 |                  | ✓                   |    | ✓            |   |
| Entergy (ETR)                    |                                                                                                                       |                 |                  | ✓                   |    |              |   |
| Portland General Electric (PGE)  |                                                                                                                       |                 |                  | <i>√√√√</i>         |    | ✓            |   |
| PacifiCorp (PCQ)                 |                                                                                                                       |                 |                  | <i><b>√</b>√√√√</i> | ~~ |              |   |
| Duke Energy Florida (DEF)        | DEF did not disclose specific strategies developed as part of the IRP                                                 |                 |                  |                     |    |              |   |
| Florida Power & Light (FPL)      | FPL did not disclose specific strategies developed as part of the IRP                                                 |                 |                  |                     |    |              |   |
| Georgia Power Company (GPC)      | GPC did not develop separate strategies for evaluation                                                                |                 |                  |                     |    |              |   |

• Although peers often included DER promotion as a component of strategies, the focus of the strategy was growth of renewables or EE/DR expansion



#### Comparison of Peer Strategies to TVA Key Takeaways

- TVA shares similar strategies with many of the peer group related to renewables, energy efficiency, and working to meet the intent of the CPP
- TVA is unique in its inclusion of a "No Build" strategy that relies on available market options and the potential build out of transmission to support power delivery from outside the territory
- Although growth of DER is identified as a potential <u>scenario</u> by most peers, no other utility includes a <u>strategy</u> to "Promote DER"
- TVA has a well-defined approach to Small and Agile capacity adds, with the goal of promoting Flexibility, which is something that is not explicitly called out in most peer strategies

#### Comparison of Peer Strategies to TVA Use of Attributes

- The approach by TVA to include sub-category "Attributes" to describe each strategy, based on utilization of resource types, was unique across the peer group
- Although peers would be required to assign resource selection for each defined strategy, in order to model and test each scenario / strategy combination, this detail was not disclosed in the IRPs
- This approach affords TVA with an additional layer of resource detail that can clearly define the intent of each strategy and define composition of resources for the final portfolio
- Compared to exhaustive analysis of all resource combinations for all strategies, constraint of attributes for each strategy could limit full consideration of all resource combinations







# Strategies Overview and Discussion

Hunter Hydas

## **Definitions for Strategies**

Across the various strategies, specific candidate resource selection will be:

- Promoted (given an incentive)
- Available (no promotion, limitation, or exclusion)
- Limited (type, amount)
- Excluded (not available)

Promotions, limitations, and exclusions are applied, and then portfolios are optimized given those parameters

INTEGRATED Resource Plan 2019 | 76



#### TVA is Considering 7 Strategies\*

#### Emissions

Meet an Emission Target

#### Market Reliance

• No TVA builds

#### Renewables/DER

- Promote DER
- Promote Renewables
- Promote Resiliency

#### Flexibility

- Promote Efficient Energy Usage
- Add Small, Agile Capacity

\* In addition to the Reference Plan based on Least Cost Planning



#### Emissions Meet an Emissions Target

- TVA makes a commitment to long-term carbon emission target consistent with customer expectations and international climate agreements.
- New coal builds are excluded, while existing coal and gas additions are limited due to their carbon emissions.



### Market Reliance No TVA Builds

- TVA makes a decision to rely on the market to meet incremental capacity and energy needs as opposed to building assets.
- TVA builds and acquisitions are limited to PPAs only instead of self builds.
- Transmission build out may be required to make the PPAs a fully deliverable firm product.



#### Renewables/DER Promote DER

- TVA incents DER to achieve high-end of long-term penetration levels.
- Existing coal is limited and new coal is excluded.
- All other technologies are available while EEDR and distributed generation and storage are promoted.



#### Renewables/DER Promote Renewables

- TVA makes a commitment to renewables at all scales to meet growing prospective or existing customer demands for renewable energy.
- Existing coal is limited and new coal is excluded.
- All other technologies are available while renewables are promoted.



#### Renewables/DER Promote Resiliency

- TVA promotes resiliency as a pursuit of a more sustainable future.
- Nuclear additions (SMRs), gas additions (aero derivatives, RICE), DR, storage and distributed generation are promoted.
- Flexible loads and DERs are aggregated to provide synthetic reserves to the grid to promote resiliency.



# Flexibility *Promote Efficient Energy Usage*

- TVA incents electrification, demand and energy management to minimize peaks and troughs across a daily load shape and promote efficient energy usage.
- All technologies are available but those that minimize load swings are promoted (e.g., EEDR, storage, distributed generation).



### Flexibility Add Small, Agile Capacity

- TVA adds small, agile capacity to maximize flexibility.
- All technologies are available while gas additions (aero derivatives, RICE), demand response, and distributed generation/storage are promoted.



### **TVA is Considering 7 Strategies**

|            |                                          | Potential Strategies       |                 |                |                    |                    |                                   |                              |  |
|------------|------------------------------------------|----------------------------|-----------------|----------------|--------------------|--------------------|-----------------------------------|------------------------------|--|
|            |                                          | Emissions                  | Market Reliance | Renewables/DER |                    | Flexibility        |                                   |                              |  |
|            |                                          | Meet an Emission<br>Target | No TVA Builds   | Promote DER    | Promote Renewables | Promote Resiliency | Promote Efficient<br>Energy Usage | Add Small, Agile<br>Capacity |  |
| Attributes | Existing Nuclear                         | Available                  | Limited         | Available      | Available          | Available          | Available                         | Available                    |  |
|            | Nuclear Additions                        | Available                  | Limited         | Available      | Available          | Promoted           | Available                         | Available                    |  |
|            | Existing Coal                            | Limited                    | Available       | Limited        | Limited            | Limited            | Available                         | Available                    |  |
|            | New Coal                                 | Excluded                   | Limited         | Excluded       | Excluded           | Excluded           | Available                         | Available                    |  |
|            | Gas Additions                            | Limited                    | Limited         | Available      | Available          | Promoted           | Available                         | Promoted                     |  |
|            | Energy Efficiency and<br>Demand Response | Available                  | Available       | Promoted       | Available          | Promoted           | Promoted                          | Promoted                     |  |
|            | Renewables<br>(Utility Scale)            | Available                  | Limited         | Available      | Promoted           | Promoted           | Available                         | Available                    |  |
|            | Storage<br>(Utility Scale)               | Available                  | Limited         | Available      | Available          | Promoted           | Promoted                          | Available                    |  |
|            | Distributed<br>Generation/Storage        | Available                  | Available       | Promoted       | Available          | Promoted           | Promoted                          | Promoted                     |  |

INTEGRATED Resource Plan 2019 | 85



#### **Attribute Diversity**

| Strategy Attributes           | Promoted | Available | Limited | Excluded |
|-------------------------------|----------|-----------|---------|----------|
| Existing Nuclear              | 0        | 6         | 1       | 0        |
| Nuclear Additions             | 1        | 5         | 1       | 0        |
| Existing Coal                 | 0        | 3         | 4       | 0        |
| New Coal                      | 0        | 2         | 1       | 4        |
| Gas Additions                 | 2        | 3         | 2       | 0        |
| EEDR                          | 4        | 3         | 0       | 0        |
| Renewables<br>(Utility Scale) | 2        | 4         | 1       | 0        |
| Storage<br>(Utility Scale)    | 2        | 4         | 1       | 0        |
| DG/DER                        | 4        | 3         | 0       | 0        |

#### Key Points

- The selected strategies
   represent a ample breadth of
   potential business options
- The strategies include ample variation of the critical attributes

Note: Numbers reflect the number of strategies in which the attribute falls into one of these 4 classifications





# Strategies: Discussion/Group Exercise

Hunter Hydas

## Part 1: Small Group Exercise

- 1. Divide into Small Groups of 3-4 People
- 2. If you could develop a strategy for TVA, what would it be?
- 3. Record your Team Strategy on a Flip Chart
- 4. Teams report out and Post Strategies

#### Part 2: Individual Feedback on Strategies

- 1. If you have a <u>suggestion, addition or question</u> on any Strategy (*TVA and IRPWG Proposed*) please write it on a sticky note and place it on the appropriate Strategy.
- 2. After the break, we will work through all the questions and concerns together as a group.







# **Discussion of Comments**

Hunter Hydas



# Check In – Strategy List

Jo Anne Lavender



# Resource Technologies – Next Steps

Jane Elliott

## Resource Technologies – Next Steps

- Deep dive into the current portfolio and projected firm capacity
- Reserve margin planning targets
- Capacity expansion options
  - Characteristics and costs
  - Integration cost and flexibility benefit
  - Third party review
- Modeling approach overview





# Wrap Up

## Next Steps on Strategies

- Individual ranking will occur between the June and July meeting
- TVA will send a ballot out after this meeting and ask for your responses by June 21 (2 weeks after the meeting)
- We plan to share the results at the July Meeting







