ELECTRICC

By validating efficient low-carbon energy & digital twin modeling for Connected Communities, this pilot will model grid benefits and energy savings while also demonstrating the benefits of Distributed Energy Resources (DER) technologies.

BUDGET

\$12.3M

\$11.3M in potential funding from DOE and other

partners

\$1M committed by TVA in FY22-23 \$TBD in EnergyRight® Home Uplift matching funds

QUANTITY

4.3M buildings in the Valley

TYPE

All buildings

with a focus on those served by KUB & EPB PHASE 1

Modeling

DIGITAL TWIN MODELING (DTM)

Estimate grid benefits of DERs

- First-of-its-kind modeling approach by ORNL
- Used to predict performance of installed grid enabled technologies and energy conservation measures
- Provide recommendations on what can be done where (e.g., electric vehicle charging stations, rooftop solar, residential smart thermostats, etc.)

QUANTITY

625 buildings

375 - Knoxville 250 - Chattanooga

TYPE

Existing buildings for limited-income homeowners

PHASE 2

DER deployments

RETROFITS

Energy efficiency measures + smart thermostats

 Install weatherization measures (e.g., upgrades to building envelope, HVAC and appliances)

MICROGRIDS

Building-level microgrids

- Residential and commercial solar
- Residential and commercial battery storage
- Electric vehicle charging infrastructure
- Deployed at five to ten critical community buildings to support load flexibility and grid interactivity
- Boost community resiliency

MEASUREMENT & VERIFICATION (M&V)

Validate modeling

- Evaluate how a group of distributed energy resources can be collectively utilized to impact bulk load requirements and grid demand flexibility during both summer and winter peak periods
- Create a "How-to-Guide" for use by other communities

POINTS OF

Leverage

Significant energy savings

DER deployments in this pilot could result in up to

845,000 kWh

in annual energy savings and up to

1,411 kW

in load reductions.

A guidebook for scalability

The "How-To-Guide" created in this pilot will include best practices and project lessons; validated savings and grid benefits; and analysis of policy, regulatory, and other potential barriers.

THE **Value**

Consumers

Benefit from measures that make their homes and critical commercial buildings more energy efficient while managing peak demand.

LPCs

Better understand how DERs and models can be leveraged as grid resources to support load flexibility and inform distribution planning.

TVA

Able to explore the impact of scaling this approach across the Valley in future Integrated Resource Plans.

KEY

Partners

TVA

Georgia Caruthers Bonnie Latta Chris Quillen

Josh New

ORNL

City of Chattanooga

Erik Schmidt

KUB

Chasity Hobby Mike Bolin

TDEC

Molly Cripps Ryan Stanton Alexa Voytek

EPB

Bill Copeland

City of Knoxville

Brian Blackmon

NASEO

Rodney Sobin

Financing

10/13/20 DOE FOA

3/09/21

DOE proposal submitted

Selection

for 5 years

12/21

Intellectual **Property** Management Plan

Phase 1

06/22

✓ M&V Plan

09/22

- → DTM development
- Deployment Plan & process updates

09/23

Technology deployment stage 1

Phase 2

- ✓ Technology deployment stage 2
- education stage 1

Timeline

released

7/1/21

notification

deadline

10/1/21 **Project starts** and continues

✓ Data for DTM

✓ Technology

09/24

DTM development

- ✓ Preliminary M&V analysis
- Reporting, dissemination and

09/25

Replicability & scaling

03/26 Final M&V report

06/26 Dissemination and education stage 2