APPENDIX H – HYDROGEOLOGIC INVESTIGATIONS

Appendix H.1 - Technical Evaluation of Hydrogeology

TDEC Commissioner's Order: Environmental Assessment Report Johnsonville Fossil Plant New Johnsonville, Tennessee

February 12, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	September 6, 2023
1	Addresses November 14, 2023 TDEC Review Comments and Issued for TDEC	February 12, 2024

Sign-off Sheet

This document entitled Appendix H.1 – Technical Evaluation of Hydrogeology was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by Walleton

Mark Densmore, Senior Geologist

Reviewed by

Rebekah Brooks, PG, Senior Principal Hydrogeologist

Approved by

John Griggs, PG, Senior Principal

Table of Contents

ABBF	BBREVIATIONSI		IV
1.0	INTRO	DDUCTION	1
2.0	GROU	JNDWATER AND HYDROGEOLOGICAL INVESTIGATIONS	5
2.1		IOUS STUDIES AND ASSESSMENTS	
2.2	CURR	ENT AND ONGOING GROUNDWATER MONITORING	6
2.3	HYDR	OGEOLOGY	7
	2.3.1	Scope of Work	7
	2.3.2	Well and Piezometer Installation	
	2.3.3	Well and Piezometer Construction	9
	2.3.4	Well Development	9
	2.3.5	Aquifer Testing	9
	2.3.6	Groundwater Sampling	
	2.3.7	Hydrogeologic Assessment Results	10
2.4	DYE T	RACE STUDY	21
2.5	GROL	JNDWATER QUALITY	22
	2.5.1	Piper Diagrams	23
	2.5.2	Geochemistry of Soils-Groundwater Interaction	24
	2.5.3	Summary	25
3.0	SUMM	MARY	26
4.0	REFE	RENCES	28

LIST OF TABLES

Table H.1-1	Summary of Environmental Investigation Monitoring Well and Piezometer Locations	
Table H.1-2	Summary of Monitoring Well Construction Specifications	
Table H.1-3	Summary of Hydraulic Conductivity Results from Slug Test Data	
Table H.1-4	Groundwater Level Measurements, Groundwater Sampling Event #5	
	(August 10-11, 2020)	
Table H.1-5	Kentucky Lake / Tennessee River and Groundwater Elevation Comparison (December	
	2019 – October 2020)	
Table H.1-6	Rate and Direction of Groundwater Flow Summary	
Table H.1-7	Bench Study Results	
Table H.1-8	Background Study Results	
Table H.1-9	Post Injection Dye Detector Results	
Table H.1-10	Groundwater Analytical Results	
Table H.1-11	Groundwater Quality Parameters	
Table H.1-12	Screening Levels for Groundwater	
Table H.1-13	Summary of Statistically Significant Concentrations/Values	
Table H.1-14	Linear Regression Results	

LIST OF EXHIBITS

Exhibit H.1-1	Monitoring Well and Piezometer Network
Exhibit H.1-2	Lithologic Model (Oblique View Looking East)
Exhibit H.1-3	Lithologic Model - Primarily Silts and Clays (Oblique View Looking East)
Exhibit H.1-4	Lithologic Model - Primarily Sand and Gravel (Oblique View Looking East)
Exhibit H.1-5	Geologic Map
Exhibit H.1-6	Lithologic Model - Top of Bedrock (Oblique View Looking East)
Exhibit H.1-7	Thickness of Clays Above Uppermost Aquifer (Active Ash Pond 2)
Exhibit H.1-8	Lithologic Model - Physiographic Setting (Oblique View Looking East)
Exhibit H.1-9	Historical Stream Alignments and USGS StreamStats Map
Exhibit H.1-10	Topographic Map - USGS (1950)
Exhibit H.1-11	Groundwater Elevation Contour Map, Event #5 (August 10-11, 2020)
Exhibit H.1-12	Manual Groundwater and Pore Water Gauging Locations
Exhibit H.1-13a	JOF Instrumentation Used for Surface Water / Pore Water / Groundwater
	Hydrograph Comparison (Active Ash Pond 2)
Exhibit H.1-13b	JOF Instrumentation Used for Surface Water / Pore Water / Groundwater
	Hydrograph Comparison (DuPont Road Dredge Cell)
Exhibit H.1-14	Manually Gauged Instrument Hydrographs – Ash Disposal Area 1
Exhibit H.1-15	Manually Gauged Instrument Hydrographs – Former Coal Yard
Exhibit H.1-16a	Automated Instrument Hydrographs – DuPont Road Dredge Cell
Exhibit H.1-16b	Manually Gauged Instrument Hydrographs – DuPont Road Dredge Cell
Exhibit H.1-17	Manually Gauged Instrument Hydrographs – South Rail Loop Area 4
Exhibit H.1-18a	Automated Instrument Hydrographs – Active Ash Pond 2

Exhibit H.1-18b Manually Gauged Instrument Hydrographs – Active Ash Pond 2

Exhibit H.1-19	DuPont Road Dredge Cell Select Piezometer Locations		
Exhibit H.1-20	Phreatic Surface Graph DuPont Road Dredge Cell Before and After Capping		
Exhibit H.1-21	Dye Trace Study Borings and Sampling Locations		
Exhibit H.1-22	Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule		
	Appendix IV and TDEC Appendix I Constituents – Ash Disposal Area 1		
Exhibit H.1-23	Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule		
	Appendix IV and TDEC Appendix I Constituents – Active Ash Pond 2		
Exhibit H.1-24	Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule		
	Appendix IV and TDEC Appendix I Constituents – Former Coal Yard		
Exhibit H.1-25	Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule		
	Appendix IV and TDEC Appendix I Constituents – DuPont Road Dredge Cell		
Exhibit H.1-26	Piper Diagram – August 2020		

LIST OF ATTACHMENTS

ATTACHMENT H.1-A HYDROGRAPHS

ATTACHMENT H.1-B PIPER DIAGRAMS

ABBREVIATIONS

CARA Corrective Action/Risk Assessment

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CCR Rule Title 40, Code of Federal Regulations, Part 257

CFR Code of Federal Regulations cm/sec Centimeters Per Second

EAR Environmental Assessment Report

EI Environmental Investigation
EIP Environmental Investigation Plan
GSL Groundwater Screening Level
JOF Plant Johnsonville Fossil Plant

NRS Non-Registered Site

% Percent

PVC Polyvinyl Chloride

QAPP Quality Assurance Project Plan
SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order TDEC Commissioner's Order OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority
USGS United States Geological Survey
USWAG Utility Solid Waste Activities Group

Introduction February 12, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc (Stantec), on behalf of the Tennessee Valley Authority (TVA), has prepared this technical evaluation appendix to summarize historical and recent evaluations of hydrogeological and analytical results for groundwater and geochemical data at TVA's Johnsonville Fossil Plant (JOF Plant) in New Johnsonville, Tennessee. This technical appendix also provides a characterization of the extent of contamination and preliminary explanation for the observed occurrences of coal combustion residuals (CCR) constituents in groundwater to support information provided in the Environmental Assessment Report (EAR) and to fulfill the requirements for the Tennessee Department of Environment and Conservation (TDEC)-issued Commissioner's Order No. OGC15-0177 (TDEC Order) Program (TDEC 2015). Further evaluation of the need for corrective actions and the associated extent of groundwater contamination will be provided in the Corrective Action/Risk Assessment (CARA) Plan. For purposes of this document, the following hydrogeological terms as they are defined below are used throughout this document.

- Pore water subsurface water that occurs in pore spaces in CCR material
- Groundwater subsurface water that occurs in pore spaces in unconsolidated or geologic materials (e.g., soil, bedrock)
- Aquifer a geologic formation capable of yielding useable quantities of groundwater
- Unconfined aquifer an aquifer in which the water table forms the upper boundary
- Confined aquifer an aquifer present between two aquitards when the water level in a well is
 observed to be above the top of the aquifer due to the confining pressure (see graphic below)
- Aquitard a geologic formation comprised of less permeable geologic materials that transmit groundwater more slowly than the aquifer
- Saturated unconsolidated or geologic materials (e.g., soil, bedrock) or CCR material where all
 of the pore space is filled with water. The use of the term "saturated" in reference to the moisture
 content of CCR material does not imply that the pore water is readily separable from the CCR
 material
- Moisture content the measure of the amount of water contained within unconsolidated or geologic materials (e.g., soil, bedrock) or CCR material. Moisture content of saturated material can be variable because the characteristics of the material determine the amount of pore space available for water to fill
- Phreatic surface the surface of pore water at which pressure is atmospheric and below which CCR material may be saturated with pore water. Pore water levels are measured at locations where temporary wells or piezometers were installed within CCR material. The measured pore water levels are used to infer pore water levels between the wells and piezometers to develop the phreatic surface

(

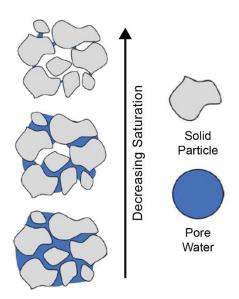
Introduction February 12, 2024

- Piezometric surface the groundwater surface defined by the level to which groundwater will rise in a well completed in a confined aquifer
- Uppermost aquifer the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within a facility's property boundary
- Water table the surface of groundwater at which pressure is atmospheric and below which
 geologic materials (e.g., soil or bedrock) may be saturated with groundwater. The measured
 groundwater levels are used to infer groundwater levels between the wells and piezometers to
 develop the water table surface. Groundwater levels are measured at locations where wells or
 piezometers were installed at depths near the water table surface.

Groundwater level measurements from wells or piezometers installed around the CCR management units¹ and at multiple depths below the water table for unconfined aquifers or the upper aquitard for confined aquifers provide information about the direction of groundwater movement.

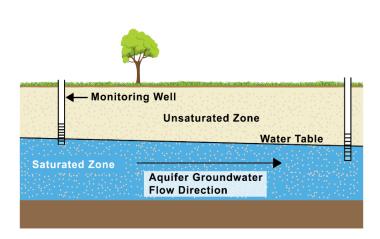
The figures below show examples of an unconfined and a confined aquifer. In an unconfined aquifer, groundwater levels measured in monitoring wells installed near the water table are used to infer the elevation of the water table surface.

In a confined aquifer, groundwater levels measured in monitoring wells installed between the upper and lower aquitards are used to infer the elevation of the piezometric surface. Measured groundwater levels rise above the top of the aquifer. The difference between the measured groundwater levels within the aquifer and the top of the aquifer is called the pressure head. The figure for the confined aquifer shows the pressure head for a confined aquifer and associated bounding aquitards. For confined aquifers, groundwater is not encountered in the interval shown as pressure head above the top of the aquifer because it is bounded by an upper aquitard, which also physically separates the groundwater from the geologic unit located above the upper aquitard.


¹ The term "CCR management unit" is used in this document generally and is not intended to be a designation under federal or state regulations.

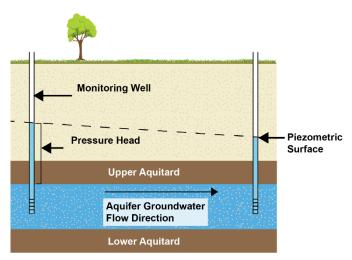
2

Introduction February 12, 2024


Pore Water

Benson, C., Water Flow in Coal Combustion Products and Drainage of Free Water, Report No. 3002021963, Electric Power Research Institute, Palo Alto, CA.

This figure depicts how subsurface water occurs in the pore spaces in CCR material (referred to as "pore water" in this EAR), and how saturation varies within the CCR material. The phreatic surface is the surface of pore water at which pressure is atmospheric and below which CCR material may be saturated with pore water.


Unconfined Aquifer

Groundwater is subsurface water that occurs in pore spaces in soil or bedrock. Groundwater level measurements taken in a well screened near the water table in an unconfined aquifer represent the water level in the aquifer. Groundwater level measurements are used to estimate directions of groundwater movement. Groundwater generally flows much more slowly than water in a surface stream or river.

Introduction February 12, 2024

Confined Aquifer

In a confined aquifer, measured groundwater levels rise above the top of the aquifer, but the actual level of groundwater is constrained by the upper aquitard. The difference between the measured groundwater level within the aquifer and the top of the aquifer is call the pressure head. Because the level of groundwater within a confined aquifer is constrained by the upper aquitard, groundwater in a confined aquifer is not in contact with the geologic unit located above the upper aquitard. The aquitard physically separates them.

Groundwater and Hydrogeological Investigations February 12, 2024

2.0 GROUNDWATER AND HYDROGEOLOGICAL INVESTIGATIONS

The purpose of the groundwater and hydrogeological investigations was to further characterize and evaluate subsurface conditions in proximity to the CCR management units at the JOF Plant, including:

- Ash Disposal Area 1
- DuPont Road Dredge Cell
- South Rail Loop Area 4
- Active Ash Pond 2.

In addition, the former Coal Yard, which is not a CCR management unit, was investigated. For these investigations, TVA reviewed information from previous studies and assessments, completed field sampling programs, and conducted evaluations related to geology, hydrogeology, groundwater quality, and CCR material characteristics as part of the TDEC Order Environmental Investigation (EI).

The following sections summarize previous studies and present overall hydrogeological investigation and evaluation findings related to the JOF Plant CCR management units based on data obtained during previous studies and the EI.

2.1 PREVIOUS STUDIES AND ASSESSMENTS

This section provides a summary of prior studies that have been conducted at the JOF Plant and provide useable information related to geology, hydrogeology, groundwater quality, and CCR material characteristics. In addition to the studies summarized below, information from other hydrogeological and geotechnical studies that met the data quality objectives of the *Environmental Investigation Plan (EIP)* (TVA 2018) is incorporated into the evaluation presented in this appendix. Previously closed CCR management units were closed in accordance with applicable regulations in effect at the time of closure.

Exploratory drilling at the JOF Plant began in 1947 to evaluate the suitability for the foundation for a proposed power plant. The investigated site described in the *Geology of the New Johnsonville Steam Plant Site* (Kellberg 1948) encompassed the area presently occupied by the power plant and did not overlap CCR management units.

Beginning in the late 1980s, TVA began performing targeted hydrogeological studies to evaluate existing and future proposed ash management practices. These included:

From 1989 to 1994, a study was conducted to assess ambient groundwater quality at the JOF
Plant, investigate the potential for offsite groundwater contamination, estimate fluxes to the
reservoir, and collect and organize hydrogeologic information from a number of studies to support
future permitting and closure activities. A groundwater assessment report was completed in

Groundwater and Hydrogeological Investigations February 12, 2024

1995. The report included a literature review, information about monitoring well installations, and evaluation of analytical data that characterized byproducts, soil, leachate, and groundwater quality. The report also provided characterization of the hydrogeology, including field hydraulic aguifer testing and groundwater rate and flow calculations (TVA 1995).

- In 1997, an investigation was conducted near South Rail Loop Area 4 to support plans to raise the elevation of CCR material in that area. A Hydraulic Evaluation of Landfill Performance (HELP2) model was utilized to predict the quantity of potential leachate generated (TVA 1997).
- In 2012, compliance monitoring for Dupont Road Dredge Cell was established (TVA 2012).
- Starting in 2011, TVA conducted semi-annual groundwater monitoring at Active Ash Pond 2 as
 part of the Utility Solid Waste Activities Group (USWAG) Voluntary Monitoring Program. The data
 reported for the USWAG program were submitted to TDEC for the DuPont Road Dredge Cell (IDL
 43-102-0082) and the South Rail Loop Area 4 Non-Registered Site (NRS) No. 43-1232.

TVA compiled certain available historical hydrogeologic information from the investigations listed above and included it in Appendix P of the JOF Plant EIP. Appendix P includes:

- Identification of previously existing, abandoned, or closed piezometers and wells and historical surface water monitoring locations
- Historical groundwater quality data from previous studies were provided in Appendix P Table 1A.
 Physical parameter and general water quality parameter data were provided in Table 1B, and groundwater elevations were provided in Table 1C.

2.2 CURRENT AND ONGOING GROUNDWATER MONITORING

Current and ongoing compliance groundwater monitoring at the JOF Plant CCR management units consists of two programs:

CCR Rule Monitoring Program: Monitoring at Active Ash Pond 2 is conducted per Title 40 of the
Code of Federal Regulations (40 CFR) Part 257 (CCR Rule). In accordance with the CCR Rule,
TVA established a certified groundwater monitoring system. Baseline sampling, detection
monitoring, and assessment monitoring phases were implemented from 2017 to 2021.
 Groundwater elevation and analytical data have been and continue to be provided to TDEC and
posted to TVA's CCR Rule Compliance Data and Information public website.

TVA completed a statistical evaluation of the collected groundwater data from Active Ash Pond 2 and determined that constituents detected at downgradient monitoring wells had statistically significant levels above the groundwater protection standards established for the CCR Rule (TVA 2019a). Based on the statistical evaluation, TVA prepared an Assessment of Corrective Measures Report (TVA 2019b) in accordance with the CCR Rule. Subsequently, the remedy selection process began to select a remedy that meets the requirements of the CCR Rule. TVA will continue to produce semiannual remedy selection reports describing the progress made toward the selection and design of remedies and annual groundwater monitoring and corrective

Groundwater and Hydrogeological Investigations February 12, 2024

action reports describing groundwater analytical results from continued groundwater assessment monitoring.

• TDEC Permitted Landfill Monitoring Program. From 1990 to the present, TVA has conducted groundwater monitoring at the DuPont Road Dredge Cell under Solid Waste Disposal Permit No. IDL 43-102-0082. Groundwater analytical data reports have been and continue to be provided to TDEC as part of this program.

From 1990 to the present, TVA has conducted groundwater monitoring at South Rail Loop Area 4. This CCR management unit was not permitted during operations and is designated by TDEC as NRS No. 43-1232. Groundwater analytical data reports have been and continue to be provided to TDEC as part of this program.

Exhibit H.1-1 shows the current groundwater monitoring well and piezometer networks. Appendix E-3 provides a list of the wells and their associated monitoring program.

2.3 HYDROGEOLOGY

The objectives of the TDEC Order hydrogeological and groundwater investigations were to characterize the hydrogeology and groundwater quality and evaluate groundwater flow conditions in the vicinity of the JOF Plant CCR management units.

TVA performed well and piezometer installation and groundwater sample collection activities in accordance with the *EIP*, *Groundwater Investigation and Hydrogeological Investigation Sampling and Analysis Plans (SAPs)* (Stantec 2018a and 2018b), *Quality Assurance Project Plan (QAPP)* (Environmental Standards, Inc 2018)., and TVA's Environmental Technical Instructions (TIs). Well installation and sample location selection, sample collection methodology, sample analyses, and quality assurance/quality control completed for the investigations are provided in the *Hydrogeological Investigation Sampling and Analysis Report (SAR)* (Appendix H.2) and the *Groundwater Investigation SARs* for the six sampling events (Appendices H.3 through H.8).

As reported in the *Groundwater and Hydrogeological Investigation SARs*, the data collected during these investigations were deemed usable for reporting and evaluation in this EAR because they met the objectives of the *EIP*. An analysis of results and discussion of the dataset from these investigations, along with data collected under other TDEC Order SAPs and data collected under other TDEC permitted landfill and CCR Rule compliance programs, is presented in the sections below.

2.3.1 Scope of Work

The scope of work for the EI hydrogeological and groundwater investigations included drilling soil borings and installing permanent wells at nine locations and a piezometer at a tenth location, collecting soil samples from the screened interval of three proposed background well locations, obtaining saturated zone hydraulic conductivity data, and conducting six groundwater sampling events. Encountered field conditions resulted in modifications to the original plan defined in the *SAP*. These changes are discussed in Section 2.3.2.

Groundwater and Hydrogeological Investigations February 12, 2024

The groundwater sampling events included gauging groundwater and pore water levels in permanent and temporary monitoring wells and piezometers installed as part of the EI and other existing monitoring wells and piezometers near the CCR management units. The groundwater and soil samples were analyzed for the CCR-related constituents listed in Appendices III and IV of the CCR Rule, except soil samples were not analyzed for total dissolved solids. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the CCR Rule Appendices III and IV were analyzed to maintain continuity with the TDEC compliance programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents are hereafter referred to as CCR Parameters. For geochemical evaluation, groundwater samples were analyzed for major cations/anions not included in the CCR Parameters. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium. Table H.1-1 provides a summary of the boring and well locations associated with the hydrogeological investigation and the rationale for each well location. The locations of the EI wells and other program well locations are shown on Exhibit H.1-1.

2.3.2 Well and Piezometer Installation

The hydrogeological investigation well and piezometer installation activities were conducted between May 21, 2019, and April 23, 2020. Field activities consisted of direct-push technology, hollow stem auger drilling in unconsolidated material, sonic drilling techniques in unconsolidated materials, well installation, vibrating wire piezometer installation, well development, slug testing, pump installation, and well surveys. Stantec performed field activities based on guidance and specifications listed in TVA's TIs, the SAPs, and the QAPP.

Nine monitoring wells and one piezometer were installed as part of the EI. Table H.1-1 lists each of the EI borings advanced and whether a well or piezometer was installed. Details regarding the installation of the EI monitoring wells and piezometer are provided below.

For Ash Disposal Area 1, one piezometer (JOF-116-PZ) was installed in unconsolidated materials to monitor groundwater levels along the northern boundary of Ash Disposal Area 1. Monitoring wells JOF-110 and JOF-111 were installed in unconsolidated materials downgradient of Ash Disposal Area 1 to provide locations to monitor groundwater levels and quality. Monitoring well JOF-109 was installed in unconsolidated materials at an upgradient location to monitor groundwater levels and quality.

For the former Coal Yard, monitoring wells JOF-113, JOF-114, and JOF-117 were installed in unconsolidated materials downgradient of the former facility to provide locations to monitor groundwater levels and quality. Monitoring well JOF-112 was installed in unconsolidated materials at an upgradient location to monitor groundwater levels and quality.

For Active Ash Pond 2, monitoring well JOF-118 was installed in unconsolidated materials downgradient of the CCR management unit to monitor groundwater levels and quality. Monitoring well JOF-119 was installed in unconsolidated materials at a background location to monitor groundwater levels and quality.

Proposed monitoring well (JOF-108) was planned at a location downgradient of Ash Disposal Area 1 in unconsolidated materials to provide a location to monitor groundwater levels and quality; however, none

Groundwater and Hydrogeological Investigations February 12, 2024

of the five borings advanced in the vicinity of this location were completed as a well because CCR materials or shallow refusal was encountered at these locations.

2.3.3 Well and Piezometer Construction

Permanent monitoring wells and the piezometer were installed by qualified drill crews working under the direction of a Stantec Professional Geologist and a licensed Tennessee driller. Wells were constructed of four-inch diameter Schedule 40 polyvinyl chloride (PVC) pre-packed well screens (0.010-inch slots) and riser. The screen and riser consisted of flush-joint, threaded PVC pipe. The screen length was approximately 10 feet in length. Well construction details are included in the *Hydrogeological Investigation SAR*. Table H.1-2 shows the well construction summary for the EI wells and other previously existing wells as shown on Exhibits H.1-1.

The piezometer was completed with a vibrating wire type transducer. The piezometer was installed following drilling of the boring by first identifying the depth for the measurement tip of the transducer. The vibrating wire transducer and cabling were then attached to a sacrificial PVC riser at the selected monitoring depth. The riser was lowered into the boring, and the boring was backfilled with high solids bentonite grout. The vibrating wire data cable was secured within a protective cover at ground surface.

Individual well and piezometer construction details are included in Appendix C of the EAR.

2.3.4 Well Development

Each new permanent well was developed using a combination of bailing, surging, and pumping after a minimum of 24 hours following well installation. A summary of initial and final water quality measurements collected during well development is presented in Table B.2 in Appendix B of the *Hydrogeological Investigation SAR* (Appendix H.2).

2.3.5 Aquifer Testing

2.3.5.1 Slug Testing

After development of the wells installed as part of the hydrogeological investigation, Stantec performed slug testing in the nine permanent wells (JOF-109, JOF-110, JOF-111, JOF-112, JOF-113, JOF-114, JOF-117, JOF-118, and JOF-119) to estimate the hydraulic conductivity of the unconsolidated materials within the screened interval of each well. A pressure transducer with a data recorder was used to collect water level information from the wells.

The field data were analyzed using AQTESOLV™ Version 4.50 Professional software to estimate the hydraulic conductivity of the saturated unconsolidated materials in the screened interval of each tested monitoring well. Calculated hydraulic conductivities are summarized in Table B.3 in Appendix B of the *Hydrogeological Investigation SAR* (Appendix H.2), and the software output package is provided in Appendix E of the *Hydrogeological Investigation SAR*. The hydraulic conductivity in the nine EI permanent wells, listed above, ranged from 2.81 x 10⁻⁵ centimeters per second (cm/sec) to 7.68 x 10⁻² cm/sec.

Groundwater and Hydrogeological Investigations February 12, 2024

A summary of the EI slug test results combined with results of slug tests conducted in monitoring wells from other groundwater programs is provided in Table H.1-3. The hydraulic conductivity results are grouped by CCR management unit and the former Coal Yard. The geometric mean of the hydraulic conductivities follow:

- Ash Disposal Area 1: 3.19 x 10⁻⁴ cm/sec
- Former Coal Yard: 1.46 x 10⁻³ cm/sec
- DuPont Road Dredge Cell: 9.40 x 10⁻⁴ cm/sec
- South Rail Loop Area 4: 1.49 x 10⁻⁴ cm/sec
- Active Ash Pond 2: 4.16 x 10⁻² cm/sec

2.3.6 Groundwater Sampling

Groundwater samples were collected during six events on the following dates:

- Event 1 December 2-5, 2019
- Event 2 February 11-12, 2020
- Event 3 April 7-9, 2020
- Event 4 June 9-11, 2020
- Event 5 August 12-13, 2020
- Event 6 October 13-15, 2020.

TVA performed investigation sample and data collection activities in accordance with the *Groundwater Investigation SAP*, TVA's TIs and the *QAPP*. Permanent wells were purged using dedicated bladder pumps equipped with dedicated tubing and low-flow purging and sampling techniques. Details of each sampling event are provided in the *Groundwater Investigation SARs*, Events #1 through #6 (Appendices H.3 through H.8).

2.3.7 Hydrogeologic Assessment Results

Several soil boring, well, and piezometer installation projects at and in the vicinity of the JOF Plant CCR management units yielded information about the geology, hydrogeologic properties of the geologic formations, groundwater elevations, groundwater flow direction, and groundwater quality. This section provides an evaluation of the hydrogeological setting of the JOF Plant CCR management units.

2.3.7.1 Geology and Lithology

Chapter 2.4 of the EAR provides a discussion of the regional geologic setting for the JOF Plant. This section provides a discussion of the geology and lithology of the JOF Plant CCR management units and

Groundwater and Hydrogeological Investigations February 12, 2024

former Coal Yard. Use of the terminology "fill material" in the following discussions excludes CCR material. A discussion of CCR material is provided in Appendix G.1. Exhibit H.1-2 shows a three-dimensional lithologic model, including representation of the extent of CCR material at the JOF Plant.

The JOF Plant is located in the Tennessee River Valley. The shallow stratigraphy in the vicinity of the JOF Plant CCR management units consists of fill material, residuum, and alluvium (collectively unconsolidated materials) overlying bedrock. Residuum is the material that remains after bedrock has weathered to a point that it is no longer considered rock. Alluvium refers to native materials (i.e., clay, silt, sand, or gravel) that are deposited by moving water. The unconsolidated materials range in thickness from a few feet to over 70 feet, with the thickest extent encountered in the Active Ash Pond 2.

The fill is composed of aggregate or reworked native deposits ranging in thickness from a few feet to over 45 feet at the former Coal Yard. The fill is underlain by alluvium. Alluvial deposits were observed to be poorly sorted and unconsolidated and consist of clay, silt, sand, and gravel. The finer-grained material is usually near the surface, and the coarser grained material is more common at depth. The alluvium ranges in thickness from six feet to over 35 feet. The residuum was encountered below the alluvium and ranges in thickness from a few feet to over 15 feet. Exhibits H.1-3 and H.1-4 show three-dimensional representations of the extent of the unconsolidated materials consisting primarily of silts and clays, and sands and gravels, respectively.

The unconsolidated materials overlie Mississippian and Devonian-aged sedimentary bedrock formations. These units are depicted on the geologic map of the JOF Plant area provided as Exhibit H.1-5. The Fort Payne Formation ranges from 200 to 300 feet in thickness and is comprised of a cherty limestone or calcareous siltstone that underlies the alluvial deposits in the eastern part of the JOF Plant and pinches out near the river (TDEC 2017). Ash Disposal Area 1 may be underlain by the Fort Payne Formation. The Chattanooga Shale consists of grayish-black, fissile, carbonaceous shale with a thickness of 7 to 75-feet at the site. Its variation in thickness originates in folding and repetition by faulting in the areas where it is over 30-feet thick and from partial removal by erosion in areas under 30-feet thick (TDEC 2017 and Kellberg 1948). The Chattanooga Shale is known to be a natural source of various constituents, including cobalt, molybdenum, nickel, and uranium (parent of radium-226). These four constituents have been shown to be correlated with one another in the Chattanooga Shale (United States Geological Survey 1969). South Rail Loop Area 4 is underlain by the Chattanooga Shale. The Chattanooga Shale is underlain by the Camden Formation. The Camden Formation is composed of hard, dense, brittle, lightgray, chert layers separated by softer gritty clay along bedding planes with a thickness of more than 100 feet. It is extremely fractured and fresh quarry faces break down rapidly. The weathered Camden Formation chert can appear as a clayey gravel while drilling (Kellberg 1948). Active Ash Pond 2 and the northern part of the former Coal Yard are underlain by the Camden Formation. The southern part of the former Coal Yard is underlain by the Chattanooga Shale. Borings installed in the vicinity of the DuPont Road Dredge Cell did not encounter bedrock. Exhibit H.1-6 shows a three-dimensional representation of the bedrock surface.

2.3.7.2 Hydrostratigraphic Units and the Uppermost Aquifer

Hydrostratigraphic units are geological formations that have been defined to characterize the hydrogeology of the JOF Plant to understand where and how groundwater is flowing. Groundwater flows

Groundwater and Hydrogeological Investigations February 12, 2024

from higher groundwater elevations to lower elevations. In saturated geological formations that have higher permeability than adjacent formations, groundwater flows in a mostly horizontal direction. In saturated geological formations that have lower permeability than adjacent formations, groundwater flows in a more vertical direction. Geological formations, groups of formations, or parts of a formation capable of yielding useable quantities of groundwater to wells or springs are called aquifers. Aquifers are targeted for development as water sources by property owners. The less permeable geological formations are called aquitards.

Hydraulic characteristics of hydrostratigraphic units are used to classify aquifers. If an aquifer's upper boundary forms the water table, then it is called an unconfined aquifer. An aquifer located between two aquitards is called a confined aquifer. Groundwater can flow through aquitards into underlying aquifers, but the rate of flow is commonly much slower than the rate of flow within the aquifer. Aquifers can be considered confined even if they are not completely covered by an aquitard. For example, the Memphis aquifer in western Tennessee is a confined aquifer, yet it is known that the aquitard above the Memphis aquifer is thin or absent in some areas (United States Geological Survey 1990).

As shown in the graphical representation in Section 1.0, in a confined aquifer measured groundwater levels rise above the top of the aquifer. The difference between the measured groundwater levels within the aquifer and the top of the aquifer is called the pressure head. For confined aquifers, groundwater is not encountered in the interval shown as pressure head above the top of the aquifer because it is bounded by an upper aquitard, which also physically separates the groundwater from the geologic unit located above the upper aquitard.

In state and federal regulations, the term uppermost aquifer is used. This is the aquifer nearest the natural ground surface, as well as lower aquifers that are hydraulically interconnected with this aquifer within a facility's property boundary that are capable of yielding usable quantities of groundwater. Regulations are designed to protect the groundwater in the uppermost aquifer because it could be used by property owners as a source of water. The term uppermost aquifer is used in this report.

Both confined and unconfined aquifers exist as the uppermost aquifer in the vicinity of the JOF Plant and are further described below.

Based on the geology and hydraulic conductivities measured in the vicinity of Ash Disposal Area 1, the DuPont Road Dredge Cell, and South Rail Loop Area 4 CCR management units, the primarily sand and gravel interval in the unconsolidated materials observed near the top of bedrock shown on JOF Sections A-A' through C-C' on Exhibits D-2 and D-3 in Appendix D of the EAR is considered to be the uppermost aquifer, which is under unconfined conditions. Section transect lines are shown on Exhibit D-1 (EAR Appendix D).

Based on the geology and hydraulic conductivities of geologic materials measured in the vicinity of the former Coal Yard, the primarily sand and gravel interval and the upper, highly fractured part of the Camden Chert shown on JOF Section E-E' on Exhibit D-4 are considered to be the uppermost aquifer, which is under unconfined conditions.

Groundwater and Hydrogeological Investigations February 12, 2024

Based on the geology and hydraulic conductivities of geologic materials measured in the vicinity of the Active Ash Pond 2, the primarily sand and gravel interval near the top of bedrock shown on Exhibit D-4 in Appendix D of the EAR is considered to be the uppermost aquifer. The uppermost aquifer is overlain by primarily clay that is defined as an aquitard; therefore, the uppermost aquifer is a confined aquifer. Groundwater in a confined aquifer is not in contact with the CCR material inside the CCR management units where the aquitard is present because the aquitard physically separates them. Exhibit H.1-7 shows the distribution and thickness of the clay that comprises the aquitard above the uppermost aquifer. The clay layer appears to be continuous at Active Ash Pond 2 and ranges in thickness from approximately 10 to 40 feet.

The following discussions of groundwater elevations and flow for the JOF CCR management unit areas are focused on data from wells that monitor the uppermost aquifers, but also rely on data collected from wells or piezometers installed in the CCR management units or other hydrogeological units as part of other programs to support the evaluations.

2.3.7.3 Groundwater Flow

This section provides a discussion of how groundwater flows at the JOF Plant. Groundwater flow occurs because gravity moves groundwater from areas of higher groundwater elevations to areas of lower elevations along flow paths that are generally perpendicular to groundwater elevation contours. Physiographic and hydrogeological features affect how groundwater flows. Hydrogeological barriers (i.e., rivers and surface streams) and divides (i.e., ridges that form watershed boundaries) bound the extent of groundwater flow. Groundwater flows toward, but not across, hydrogeological barriers and away from hydrogeological divides.

Exhibit H.1-8 shows the physiographic setting of the JOF Plant within the floodplain of the Tennessee River. Within this document, Tennessee River and Kentucky Lake are used interchangeably to describe the same surface water body. A key characteristic of the setting is that the plant is situated in a low-lying area along the Tennessee River with a higher elevation ridge to the east of the plant. Physiographic features that affect groundwater flow in the vicinity of the JOF Plant include the steep topography of the ridge to the east and the Tennessee River to the west of the CCR management units and former Coal Yard. In addition, a hydrogeological divide was mapped approximately coincident with the southern boundary of the JOF Plant using the United States Geological Survey (USGS) StreamStats tool (https://www.usgs.gov/streamstats) as shown on Exhibit H.1-9. The historical stream network that existed where the JOF Plant was constructed based on a USGS topographic map from 1936 is also shown on Exhibit H.1-9. The mapped hydrogeological divide is consistent with higher ground surface elevations near the southern boundary of the JOF Plant and surface stream patterns shown on a USGS topographic map from 1950 (Exhibit H.1-10).

The discussions of groundwater elevations and flow are focused on data from wells that monitor the uppermost aquifers, but also rely on data collected from wells or piezometers installed in the CCR management units or other hydrogeological units as part of other programs to support the evaluations. Groundwater levels in the uppermost aquifer were measured in 29 wells and used for groundwater elevation contour map development. Groundwater level measurements were also obtained from 10 piezometers installed for the EI and other programs. Surface water elevation measurements for the

Groundwater and Hydrogeological Investigations February 12, 2024

Tennessee River were continuously recorded as part of TVA's plant operations. The automated reading recorded closest to noon on the gauging date was used for comparison to groundwater levels. The groundwater level measurements were converted to elevations. Table H.1-4 provides elevation data for Event #5 in August 2020. Table H.1-5 provides elevation data from the groundwater investigation. Exhibit H.1-11 provides a representative groundwater elevation contour map for Event #5 in August 2020. Groundwater elevation contour maps for other sampling events can be found in Appendices H.3 through H.6 and H.8.

At the JOF Plant, groundwater levels were measured within the unconsolidated materials. Generally, the horizontal groundwater flow direction is to the west toward the Tennessee River. At Active Ash Pond 2, the groundwater elevation is approximately the same as the Tennessee River stage, but there typically is a small hydraulic gradient from the east-northeast to the west-southwest. Groundwater flow in the unconsolidated materials is bounded to the west by the Tennessee River. Exhibit H.1-11 from groundwater sampling Event #5 in August 2020 is a representative groundwater contour map for the unconsolidated materials.

Horizontal groundwater flow rates were calculated using groundwater elevation data acquired during the six El groundwater sampling events and a mean hydraulic conductivity derived from the results of slug testing data (Table H.1-3) for the CCR management units and the former Coal Yard. Flow direction and hydraulic gradient were estimated using the triangulation method and groundwater elevations for each event. The flow rate was calculated using typical effective porosity percentages based on soil type, constant hydraulic conductivity values based on geometric mean calculations from slug testing, and the groundwater elevation inputs specific to each gauging event. Table H.1-6 provides a summary of the calculations used to estimate the average horizontal flow rate and the results of the calculations for each groundwater sampling event.

Ash Disposal Area 1

For the unconsolidated materials at the Ash Disposal Area 1, the values used to calculate groundwater flow rates follow:

- Geometric mean of hydraulic conductivity of 3.19 x 10-4 cm/sec
- Average horizontal hydraulic gradient ranged from 0.0090 feet/foot (Event # 6) to 0.0112 feet/foot (Event #2)
- Effective porosity 20 percent (%). The reference for the effective porosity of the unconsolidated materials uses specific yield as a proxy for effective porosity of unconsolidated material (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at Ash Disposal Area 1 ranged from 15 feet/year (Event #6) to 19 feet/year (Event #2).

Groundwater and Hydrogeological Investigations February 12, 2024

Former Coal Yard

For the unconsolidated materials at the former Coal Yard, the values used to calculate groundwater flow rates follow:

- Geometric mean of hydraulic conductivity of 1.46 x 10-3 cm/sec
- Average horizontal hydraulic gradient ranged from 0.0142 feet/foot (Event # 2) to 0.0216 feet/foot (Event #6)
- Effective porosity 20% (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at the former Coal Yard ranged from 107 feet/year (Event #2) to 163 feet/year (Event #6).

DuPont Road Dredge Cell

For the unconsolidated materials at the DuPont Road Dredge Cell, the values used to calculate groundwater flow rates follow:

- Geometric mean of hydraulic conductivity of 9.40 x 10-4 cm/sec
- Average horizontal hydraulic gradient ranged from 0.0014 feet/foot (Event #1) to 0.0030 feet/foot (Event #4)
- Effective porosity 20% (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at the Dupont Road Dredge Cell ranged from 7 feet/year (Event #1) to 15 feet/year (Event #4).

South Rail Loop Area 4

For the unconsolidated materials at the South Rail Loop Area 4, the values used to calculate groundwater flow rates follow:

- Geometric mean of hydraulic conductivity of 1.49 x 10-4 cm/sec
- Average horizontal hydraulic gradient ranged from 0.0067 feet/foot (Event # 6) to 0.0082 feet/foot (Event #3)
- Effective porosity 20% (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at the South Rail Loop 4 ranged from 5 feet/year (Event #6) to 6 feet/year (Event #3).

Active Ash Pond 2

For the unconsolidated materials at Active Ash Pond 2, the values used to calculate groundwater flow rates follow:

Groundwater and Hydrogeological Investigations February 12, 2024

- Geometric mean of hydraulic conductivity of 4.16 x 10-2 cm/sec
- Average horizontal hydraulic gradient ranged from 0.0001 feet/foot (Event #1) to 0.0005 feet/foot (Event #2)
- Effective porosity 20% (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at Active Ash Pond 2 ranged from 26 feet/year (Event #1) to 108 feet/year (Event #2).

2.3.7.4 Groundwater/Surface Water/Pore Water Relationship

This section provides a discussion of groundwater, surface stream, and pore water elevation relationships. The discussion consists of two parts. The first part of the discussion is focused on a general comparison of differences in pore water and inferred groundwater elevations in the vicinity of each of the CCR management units and the former Coal Yard. The second part of the discussion is focused on correlations between fluctuations in groundwater, surface stream, and pore water levels and includes an evaluation of the effect of precipitation events. Exhibit H.1-12 shows the locations of wells and piezometers used to manually gauge groundwater and pore water elevations. Exhibit H.1-13a shows locations of piezometers that are automated to record pore water and groundwater elevations at Active Ash Pond 2. Exhibit H.1-13b shows locations of wells and piezometers that are automated to record pore water and groundwater elevations at the DuPont Road Dredge Cell. Exhibit H.1-14 provides hydrographs of the Tennessee River, groundwater, and pore water elevations for manually gauged wells for Ash Disposal Area 1. Exhibit H.1-15 provides hydrographs of the Tennessee River, groundwater, and pore water elevations for manually gauged wells for the former Coal Yard. Exhibits H.1-16a and H.1-16b provide hydrographs of the Tennessee River, groundwater elevations of automated and manually gauged or read wells and piezometers, respectively, for the DuPont Road Dredge Cell. Exhibit H.1-17 provides hydrographs of the Tennessee River and pore water elevations for manually gauged wells for South Rail Loop Area 4. Exhibits H.1-18a and H.1-18b provide hydrographs of the Tennessee River, groundwater elevations of automated and manually gauged or read wells and piezometers, respectively, for Active Ash Pond 2. Table H.1-5 provides a comparison of the groundwater elevations at wells and piezometers and the Tennessee River for the six sampling events. A complete set of hydrographs for available instrumentation is provided in Attachment H.1-A.

General Comparison of Pore Water and Groundwater Elevations

Within Ash Disposal Area 1, pore water elevations were similar to groundwater elevations. The higher elevation of pore water within the CCR management unit compared to the Tennessee River stage suggests that the perimeter dikes and foundation soils are impeding lateral and vertical flow of pore water. Groundwater elevations on the upgradient side of this unit are higher than pore water elevations which indicates that pore water levels are not causing a reversal of the groundwater flow direction along the upgradient edge of this CCR management unit (sometimes referred to as mounding).

Within the former Coal Yard, pore water elevations were approximately 5 feet higher than groundwater elevations based on measurements made in monitoring wells along the perimeter of the former Coal

Groundwater and Hydrogeological Investigations February 12, 2024

Yard. The higher elevation of pore water within the former Coal Yard compared to the Tennessee River stage suggests that the perimeter dikes are impeding lateral and vertical flow of pore water. As discussed below in this section, groundwater levels in upgradient well JOF-112 appear to be influenced by the water level of the Coal Yard Runoff Pond, which forms the eastern boundary of the former Coal Yard. This suggests that pore water levels within the former Coal Yard are not influencing well JOF-112 and are not causing a reversal of the groundwater flow direction along the upgradient edge of the former Coal Yard.

Historically, within the DuPont Road Dredge Cell prior to construction of the geosynthetic cap, pore water elevations ranged from approximately 428 to 433 feet above mean sea level. As of early 2023, pore water elevations ranged from approximately 401 to 402 feet above mean see level within the DuPont Road Dredge Cell. Exhibit H.1-19 shows the locations of certain abandoned piezometers that were previously gauged in relation to the locations of existing automated piezometers. Exhibit H.1-20 shows the elevations of pore water measured at the locations shown on Exhibit H.1-19. Since the temporary wells were installed as part of the EI, measured groundwater elevations in perimeter monitoring wells have ranged from approximately 18 to 27 feet below pore water elevations. The difference between pore water elevations and groundwater elevations suggests that the perimeter dikes and foundation soils are impeding lateral and vertical flow of pore water. Along the eastern boundary, available information is inconclusive regarding whether pore water levels are affecting the direction of groundwater flow; however, groundwater elevations were generally consistent with or possibly lower than what would be expected based on observed groundwater flow patterns across the JOF Plant, which suggests that they have not been affected by pore water levels.

Within Active Ash Pond 2, pore water elevations were more than 20 feet higher than groundwater elevations along the perimeter of the CCR management unit and the stage of the Tennessee River. The higher elevation of pore water within Active Ash Pond 2 compared to groundwater elevations and the Tennessee River stage suggests that the perimeter dikes and foundation soils are impeding lateral and vertical flow of pore water. Groundwater elevations along the perimeter of Active Ash Pond 2 were similar to the stage of the Tennessee River which indicates that pore water levels are not affecting groundwater elevations.

Within the South Rail Loop Area 4, pore water only exists withing two low areas (Exhibit D-3). The pore water elevations were approximately 5 to 6 feet higher in the eastern area than in the western area. The higher pore water elevations in the eastern area, as compared to the western area, suggest that the dikes and foundation soils in the eastern area are impeding lateral and vertical flow of pore water. The lower pore water elevations in the western area suggest that pore water elevations may be in equilibrium with the water table. The higher groundwater elevations on the upgradient side of the South Rail Loop Area 4 compared to the pore water elevations in the eastern area indicate that the pore water levels are not causing a reversal of groundwater flow direction along the upgradient side of this CCR management unit.

Correlations Between Fluctuations in Groundwater, Surface Stream, and Pore Water Levels

The following are observations regarding correlation of fluctuations in water levels between the Tennessee River, groundwater, pore water, and precipitation.

Groundwater and Hydrogeological Investigations February 12, 2024

- Tennessee River: Exhibit H.1-14 shows a hydrograph for the Tennessee River and a timeline of precipitation events, including the amount of precipitation. The river stage fluctuations appear to correlate with winter and summer pool changes that are part of the management of water levels in the Tennessee River. The seasonal influence of the operating reservoir levels is apparent, with the lowest stages generally occurring during the late fall through early spring months and the highest stages generally occurring during the late spring through early fall months. Larger precipitation events correlate with higher elevations of the Tennessee River stage.
- Ash Disposal Area 1: Exhibit H.1-14 shows a comparison of river stage and groundwater level fluctuations at monitored locations near Ash Disposal Area 1. There were no automated piezometers or wells to measure groundwater levels. The groundwater hydrographs for the manually gauged piezometers and monitoring wells show a subdued fluctuation pattern compared to the river stage fluctuations but do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events. In addition, monitoring wells JOF-110 and JOF-111 appear to have responded to the lowering of the water level in the Coal Yard Runoff Pond. Both wells show an overall decrease in groundwater elevations beginning in September 2021, which is when the Coal Yard Runoff Pond water level was reduced (Exhibit H.1-14).

Exhibit H.1-14 shows a comparison of river stage and pore water level fluctuations at monitored locations within the Ash Disposal Area 1. There were no automated piezometers or wells to measure pore water levels. The pore water hydrographs for the manually gauged piezometers and temporary wells show a subdued fluctuation pattern compared to the river stage fluctuations but do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events. In addition, temporary wells JOF-TW06 and JOF-TW07 appear to have responded to the lowering of the water level in the Coal Yard Runoff Pond. Both wells show an overall decrease in groundwater elevations beginning in September 2021, which is when the Coal Yard Runoff Pond water level was reduced (Exhibit H.1-14).

fluctuations at monitored locations near the former Coal Yard. There were no automated piezometers or wells to measure groundwater levels. The groundwater hydrographs for the manually gauged monitoring wells JOF-113, JOF-114, and JOF-117 show a subdued fluctuation pattern compared to the river stage fluctuations but do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events. The groundwater hydrograph for JOF-112 does not appear to have fluctuations that correlate with river stage or precipitation events; however, well JOF-112 appears to have responded to the lowering of the water level in the Coal Yard Runoff Pond. This well shows an overall decrease in groundwater elevations beginning in September 2021, which is when the Coal Yard Runoff Pond water level was reduced (Exhibit H.1-15).

Exhibit H.1-15 shows a comparison of river stage and pore water level fluctuations at monitored locations within the former Coal Yard. There were no automated piezometers or wells to measure pore water levels. The pore water hydrographs for the manually gauged temporary wells show

Groundwater and Hydrogeological Investigations February 12, 2024

fluctuation patterns that could be correlated with the river stage fluctuations or precipitation related seasonal patterns. The pore water hydrographs do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events. Temporary well JOF-TW09 shows an overall decrease in pore water elevations that generally correlates with the lowering of the water level in the Coal Yard Runoff Pond (Exhibit H.1-15).

• DuPont Road Dredge Cell: Exhibit H.1-16b shows a comparison of river stage and groundwater level fluctuations at monitored locations near the DuPont Road Dredge Cell. There were no automated piezometers or wells to measure groundwater levels. The groundwater hydrographs for the manually gauged monitoring wells show fluctuations that could be correlated with river stage or precipitation related to seasonal patterns. Because of the distance of these instruments from the Tennessee River, the observed fluctuations are interpreted to be associated with seasonal precipitation patterns. The groundwater hydrographs do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events (Exhibit H.1-16b).

Exhibit H.1-16a shows a comparison of river stage and pore water level fluctuations at monitored locations within the DuPont Road Dredge Cell. The pore water hydrographs for automated locations JOF-DC-PZ8, JOF-DC-PZ9, and JOF-DC-PZ10 had no apparent correlation between river stage or precipitation and the pore water fluctuations. The pore water elevations declined over time before dropping to near the piezometer tip elevation.

The pore water hydrographs for the manually gauged temporary wells JOF-TW11, JOF-TW12, and JOF-TW13 show generally decreasing trends in pore water elevations, but do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events (Exhibit H.1-16b).

• South Rail Loop Area 4: Exhibit H.1-17 shows a comparison of river stage and groundwater level fluctuations at monitored locations near the South Rail Loop Area 4. There were no automated piezometers or wells to measure groundwater levels. The groundwater hydrographs for manually gauged monitoring wells B-9 and JOF-101 show fluctuations that could be correlated with river stage or precipitation related to seasonal patterns. Because of the distance of these wells from the Tennessee River, the observed fluctuations are interpreted to be associated with seasonal precipitation patterns. The groundwater hydrographs for wells B-8R and JOF-102 and piezometers JOF-B05A, JOF-B06A, JOF-B07B, and JOF-B08B show similar, but subdued, patterns in comparison to wells B-9 and JOF-101. The fluctuations are interpreted to be due to seasonal precipitation patterns because of the distance from the Tennessee River. The groundwater hydrograph for well B-6R was generally stable over the gauging period. The hydrograph for piezometer JOF-B09A was variable. The groundwater hydrographs do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events (Exhibit H.1-17).

Exhibit H.1-17 shows a comparison of river stage and pore water level fluctuations at monitored locations within South Rail Loop Area 4. There were no automated piezometers or wells to measure pore water levels. The pore water hydrographs for manually gauged temporary wells

Groundwater and Hydrogeological Investigations February 12, 2024

JOF-TW15 and JOF-TW16 show fluctuations that could be correlated with river stage or precipitation related to seasonal patterns. The hydrographs for piezometers JOF-B07A and JOF-B08A have a short period of coverage but appear similar to the hydrographs for the temporary wells. Because of the distance of these wells and piezometers from the Tennessee River, the observed fluctuations are interpreted to be associated with seasonal precipitation patterns. The manually gauged pore water hydrographs do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events (Exhibit H.1-17).

Active Ash Pond 2: Exhibit H.1-18a shows a comparison of river stage and groundwater level fluctuations at monitored locations beneath Active Ash Pond 2. The groundwater hydrographs for automated locations within the sand and gravel layer (e.g., JOF-PZ-AAP2-1-PZ3, JOF-PZ-AAP2-2-PZ3, JOF-PZ-AAP2-3-PZ3, JOF-PZ-AAP2-5-PZ3, JOF-PZ-AAP2-6-PZ3, JOF-PZ-AAP2-7-PZ3, JOF-PZ-AAP2-8-PZ3, and JOF-PZ-AAP2-10-PZ3) show fluctuations that are correlated with the fluctuations and stage elevation of the Tennessee River. Additional groundwater hydrographs from locations at or near the periphery of Active Ash Pond 2 and within the sand and gravel unit (e.g., JOF-PZET, JOF-PZFT, JOF-PZHT, JOF-B-2A-PZ3, JOF-B-2B-PZ4, JOF-C-2A-PZ2, JOF-C-2B-PZ2, JOF-E-2A-PZ2, JOF-E-2B-PZ3, JOF-K-2A-PZ1) also show fluctuations that are correlated with the fluctuations and stage elevation of the Tennessee River. The groundwater hydrographs for automated locations within the clay foundation soils (e.g., JOF-PZDT, JOF-PZGT, JOF-PZIT, JOF-B-2A-PZ4, JOF-B-2B-PZ3, JOF-C-2A-PZ4, JOF-C-2B-PZ3, JOF-E-2A-PZ3, JOF-K-2A-PZ2, JOF-PZ-AAP2-1-PZ2, JOF-PZ-AAP2-2-PZ2, JOF-PZ-AAP2-3-PZ2, JOF-PZ-AAP2-5-PZ2, JOF-PZ-AAP2-6-PZ2, JOF-PZ-AAP2-7-PZ2, JOF-PZ-AAP2-8-PZ2, and JOF-PZ-AAP2-10-PZ2) also show fluctuations that generally are correlated with the fluctuations of the Tennessee River. The groundwater elevations measured in piezometers located in the clay layer beneath Active Ash Pond 2 are typically higher than groundwater elevations in the sand and gravel and show subdued fluctuations as compared to the river stage fluctuations (Attachment H.1-A).

The groundwater hydrographs for the manually gauged monitoring wells show fluctuations that generally are correlated with fluctuations and stage elevation of the Tennessee River. The groundwater hydrographs do not have the resolution to make comparisons to short-term river level fluctuations or individual precipitation events (Exhibit H.1-18b).

Exhibit H.1-18a also shows a comparison between river stage and pore water level fluctuations at automated locations. The pore water hydrographs for automated locations within Active Ash Pond 2 (e.g., JOF-PZ-AAP2-1-PZ1, JOF-PZ-AAP2-2-PZ1, JOF-PZ-AAP2-3-PZ1, JOF-PZ-AAP2-5-PZ1, JOF-PZ-AAP2-6-PZ1, JOF-PZ-AAP2-7-PZ1, JOF-PZ-AAP2-8-PZ1, and JOF-PZ-AAP2-10-PZ1) show fluctuation patterns that do not appear to be correlated with river stage fluctuations and could be correlated with precipitation events. The pore water hydrographs for the manually gauged temporary wells show fluctuation patterns that could be correlated with the river stage fluctuations or precipitation related seasonal patterns. The pore water hydrographs show a range of fluctuations that appears to be greater than that of the Tennessee River (see JOF-TW02). This suggests that the pore water fluctuations are influenced by precipitation events and operation of the pool level within this CCR management unit. The pore water hydrographs do not have the

Groundwater and Hydrogeological Investigations February 12, 2024

resolution to make comparisons to short-term river level fluctuations or individual precipitation events (Exhibit H.1-18b).

In summary, for Ash Disposal Area 1, there is a subdued correlation of fluctuations in groundwater and pore water elevations with the Tennessee River stage. In addition, both groundwater and pore water elevations showed decreases that correlated with the lowering of the water level within the Coal Yard Runoff Pond. For the former Coal Yard, there is a subdued correlation of fluctuations in groundwater and pore water elevations with the Tennessee River stage, except for well JOF-112. Well JOF-112 showed a decrease in groundwater elevations that correlated with the lowering of the water level within the Coal Yard Runoff Pond.

For the DuPont Road Dredge Cell, the fluctuations in groundwater elevations correlated with seasonal precipitation patterns. There has been a downward trend in the pore water elevations surface since the geosynthetic caps were installed. Pore water elevations did not correlate with the Tennessee River stage or precipitation. For South Rail Loop Area 4, the fluctuations in groundwater, except for well B-6R which was stable, and pore water elevations correlated with seasonal precipitation patterns.

For Active Ash Pond 2, the fluctuations in groundwater elevations correlated with the Tennessee River stage. Pore water elevations did not correlate with the Tennessee River stage or seasonal precipitation patterns. The fluctuations in pore water elevations are interpreted to be affected by precipitation events and operation of the pool levels within the CCR management unit.

2.4 DYE TRACE STUDY

Dye trace study activities were conducted at Active Ash Pond 2 between April 8, 2019 and March 4, 2020. The dye trace study activities consisted of four phases: the bench study, the background study, dye injection, and post-injection sampling and analysis. Dye injection activities included injecting two different dyes (sodium fluorescein and sulphorhodamine B) from August 13-15, 2019, into five injection borings advanced along the north-south trending centerline of Active Ash Pond 2. The post-injection sampling was performed for the following six months on a weekly basis from August 19, 2019 through October 14, 2019, and biweekly from October 28, 2019 through March 4, 2020.

Exhibit H.1-21 depicts a summary of the dye trace study activities including the locations of the bench study borings, dye injection borings, and background study surface water and groundwater monitoring locations. The bench study results are presented in Table H.1-7, and the background study and post-injection sampling results are presented in Tables H.1-8 and H.1-9.

After the November 25, 2019, sampling event, sodium fluorescein (fluorescein) was detected in the bottom dye detector from monitoring well JOF-104, followed by four consecutive "positive" fluorescein signatures in the top and bottom dye detectors from the December 2019 and January 2020 sampling events. The fluorescein then decreased to a "trace" and "possible trace" in the February and March 2020 sampling events, respectively. The results of the dye trace study showed a connection between Active Ash Pond 2 and monitoring well JOF-104, but no other positive results were reported. Based on this information, no preferential transport pathways between Active Ash Pond 2 and the Tennessee River were observed during the dye trace study. The dye trace study data were reported by Ewers Water

Groundwater and Hydrogeological Investigations February 12, 2024

Consultants, Inc. and validated by Karst Works, Inc. A detailed description of the JOF dye trace activities is presented in *JOF Plant Sampling and Analysis Report for Active Ash Pond 2 Dye Trace Study* (Appendix H.9).

2.5 GROUNDWATER QUALITY

This section provides a discussion of the analytical results for groundwater samples collected from monitoring wells installed as part of the EI and previously installed wells monitored as part of the TDEC permitted landfill and CCR Rule groundwater monitoring programs. The purpose of the statistical evaluation is to provide an objective method to inform decisions about the need for corrective action as of the date of the latest sampling event. The statistical evaluation is not intended to predict future groundwater quality. The purpose of ongoing groundwater monitoring is to identify changes in groundwater quality. Future analytical results reported for the ongoing groundwater monitoring programs, and the need for continued groundwater monitoring, will be further evaluated as part of the CARA Plan. If further statistical evaluation conducted as part of the CARA Plan process concludes that a corrective action is or is not required, then the supporting information will be included in the CARA Plan.

The groundwater quality evaluation is based on a statistical evaluation of constituents listed in Appendix I of TDEC Rule 0400-11-01-.04 (TDEC Appendix I) and Appendices III and IV of the CCR Rule. The analytical results were compared to groundwater screening levels (GSLs) approved by TDEC (see Appendix A.2). The results of the statistical evaluation are shown in a color-coded format where green indicates no statistically significant concentration greater than or equal to the GSL for constituents other than pH and no statistically significant difference outside the GSL range for pH, and red indicates a statistically significant concentration greater than or equal to the GSL for constituents other than pH or a statistically significant difference outside the GSL range for pH. The statistical methods applied to determine the green and red categories are discussed in the statistical evaluation of groundwater analytical data provided in Appendix E.3, and the results are summarized below. Table H.1-10 provides the analytical results of groundwater samples used in the statistical evaluation. Table H.1-11 provides a summary of groundwater quality parameters used for the statistical analyses. Table H.1-12 lists the approved GSLs. Table H.1-13 shows the results of the statistical evaluation with the color-coded format described above.

The dataset compiled for statistical analysis included available analytical data for groundwater samples collected between March 2015 and February 2023, although the specific start date and frequency of sampling may vary between wells based on date of well installation and the applicable monitoring program.

The results of the statistical evaluations are dependent on the dataset and method used for the evaluation. The dataset used for the evaluation conducted for the EAR is different than the one used for reporting required by the CCR Rule or the TDEC permitted landfill programs. Also, the statistical method is different than the method used for TDEC permitted landfill reporting. Because of these differences, the results of the statistical evaluations conducted for the CCR Rule and TDEC permitted landfill monitoring programs may differ from the results discussed below.

Groundwater and Hydrogeological Investigations February 12, 2024

The statistical evaluation included screening for outliers, which are abnormally high or low values that may represent anomalous data or data errors. There were no outliers removed from further statistical analysis based on this evaluation. Appendix E.3 provides additional information regarding the outlier evaluation and methods used to compare results to the GSLs.

The nine groundwater monitoring wells installed for the EI (JOF-109, JOF-110, JOF-111, JOF-112, JOF-113, JOF-114, JOF-117, JOF-118, and JOF-119) were sampled during 10 events between December 2019 and September 2022 to complete the scope in the approved *Groundwater Investigation SAP* and additional sampling conducted in conjunction with sampling events for the CCR Rule and TDEC permitted landfill monitoring programs. Wells included in the CCR Rule (10-AP1, 10-AP3, JOF-103, and JOF-104) and TDEC permitted landfill (89-B10, 99-B20A, B-6R, B-8R, B-11, B-12, B-13, JOF-102, JOF-105, JOF-106, and JOF-107and) or both CCR Rule and TDEC permitted landfill (B-9 and JOF-101) groundwater monitoring systems were sampled between March 2015 and February 2023 per the required frequencies of those programs (see Table E.3.2 in Appendix E.3).

The statistical evaluation identified 46 CCR Rule Appendix III well-constituent pairs with statistically significantly concentrations above a GSL or outside the GSL range for pH. These included boron, chloride, pH, sulfate, and total dissolved solids. Eleven well-constituent pairs for the CCR Rule Appendix IV constituents (some of which are also TDEC Appendix I constituents) had a statistically significant concentration above a GSL. Arsenic (JOF-111 and JOF-117), cobalt (10-AP3, JOF-103, JOF-112, JOF-114, JOF-117, and JOF-118), lithium (JOF-113 and JOF-114), and molybdenum (JOF-113) were the Appendix IV constituents with a statistically significant concentration above an approved level. In addition, one TDEC Appendix I constituent that is not included in Appendix IV of the CCR Rule, nickel (JOF-103), had a statistically significant concentration above an approved level. Table H.1-13 provides a summary of the statistical evaluation. Exhibits H.1-22 through H.1-25 provide the results of the statistical evaluations for CCR Rule Appendix IV and TDEC Appendix I constituents with at least one detection above the GSL. A detailed explanation of the interpretation of the graphs inset on this exhibit is provided in Appendix E.3.

For the well-constituent pairs identified with statistically significant concentrations greater than or equal to a GSL or outside the GSL range for pH, linear regression analysis identified 26 statistically significant decreasing trends and 15 statistically significant increasing trends. Table H.1-14 provides a summary of the trend evaluation.

2.5.1 Piper Diagrams

Another approach to characterize the groundwater analytical results included the use of Piper diagrams, which are graphical representations of the major ion chemistry of groundwater. Available groundwater data were used to develop the diagrams, which were used to visually evaluate similarities and differences in the general chemistry characteristics of the groundwater samples and assess whether the results potentially indicated influences from various sources of groundwater. A Piper diagram from the August 2020 groundwater sampling event is depicted in Exhibit H.1-26, which is considered to be representative of the major ion distribution of the groundwater near the JOF Plant CCR management units over the sampling time period. Piper diagrams for the remaining five EI events conducted between December 2019 and October 2020 are provided in Attachment H.1-B.

Groundwater and Hydrogeological Investigations February 12, 2024

The groundwater-type of the most upgradient groundwater well was observed to be a calcium-chloride type. Groundwater near Ash Disposal Area 1 varied from a calcium-sodium chloride (JOF-110) to a calcium sulfate-chloride (JOF-111). Groundwater near the former Coal Yard was a calcium-sulfate type and near Active Ash Pond 2 varied from a calcium-sulfate (JOF-118) to a calcium-bicarbonate (JOF-119). Additional information regarding groundwater geochemistry is provided in Section 2.5.2.

2.5.2 Geochemistry of Soils-Groundwater Interaction

Groundwater quality is affected by numerous geochemical processes during groundwater flow through geological materials. The distinct difference between the chemical characteristics of pore water within the CCR material, presented in Appendix G.1, and the characteristics of groundwater quality downgradient of the TDEC Order CCR management units at the JOF Plant is difficult to explain without the aid of geochemistry. It is well documented in the literature that certain CCR constituents that are detected in pore water (typically at higher concentrations than in groundwater) can be affected by geochemical processes that occur between constituents dissolved in groundwater and geological materials through which it flows. The effects of these geochemical processes, which often result in the attenuation of CCR constituents (i.e., reduced concentrations) can explain observed differences between the characteristics of pore water and groundwater. The extent of the interactions between dissolved constituents in groundwater and geological materials ranges from limited interaction for constituents such as boron, chloride and sulfate, to strong interactions for constituents such as arsenic and cobalt.

Descriptions of the geochemical interactions between geological materials and constituents dissolved in groundwater are provided in many textbooks (e.g., Appelo and Postma 1996). Geochemical reactions or processes that can affect CCR constituents include:

- Adsorption/desorption on the surfaces of metal hydroxides an interaction whereby constituents
 adsorb to metal hydroxide soil minerals; the process is reversible and controlled by the pH and
 oxidation/reduction potential (redox) of groundwater.
- Cation exchange with clay minerals a process where positively charged constituents (cations) absorb to negatively charged clay minerals, subject to competition and concentrations relative to other constituents. The strength of the electrostatic bond formed varies with the constituents involved, but in general cation exchange reactions are reversible.
- Mineral precipitation or dissolution a process where dissolved constituents in groundwater combine to form a soil mineral; minerals are also subject to dissolution (i.e., reaction is reversible) under certain conditions of groundwater pH and redox.

Observations of groundwater and pore water chemistry can indicate the extent to which geochemical processes chemically change groundwater and influence groundwater quality at the JOF Plant. Boron, chloride, and sulfate commonly occur in high concentrations in pore water and are minimally attenuated by geochemical processes. Thus, they can be used to infer locations in the groundwater monitoring program where there is an influence from pore water. This is because boron and chloride are considered non-reactive because neither constituent is subject to geochemical reactions that would materially change concentrations in groundwater during flow through geological materials. Sulfate is considered a low-

Groundwater and Hydrogeological Investigations February 12, 2024

reactive constituent because there are geochemical conditions in some CCR influenced groundwater where the concentration of sulfate can be reduced by mineral precipitation.

In contrast, those CCR constituents most likely to be influenced by interactions between geological materials and groundwater (e.g., arsenic, lithium, and molybdenum) typically show concentrations in groundwater monitoring wells that are much different than those observed in pore water, indicating that groundwater is being chemically changed relative to pore water by some physical or geochemical process (or a combination of both) occurring as it flows through geological materials. Groundwater quality measured at a given groundwater monitoring location is a result not only of the interactions between its constituents and the geological materials through which it flows, but also of flow from upgradient sources (including background). Thus, the area upgradient of a groundwater monitoring well can be thought of as an interacting geochemical and hydrogeologic system, including:

- Materials that contribute chemical mass to groundwater
- The physical properties of the geological materials that govern direction and rate of groundwater flow
- Minerals in the geologic materials that can interact with constituents being transported by groundwater
- The pH and redox conditions of groundwater.

This geochemical and hydrogeological system, which includes natural and anthropogenic sources and interactions with natural geologic materials, is referred to as the upgradient system.

Understanding the geochemistry of geological materials is important in interpreting the processes influencing current conditions of groundwater chemistry at the JOF Plant and evaluating effects of activities, such as capping or groundwater remediation, on the evolution of groundwater quality. Further evaluation of the geochemical processes acting in the upgradient system at the JOF Plant to influence groundwater quality will be included in the CARA Plan during assessments of remedies, where needed.

2.5.3 Summary

Downgradient of the CCR management units and the former Coal Yard, four CCR Rule Appendix IV CCR constituents had statistically significant concentrations in onsite groundwater above a GSL in seven wells, including arsenic (JOF-111 and JOF-117), cobalt (10-AP3, JOF-103, JOF-114, JOF-117, and JOF-118), lithium (JOF-113 and JOF-114), and molybdenum (JOF-113). One CCR Rule Appendix IV constituent (cobalt) had a statistically significant concentration in onsite groundwater above a GSL in one upgradient well (JOF-112) associated with the former Coal Yard. One additional TDEC Appendix I constituent (nickel) had a statistically significant concentration in onsite groundwater above a GSL in one well (JOF-103). Four wells had only one constituent with a statistically significant concentration greater than a GSL, and four wells had two constituents with statistically significant concentrations above a GSL. The groundwater impacts described above are limited to onsite areas along the perimeter of the CCR management units. These constituents and onsite groundwater in the vicinity of these wells will be further evaluated in the CARA Plan to determine the need for corrective actions.

Summary February 12, 2024

3.0 SUMMARY

The objectives of the TDEC Order hydrogeological and groundwater investigations were to characterize the hydrogeology and groundwater quality and evaluate groundwater flow conditions in the vicinity of the JOF Plant CCR management units. The key findings of the JOF Plant hydrogeological and groundwater investigations are summarized below:

TVA evaluated analytical results for groundwater in support of the EAR based on data collected
under three groundwater monitoring programs (some of which overlap), including the EI, CCR
Rule, and TDEC permitted landfill monitoring programs. Monitoring well locations and CCR
constituents that will require further evaluation in the CARA Plan are provided below.

Summary of Findings Requiring Further Evaluation in the CARA Plan		
CCR Management Unit	Groundwater	
Ash Disposal Area 1	Arsenic (Well JOF-111)	
Active Ash Pond 2	Cobalt (Wells 10-AP3, JOF-103 and JOF-118) Nickel (Well JOF-103)	
Former Coal Yard*	Arsenic (Well JOF-117) Cobalt (Wells JOF-112, JOF-114 and JOF-117) Lithium (Wells JOF-113 and JOF-114) Molybdenum (Well JOF-113)	
South Rail Loop Area 4	None	
DuPont Road Dredge Cell	None	

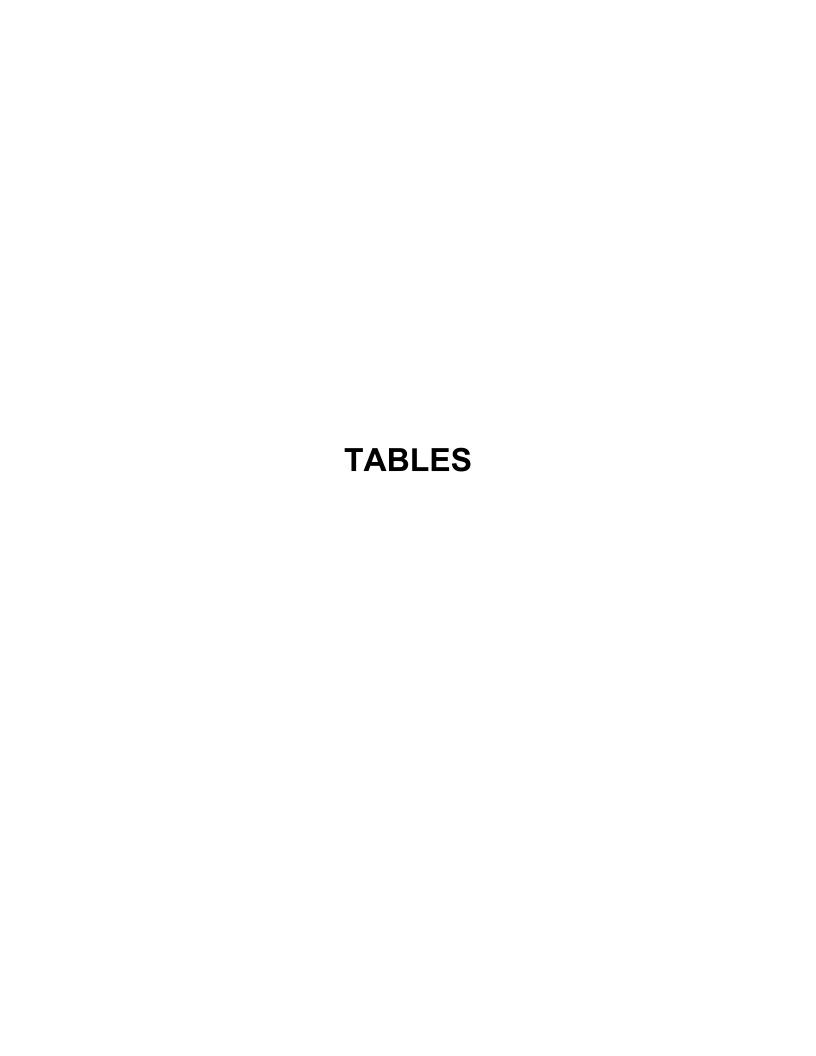
*Not a CCR management unit

- Drainage improvements or potential corrective actions are expected to reduce concentrations of CCR constituents to below GSLs in groundwater at downgradient monitoring locations for Active Ash Pond 2, Ash Disposal Area 1, and the Former Coal Yard
- Pore water within the CCR material has specific chemical characteristics that are different from
 the characteristics of groundwater downgradient of the CCR management units and the former
 Coal Yard. Certain CCR constituents that have been detected in pore water are affected by
 geochemical processes during groundwater flow through geological materials. The effect of
 these geochemical processes, which can result in the attenuation of CCR constituents and
 reduced dissolved groundwater concentrations, can explain the observed differences between
 the characteristics of pore water and groundwater quality
- The pore water levels reported herein may not represent steady-state conditions. The low
 permeability of the geosynthetic caps is expected to result in the continued decrease in pore
 water levels in the DuPont Road Dredge Cell and South Rail Loop Area 4. The pore water levels

Summary February 12, 2024

within Ash Disposal Area 1, the former Coal Yard, and Active Ash Pond 2 would be expected to decrease in elevation if stormwater drainage or cap modifications were to be implemented. The low permeability of the perimeter dikes limits lateral flow into or out of the CCR management units. The results of the dye trace study support this conclusion because it indicated that there are no preferential transport pathways between Active Ash Pond 2 and the Tennessee River. The use of the term "saturated" or references to the moisture content of CCR material does not imply that the pore water is readily separable from the CCR material

- The coarse-grained unconsolidated materials are considered to be the uppermost aquifer and are
 under unconfined conditions, except in the vicinity of Active Ash Pond 2. The uppermost aquifer
 in the vicinity of Active Ash Pond 2 is the coarse-grained unconsolidated materials and is
 considered confined because it is overlain by fine-grained unconsolidated materials that act as an
 aquitard
- The groundwater flow direction within the uppermost aquifer beneath the CCR management units
 and former Coal Yard is generally to the west-southwest toward the Tennessee River.
 Groundwater flow in the vicinity of the CCR management units is bounded to the west by the
 Tennessee River. A higher elevation ridge to the east of the plant and a watershed boundary
 along the southern border are topographic divides for groundwater flow.


TVA will continue to monitor the trends of arsenic, cobalt, lithium, molybdenum, and nickel and conduct further evaluation in the CARA Plan to determine if corrective actions are needed. The influence of geochemical processes on groundwater quality will be further evaluated in the CARA Plan as part of the assessment of remedies, where needed.

APPENDIX H.1 - TECHNICAL EVALUATION OF HYDROGEOLOGY

References February 12, 2024

4.0 REFERENCES

- Appelo, C.A.J and D. Postma. (1996). Geochemistry, Groundwater and Pollution. A.A. Balkema.
- Johnson, A.I. Revised 1966. Specific Yield Compilation of Specific Yields for Various Materials. U.S. Geological Survey, Water Supply Paper 1662-D.
- Environmental Standards, Inc. (2018). Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation. Revision 3. December 2018.
- Kellberg, John M. (1948). Geology of the Now Johnsonville Steam Plant Site. Tennessee Valley Authority, Water Control Planning Department, Geologic Division.
- Stantec. (2018a). *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.*Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.
- Stantec. (2018b). *Hydrogeological Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.*Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.
- TDEC. (2015). Commissioner's Order No. OGC15-0177. August 6, 2015.
- TDEC. (2017). Geologic Map of the Johnsonville Quadrangle, Tennessee.
- TVA. (1995). Johnsonville Groundwater Assessment. Prepared for Tennessee Valley Authority. March 1995.
- TVA. (1997). Hydrogeology of Rail Loop Dredged Ash Stacking Area, New Johnsonville Fossil Plant, September 1997
- TVA. (2012). Groundwater Detection Monitoring Program Plan. May 29, 2012.
- TVA. (2018). Environmental Investigation Plan, Johnsonville Fossil Plant, Revision 4 Final. December 10, 2018.
- TVA. (2019a). 2018 Annual Groundwater Monitoring and Corrective Action Report. Tennessee Valley Authority Johnsonville Fossil Plant Active Ash Pond 2 CCR Unit. January 31, 2019.
- TVA. (2019b). Assessment of Corrective Measures. Tennessee Valley Authority Johnsonville Fossil Plant. July 15, 2019.
- United States Geological Survey. (1969). Element Distribution in Some Paleozoic Black Shales and Associated Rocks, J. D. Vine. Geological Survey Bulletin 1214-G. (1969).
- United States Geological Survey. (1990). Geology and Ground-Water Resources of the Memphis Sand in Western Tennessee by W.S. Parks and J.K. Carmichael. 1990.

Table H.1-1 - Summary of Environmental Investigation Boring and Monitoring Well Locations Johnsonville Fossil Plant

Boring ID	Well ID	Location	Rationale
JOF-108	NC	Proposed at south central boundary of Ash Disposal Area 1	Proposed to collect groundwater data from a downgradient location between Ash Disposal Area 1 and the Tennessee River. Well not installed because adjacent pre-screen borings encountered CCR material and/or hit shallow refusal.
JOF-109	JOF-109	Eastern boundary of Ash Disposal Area 1; in alluvial deposits	To collect groundwater data from a background location
JOF-110	JOF-110	Northwest corner of Ash Disposal Area 1; in alluvial deposits	To collect groundwater data from a downgradient location between Ash Disposal Area 1 and the Tennessee River.
JOF-111A	NC	Attempted at southwest corner of Ash Disposal Area 1; in alluvial deposits	Monitoring well JOF-111 was initially installed in boring JOF-111A, but the well was subsequently abandoned and installed in boring JOF-111B; see additional details in Appendix H.2, Section 3.3.1.3.
JOF-111B	JOF-111	Southwest corner of Ash Disposal Area 1; in alluvial deposits	To collect groundwater data from a downgradient location between Ash Disposal Area 1 and the Tennessee River.
JOF-112	JOF-112	Northeast of the former Coal Yard; in alluvial deposits	To collect groundwater data from a background locatiion
JOF-113	JOF-113	Northwest area of the former Coal Yard; in alluvial deposits	To collect groundwater data from a downgradient location between the former Coal Yard and the Tennessee River
JOF-114	JOF-114	Central west area of the former Coal Yard; in alluvial deposits	To collect groundwater data from a downgradient location between the former Coal Yard and the Tennessee River
JOF-116-PZ	JOF-116-PZ	Northern boundary of Ash Disposal Area 1, between wells JOF-109 and JOF-110; in alluvial deposits	To allow for water level (i.e. pore water pressure) readings in the unconsolidated materials to improve subsurface characterization in the vicinity of the northern boundary of Ash Disposal Area 1
JOF-117	JOF-117	Southwest area of the former Coal Yard; in alluvial deposits	To collect groundwater data from a downgradient location between the former Coal Yard and the Tennessee River
JOF-118	JOF-118	North of Active Ash Pond 2; in alluvial deposits	To collect groundwater data from a downgradient location between Active Ash Pond 2 and the Tennessee River
JOF-119	JOF-119	Southeastern point of the Active Ash Pond 2; in alluvial deposits	To collect groundwater data from a background location

Notes:

CCR Coal Combustion Residual

JOF Johnsonville Fossil Plant

ID Identification

NC Not completed as a monitoring well

Table H.1-2 - Summary of Monitoring Well Construction Specifications Johnsonville Fossil Plant

	Top o	f Casing		Bottom of Well				Screene	ed Interval		
Well ID	Stickup	Elevation	Depth	Depth	Elevation	Depth Top	Depth Bottom	Depth Top	Depth Bottom	Elevation Top	Elevation Bottom
	ft ags	ft NGVD29	ft bgs	ft btoc	ft NGVD29	ft bgs	ft bgs	ft btoc	ft btoc	ft NGVD29	ft NGVD29
10-AP1	2.6	370.51	46.9	49.5	321.0	36.4	46.5	39.0	49.1	331.5	321.4
10-AP3	3.1	367.27	44.5	47.6	319.7	34.3	44.4	37.4	47.5	329.9	319.8
89-B10	0.8	401.19	39.6	40.4	360.8	31.2	39.5	32.0	40.3	369.2	360.9
94-B16	3.4	390.53	22.8	26.2	364.3	12.8	22.8	16.2	26.2	374.3	364.3
99-B19	2.8	394.50	24.9	27.7	366.8	9.8	24.9	12.6	27.7	381.9	366.8
99-B20A	3.3	408.88	33.3	36.6	372.3	18.3	33.2	21.6	36.5	387.3	372.4
B-6R	3.4	395.57	17.9	21.3	374.3	14.8	17.8	18.2	21.2	377.4	374.4
B-8R	3.0	391.04	14.1	17.1	373.9	10.8	13.8	13.8	16.8	377.2	374.2
B-9	3.2	423.88	47.4	50.6	373.3	37.3	46.8	40.5	50.0	383.4	373.9
B-11	2.6	400.67	34.2	36.7	364.0	24.2	34.2	26.7	36.7	374.0	364.0
B-12	2.4	393.03	34.5	36.9	356.1	24.4	34.5	26.8	36.9	366.2	356.1
B-13	2.0	409.87	41.9	43.9	366.0	31.8	41.9	33.8	43.9	376.1	366.0
JOF-101	3.9	424.59	50.2	54.1	370.5	39.7	49.3	43.6	53.2	381.0	371.4
JOF-102	3.9	407.64	30.0	33.9	373.7	19.7	30.0	23.6	33.9	384.0	373.7
JOF-103	3.5	374.24	48.8	52.3	321.9	38.4	48.6	41.9	52.1	332.3	322.1
JOF-104	4.1	379.44	54.7	58.8	320.6	44.3	54.5	48.4	58.6	331.0	320.8
JOF-105	3.8	406.15	29.9	33.7	372.5	19.6	29.9	23.4	33.7	382.8	372.5
A-3	1.0	403.73	85.1	86.1	317.6	65.1	85.1	66.1	86.1	337.6	317.6
JOF-106	3.8	403.16	29.6	33.4	369.8	19.5	29.0	23.3	32.8	379.9	370.4
JOF-107	3.8	409.95	38.3	42.0	368.0	28.2	37.7	31.9	41.4	378.1	368.6
JOF-109	3.4	386.11	41.7	45.1	341.0	30.7	40.5	34.1	43.9	352.0	342.2
JOF-110	4.7	388.76	57.8	62.5	326.3	47.6	57.4	52.3	62.1	336.5	326.7
JOF-111	4.8	390.08	46.7	51.5	338.6	36.5	46.3	41.3	51.1	348.8	339.0
JOF-112	4.7	394.48	30.4	35.1	359.4	20.2	30.0	24.9	34.7	369.6	359.8
JOF-113	4.7	388.13	45.1	49.8	338.3	34.9	44.7	39.6	49.4	348.5	338.7
JOF-114	4.7	388.36	40.2	44.9	343.5	30.0	39.8	34.7	44.5	353.7	343.9
JOF-117	4.6	388.63	40.6	45.2	343.4	30.4	40.2	35.0	44.8	353.6	343.8
JOF-118	3.4	372.69	50.7	54.1	318.6	# 40.5	50.3	43.9	53.7	328.8	319.0
JOF-119	3.5	366.89	44.7	48.2	318.7	34.5	44.3	38.0	47.8	328.9	319.1

Notes:

ags above ground surface bgs below ground surface btoc below top of casing ft feet

ID identification NGVD29 National Geodetic Vertical Datum of 1929

^{1.} Well information based on data provided by TVA and Stantec (e.g., well logs, well inspection report); however, there may be discrepancies between sources of information

Stick-up height based on difference between surveyed values for Top of Casing Elevation and Ground Surface Elevation.

Table H.1-3 - Summary of Hydraulic Conductivity Results from Slug Test Data Johnsonville Fossil Plant

Monitoring Well ID	Monitoring Well Designation	Slug Test Hydraulic Conductivity (cm/sec)
sh Disposal Area 1		
JOF-109 ¹	Background	9.87E-04
JOF-110 ¹	Downgradient	2.81E-05
JOF-111 ¹	Downgradient	1.17E-03
eometric Mean of Hydraulic Conductivi	ty Unconsolidated Materials (cm/sec)	3.19E-04
ormer Coal Yard		
JOF-112 ¹	Background	9.38E-03
JOF-113 ¹	Downgradient	5.40E-04
JOF-114 ¹	Downgradient	3.59E-03
JOF-117 ¹	Downgradient	2.49E-04
eometric Mean of Hydraulic Conductivit	ty Unconsolidated Materials (cm/sec)	1.46E-03
uPont Road Dredge Cell		
B13 ³	Background	9.40E-04 [*]
eometric Mean of Hydraulic Conductivit	ty Unconsolidated Materials (cm/sec)	9.40E-04
outh Rail Loop Area 4		
B9 ³	Background	9.20E-05
B6 ³	Downgradient	2.40E-04
eometric Mean of Hydraulic Conductivi		1.49E-04
ctive Ash Pond 2		
JOF-10-AP1 ^{2,4}	Downgradient	1.36E-02
JOF-10-AP3 ^{2,4}	Downgradient	3.82E-02
JOF-103 ^{2,4}	Downgradient	1.29E-02
JOF-104 ^{2,4}	Downgradient	1.88E-01
	Downgradient	7.68E-02
JOF-118 ¹	Downgradient	7.00L-02
JOF-118 ¹ JOF-119 ¹	Downgradient	5.39E-02

Notes

ID - identification

cm/sec - centimeters per second

⁴Stantec (2021). Johnsonville Fossil Plant Exploratory Drilling Sampling and Analysis Report, August 20, 2021

^{*}from pump/injection test

¹Stantec (2021). Johnsonville Fossil Plant Hydrogeologic Investigation Sampling and Analysis Report, August 20, 2021

²Terracon (2018). Aquifer Testing and Equipment Blank Results TVA CCR Rule – Johnsonville Fossil Plant (JOF). Terracon Consultants, Inc. December 12, 2018.

³TVA (1995). Johnsonville Groundwater Assessment. WR28-1-30-111 K.F. Lindquist et al. March 1995.

Table H.1-4 – Groundwater Level Measurements, Groundwater Sampling Event #5 (August 10-11, 2020) Johnsonville Fossil Plant

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells				1	ı	1	ı			1
JOF-00-GW-43-001	10-AP1	10-Aug-20	13.99	370.51	356.52	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
JOF-00-GW-43-002	10-AP3	10-Aug-20	10.55	367.27	356.72	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	10-Aug-20	25.65	401.19	375.54	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
JOF-00-GW-43-004	94-B16	10-Aug-20	13.61	390.53	376.92	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
JOF-00-GW-43-005	99-B19	10-Aug-20	16.34	394.50	378.16	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
JOF-00-GW-43-006	99-B20A	10-Aug-20	29.90	408.88	378.98	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
JOF-00-GW-43-007	B-6R	10-Aug-20	17.92	395.57	377.65	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
JOF-00-GW-43-008	B-8R	10-Aug-20	12.03	391.04	379.01	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
JOF-00-GW-43-009	B-9	10-Aug-20	26.85	423.88	397.03	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
JOF-00-GW-43-010	B-11	10-Aug-20	20.55	400.67	380.12	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
JOF-00-GW-43-011	B-12	10-Aug-20	12.28	393.03	380.75	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
JOF-00-GW-43-012	B-13	11-Aug-20	29.25	409.87	380.62	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
JOF-00-GW-43-013	JOF-101	10-Aug-20	25.75	424.59	398.84	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
JOF-00-GW-43-014	JOF-102	10-Aug-20	19.58	407.64	388.06	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
JOF-00-GW-43-015	JOF-103	10-Aug-20	17.20	374.24	357.04	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
JOF-00-GW-43-016	JOF-104	10-Aug-20	22.60	379.44	356.84	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
JOF-00-GW-43-017	JOF-105	10-Aug-20	27.33	406.15	378.82	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
JOF-00-GW-43-018	A-3	10-Aug-20	23.70	403.73	380.03	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
JOF-00-GW-43-019	JOF-106	10-Aug-20	22.70	403.16	380.46	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
JOF-00-GW-43-020	JOF-107	10-Aug-20	28.90	409.95	381.05	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
JOF-00-GW-43-021	JOF-109	10-Aug-20	5.70	386.11	380.41	n/a	n/a	n/a	34.1 - 43.9	Alluvium
JOF-00-GW-43-022	JOF-110	10-Aug-20	18.05	388.76	370.71	n/a	n/a	n/a	52.3 - 62.1	Alluvium
JOF-00-GW-43-023	JOF-111	10-Aug-20	19.65	390.08	370.43	n/a	n/a	n/a	41.3 - 51.1	Clay
JOF-00-GW-43-024	JOF-112	10-Aug-20	17.30	394.48	377.18	n/a	n/a	n/a	24.9 - 34.7	Alluvium
JOF-00-GW-43-025	JOF-113	10-Aug-20	28.55	388.13	359.58	n/a	n/a	n/a	39.6 - 49.4	Alluvium
JOF-00-GW-43-026	JOF-114	10-Aug-20	28.88	388.36	359.48	n/a	n/a	n/a	34.7 - 44.5	Alluvium
JOF-00-GW-43-027	JOF-117	10-Aug-20	26.60	388.63	362.03	n/a	n/a	n/a	35.0 - 44.8	Alluvium
JOF-00-GW-43-028	JOF-118	10-Aug-20	15.84	372.69	356.85	n/a	n/a	n/a	43.9 - 53.7	Alluvium
JOF-00-GW-43-029	JOF-119	10-Aug-20	10.09	366.89	356.80	n/a	n/a	n/a	38.0 - 47.8	Alluvium
Piezometers		1011119 = 0								
n/a	JOF-B-2A-PZ3	10-Aug-20	n/a	n/a	356.3	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2A-PZ3	10-Aug-20	n/a	n/a	357.8	392.8	326.8	66.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2B-PZ2	10-Aug-20	n/a	n/a	356.1	370.6	321.6	49.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2A-PZ2	10-Aug-20	n/a	n/a	356.2	390.9	327.9	63.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2B-PZ2	10-Aug-20 10-Aug-20	n/a	n/a	355.5	365.4	310.4	55.0	n/a	Alluvial Sand and Gravel
n/a	JOF-K-2A-PZ1	10-Aug-20 10-Aug-20	n/a	n/a	358.9	377.5	327.5	50.0	n/a	Alluvial Sand and Gravel
n/a n/a	JOF PZET	10-Aug-20 10-Aug-20	n/a n/a	n/a n/a	352.9	363.8	329.8	34.0	n/a n/a	Alluvial Sand and Gravel Alluvial Clay and Silt and Alluvial Sand and Gravel
	-	· ·			352.9	362.9	329.8			· ·
n/a	JOF_PZFT	10-Aug-20	n/a	n/a				35.3	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF_PZHT	10-Aug-20	n/a	n/a	357.3	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
n/a	JOF-116-PZ	10-Aug-20	n/a	n/a	372.4	388.0	342.0	46.0	n/a	Alluvium

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Surface Water Gauge										
Tennessee River/Kentucky Lake gauge (GS-1)	n/a	10-Aug-20	n/a	n/a	356.83	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msl mean sea level
n/a not applicable
UNID Unique Numerical Identification

- 1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.
- 2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.
- 3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information was obtained from boring logs. Data from automated piezometers are averaged for the measurement date.
- 4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

Table H.1-5 - Kentucky Lake / Tennessee River and Groundwater Elevation Comparison **Johnsonville Fossil Plant** December 2019-October 2020

	Groundwater Elevation by Date (ft asml)									
Well ID	12/2/2019	2/10/2020	4/6/2020	6/8/2020	8/10/2020	10/12/2020				
10-AP1	356.11	359.14	359.64	358.84	356.52	354.25				
10-AP3	356.09	359.14	359.84	359.06	356.72	354.41				
89-B10	376.58	377.30	377.29	375.85	375.54	375.12				
94-B16	378.70	378.98	378.68	377.52	376.92	376.82				
99-B19	379.04	379.64	379.49	378.32	378.16	377.68				
99-B20A	379.08	379.99	380.43	379.45	378.98	378.51				
B-6R	378.11	378.06	377.89	377.76	377.65	377.58				
B-8R	380.29	380.66	379.98	379.60	379.01	378.71				
B-9	397.41	399.30	400.27	397.78	397.03	395.33				
B-11	380.19	381.27	381.73	380.52	380.12	379.42				
B-12	380.32	382.03	382.27	372.06	380.75	379.91				
B-13	380.26	381.67	382.28	381.38	380.62	380.24				
JOF-101	398.77	400.78	402.18	400.23	398.84	397.33				
JOF-102	387.82	389.19	389.54	389.02	388.06	387.40				
JOF-103	356.42	359.42	360.08	359.36	357.04	354.71				
JOF-104	356.28	359.36	359.92	359.19	356.84	354.53				
JOF-105	NM	379.93	379.26	379.15	378.82	378.31				
A-3	380.22	381.21	381.55	NM	380.03	379.55				
JOF-106	380.45	381.57	382.03	380.87	380.46	379.76				
JOF-107	381.14	382.37	382.69	381.35	381.05	380.21				
JOF-109	380.66	380.85	381.42	380.43	380.41	379.50				
JOF-110	370.46	370.37	371.67	371.05	370.71	370.25				
JOF-111	370.59	368.73	371.38	370.76	370.43	369.84				
JOF-112	378.19	373.80	377.78	377.22	377.18	376.81				
JOF-113	359.05	361.12	362.21	359.56	359.58	357.41				
JOF-114	361.67	360.97	360.91	359.58	359.48	357.27				
JOF-117	359.90	361.61	362.96	363.67	362.03	347.23				
JOF-118	356.24	359.30	359.93	359.23	356.85	354.56				
JOF-119	356.27	358.43	359.92	359.15	356.80	354.51				
Tennessee River/ Kentucky Lake gauge (GS-1)	356.36	359.07	359.60	359.12	356.83	354.37				

Notes:

ft asml

ID

feet above mean sea level identification

not measured

Table H.1-6 - Rate and Direction of Groundwater Flow Summary Johnsonville Fossil Plant

Ash Disposal Area 1

Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Collection Date	12/2/2019	2/10/2020	4/6/2020	6/8/2020	8/10/2020	10/12/2020
Horizontal Gradient (ft/ft)	0.0096	0.0112	0.0094	0.0091	0.0093	0.0090
Hydraulic Conductivity (cm/sec)	3.19E-04	3.19E-04	3.19E-04	3.19E-04	3.19E-04	3.19E-04
Effective Porosity	20%	20%	20%	20%	20%	20%
Flow Direction	274	260	270	270	270	269
Linear Velocity (ft/yr)	15.84	18.48	15.51	15.02	15.35	14.85

Former Coal Yard

Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Collection Date	12/2/2019	2/10/2020	4/6/2020	6/8/2020	8/10/2020	10/12/2020
Horizontal Gradient (ft/ft)	0.0215	0.0142	0.0175	0.0205	0.0200	0.0216
Hydraulic Conductivity (cm/sec)	1.46E-03	1.46E-03	1.46E-03	1.46E-03	1.46E-03	1.46E-03
Effective Porosity	20%	20%	20%	20%	20%	20%
Flow Direction	267	267	267	274	271	244
Linear Velocity (ft/yr)	162.39	107.25	132.18	154.83	151.06	163.14

DuPont Dredge Cell

Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Collection Date	12/2/2019	2/10/2020	4/6/2020	6/8/2020	8/10/2020	10/12/2020
Horizontal Gradient (ft/ft)	0.0014	0.0022	0.0026	0.0030	0.0023	0.0027
Hydraulic Conductivity (cm/sec)	9.40E-04	9.40E-04	9.40E-04	9.40E-04	9.40E-04	9.40E-04
Effective Porosity	20%	20%	20%	20%	20%	20%
Flow Direction	219	234	241	248	240	248
Linear Velocity (ft/yr)	6.81	10.70	12.64	14.59	11.18	13.13

Active Ash Pond 2

Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Collection Date	12/2/2019	2/10/2020	4/6/2020	6/8/2020	8/10/2020	10/12/2020
Horizontal Gradient (ft/ft)	0.0001	0.0005	0.0002	0.0002	0.0002	0.0002
Hydraulic Conductivity (cm/sec)	4.16E-02	4.16E-02	4.16E-02	4.16E-02	4.16E-02	4.16E-02
Effective Porosity	20%	20%	20%	20%	20%	20%
Flow Direction	162	180	261	253	256	250
Linear Velocity (ft/yr)	25.69	107.65	43.06	43.06	43.06	43.06

South Rail Loop Area 4

Couli Ruii Ecop Aicu 4						
Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Collection Date	12/2/2019	2/10/2020	4/6/2020	6/8/2020	8/10/2020	10/12/2020
Horizontal Gradient (ft/ft)	0.0070	0.0077	0.0082	0.0076	0.0072	0.0067
Hydraulic Conductivity (cm/sec)	1.49E-04	1.49E-04	1.49E-04	1.49E-04	1.49E-04	1.49E-04
Effective Porosity	20%	20%	20%	20%	20%	20%
Flow Direction	279	280	276	275	273	272
Linear Velocity (ft/yr)	5.40	5.94	6.32	5.86	5.55	5.16

Notes:

cm/sec - centimeter per second

ft/ft - feet per foot ft/yr - feet per year % - percent

Table H.1-7 - Bench Study Results

EWC Ewers Water Consultants Inc.

160 Redwood Drive, Richmond, Kentucky 40475 Phone & Fax (859) 623-8464 E-mail: ewc@mis.net

StanTec, TVA Dye Survivability Study

Sampling Time After Inoculation With Dyes

Vessel	Sample/Dye	1 Hour	3 Hours	9 Hours	21 Hours
Vessel 1	Control Fluor	3091	3064	2930	2774
	Control RWT	2668	2723	2746	2613
Vessel 2	Control Eos	4912	4784	4692	4250
	Control SRB	3698	3753	3786	3634
Vessel- 3	IP-1 Fluor	25.6	23.6	22.6	21.2
ēl	IP-1 RWT	Trace	Trace	Trace	Trace
Vessel -4	IP-1 Eos	*24.9,10	*22.7	*22.3	*21.2
	IP-1 SRB	9.2	1.7	Trace	1.5
Vessel -5	IP-2 Fluor	131.4	64.5	36.9	35.3
	IP-2 RWT	11.1	4.9	3.2	3.7
Vessel- 6	IP-2 Eos	*30, 84	*23.8, 15.8	*22.6, 4.1	*21.3, 5
	IP-2 SRB	32.7	9.6	4.1	4.2
Vessel- 7	IP-3 Fluor	1748	1306	863	824
	IP-3 RWT	276	87.4	32.6	35.8
Vessel -8	IP-3 Eos	1624	519.8	*40, 124.9	*25, 114.5
	IP-3 SRB	860	266.1	90.6	89.7
Vessel -9	IP-4 Fluor	24.5	23.1	22.8	21.6
	IP-4 RWT	Trace	1.9	Trace	Trace
Vessel- 10	IP-4 Eos	*24.5	*22.8	*22.7	21.3
	IP-4 SRB	2.2	1.6	Trace	Trace
Vessel- 11	IP-5 Fluor	24.3	22.9	22.5	21.7
	IP-5 RWT	Trace	1.5	Trace	2
Vessel -12	IP-5 Eos	*24.3	*22.7	*22.5	21.1
	IP-5 SRB	2.3	Trace	1.8	2

^{*} indicates Eosine has shifted from a peak of 535nm to +/-510nm.

An additional number indicates that a peak at 535nm is also present.

Fluor = Fluorescein, RWT = Rhodamine-WT, Eos = Eosine , SRB = Sulphorhodamine-B

(1) - Results are for the Dye Trace Study performed at the Johnsonville Fossil Plant

Trace - dye detected in trace amount based on analysis of scans and peak amplitude.

Results are reported in Fluorescence units.

[&]quot;Control" is obtained from analysis of the dye inoculation solution in a separate reaction vessel.

Table H.1-8 Background Study Results

			5/13/2019			8/5/2019			8/12/2019	
	Location of Dye			Low-Flow			Low-Flow			Low-Flow
ID	Detectors	Flourescein	SRB	Signature	Flourescein	SRB	Signature	Flourescein	SRB	Signature
	e Water			_						- 0
TSW01	SW01	-	-	-	-	-	-			
TSW02	SW02	-	-	-	-	-	-			
TSW03	SW03	-	-	-	-	-	-			
TSW04	SW04	-	-	-	-	-	-			
TSW05	SW05	-	-	-	-	-	-			
TSW06	SW06	-	-	-						
TSW07	SW07	-	-	-						
TSW08	SW08	-	-	-						
TSW09	SW09	-	-	-						
TSW10	SW10	-	-	-						
TSW11	SW11	-	-	-						
TSW12	SW12	-	-	-						
TSW13	SW13	-	-	-						
TSW14	SW14	-	-	-						
TSPILL	Spillway	-	-	-						
Well S	Samples									
T103T	JOF-103	-	-	+						
T103B	JOF-103	-	-	+						
T104T	JOF-104	-	-	+						
T104B	JOF-104	-	-	+						
T118T	JOF-118	NS	NS	NS	-	-	-			
T118B	JOF-118	NS	NS	NS	-	-	-			
T119T	JOF-119	NS	NS	NS	-	-	-			
T119B	JOF-119	NS	NS	NS	-	-	-			
TAP1T	10-AP1	-	-	+						
TAP1B	10-AP1	-	-	+						
TAP3T	10-AP3	-	-	+						
TAP3B	10-AP3	-	-	+						
TPAZT	JOF-PZAT	NS	NS	NS				-	-	+
TPAZB	JOF-PZAT	NS	NS	NS				+	-	-

Notes:

SRB Sulphorhodamine-B Dye

T "T" at end of sample ID indicates upper dye detector set at location shown.

B "B" at end of sample ID indicates lower dye detector set at bottom location shown.

NS No sample collected
- Dye not detected

Low Flow Signature A '+' result in the low flow signature column indicated background flourescence was detected in the dye

detector carbon due to low water flow. This condition was found in dye detectors placed in wells and

piezometers where unwashed carbon was used and does not indicate a positive dye detection.

Positive dye detection

Locat	ion of Dye Detectors		SW01			DUP 01			DUP03			SW02			DUP01	
	ID/Duplicate Parent		TSW01			TSW01			TSW01			TSW02			TSW02	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Surfa	ace Water			Signature			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 2	8/26-27/2019	-	-	-							-	-	-			
Round 3	9/03-04/2019	-	-	-							-	-	-			
Round 4	9/9/219	-	-	-							-	-	-			
Round 5	9/16/2019	-	-	-							-	-	-			
Round 6	9/23/2019	-	-	-							-	-	-			
Round 7	9/30/2019	-	-	-							-	-	-			
Round 8	10/7/2019	-	-	-							-	-	-			
Round 9	10/14/2019	-	-	-							-	-	-			
Round 10	10/28/2019	-	-	-							-	-	-			
Round 11	11/12/2019 ^a	NS	NS	NS							NS	NS	NS			
Round 12	11/25/2019	-	-	-							NS	NS	NS			
Round 13	12/9/2019	-	-	-							-	-	-			
Round 14	12/19-20/2019	-	-	-							-	-	-	-	-	-
Round 15	1/6/2020	-	-	-				-	-	-	-	-	-			
Round 16	1/21-22/2020	-	-	-							-	-	-			
Round 17	2/3/2020	-	-	-							-	-	-			
Round 18	2/18-19/2020	-	-	-							-	-	-			
Round 19	3/03-04/2020	-	-	-							-	-	-			

Locat	ion of Dye Detectors		DUP02			DUP03			SW03			DUP02			DUP03	
	ID/Duplicate Parent		TSW02			TSW02			TSW03			TSW03			TSW03	
		Flourescein	SRB	Low-Flow Signature												
Surfa	ace Water			Signature												
Round 1	8/19-20/2019							-	-	-						
Round 2	8/26-27/2019							NS	NS	NS						
Round 3	9/03-04/2019							-	-	-						
Round 4	9/9/219							-	-	-						
Round 5	9/16/2019							-	-	-						
Round 6	9/23/2019							-	-	-	-	-	-			
Round 7	9/30/2019	-	-	-				-	-	-						
Round 8	10/7/2019							-	-	-						
Round 9	10/14/2019							-	-	-						
Round 10	10/28/2019							-	-	-	-	-	-			
Round 11	11/12/2019 ^a							-	-	-				-	-	-
Round 12	11/25/2019							-	-	-						
Round 13	12/9/2019	-	-	-				-	-	-						
Round 14	12/19-20/2019							-	-	-						
Round 15	1/6/2020	-	-	-				-	-	-						
Round 16	1/21-22/2020							NS	NS	NS						
Round 17	2/3/2020				-	-	-	-	-	-						
Round 18	2/18-19/2020							-	-	-						
Round 19	3/03-04/2020							-	-	-						

Locat	ion of Dye Detectors		SW04			SW05			DUP01			SW06			DUP03	
	ID/Duplicate Parent		TSW04			TSW05			TSW05			TSW06			TSW06	
		Flourescein	SRB	Low-Flow Signature												
	ace Water			Signature												
Round 1	8/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 2	8/26-27/2019	NS	NS	NS	-	-	-				-	-	-			
Round 3	9/03-04/2019	-	-	-	-	-	-	-	-	-	-	-	-			
Round 4	9/9/219	NS	NS	NS	-	-	-				-	-	-			
Round 5	9/16/2019	-	-	-	-	-	-				-	-	-			
Round 6	9/23/2019	-	-	-	-	-	-				-	-	-			
Round 7	9/30/2019	-	-	-	-	-	-				-	-	-			
Round 8	10/7/2019	-	-	-	-	-	-				-	-	-	-	-	-
Round 9	10/14/2019	-	-	-	-	-	-				-	-	-	-	-	-
Round 10	10/28/2019	-	-	-	-	-	-				-	-	-			
Round 11	11/12/2019 ^a	-	-	-	-	-	-				-	-	-			
Round 12	11/25/2019	-	-	-	-	-	-				-	-	-			
Round 13	12/9/2019	NS	NS	NS	-	-	-				-	-	-			
Round 14	12/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 15	1/6/2020	NS	NS	NS	-	-	-	-	-	-	-	-	-			
Round 16	1/21-22/2020	-	-	-	NS	NS	NS				-	-	-			
Round 17	2/3/2020	-	-	-	-	-	-				-	-	-			
Round 18	2/18-19/2020	-	-	-	-	-	-				NS	NS	NS			
Round 19	3/03-04/2020	-	-	-	-	-	-				-	-	-			

Locat	ion of Dye Detectors		SW07			SW08			DUP01			SW09			DUP01	
	ID/Duplicate Parent		TSW07			TSW08			TSW08			TSW09			TSW09	
		Flourescein	SRB	Low-Flow Signature												
Surfa	ace Water			· ·			_			Signature			Signature			Signature
Round 1	8/19-20/2019	NS	NS	NS	NS	NS	NS				-	-	-			
Round 2	8/26-27/2019	NS	NS	NS	-	-	-				-	-	-			
Round 3	9/03-04/2019	-	-	-	-	-	-				-	-	-			
Round 4	9/9/219	-	-	-	-	-	-				-	-	-			
Round 5	9/16/2019	-	-	-	-	-	-				-	-	-			
Round 6	9/23/2019	-	-	-	-	-	-				-	-	-			
Round 7	9/30/2019	-	-	-	-	-	-				-	-	-	-	-	-
Round 8	10/7/2019	-	-	-	-	-	-				-	-	-			
Round 9	10/14/2019	-	-	-	-	-	-				-	-	-			
Round 10	10/28/2019	-	-	-	-	-	-				-	-	-			
Round 11	11/12/2019 ^a	-	-	-	-	-	-				-	-	-			
Round 12	11/25/2019	-	-	-	-	-	-				-	-	-			
Round 13	12/9/2019	-	-	-	-	-	-				NS	NS	NS			
Round 14	12/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 15	1/6/2020	-	-	-	NS	NS	NS				-	-	-			
Round 16	1/21-22/2020	-	-	-	-	-	-	-	-	-	-	-	-			
Round 17	2/3/2020	-	-	-	-	-	-				-	-	-			
Round 18	2/18-19/2020	-	-	-	-	-	-				-	-	-			
Round 19	3/03-04/2020	-	-	-	-	-	-				-	-	-			

Locat	ion of Dye Detectors		DUP02			SW10			DUP01			DUP02			SW11	
	ID/Duplicate Parent		TSW09			TSW10			TSW10			TSW10			TSW11	
		Flourescein	SRB	Low-Flow Signature												
	ace Water			Signature												
Round 1	8/19-20/2019				-	-	-							-	-	-
Round 2	8/26-27/2019				-	-	-							-	-	-
Round 3	9/03-04/2019				-	-	-							-	-	-
Round 4	9/9/219				-	-	-							-	-	-
Round 5	9/16/2019				-	-	-	-	-	+				-	-	-
Round 6	9/23/2019				-	-	-	-	-	-				-	-	-
Round 7	9/30/2019				-	-	-							-	-	-
Round 8	10/7/2019				-	-	-				-	-	-	-	-	-
Round 9	10/14/2019				-	-	-				-	-	-	-	-	-
Round 10	10/28/2019				-	-	-							-	-	-
Round 11	11/12/2019 ^a	-	-	-	-	-	-							-	-	-
Round 12	11/25/2019				-	-	-							-	-	-
Round 13	12/9/2019				-	-	-	-	-	-				-	-	-
Round 14	12/19-20/2019				-	-	-							-	-	-
Round 15	1/6/2020				-	-	-							-	-	-
Round 16	1/21-22/2020				-	-	-							-	-	-
Round 17	2/3/2020				-	-	-							-	-	-
Round 18	2/18-19/2020				-	-	-							-	-	-
Round 19	3/03-04/2020	-	-	-	-	-	-							-	-	-

Locat	ion of Dye Detectors		DUP01			SW12			DUP01			SW13			SW14	
	ID/Duplicate Parent		TSW11			TSW12			TSW12			TSW13			TSW14	
		Flourescein	SRB	Low-Flow Signature												
	ace Water			Signature												
Round 1	8/19-20/2019				-	-	-				-	-	-	-	-	-
Round 2	8/26-27/2019				-	-	-				-	-	-	-	-	-
Round 3	9/03-04/2019				-	-	-				-	-	-	NS	NS	NS
Round 4	9/9/219				-	-	-				-	-	-	-	-	-
Round 5	9/16/2019				-	-	-				-	-	-	-	-	-
Round 6	9/23/2019				-	-	-				-	-	-	-	-	-
Round 7	9/30/2019				-	-	-				-	-	-	-	-	-
Round 8	10/7/2019				-	-	-				-	-	-	-	-	-
Round 9	10/14/2019				-	-	-				-	-	-	-	-	-
Round 10	10/28/2019				-	-	-	-	-	+	-	-	-	-	-	-
Round 11	11/12/2019 ^a	-	-	-	-	-	-				NS	NS	NS	-	-	-
Round 12	11/25/2019				NS	NS	NS				-	-	-	-	-	-
Round 13	12/9/2019				-	-	-				-	-	-	-	-	-
Round 14	12/19-20/2019				-	-	-				-	-	-	-	-	-
Round 15	1/6/2020				-	-	-				NS	NS	NS	-	-	-
Round 16	1/21-22/2020				-	-	-				-	-	-	-	-	-
Round 17	2/3/2020				-	-	-				-	-	-	-	-	-
Round 18	2/18-19/2020				-	-	-				NS	NS	NS	-	-	-
Round 19	3/03-04/2020				-	-	-				NS	NS	NS	-	-	-

Locati	ion of Dye Detectors		Spillway			DUP02			DUP04			DUP05	
	ID/Duplicate Parent		TSPILL			TSPILL			TSPILL			TSPILL	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow
Surfa	ace Water			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	-	-	-									
Round 2	8/26-27/2019	-	-	-									
Round 3	9/03-04/2019	-	-	-									
Round 4	9/9/219	-	-	-									
Round 5	9/16/2019	-	-	-									
Round 6	9/23/2019	-	-	-									
Round 7	9/30/2019	-	-	-									
Round 8	10/7/2019	-	-	-									
Round 9	10/14/2019	-	-	-									
Round 10	10/28/2019	-	-	-				-	-	-			
Round 11	11/12/2019 ^a	-	-	-									
Round 12	11/25/2019	-	-	-									
Round 13	12/9/2019	-	-	-									
Round 14	12/19-20/2019	-	-	-									
Round 15	1/6/2020	-	-	-							-	-	-
Round 16	1/21-22/2020	-	-	-									
Round 17	2/3/2020	-	-	-	-	-	-						
Round 18	2/18-19/2020	-	-	-									
Round 19	3/03-04/2020	-	-	-									

Location of	f Dye Detectors		JOF103			DUP03			DUP01			JOF103			DUP04	
	ID		T103T			T103T			T103T			T103B			T103B	
)A/-1	l Samples	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
								!								
Round 1	8/19-20/2019	-	-	+							-	-	+			
Round 2	8/26-27/2019	-	-	+							-	-	+			
Round 3	9/03-04/2019	-	-	+							-	-	+			
Round 4	9/9/2019	-	-	+							-	-	+			
Round 5	9/16/2019	-	-	+							-	-	+	-	-	+
Round 6	9/23/2019	-	-	+							-	-	+			
Round 7	9/30/2019	-	-	+							-	-	+			
Round 8	10/7/2019	-	-	+							-	-	+			
Round 9	10/14/2019	-	-	+							-	-	+			
Round 10	10/28/2019	-	-	+	-	-	-				-	-	+			
Round 11	11/12/2019 ^a	-	-	-							-	-	-			
Round 12	11/25/2019	-	-	-							-	-	-			
Round 13	12/9/2019	-	-	-							-	-	-			
Round 14	12/19-20/2019	-	-	-							-	-	-			
Round 15	1/6/2020	-	-	-							-	-	-			
Round 16	1/21-22/2020	-	-	-							-	-	-			
Round 17	2/3/2020	-	-	-							-	-	-			
Round 18	2/18-19/2020	-	-	-				Possible trace	-	-	-	-	-			
Dound 10	2/11/2020 ^b															
Round 19	3/03-04/2020	-	-	-							-	-	-			

Location o	f Dye Detectors		DUP01			JOF104			DUP02			DUP04			JOF104	
	ID		T103B			T104T			T104T			T104T			T104B	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	Sulphorhoda mine-B	Low-Flow Signature
	l Samples			Signature			Signature			Signature			Signature		IIIIIC D	Signature
Round 1	8/19-20/2019				-	-	+							-	-	+
Round 2	8/26-27/2019				-	-	+							-	-	+
Round 3	9/03-04/2019				-	-	+							-	-	+
Round 4	9/9/2019				-	-	+							-	-	+
Round 5	9/16/2019				-	-	+							-	-	+
Round 6	9/23/2019				-	-	+							-	-	+
Round 7	9/30/2019				-	-	+							-	-	+
Round 8	10/7/2019				-	-	+							-	-	+
Round 9	10/14/2019				-	-	+							-	-	+
Round 10	10/28/2019				-	-	+							-	-	+
Round 11	11/12/2019 ^a				-	-	-							-	-	-
Round 12	11/25/2019	-	-	-	-	-	-							+	-	-
Round 13	12/9/2019				+	-	-							+	-	-
Round 14	12/19-20/2019				+	-	-	-	-	-				+	-	-
Round 15	1/6/2020				+	-	-				+	-	-	+	-	-
Round 16	1/21-22/2020				+	-	-							+	-	-
Round 17	2/3/2020				DRY	DRY	DRY							Trace	-	-
Round 18	2/18-19/2020				Trace	-	-	+	-	-				Trace	-	-
Round 19	2/11/2020 ^b 3/03-04/2020				DRY	DRY	DRY							Possible Trace	-	-

Location of	f Dye Detectors		DUP02			DUP03			DUP01			JOF118			DUP02	
	ID		T104B			T104B			T104B			T118T			T118T	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
	l Samples			8			8			5.8	ļI					8
Round 1	8/19-20/2019										-	-	+			
Round 2	8/26-27/2019										-	-	+			
Round 3	9/03-04/2019	-	-	+							-	-	+			
Round 4	9/9/2019										-	-	+			
Round 5	9/16/2019										-	-	+			
Round 6	9/23/2019										-	-	+			
Round 7	9/30/2019										-	-	+			
Round 8	10/7/2019										-	-	+			
Round 9	10/14/2019										-	-	+			
Round 10	10/28/2019										-	-	+			
Round 11	11/12/2019 ^a										-	-	-			
Round 12	11/25/2019				-	-	-				-	-	-	-	-	-
Round 13	12/9/2019										-	-	-			
Round 14	12/19-20/2019										-	-	-			
Round 15	1/6/2020										-	-	-			
Round 16	1/21-22/2020	-	-	-							-	-	-			
Round 17	2/3/2020										-	-	-			
Round 18	2/18-19/2020										UC	UC	UC			
Round 19	2/11/2020 ^b 3/03-04/2020							Possible Trace	-	-	- Possible trace	-	-			

Location of	f Dye Detectors		DUP03			JOF118			DUP01			JOF119			DUP01	
	ID		T118T			T118B			T118B			T119T			T119T	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
	Samples			o.gaca.c						0.8						o.g. iaca. c
Round 1	8/19-20/2019				-	-	+				-	-	+			
Round 2	8/26-27/2019				-	-	+				-	-	+			
Round 3	9/03-04/2019				-	-	+				-	-	+			
Round 4	9/9/2019				-	-	+				-	-	+			
Round 5	9/16/2019	-	-	+	-	-	+				-	-	+			
Round 6	9/23/2019				-	-	+				-	-	+			
Round 7	9/30/2019				-	-	+				-	-	+			
Round 8	10/7/2019				-	-	+				-	-	+	-	-	+
Round 9	10/14/2019				-	-	+				-	-	+			
Round 10	10/28/2019				-	-	+				-	-	+			
Round 11	11/12/2019 ^a				-	-	-				-	-	-			
Round 12	11/25/2019				-	-	-				-	-	-			
Round 13	12/9/2019				-	-	-				-	-	-			
Round 14	12/19-20/2019				-	-	-	-	-	-	-	-	-			
Round 15	1/6/2020				-	-	-				-	-	-			
Round 16	1/21-22/2020				-	-	-				-	-	-	-	-	-
Round 17	2/3/2020				DRY	DRY	+	DRY	DRY	+	-	-	-			
Round 18	2/18-19/2020				UC	UC	UC				UC	UC	UC			
Round 19	2/11/2020 ^b				-	-	-				?	-	-			
Round 19	3/03-04/2020				Possible trace	-	-				Possible trace	-	-			

Location of	f Dye Detectors		JOF119			DUP02			DUP03			10AP1			10AP1	
	ID		T119B			T119B			T119B			TAP1T			TAP1B	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
	Samples			_			8			5.8						_
Round 1	8/19-20/2019	-	-	+	-	-	-				-	-	+	-	-	+
Round 2	8/26-27/2019	-	-	+							-	-	+	-	-	+
Round 3	9/03-04/2019	-	-	+							-	-	+	-	-	+
Round 4	9/9/2019	-	-	+							-	-	+	-	-	+
Round 5	9/16/2019	-	-	+							-	-	+	-	-	+
Round 6	9/23/2019	-	-	+							-	-	+	-	-	+
Round 7	9/30/2019	-	-	+				-	-	+	-	-	+	-	-	+
Round 8	10/7/2019	-	-	+							-	-	+	-	-	+
Round 9	10/14/2019	-	-	+							-	-	+	-	-	+
Round 10	10/28/2019	-	-	+							-	-	+	-	-	+
Round 11	11/12/2019 ^a	-	-	-							-	-	-	-	-	-
Round 12	11/25/2019	-	-	-							-	-	-	-	-	-
Round 13	12/9/2019	-	-	-				-	-	-	-	-	-	-	-	-
Round 14	12/19-20/2019	-	-	-							-	-	-	-	-	-
Round 15	1/6/2020	-	-	-							-	-	-	-	-	-
Round 16	1/21-22/2020	-	-	-							-	-	-	-	-	-
Round 17	2/3/2020	-	-	-							DRY	DRY	+	-	-	-
Round 18	2/18-19/2020	UC	UC	UC							?	-	+	-	-	-
Round 19	2/11/2020 ^b	Possible trace	-	-												
Round 19	3/03-04/2020	-	-	-							Possible Trace	-	-	-	-	-

Location of	Dye Detectors		DUP01			10AP3			10AP3			DUP03			JOFPZAT	
	ID		TAP1B			TAP3T			TAP3B			TAP3B			TPAZT	
Woll	Samples	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Round 1	8/19-20/2019	ļ		ļ	-		+	-		+	 		l	NS	NS	NS
Round 2	8/26-27/2019				-	-	+	-	-	+				NS NS	NS	NS NS
Round 3					-	-	+	-	-	+				NS	NS	NS
Round 4	9/03-04/2019 9/9/2019				-		+	-	-	+				NS NS	NS	NS
					-	-		-	-							
Round 5	9/16/2019				-	-	+	-	-	+				NS	NS	NS
Round 6	9/23/2019				-	-	+	-	-	+	-	-	+	-	-	+
Round 7	9/30/2019				-	-	+	-	-	+				-	-	+
Round 8	10/7/2019				-	-	+	-	-	+				-	-	+
Round 9	10/14/2019	-	-	+	-	-	+	-	-	+						ļ
Round 10	10/28/2019				-	-	+	-	-	+						ļ
Round 11	11/12/2019 ^a				-	-	-	-	-	-				DRY	DRY	DRY
Round 12	11/25/2019				-	-	-	-	-	-				DRY	DRY	DRY
Round 13	12/9/2019				-	-	-	-	-	-				DRY	DRY	DRY
Round 14	12/19-20/2019				-	-	-	-	-	-				DRY	DRY	DRY
Round 15	1/6/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 16	1/21-22/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 17	2/3/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 18	2/18-19/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 19	2/11/2020 ^b 3/03-04/2020				-	-	-	-	-	-				DRY	DRY	+

Location of	f Dye Detectors		JOFPZAT			DUP01			DUP02			DUP03	
	ID		TPAZB			UNKNOWN			UNKNOWN			UNKNOWN	
		Flourescein	SRB	Low-Flow Signature									
	Samples			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	+*	-	+									
Round 2	8/26-27/2019	+*	-	+	-	-	-						
Round 3	9/03-04/2019	-	-	+									
Round 4	9/9/2019	-	-	+	-	-	-	-	-	-	-	-	+
Round 5	9/16/2019	-	-	+				-	-	+			
Round 6	9/23/2019	-	-	+									
Round 7	9/30/2019	-	-	+									
Round 8	10/7/2019	-	-	+									
Round 9	10/14/2019												
Round 10	10/28/2019												
Round 11	11/12/2019 ^a	DRY	DRY	DRY									
Round 12	11/25/2019	DRY	DRY	DRY									
Round 13	12/9/2019	DRY	DRY	DRY									
Round 14	12/19-20/2019	DRY	DRY	DRY									
Round 15	1/6/2020	-	-	-									
Round 16	1/21-22/2020	-	-										
Round 17	2/3/2020	-	-	-									
Round 18	2/18-19/2020	-	-	-	ĺ								
Round 19	2/11/2020 ^b 3/03-04/2020	-	-	-									

Notes:

SRB Sulphorhodamine-B Dye
NS No sample collected
- Dye not detected

Low Flow Signature A '+' result in the low flow signature column indicated background flourescence is present in the dye detector carbon due to low water

flow. This condition was found in dye detectors placed in wells and piezometers where unwashed carbon was used and does not indicate a

positive dye detection.

Possible trace Possible detection of dye in trace amount, but not repeated in a series.

Trace Dye detected in trace amount based on analysis of scans and peak amplitude.

+ Positive dye detection

+* Results for JOFPZAT for Fluorescein in Rounds 1 and 2 were determined not to be positive detections since Fluorescein was also reported

during the Background Study.

UC Dye detector contained unwashed carbon, sample not analyzed ? Questionable dye detection, criteria not met for positive result DRY The dye detector packet was not submerged in water after placement.

NA Sample not analyzed

T "T" at end of sample ID indicates upper dye detector set at top of location shown.

B "B" at end of sample ID indicates lower dye detector set at bottom location shown.

Prior to November 12, 2019, unwashed carbon was used in the dye detectors. Beginning with this event, acid washed carbon was used in

the dye detectors.

Dye detectors collected on February 11, 2020 were removed from wells that were included in groundwater sampling. The dye detectors

were analyzed with the same batch as the dye detectors collected on March 3-4, 2020.

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1						10-AP1						
Sample Date Sample ID Parent Sample ID		23-Sep-15 10-AP1_0923151200_L790475-01	22-Mar-16 JOF-10-AP1-0316	21-Sep-16 10-AP1_0921161200_20160929-01	21-Sep-16 10-AP1_0921161201_L861578-01	2-Nov-16 JOF-GW-001-11022016	5-Jan-17 JOF-GW-001-01052017	18-Jan-17 JOF-GW-001-01182017	16-Feb-17 JOF-GW-001-02162017	15-Mar-17 JOF-GW-001-03152017	11-Apr-17 JOF-GW-001-04112017	11-Apr-17 JOF-GW-903-04112017 JOF-GW-001-04112017	17-May-17 JOF-GW-001-05172017
Sample Depth Sample Type Program	Units	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample CCR Program	47 ft Field Duplicate Sample CCR Program	47 ft Normal Environmental Sample CCR Program								
Total Metals		l	I .									l	I .
Antimony	ug/L	<2	<2.00	-	<2	<0.0213	0.493 U*	<0.443	<0.443	<0.443	0.719 U*	0.466 U*	<0.443
Arsenic	ug/L	2.17	<2.00	-	<2	1.13	1.1	0.657 J	1.53 J	0.903 J	0.776 J	0.789 J	0.709 J
Barium	ug/L	28.6	29.9	-	29.5	32.3	0.27 U*	31.4	34.8	28.5	25.5	26.2	26.6
Beryllium	ug/L	<2	<2.00	-	<2	0.214 J	<0.102	<0.131	0.161 J	<0.131	<0.131	<0.131	<0.131
Boron	ug/L	-	-	-	7,620	8,910	8,480	8,810	10,700	9,440	7,870	8,070	8,780
Cadmium	ug/L	<1	<1.00	-	<1	0.497 J	0.619 J	0.501 J	0.58 J	0.223 J	1.08	1.16	2.37
Calcium	ug/L	-	-	-	107,000	101,000 J	107,000 J	104,000	99,600	95,900	96,100	98,100	94,100
Chromium	ug/L	<2	<2.00	-	<2	<0.339	0.667 J	0.539 J	0.79 J	<0.378	<0.378	<0.378	0.378 UJ
Cobalt	ug/L	5	4.51	-	3.73	4.04	5.02	4.61	4.6	4.35	4.16	4.2	3.57
Copper	ug/L	<5	<5.00	-	<5	<0.454	1.14 U*	<1.04	1.09 U*	<1.04	1.23 U*	1.71 U*	<1.04
Lead	ug/L	<2	<2.00	-	<2	0.293 U*	0.28 U*	<0.318	0.412 J	<0.318	<0.318	<0.318	<0.318
Lithium	ug/L	-	-	-	<15	6	11.8 U*	7.16 U*	8.78 U*	5.47	5.69 U*	6.22 U*	6.38
Magnesium	ug/L	-	-	-	-	17,300 J	17,600	17,500	15,400	14,600	15,700	15,800	16,600
Mercury	ug/L	<0.2	<0.200	-	<0.2	<0.0521	<0.0521	<0.0521	<0.0521	<0.0653	<0.0653	<0.0653	<0.0653
Molybdenum	ug/L	-	-	-	<5	<0.873	<0.873	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593 32.7 J
Nickel Potassium	ug/L	31.8	32.4	-	32.1	31.7 1,150	42 J 1,190	38 1,130	40 1,230	38.3	36.6	36.9	1,100
Selenium	ug/L	<2	-2.00	-	<2	<0.348	1,190 0.741 U*	1,130	1,230 <1.27	1,020 <1.27	982 <1.27	1,020 <1.27	1,100
Silver	ug/L	<2 <2	<2.00 <2.00	-	<2 <2	<0.346			<1.27		<1.21		
Sodium	ug/L	<2	<2.00	-	<2	16.100 J	15,800	16.400	13,000	14.500	14.100	14.100	15.000
Thallium	ug/L		<1.00	-	<1	<0.036	<0.036	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531
Vanadium	ug/L	<5	<5.00	-	<5	<0.036			<0.0531				
Zinc	ug/L	<25	<25.0	-	<25	-	_	_	_	_			_
Radiological Para	meters	-23	~25.0	-	-20	-	-	-	-	-	-	-	-
Radium-226	pCi/L	1 -	_	-0.191 +/-()	_	0.468 +/-(0.41)U	0.345 +/-(0.55)U	-0.1380 +/-(0.33)UJ	0.173 +/-(0.26)U	0.0733 +/-(0.33)U	0.149 +/-(0.31)U	0.233 +/-(0.39)U	0.187 +/-(0.25)U
Radium-228	pCi/L	_	_	0.239 +/-()	_	0.109 +/-(1.3)UJ	0.248 +/-(0.31)U	-0.1360 +/-(0.28)U	-0.0931 +/-(0.20)UJ	0.457 +/-(0.31)U	0.240 +/-(0.19)UJ	0.0912 +/-(0.23)UJ	0.151 +/-(0.41)U
Radium-226+228	pCi/L	_	_		_	0.577 +/-(1.4)UJ	0.593 +/-(0.63)U	0.00000 +/-(0.43)UJ	0.173 +/-(0.33)UJ	0.531 +/-(0.46)U	0.389 +/-(0.36)UJ	0.324 +/-(0.46)UJ	0.338 +/-(0.48)U
Anions	1	•	'	1	'			, ()	, , , (5.55/55	1 1000 1 (0.10)	, (0.00)		1000 (0.10/0
Chloride	mg/L	-	-	-	22.3	18.5	24.6	25.0	16.6	16.9	24.2	23.1	19.9
Fluoride	mg/L	0.125	0.177	-	0.108	0.148	0.166	0.170	0.125	0.192	0.175	0.174	0.118 U*
Sulfate	mg/L	=	-	-	345	264	275	275	306	277	295	281	280
General Chemistry	y												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	15.4	26.4 J	24.2	36.4	13.0	10.9	13.0	14.5
Alkalinity, Carbonate	mg/L	-	-	-	-	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	-	-	-	5.78	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	-	-	-	549	534	540	535	571	551	546	547	546

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location							10-AP1						
Sample Date Sample ID Parent Sample ID		6-Jun-17 JOF-GW-001-06062017	11-Jul-17 JOF-GW-001-07112017	2-Aug-17 JOF-GW-001-08022017	20-Sep-17 JOF-AP1	20-Sep-17 JOF-GW-001-09202017	6-Oct-17 JOF-GW-001-10062017	15-Mar-18 JOF-AP1-0318	24-May-18 JOF-GW-001-05242018	24-May-18 JOF-GW-903-05242018 JOF-GW-001-05242018	13-Jun-18 JOF-GW-001-06132018	27-Jun-18 JOF-GW-001-06272018	27-Jun-18 JOF-GW-903-06272018 JOF-GW-001-06272018
Sample Depth Sample Type Program	Units	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample CCR Program	47 ft Field Duplicate Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft
Total Metals													
Antimony	ug/L	<0.443	1.09 U*	<0.443	<2	0.566 U*	-	<2	<1.12	<1.12	<1.12	<1.12	<1.12
Arsenic	ug/L	1.02 U*	0.764 J	0.838 U*	<1	0.751 J	-	<1	0.867 J	0.83 J	0.83 J	0.772 J	0.736 J
Barium	ug/L	29	27.2	31	29.8	29.3	-	31.3	27.6	26.9	29.2	31.3	31.5
Beryllium	ug/L	<0.131	<0.131	<0.131	<1	<0.131	-	<1	0.088 J	0.083 J	0.079 J	0.057 J	<0.057
Boron	ug/L	8,420	6,240	7,030	7,660	9,900	7,600	9,470	9,000	8,700	8,310	6,820	6,850
Cadmium	ug/L	1.11	0.776 J	0.843 J	<1	0.698 J	.	5.14	2.05	1.99	1.44	1.14	1.14
Calcium	ug/L	97,100	90,300	100,000	98,200	94,000	94,800	103,000	94,300	93,100	96,200	101,000	102,000
Chromium	ug/L	<0.378	<0.378	<0.378	<2	0.646 U*	-	<2	1.43 U*	1.52 U*	2.02 U*	2.03 U*	1.86 U*
Cobalt	ug/L	3.98	3.25 <1.04	4.46 1.63 U*	3.68	3.35 <1.04	-	3.78	3.71 <1.3	3.56 <1.3	3.95 <1.3	3.6 <1.3	3.58 <1.3
Copper	ug/L	<1.04	<0.318	<0.318	<2 <1	<1.04 <0.318	-	<2 <1	<0.094	<0.094	<1.3 0.101 J	0.106 J	0.118 J
Lead Lithium	ug/L	<0.318 5.31	<0.318 5.4 U*	<0.318 7.8 U*	<1	<0.318 4.98 J	-	7.67	7.35	6.83	6.42 U*	0.106 J 4.53 J	0.118 J 4.27 J
Magnesium	ug/L	16,000	14,500	16,400	5	15,200	15,800	7.07	15,700	15,500	15,200	15,500	15,800
Mercury	ug/L ug/L	<0.0653	<0.0653	<0.0653	<0.2	<0.0653	15,600	<0.2	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653
Molybdenum	ug/L ug/L	<0.593	<0.593	<0.593	<5	<0.593	-	<5	<0.474	<0.474	<0.474	<0.474	<0.474
Nickel	ug/L ug/L	33.5	32.1	35.5	32.4	31.7	_	35	33.4	32.6	34.8	36.5	36.1
Potassium	ug/L	1,090	971	1,080	1,010	1,020	1,030	33	933	917	1,020	972	980
Selenium	ug/L	<1.27	<1.27	<1.27	<5	<1.27	-	<5	<0.813	<0.813	<0.813	<0.813	<0.813
Silver	ug/L	-	11.27	- 11.27	<1	-	_	<1		-0.010	-		-0.010
Sodium	ug/L	15.600	14.400	15.600	15.500	14.900	13.400]	14.200	14,200	14.700	14.600	14,800
Thallium	ug/L	<0.0531	<0.0531	<0.0531	<1	<0.0531	-	<1	<0.063	<0.063	<0.063	<0.063	<0.063
Vanadium	ug/L	-	-	-	<1	-	_	2.94	-	-	-	-	-
Zinc	ug/L	_	<u>-</u>	_	20.8	_	_	20.3	<u>-</u>	_	_	_	_
Radiological Para	meters			ı							1		
Radium-226	pCi/L	0.0792 +/-(0.17)U	0.00617 +/-(0.21)U	-0.1150 +/-(0.26)U	0.0967 +/-(0.0637)	-0.0839 +/-(0.36)U	-	0.0746 +/-(0.0538)	0.0979 +/-(0.0720)U	0.174 +/-(0.0956)	0.0670 +/-(0.0539)U	0.0728 +/-(0.0727)UJ	0.0246 +/-(0.0588)UJ
Radium-228	pCi/L	0.255 +/-(0.39)U	0.581 +/-(0.55)U	0.404 +/-(0.23)J	0.503 +/-(0.223)	0.544 +/-(0.32)J	-	0.0773 +/-(0.231)U	0.252 +/-(0.215)U	0.102 +/-(0.199)U	0.182 +/-(0.204)U	0.249 +/-(0.266)U	0.286 +/-(0.232)U
Radium-226+228	pCi/L	0.335 +/-(0.42)U	0.587 +/-(0.59)U	0.404 +/-(0.35)J	- ` '	0.544 +/-(0.49)J	-	-` '	0.350 +/-(0.227)U	0.276 +/-(0.221)J	0.249 +/-(0.211)U	0.322 +/-(0.276)UJ	0.310 +/-(0.239)UJ
Anions													
Chloride	mg/L	23.2	23.2	23.4	25.3	24.9	19.9	23.2	22.2	22.0	20.9	21.7	22.7
Fluoride	mg/L	0.135	0.211	0.152	0.118	0.119	0.120	0.114	0.127	0.125	0.146	0.172	0.202
Sulfate	mg/L	305	289	297	265	285	269	279	279	291	261	264	279
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	14.9	15.7	14.7	-	17.2	14.4	-	11.5	12.0	<5.00	37.6 J	23.8 J
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	-	<5.00	<5.00	-	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	-	-	-	5.8	-	-	6.0	-	-	-	-	-
Total Dissolved Solids	mg/L	559	522	529	520	531	522	523	552	549	546	498	493

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	I							10-AP1					
Sample Date Sample ID Parent Sample ID		25-Jul-18 JOF-GW-001-07252018	15-Aug-18 JOF-GW-001-08152018	12-Sep-18 JOF-AP1-09122018	3-Apr-19 JOF-GW-001-04032019	3-Apr-19 JOF-GW-903-04032019 JOF-GW-001-04032019	10-Jul-19 JOF-GW-001-07102019	18-Sep-19 JOF-GW-001-09182019	9-Oct-19 JOF-GW-001-10092019	22-Jan-20 JOF-GW-001-01222020	6-Mar-20 JOF-GW-001-03062020	22-Jul-20 JOF-GW-001-07222020	10-Sep-20 JOF-GW-001-09102020
Sample Depth Sample Type Program	Units	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample CCR Program	47 ft Field Duplicate Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample State Compliance
Total Metals													
Antimony	ug/L	<1.12	<1.12	<2	<0.378	<0.378	<0.378	<0.378	<0.378	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	0.43 J	0.451 U*	<1	0.708 J	0.556 J	0.773 U*	0.686 J	0.613 J	<2.00	2.95 U*	<2.00	<2.00
Barium	ug/L	27.8	23.5	28.4	31.3	31.4	28.3	25.0	32.8	30.0	29.2	27.6	27.4
Beryllium	ug/L	0.078 U*	<0.057	<1	<0.155	<0.155	0.384 U*	<0.182	<0.182	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	6.850	5.170	7,930	8,490	8,350	6.710	7.640	6,840	9,510	8,730	8.460 J	9,590
Cadmium	ug/L	0.856 J	0.57 U*	<1	2.18	2.12	1.07 U*	0.868 J	1.06	0.924 J	2.91	0.694 J	0.936 J
Calcium	ug/L	88.700	77.100	87,300	98,500	99,600	92,400	82,600	94,400	98,000	90,200	102,000	94,300
Chromium	ug/L	<0.631	<0.631	<2	1.65 U*	<1.53	<1.53	<1.53	1.69 U*	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	3.01	2.46	2.78	4.02	4	4.78	3.68	3.89	3.94	3.52	3.88	4.00
Copper	ug/L	<1.3	<1.3	<2	0.895 J	0.659 J	0.928 U*	1.82 U*	<0.627	0.354 J	0.604 J	<0.300	<0.300
Lead	ug/L	0.122 J	0.187 U*	<1	<0.128	<0.128	0.168 U*	<0.128	<0.128	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	4.9 J	5.84 U*	6.7	5.58	5.25	7.92 U*	3.58 J	5.58	5.37 J	4.60 J	4.89 J	5.05 J
Magnesium	ug/L	13,900	11,700	-	16,900	16,800	14,700	13,800	15,100	15,500	14,000	15,000	16,000
Mercury	ug/L	0.0662 U*	<0.0653	<0.2	<0.101	<0.101	<0.101	<0.101	<0.101	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<0.474	<0.474	<5	<0.61	<0.61	<0.61	<0.610	<0.610	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	30.2	26.5	30.6	39.2	38.7	43	34.7	38.0	41.9	34.8	38.6	40.1
Potassium	ug/L	926	827	-	1,160	1.140	1,000	1.180	1,110	1,030	854	958	967
Selenium	ug/L	<0.813	<0.813	<5	<2.62	<2.62	<2.62	<1.51	<1.51	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	-	-	<1	<0.121	<0.121	<0.121	<0.177	<0.177	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	12.900	11.000		16.300	16.200	14.000	13.300	15.100	15.100	13.700	14.400	15.300
Thallium	ug/L	<0.063	<0.063	<1	<0.128	<0.128	<0.128	<0.148	<0.148	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	-	-	1.94 U*	2.34 U*	1.61 U*	1.56	1.34 U*	1.08	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	<u> </u>	<u> </u>	19.3 U*	19.4	20.3	25.5	23.3	45.8	23.3	22.3	24.3	22.7
Radiological Para	meters			10.0 0	10.4	20.0	20.0	20.0	40.0	20.0	22.0	24.0	22.1
Radium-226	pCi/L	0.176 +/-(0.0827)U*	0.225 +/-(0.0965)U*	0.210 +/-(0.0844)U*	0.0261 +/-(0.0561)UJ	0.142 +/-(0.0800)J	0.0168 +/-(0.0629)U	0.219 +/-(0.336)U	0.273 +/-(0.360)U	1.17 +/-(0.702)U*	1.05 +/-(0.719)	-0.0937 +/-(0.376)U	0.684 +/-(0.651)U
Radium-228	pCi/L	0.121 +/-(0.199)U	0.106 +/-(0.214)U	-0.00372 +/-(0.216)U	0.195 +/-(0.197)U	0.0349 +/-(0.233)U	0.0973 +/-(0.262)U	0.00675 +/-(0.280)U	0.503 +/-(0.539)U	-0.208 +/-(0.233)U	0.324 +/-(0.301)U	-0.115 +/-(0.417)U	-0.321 +/-(0.434)U
Radium-226+228	pCi/L	0.297 +/-(0.216)U*	0.332 +/-(0.235)U*		0.221 +/-(0.205)UJ	0.177 +/-(0.246)J	0.114 +/-(0.269)U	0.226 +/-(0.437)U	0.776 +/-(0.649)U	1.17 +/-(0.740)U*	1.38 +/-(0.779)J	0.000 +/-(0.562)U	0.684 +/-(0.783)U
Anions	1		, , , , , , , , , , , , , , , , , , , ,	'	, (0.000/00	(0.2.0)	, ()-		1	, (,.		, (/-	1 2000 1 7 (000 00)
Chloride	mg/L	22.4	23.4	19.5	22.5	22.7	22.6	22.8	21.6	21.9	23.9	24.7	23.9
Fluoride	mg/L	0.151	0.138	0.129	0.131	0.130	0.138	0.0969 J	0.0921 U*	0.231	0.218	0.180	0.153
Sulfate	mg/L	294	302	306	247 J	249 J	254	283	273	256	273	281	277
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	15.3	16.3	-	13.5	12.5	40.0	35.3	37.4	20.0	15.9	14.9	15.3
Alkalinity, Carbonate	mg/L	<5.00	<5.00	-	<5.00	<5.00	<5.00	<5.00	<5.00	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	5.6 J	-	-	-	-	5.8 J	-	5.72 J	-	-
Total Dissolved Solids	mg/L	531	522	491	490	497	490	525	509	521	504	490	489

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1 1					10-AP1				
Sample Date Sample ID Parent Sample ID		10-Feb-21 JOF-GW-10-AP1-02102021	18-Mar-21 JOF-GW-10-AP1-03182021	28-Jul-21 JOF-GW-10-AP1-07282021	15-Sep-21 JOF-GW-10-AP1-09152021	2-Feb-22 JOF-GW-10-AP1-02022022	16-Mar-22 JOF-GW-10-AP1-03162022	3-Aug-22 JOF-GW-10-AP1-08032022	14-Sep-22 JOF-GW-10-AP1-09142022	8-Feb-23 JOF-GW-10-AP1-02082023
Sample Depth Sample Type Program	Units	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample							
Total Metals			I		I					I
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	29.4	31.2	27.7	26.2	26.8	27.3	29.2	29.2	26.1
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	8,820	9,120	8,470	7,680	9,670	8,180	7,790	8,260	8,710
Cadmium	ug/L	0.839 J	1.20	0.851 J	0.724 J	0.724 J	1.22	1.16	0.774 J	0.950 J
Calcium	ug/L	96,500	108,000 <3.00	88,500 <3.00	87,500	96,700 <3.00	101,000 <3.00	87,800 <3.00	95,300 <3.00	95,500 <3.00
Chromium	ug/L	<3.00 4.48	5.39	4.20	<3.00 3.88	4.17	4.25	3.85	3.46	3.47
Cobalt Copper	ug/L ug/L	4.46 0.459 J	0.499 U*	4.20 0.301 J	0.382 J	<0.300	4.25 <0.300	0.510 J	0.425 J	0.628 J
Lead	ug/L ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.576 J	<0.500	<0.500
Lithium	ug/L ug/L	5.56 J	5.15 J	3.49 J	4.84 J	5.06 J	5.35 J	5.58 J	4.99 J	5.05 J
Magnesium	ug/L	16,500 J	18,100 J	14,700	14,800	16,100	16,700	15,000	14,800	15,800
Mercury	ug/L	<0.0670	<0.0670	0.0940 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	0.255 U*	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	42.1	48.3	36.7	35.8	41.2	39.2	39.4	39.6	40.0
Potassium	ug/L	1,210	1,220	1,020	952	1,040	1,030	1,150	1,100	1,070
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<1.50
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	16,000	18,300	14,200	14,000	15,400	15,700	15,100	14,500	15,500
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	25.7	25.0	24.8 U*	25.8	22.7	22.8	27.6	23.0	21.2
Radiological Parar	neters									
Radium-226	pCi/L	0.181 +/-(0.303)U	-0.0641 +/-(0.160)U	0.213 +/-(0.346)U	0.0395 +/-(0.428)U	-0.0595 +/-(0.282)U	0.177 +/-(0.498)U	0.403 +/-(0.335)U	0.626 +/-(0.683)U	0.261 +/-(0.347)U
Radium-228	pCi/L	0.147 +/-(0.303)U	-0.143 +/-(0.257)U	0.561 +/-(0.480)U	0.211 +/-(0.253)U	0.839 +/-(0.466)	1.04 +/-(0.555)U*	0.345 +/-(0.497)U	0.324 +/-(0.426)U	0.301 +/-(0.399)U
Radium-226+228	pCi/L	0.328 +/-(0.429)U	0.000 +/-(0.303)U	0.774 +/-(0.592)U	0.251 +/-(0.497)U	0.839 +/-(0.545)J	1.22 +/-(0.745)U*	0.748 +/-(0.600)U	0.950 +/-(0.805)U	0.562 +/-(0.529)U
Anions										
Chloride	mg/L	25.8	25.8	27.3	23.9	24.1	25.7	25.2	24.4	26.5
Fluoride	mg/L	0.196	0.169	0.202	0.234	0.139	0.134	0.257	0.152	0.200 J
Sulfate	mg/L	286	285	289	265	270	272	267	257	267
General Chemistry	•									
Alkalinity, Bicarbonate	mg/L	11.2 J	12.0 J	13.7	14.1	14.0	13.2 J	40.6 J	16.6	13.6 J
Alkalinity, Carbonate	mg/L	0.725 UJ	0.725 UJ	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	0.725 UR
pH (lab)	SU	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	536	559	524	509	499	501	502	479	505

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location							10-AP3						
Sample Date Sample ID Parent Sample ID		23-Sep-15 10-AP3_0923151200_L790475-03	22-Mar-16 JOF-10-AP3-0316	22-Sep-16 10-AP3_0922161200_20160929-02	22-Sep-16 10-AP3_0922161200_L861578-02	2-Nov-16 JOF-GW-002-11022016	5-Jan-17 JOF-GW-002-01052017	17-Jan-17 JOF-GW-002-01172017	17-Jan-17 JOF-GW-903-01172017 JOF-GW-002-01172017	15-Feb-17 JOF-GW-002-02152017	15-Feb-17 JOF-GW-903-02152017 JOF-GW-002-02152017	14-Mar-17 JOF-GW-002-03142017	14-Mar-17 JOF-GW-903-03142017 JOF-GW-002-03142017
Sample Depth		45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft
Sample Type Program	Units	Normal Environmental Sample State Compliance	Normal Environmental Sample CCR Program	Normal Environmental Sample CCR Program	Normal Environmental Sample CCR Program	Field Duplicate Sample CCR Program	Normal Environmental Sample CCR Program	Field Duplicate Sample CCR Program	Normal Environmental Sample CCR Program	Field Duplicate Sample CCR Program			
Total Metals	•							•			•	•	
Antimony	ug/L	<2	<2.00	-	<2	<0.0213	0.473 U*	<0.443	0.446 J	<0.443	<0.443	<0.443	<0.443
Arsenic	ug/L	<2	<2.00	-	<2	0.511 J	0.643 J	0.637 J	0.694 J	1.25 J	1.06 J	0.551 J	0.516 J
Barium	ug/L	16.8	17.5	-	15.8	15.8	15.5	18.5 J	19.1 J	19.5	18.6	14.6	13.8
Beryllium	ug/L	<2	<2.00	-	<2	0.178 J	0.117 J	0.169 J	0.173 J	<0.131	0.143 J	<0.131	<0.131
Boron	ug/L			-	6,130	6,820	5,850	6,590 J	6,720 J	7,360	7,500	6,420	6,430
Cadmium	ug/L	5.1	5.87	-	5.02	4.96	4.15	4.17	4.22	5.23 J	5.52 J	10.6	9.93
Calcium	ug/L	-	-	-	218,000	198,000 J	207,000 J	187,000	195,000	188,000	188,000	186,000	182,000
Chromium	ug/L	<2 40.1	<2.00	-	<2	<0.339	<0.339	<0.378	<0.378	0.462 J	0.379 J	<0.378	<0.378
Cobalt	ug/L	40.1 <5	38.9 <5.00	-	36.8 <5	35.1 <0.454	45.3 0.868 U*	40.7 <1.04	42.4 <1.04	40.9 2.65 U*	39.2 1.61 U*	39.9	39 1.33 J
Copper	ug/L	<5 <2		-	<5 <2	<0.454 0.132 U*	0.868 U* 0.116 U*	<0.318	<0.318	<0.318	<0.318	1.24 J <0.318	1.33 J <0.318
Lead Lithium	ug/L	<2	<2.00	-	<2 <15	0.132 U* 4.08 U*	9.84 U*	<0.318 5.2 U*	<0.318 5.49 U*	<0.318 6.57 U*	<0.318 6.5 U*	<0.318 3.46 J	<0.318 3.4 J
	ug/L	-	-	-	<15	21,800 J	24,200	20,500	21,500	18,900	19,000	21,400	21,000
Magnesium Mercury	ug/L	<0.2	<0.200	-	<0.2	<0.0521	<0.0521	<0.0521	<0.0521	<0.0521	<0.0521	<0.0653	<0.0653
Molybdenum	ug/L	<0.2	<0.200	-	<0.2	<0.0521	<0.0521	<0.0521	<0.0521	<0.593	0.0521 0.714 J		<0.593
Nickel	ug/L	101	101	-	94.4	90.3	114 J	104	109	105	98.5	<0.593 102	100
Potassium	ug/L	101	101	-	94.4	5,490	5,200	4.890	5,090	5,510	5,580	4.550	4,450
Selenium	ug/L ug/L	<2	<2.00	-	<2	0.454 J	5,200 1.09 U*	4,690 <1.27	<1.27	<1.27	5,560 <1.27	4,550 2.42 J	4,450 2.02 J
Silver	ug/L ug/L	<2	<2.00	-	<2	0.454 3	1.09 0	V1.21	V1.27			2.42 3	2.02 J
Sodium	ug/L ug/L	~2	<2.00	-	\\	33,200 J	34.100	31,600	33,200	27,100	27.800	31,400	30,400
Thallium		<2	<1.00	-	- <1	0.099 U*	0.051 J	0.057 J	0.109 J	0.104 U*	0.221 U*	<0.0531	<0.0531
Vanadium	ug/L ug/L	<5	<5.00	-	<5	0.099 0	0.0513	0.037 3	0.1093	0.104 0	0.2210		-0.0551
Zinc	ug/L	77	74.9	-	66.8		_	-	-		_	-	_
Radiological Para	meters	11	74.9	<u>-</u>	00.0	-	-	-	-	-	-	-	-
Radium-226	pCi/L	=	-	-0.112 +/-()	-	0.283 +/-(0.32)U	0.155 +/-(0.40)U	0.307 +/-(0.34)U	0.116 +/-(0.81)UJ	0.511 +/-(0.34)J	0.296 +/-(0.29)U	-0.2010 +/-(0.23)U	0.460 +/-(0.46)U
Radium-228	pCi/L	_	_	0.303 +/-()	_	0.839 +/-(0.61)U	0.221 +/-(0.35)U	0.275 +/-(0.26)U	0.437 +/-(0.25)J	0.377 +/-(0.24)U	0.509 +/-(0.27)J	0.448 +/-(0.35)U	0.274 +/-(0.25)U
Radium-226+228	pCi/L	-	_	-	_	1.12 +/-(0.69)U	0.376 +/-(0.53)U	0.582 +/-(0.43)U	0.553 +/-(0.85)J	0.888 +/-(0.41)J	0.804 +/-(0.39)J	0.448 +/-(0.42)U	0.734 +/-(0.52)U
Anions	1 1 2 2 2	•	'		1	(0.00)	3.3.5 7 (3.55/5	, (0.13/2	1	1	, (0.00)	, , , , , , , , , , , , , , , , , , , ,	
Chloride	mg/L	-	-	-	30.4	26.5	28.3	31.7 J	23.8 J	21.9	23.0	21.5 J	29.1 J
Fluoride	mg/L	<0.1	<0.100	<u>-</u>	<0.1	0.0557 J	0.0699 J	0.0649 J	0.0630 J	0.0388 J	0.0467 J	0.0790 J	0.0914 J
Sulfate	mg/L				752	611	656	583	577	640	662	589	673
General Chemistry	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	<5.00	24.4 J	24.2	22.2	24.2	26.3	6.50	<5.00
Alkalinity, Carbonate	mg/L	-	-	-	-	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	-	-	-	5.24	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L			<u> </u>	1,030	1,000	951	982	991	1,020	1,000	1,000	992

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1							10-AP3						
Sample Date Sample ID		12-Apr-17 JOF-GW-002-04122017	16-May-17 JOF-GW-002-05162017	6-Jun-17 JOF-GW-002-06062017	6-Jun-17 JOF-GW-903-06062017	11-Jul-17 JOF-GW-002-07112017	11-Jul-17 JOF-GW-903-07112017	2-Aug-17 JOF-GW-002-08022017	2-Aug-17 JOF-GW-903-08022017	20-Sep-17 JOF-AP3	20-Sep-17 JOF-GW-002-09202017	20-Sep-17 JOF-GW-903-09202017	6-Oct-17 JOF-GW-002-10062017	14-Mar-18 JOF-AP3-0318
Parent Sample ID		JOF-GW-002-04122017	JOF-GW-002-05162017	JOF-GW-002-06062017	JOF-GW-903-06062017	JOF-GW-002-07112017	JOF-GW-903-07112017 JOF-GW-002-07112017	JOF-GW-002-08022017	JOF-GW-903-08022017	JOF-AP3	JOF-GW-002-09202017	JOF-GW-903-09202017 JOF-GW-002-09202017	JOF-GW-002-10062017	JOF-AP3-0316
Sample Depth		45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample		Normal Environmental Sample		Normal Environmental Sample		Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	State Compliance	CCR Program	CCR Program	CCR Program	State Compliance
Total Metals			I .			I		I .						ı
Antimony	ug/L	1.09 U*	<0.443	<0.443	<0.443	1.27 U*	1.23 U*	<0.443	<0.443	<2	0.803 U*	0.679 U*	-	<2
Arsenic	ug/L	0.623 J	0.254 J	0.822 U*	0.678 U*	0.622 J	0.583 J	0.708 U*	0.625 U*	<1	0.567 J	0.584 J	-	<1
Barium	ug/L	14.1	14	15.4	15.6	15.3	14.4	14.6	15	14.9	14.2	14.6	-	16.8
Beryllium	ug/L	<0.131	<0.131	<0.131	<0.131	<0.131	<0.131	<0.131	<0.131	<1	<0.131	<0.131	-	<1
Boron	ug/L	5,610	6,140	6,010	6,020	4,820	4,800	5,230	5,050	5,700	7,480	7,710	5,620	6,160
Cadmium	ug/L	5.48	4.57	4.22	4.75	4.74	4.76	4.82	4.82	5.06	4.86	5.14	-	6.04
Calcium	ug/L	174,000	175,000	185,000	187,000	188,000	183,000	183,000	186,000	192,000	182,000	189,000	178,000	174,000
Chromium	ug/L	<0.378	0.378 UJ	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<2	0.451 U*	<0.378	-	<2
Cobalt	ug/L	41.7	32	34.3	32.8	35	34.9	42.5	43.1	37.7	36.6	38.2	-	34.7
Copper	ug/L	1.75 U*	<1.04	<1.04	<1.04	<1.04	<1.04	2.37 U*	2.08 U*	<2	<1.04	<1.04	-	<2
Lead	ug/L	<0.318	<0.318	<0.318	0.489 J	<0.318	<0.318	<0.318	<0.318	<1	<0.318	<0.318	-	<1
Lithium	ug/L	4.06 J	4.76 J	3.68 J	3.81 J	4.24 U*	3.96 U*	7.13 U*	6.54 U*	<5	3.32 J	3.31 J	-	5.29
Magnesium	ug/L	19,500	20,300	19,700	19,900	20,000	19,900	20,800	21,200	-	20,000	20,700	20,700	-
Mercury	ug/L	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.2	0.0669 J	<0.0653	-	<0.2
Molybdenum	ug/L	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593	<5	<0.593	<0.593	-	<5
Nickel	ug/L	104	79.6 J	86.1	83.4	91.5	90.7	91.1	92.3	88.7	85.9	89.7	-	86
Potassium	ug/L	4,970	5,020	5,360	5,440	5,160	5,070	5,240	5,280	5,300	5,170	5,290	5,230	-
Selenium	ug/L	<1.27	<1.27	<1.27	<1.27	<1.27	<1.27	<1.27	<1.27	<5	<1.27	<1.27	-	<5
Silver	ug/L	-	-	-	-	-	-	-	-	<1	-	-	-	<1
Sodium	ug/L	30,300	31,300	33,100	33,400	31,700	31,500	31,900	32,600	33,600	32,100	32,900	28,300	-
Thallium	ug/L	<0.0531	0.069 U*	0.085 J	0.099 J	0.099 J	0.092 J	0.123 J	0.11 J	<1	0.095 J	0.098 J	-	<1
Vanadium	ug/L	-	-	-	-	-	-	-	-	<1	-	-	-	1.9
Zinc	ug/L	-	-	-	-	-	-	-	-	65.6	-	-	-	62.6
Radiological Para														
Radium-226	pCi/L	0.257 +/-(0.38)U	-0.0365 +/-(0.14)U	0.338 +/-(0.61)U	0.0809 +/-(0.17)U	0.353 +/-(0.32)U	0.248 +/-(0.30)U	-0.0753 +/-(0.42)U	0.392 +/-(0.47)U	0.145 +/-(0.0777)	0.158 +/-(0.48)U	0.465 +/-(0.54)U	-	0.113 +/-(0.0595)
Radium-228	pCi/L	0.621 +/-(0.24)U*	0.208 +/-(0.41)U	0.331 +/-(0.33)U	0.359 +/-(0.37)U	1.63 +/-(0.92)U*	0.608 +/-(0.73)U	0.516 +/-(0.64)UJ	0.584 +/-(0.30)J	0.585 +/-(0.274)	0.481 +/-(0.29)J	0.275 +/-(0.40)U	-	0.407 +/-(0.236)
Radium-226+228	pCi/L	0.878 +/-(0.45)U*	0.208 +/-(0.43)U	0.669 +/-(0.69)U	0.440 +/-(0.41)U	1.98 +/-(0.98)U*	0.856 +/-(0.79)U	0.516 +/-(0.77)UJ	0.976 +/-(0.55)J	-	0.639 +/-(0.56)J	0.740 +/-(0.67)U	<u>-</u>	-
Anions														
Chloride	mg/L	29.7	25.3 J	28.9	28.7	30.9	30.9	29.1	29.7	32.9	32.8	32.7	26.3	28.5
Fluoride	mg/L	0.0778 J	0.0497 U*	0.0523 J	0.0817 J	0.0726 J	0.0708 J	0.0468 J	0.0470 J	<0.100	0.0377 J	0.0361 J	0.0358 J	<0.100
Sulfate	mg/L	617	592	598	618	613	614	576	573	614	635	629	573	540
General Chemistr														
Alkalinity, Bicarbonate	mg/L	7.80	11.2	7.46	5.97	7.35	6.86	5.39	5.88	-	8.87	7.88	<5.00	-
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		<5.00	<5.00	<5.00	
pH (lab)	SU	<u></u> .			1	<u>-</u> .	-	<u>-</u>	1	5.3			<u>-</u>	6.0
Total Dissolved Solids	mg/L	971	986	1,000	1,000	974	995	957	937	932	972	974	951	898

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	I	1						10-AP3					
Sample Date Sample ID Parent Sample ID		23-May-18 JOF-GW-002-05232018	13-Jun-18 JOF-GW-002-06132018	13-Jun-18 JOF-GW-903-06132018 JOF-GW-002-06132018	26-Jun-18 JOF-GW-002-06262018	24-Jul-18 JOF-GW-002-07242018	14-Aug-18 JOF-GW-002-08142018	12-Sep-18 JOF-AP3-09122018	3-Apr-19 JOF-GW-002-04032019	10-Jul-19 JOF-GW-002-07102019	18-Sep-19 JOF-GW-002-09182019	9-Oct-19 JOF-GW-002-10092019	23-Jan-20 JOF-GW-002-01232020
Sample Depth		45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	State Compliance	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program
Total Metals	1	!											-
Antimony	ug/L	<1.12	<1.12	<1.12	<1.12	<1.12	<1.12	<2	<0.378	<0.378	<0.378	<0.378	<1.00
Arsenic	ug/L	0.876 J	0.772 J	0.784 J	0.668 U*	0.487 J	0.696 U*	<1	0.686 J	0.563 U*	0.388 J	0.513 J	2.46 J
Barium	ug/L	14.9	15.6	15.8	17.9	15.8	15.6	14.7	17.7	14.6	14.2	18.0 U*	16.0
Beryllium	ug/L	0.1 J	0.122 J	0.125 J	0.06 J	0.104 U*	0.057 J	<1	<0.155	0.246 U*	0.192 J	<0.182	<0.200
Boron	ug/L	5,650	5,790	5,480	4,980	5,110	5,700	5,570	5,890	4,990	5,300	4,740	6,620
Cadmium	ug/L	4.5	4.87	4.81	5.22	5.35	4.59	4.46	4.74	4.23	3.92	4.22	4.20
Calcium	ug/L	166,000	178,000	177,000	192,000	205,000	167,000	161,000	168,000	173,000	151,000	166,000	174,000
Chromium	ug/L	1.54 U*	2.01 U*	2.12 U*	1.82 U*	<0.631	1.82 U*	<2	<1.53	<1.53	<1.53	1.65 U*	<3.00
Cobalt	ug/L	33.1	37.1	37.8	36.8	34.2	36.4	31.2	36.4	34.5	28.8	32.3	32.6
Copper	ug/L	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<2	0.835 J	1.01 J	2.23 U*	<0.627	0.370 J
Lead	ug/L	0.098 J	<0.094	<0.094	<0.094	0.111 J	< 0.094	<1	0.19 J	0.188 U*	0.146 J	0.249 J	<0.500
Lithium	ug/L	4.83 J	4.6 U*	4.47 U*	<2.56	3.16 J	4.11 J	<5	3.34 J	3.98 J	<3.39	4.14 J	3.33 J
Magnesium	ug/L	17,900	18,700	18,800	20,800	19,500	18,800	-	19,200	18,400	16,600	17,600	17,500
Mercury	ug/L	< 0.0653	<0.0653	<0.0653	< 0.0653	<0.0653	<0.0653	<0.2	<0.101	<0.101	<0.101	<0.101	<0.0670
Molybdenum	ug/L	<0.474	<0.474	<0.474	<0.474	<0.474	<0.474	<5	<0.61	<0.61	<0.610	<0.610	<0.200
Nickel	ug/L	85	87.8	90.5	94.8	87.6	95.3	81.4	91.8	89.9	73.3	83.0	82.9
Potassium	ug/L	4.880	5,240	5,310	5,540	5,320	5,180	_	5,850	5,750	4,770	5,230	4,810
Selenium	ug/L	<0.813	<0.813	<0.813	<0.813	<0.813	<0.813	<5	<2.62	<2.62	<1.51	<1.51	<2.00
Silver	ug/L	-	-	_	-	_	_	<1	<0.121	<0.121	<0.177	<0.177	<0.300
Sodium	ug/L	29.500	30.000	30.700	32.900	31.100	30.000	2	33.600	32.300	28.700	31.600	31.000
Thallium	ug/L	0.091 J	0.106 J	0.112 J	0.11 J	<0.063	0.103 J	<1	<0.128	0.176 U*	<0.148	<0.148	<0.600
Vanadium	ug/L	-	-	-	-	-	-	1.45 U*	1.08 U*	<0.899	1.45 U*	1.02	<3.30
Zinc	ug/L	_	_	_	_	_		62.3 U*	68.2	70.7	58.2	75.9	62.0
Radiological Para	meters							02.00	00.2	10	00.2	10.0	02.0
Radium-226	pCi/L	0.0610 +/-(0.0632)U	0.0932 +/-(0.0610)	0.116 +/-(0.0717)	0.115 +/-(0.0896)UJ	0.272 +/-(0.103)U*	0.325 +/-(0.115)U*	0.308 +/-(0.0966)U*	0.0930 +/-(0.0682)J	0.0897 +/-(0.0859)U	0.448 +/-(0.499)U	0.500 +/-(0.456)U	0.499 +/-(0.545)U
Radium-228	pCi/L	0.317 +/-(0.215)U	0.0510 +/-(0.208)UJ	0.551 +/-(0.253)J	0.269 +/-(0.258)U	0.422 +/-(0.207)J	0.164 +/-(0.230)U	-0.0225 +/-(0.191)U	0.330 +/-(0.237)U	-0.172 +/-(0.275)U	0.291 +/-(0.286)U	0.553 +/-(0.432)U	0.421 +/-(0.345)U
Radium-226+228	pCi/L	0.378 +/-(0.224)U	0.144 +/-(0.217)J	0.667 +/-(0.263)J	0.384 +/-(0.273)UJ	0.693 +/-(0.231)U*	0.489 +/-(0.257)U*	-	0.422 +/-(0.247)J	0.0897 +/-(0.288)U	0.739 +/-(0.575)U	1.05 +/-(0.628)U	0.920 +/-(0.644)U
Anions		, , , , , , , , , , , , , , , , , , , ,		1	(, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	1	'	1 1	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Chloride	mg/L	26.1	26.3	26.1	27.5	29.7	28.8	24.5	25.4	27.9	27.0	26.7	27.8
Fluoride	mg/L	0.0548 J	0.0484 J	0.0539 J	0.0865 J	<0.0263	0.0621 J	<0.100	0.0424 J	0.0449 J	0.0527 J	0.0592 U*	0.128
Sulfate	mg/L	514	540	563	548	610	614	478	489 J	512	518	485	479
General Chemistr	<u> </u>												
Alkalinity, Bicarbonate	mg/L	9.00	8.00	<5.00	7.43	<5.00	6.40	-	7.50	9.78	9.95	9.36	11.0
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	-	<5.00	<5.00	<5.00	<5.00	<1.45
pH (lab)	SU	-	-	-	-	-	-	5.2 J	-	-	-	5.4 J	-
Total Dissolved Solids	mg/L	954	948	958	869	908	941	880	855	852	894	820	821

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-AF	23					
Sample Date Sample ID Parent Sample ID	6-Mar-20 JOF-GW-002-0		9-Sep-20 JOF-GW-002-09092020	10-Feb-21 JOF-GW-10-AP3-02102021	18-Mar-21 JOF-GW-10-AP3-03182021	28-Jul-21 JOF-GW-10-AP3-07282021	15-Sep-21 JOF-GW-10-AP3-09152021	2-Feb-22 JOF-GW-10-AP3-02022022	2-Feb-22 JOF-GW-FD02-02022022 JOF-GW-10-AP3-02022022	16-Mar-22 JOF-GW-10-AP3-03162022	3-Aug-22 JOF-GW-10-AP3-08032022	14-Sep-22 JOF-GW-10-AP3-09142022
Sample Depth	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft	45.5 ft
Sample Type	Normal Environme	ntal Sample Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units CCR Progr	am State Compliance	State Compliance	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program
Total Metals	<u> </u>	· · · · · · · · · · · · · · · · · · ·										
Antimony	ug/L <1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L 3.65 U*	<2.00	<2.00	<2.00	<2.00	<2.00	2.24 J	<2.00	<2.00	2.10 J	<2.00	<2.00
Barium	ug/L 16.3	16.3	14.9	14.9	16.8	15.0	15.1	15.1	15.4	14.4	16.3	15.9
Beryllium	ug/L <0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L 5,900	5,510	5,940	4,980	5,400	5,460	4,880	5,900	5,860	5,260	5,290	5,830
Cadmium	ug/L 8.17	4.15	4.10	2.67	4.30	4.00	3.80	3.88	3.74	7.65	4.46	3.88
Calcium	ug/L 165,000	183,000	161,000	142,000	167,000	144,000	142,000	155,000	155,000	152,000	140,000	148,000
Chromium	ug/L <3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L 30.8	36.1	32.8	26.1	37.4	31.1	30.1	31.4	31.5	31.5	31.5	31.7
Copper	ug/L 0.886 J	0.327 J	0.331 J	<0.300	0.419 U*	<0.300	0.319 J	<0.300	<0.300	0.852 J	0.315 J	<0.300
Lead	ug/L <0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L <3.00	3.34 J	3.18 J	3.00 J	3.21 J	<3.00	<3.00	3.07 J	<3.00	<3.00	3.35 J	3.09 J
Magnesium	ug/L 17,100	18,800	18,100	19,500 J	19,700 J	15,300	16,000	16,300	16,600	16,500	15,600	15,600
Mercury	ug/L <0.0670	<0.0670	<0.0670	<0.0670	<0.0670	0.0910 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L <0.200	<0.200	<0.200	0.999 U*	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L 75.9	88.1	81.5	72.4	90.7	76.0	71.8	75.3	76.3	74.0	78.1	76.5
Potassium	ug/L 4,490	5,650	5,180	4,440	5,910	5,090	4,870	5,100	5,240	4,720	5,350	5,020
Selenium	ug/L <2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<1.50
Silver	ug/L <0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L 30,800	32,200	31,700	32,600	36,100	28,800	30,100	30,400	30,800	30,300	30,300	29,100
Thallium	ug/L <0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L <3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L 65.6	66.2	58.5	51.6	55.6	60.7 U*	65.1	57.0	58.5	57.1	67.1	61.4
Radiological Para	meters	•	•							•		
Radium-226	pCi/L 1.13 +/-(0.7	63) 0.342 +/-(0.525)U	0.829 +/-(0.699)U	0.362 +/-(0.371)U	0.125 +/-(0.396)U	0.191 +/-(0.439)U	0.390 +/-(0.529)U	0.659 +/-(0.402)	0.342 +/-(0.315)U	0.134 +/-(0.318)U	0.236 +/-(0.359)U	0.331 +/-(0.550)U
Radium-228	pCi/L 0.110 +/-(0.2	31)U 0.225 +/-(0.354)U	0.151 +/-(0.234)U	0.0538 +/-(0.254)U	-0.137 +/-(0.263)U	-0.499 +/-(0.379)U	0.255 +/-(0.354)U	0.134 +/-(0.312)U	0.513 +/-(0.510)U	0.466 +/-(0.448)U	-0.0482 +/-(0.446)U	0.0970 +/-(0.548)U
Radium-226+228	pCi/L 1.24 +/-(0.7	7)J 0.567 +/-(0.633)U	0.980 +/-(0.737)U	0.416 +/-(0.450)U	0.125 +/-(0.476)U	0.191 +/-(0.580)U	0.646 +/-(0.636)U	0.793 +/-(0.509)J	0.855 +/-(0.599)U	0.600 +/-(0.550)U	0.236 +/-(0.572)U	0.428 +/-(0.776)U
Anions												
Chloride	mg/L 29.4	29.7	29.1	31.7	28.8	30.7	27.4	27.0	33.1	29.9	32.3	37.2
Fluoride	mg/L 0.120	0.0703 J	0.0432 J	0.127	0.0688 J	0.0834 J	0.108	<0.0330	<0.0330	0.0415 J	0.101	0.0571 J
Sulfate	mg/L 518	525	505	577	459	503	466	458 J	574 J	457	475	579
General Chemistr												
Alkalinity, Bicarbonate	mg/L 10.4	9.20	9.98	10.2 J	8.46	10.3	11.1	10.4	10.6	10.8 J	14.4 J	10.8 J
Alkalinity, Carbonate	mg/L <1.45	<1.45	<1.45	0.725 UJ	<0.725	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU 5.44 J	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L 814	814	847	804	826	816	794	771	781	759	750	736

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	ĺ	10-AP3				B-6R				
Sample Date Sample ID Parent Sample ID		8-Feb-23 JOF-GW-10-AP3-02082023	17-Mar-15 JOF-B6R-0315	23-Sep-15 JOF-B6R-0915	22-Mar-16 JOF-B6R-0316	21-Sep-16 B-6R_0921161200_20160930-01	21-Sep-16 B-6R_0921161200D_20160930-03 B-6R_0921161200_20160930-01	21-Sep-16 JOF-B6R-0916	21-Sep-16 JOF-B6R-DUP-0916 JOF-B6R-0916	14-Mar-17 JOF-B6R
Sample Depth		45.5 ft	20.5 ft	20.5 ft	20.5 ft	20.5 ft	20.5 ft	20.5 ft	20.5 ft	20.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample
Program	Units		State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals	ı						I .	<u> </u>		I .
Antimony	ug/L	<1.00	<2.00	<2.00	<2.00	-	-	<2.00	<2.00	<2
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	-	-	<2.00	<2.00	<1
Barium	ug/L	16.8	16.6	17.4	17.3	-	_	15.7	17.1	15.8
Beryllium	ug/L	<0.200	<2.00	<2.00	<2.00	-	-	<2.00	<2.00	<1
Boron	ug/L	5,680	-	_	-	-	-	7,680	7,650	7,260
Cadmium	ug/L	3.68	<1.00	<1.00	<1.00	-	-	<1.00	<1.00	<1
Calcium	ug/L	146,000	-	_	-	-	-	104,000	104,000	84,500
Chromium	ug/L	<3.00	<2.00	<2.00	<2.00	-	-	<2.00	<2.00	<2
Cobalt	ug/L	28.4	<2.00	<2.00	<2.00	-	-	<2.00	<2.00	<0.5
Copper	ug/L	0.319 J	<5.00	<5.00	<5.00	-	-	<5.00	<5.00	<2
Lead	ug/L	<0.500	<2.00	<2.00	<2.00	-	-	<2.00	<2.00	<1
Lithium	ug/L	3.04 J	-	_	-	-	-	<15.0	<15.0	<5
Magnesium	ug/L	17,700	-	_	-	-	_	_	-	-
Mercury	ug/L	<0.0670	<0.200	<0.200	<0.200	-	-	0.200 UJ	0.200 UJ	<0.2
Molybdenum	ug/L	<0.200	-	<u>-</u>	<u>-</u>	<u>-</u>	_	<5.00	<5.00	<5
Nickel	ug/L	74.3	10.4	9.40	9.17	-	_	7.99	7.92	5.8
Potassium	ug/L	4,990	-	<u>-</u>	<u>-</u>	<u>-</u>	_	_	-	3,790
Selenium	ug/L	<1.50	<2.00	<2.00	<2.00	<u>-</u>	_	<2.00	<2.00	<5
Silver	ug/L	<0.300	<2.00	<2.00	<2.00	<u>-</u>	_	<2.00	<2.00	<1
Sodium	ug/L	32,100				<u>-</u>	_			13,700
Thallium	ug/L	<0.600	2.00 UJ	<2.00	<1.00	_	_	<1.00	<1.00	<1
Vanadium	ug/L	<3.30	<5.00	<5.00	<5.00	_	_	<5.00	<5.00	<1
Zinc	ua/L	54.0	<25.0	<25.0	<25.0	_	_	<25.0	<25.0	14.7
Radiological Paran		00	20.0	20.0	20.0		1	25.0	20.0	
Radium-226	pCi/L	0.294 +/-(0.397)U	-	-	-	-0.096 +/-()	-0.176 +/-()	-	-	0.122 +/-(0.0818)
Radium-228	pCi/L	0.312 +/-(0.387)U	-	<u>-</u>	<u>-</u>	0.132 +/-()	0.115 +/-()	_	-	0.181 +/-(0.244)U
Radium-226+228	pCi/L	0.606 +/-(0.554)U	-	_	-	-	-	-	-	<u> </u>
Anions		,						•		
Chloride	mg/L	32.6	-	-	-	-	-	19.7	19.3	16.3
Fluoride	mg/L	0.116 J	<0.100	<0.100	<0.100	-	-	<0.100	<0.100	<0.100
Sulfate	mg/L	406	-	_	-	-	-	333	334	272
General Chemistry								•		
Alkalinity, Bicarbonate	mg/L	9.10 J	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	0.725 UR	-	-	-	-	-	-	-	-
pH (lab)	SU	-	-	-	-	-	-	5.29	5.47	5.6
Total Dissolved Solids	mg/L	696	-	_	-	-	-	475	475	430

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location Sample Date Sample ID Parent Sample ID	1 1	B-6R												
		12-Jun-17 JOF-B6R	12-Jun-17 JOF-B6R-DUP JOF-B6R-0617	18-Sep-17 JOF-B6R	12-Dec-17 JOF-B6R-1217	12-Dec-17 JOF-B6R-DUP-1217 JOF-B6R-1217	13-Mar-18 JOF-B6R-0318	11-Jun-18 JOF-B6R-0618	11-Jun-18 JOF-B6R-DUP-0618 JOF-B6R-0618	11-Sep-18 JOF-B6R-09112018	12-Dec-18 JOF-B6R-	12-Dec-18 JOF-B6R-DUP- JOF-B6R-12122018	12-Mar-19 B-6R	12-Sep-19 JOF-B6R-0919
Sample Depth		20.5 ft Normal Environmental Sample	20.5 ft Field Duplicate Sample	20.5 ft Normal Environmental Sample	20.5 ft Normal Environmental Sample	20.5 ft Field Duplicate Sample	20.5 ft Normal Environmental Sample	20.5 ft Normal Environmental Sample	20.5 ft Field Duplicate Sample	20.5 ft Normal Environmental Sample	20.5 ft Normal Environmental Sample	20.5 ft	20.5 ft Normal Environmental Sample	20.5 ft
Sample Type Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	Field Duplicate Sample State Compliance	State Compliance	Normal Environmental Sample State Compliance
Total Metals			I.	<u> </u>						<u> </u>	I.			
Antimony	ug/L	-	-	<2	-	-	<2	-	-	<2	-	-	<0.378	<0.378
Arsenic	ug/L	-	-	<1	-	-	<1	-	-	<1	-	-	<0.323	0.517 J
Barium	ug/L	-	-	17.2	-	-	21.5	-	-	16.4	-	-	20	20.1
Beryllium	ug/L	-	-	<1	-	-	<1	-	-	<1	-	-	<0.155	0.190 J
Boron	ug/L	7,350	7,410	7,180	7,410	7,050	5,260	6,840	6,990	7,240	6,110	6,020	4,710	7,160
Cadmium	ug/L	-	-	<1	-	-	<1	-	-	<1	-	-	0.444 J	0.414 J
Calcium	ug/L	89,100	91,100	91,900	91,500	91,000	86,300	89,300	87,700	85,300	88,400	85,300	90,600	93,900
Chromium	ug/L	-	-	<2	-	-	<2	-	-	<2	-	-	<1.53	3.04 U*
Cobalt	ug/L	-	-	<0.5	-	-	<0.5	-	-	<0.5	-	-	<0.075	0.209 J
Copper	ug/L	-	-	2.1	-	-	<2	-	-	<2	-	-	<0.627	0.733 J
.ead .ithium	ug/L	- <5	- <5	<1 <5	- <5	- <5	<1 <5	- <5	- <5	<1 <5	- <5	- <5	<0.128 <3.14	0.165 J 31.5
Junium Magnesium	ug/L	<5	< 5	< 5	<5	<5	_	<5	<5	< 5	<5	<5		
viagnesium Mercury	ug/L	-	-	<0.2	-		<0.2	-	-	<0.2	-	-	<0.101	0.248
Molybdenum	ug/L	- <5	<5	<5.2 <5	- <5	<5	<5.2 <5	- <5	<5	<5	- <5	<5	<0.101	0.786 J
Nickel	ug/L ug/L	\ 5	~5	8.4	~ 5	~ 5	7.47	<5	-5	6.06		~ 5	8.64	6.03
Potassium	ug/L		_	4,420	-			-	_	0.00	_	_	0.04	0.03
Selenium	ug/L	_	_	<5	_	_	<5	_	_	<5	_	_	<2.62	<1.51
Silver	ug/L		_	<1	_	_	<1	_		<1			<0.121	<0.177
Sodium	ug/L	_	_	15.400	_	_	- ''	_	_]	_	_	-0.121	-
Thallium	ug/L	_	_	<1	_	_	<1	_	_	<1	_	_	<0.128	0.222 J
/anadium	ug/L	_	_	<1	_	_	2.22	_	_	1.93 U*	_	_	1.04	1.55 U*
Zinc	ug/L	-	_	20.4	<u>-</u>	<u>-</u>	19	<u>-</u>	<u>-</u>	22.9 U*	_	-	24.8	21.7
Radiological Para	meters				1	'			1			1		
Radium-226	pCi/L	0.0248 +/-(0.0480)U	0.0644 +/-(0.0458)	0.102 +/-(0.0598)	0.0856 +/-(0.0530)	0.0664 +/-(0.0469)	0.0554 +/-(0.0500)U	0.155 +/-(0.128)U	0.112 +/-(0.126)U	0.254 +/-(0.0900)U*	0.0170 +/-(0.0433)U	0.0136 +/-(0.0443)U	0.0394 +/-(0.0516)U	0.725 +/-(0.632)U
Radium-228 Radium-226+228	pCi/L pCi/L	0.00729 +/-(0.172)U	0.215 +/-(0.204)U	0.242 +/-(0.229)U	0.0495 +/-(0.220)U	0.343 +/-(0.231)U	0.239 +/-(0.229)U	0.0872 +/-(0.227)U	0.0639 +/-(0.205)U	0.0965 +/-(0.200)U	0.0682 +/-(0.187)U	0.264 +/-(0.244)U	0.173 +/-(0.267)U	-0.245 +/-(0.255)U 0.725 +/-(0.682)U
Anions	POI/L	-	-	-	-		-	-	-	-	-	-	-	0.725 17-(0.002)0
Chloride	mg/L	18.6	18.8	18.4	19.1	19.3	13.6	19.3	19.2	16.7	16.8	17.1	11.4	18.7
Fluoride	mg/L	-	-	<0.100	-	-	<0.100	-	-	<0.100	1	-	0.0311 J	0.0270 J
Sulfate	mg/L	286	280	277	279	279	236	306	302	249	266	252	251 J	280
General Chemistr	у			•	•				•	•				
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-
Aikalinity, Carbonate pH (lab)	mg/L SU	-	-	5.4	_	-	5.4	-	_	5.7 J		-	5.3 J	5.9 J
	ma/L	460	463	470	439	441	5.4 401	455	449	473	415	425	3.3 J	5.9 J
otal Dissolved Solids	11134 =	See notes on lost node	403	4/0	439	441	401	400	449	4/3	415	425) ১০১	504

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		B-6R										
Sample Date Sample ID Parent Sample ID		4-Mar-20 JOF-B6R-0320	16-Sep-20 JOF-B6R-0920	17-Mar-21 JOF-GW-B-6R-03172021	15-Sep-21 JOF-GW-B6R-09152021	8-Feb-22 JOF-GW-B-6R-02082022	8-Feb-22 JOF-GW-FD-02082022 JOF-GW-B-6R-02082022	2-Aug-22 JOF-GW-B-6R-08022022	2-Aug-22 JOF-GW-FD-08022022 JOF-GW-B-6R-08022022 20.5 ft Field Duplicate Sample State Compliance	7-Feb-23 JOF-GW-B-6R-02072023 20.5 ft Normal Environmental Sample		
Sample Depth Sample Type Program	Units	20.5 ft Normal Environmental Sample State Compliance	20.5 ft Field Duplicate Sample State Compliance	20.5 ft Normal Environmental Sample State Compliance								
Total Metals	•		1			1						
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00		
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00		
Barium	ug/L	20.5	18.3	18.5	17.7	16.7	16.4	17.7	17.5	16.6		
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200		
Boron	ug/L	4,100	7,080	6,740	6,680	6,210	6,310	7,280	7,210	10,200		
Cadmium	ug/L	<0.300	0.331 J	0.378 J	0.396 J	<0.300	<0.300	0.300 J	<0.300	<0.300		
Calcium	ug/L	87,900	96,100	102,000	84,200	82,700	79,600	92,900	93,100	84,700		
Chromium	ug/L	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300	<3.00 <0.300		
Cobalt Copper	ug/L	<0.300 <0.300	<0.300 0.473 J	<0.300 1.94 J	<0.300 <0.300	<0.300 0.333 J	<0.300 0.324 J	<0.300	<0.300	<0.300		
Lead	ug/L ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500		
Lithium	ug/L ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00		
Magnesium	ug/L	-		-	-		43.00	3.00	-3.00			
Mercury	ug/L	0.128 J	0.0980 J	0.0720 J	0.0720 J	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670		
Molybdenum	ug/L	0.675 J	0.948 U*	0.968 U*	0.760 U*	0.747 J	0.714 J	0.758 J	0.760 J	0.747 U*		
Nickel	ug/L	6.16	8.02	9.32	7.46	5.91	5.95	6.29	6.21	3.81		
Potassium	ug/L	-		-	-			-		-		
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<1.50		
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300		
Sodium	ug/L	-	-	-	-	-	-	-	-	-		
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600		
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30		
Zinc	ug/L	18.3 J	22.1	27.7	20.0 U*	17.8 J	17.7 J	18.8 J	18.5 J	11.8 J		
Radiological Para	meters											
Radium-226	pCi/L	0.192 +/-(0.402)U	0.206 +/-(0.391)U	-0.0524 +/-(0.0842)U	0.469 +/-(0.448)U	-0.0610 +/-(0.253)U	-0.322 +/-(0.300)U	-0.0713 +/-(0.227)U	0.0102 +/-(0.222)U	0.0230 +/-(0.350)U		
Radium-228	pCi/L	-0.0783 +/-(0.191)U	0.0297 +/-(0.214)U	0.541 +/-(0.579)U	-0.0381 +/-(0.321)U	-0.173 +/-(0.318)U	0.368 +/-(0.299)U	0.169 +/-(0.462)U	0.692 +/-(0.552)U	0.0570 +/-(0.401)U		
Radium-226+228	pCi/L	0.192 +/-(0.445)U	0.236 +/-(0.446)U	0.541 +/-(0.585)U	0.469 +/-(0.551)U	0.000 +/-(0.406)U	0.368 +/-(0.424)U	0.169 +/-(0.515)U	0.702 +/-(0.595)U	0.0800 +/-(0.532)U		
Anions												
Chloride	mg/L	11.2	17.8	16.9	19.0	14.3	14.3	18.7	18.7	15.0		
Fluoride	mg/L	0.0856 J	<0.0330	0.0426 J	0.0398 J	<0.0330	<0.0330	0.0425 J	0.0826 J	0.0480 J		
Sulfate	mg/L	243	266	288	288	260	256	258	260	262		
General Chemistr	у											
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-		
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-		
pH (lab)	SU	5.36 J	5.21 J	5.28 J	5.30 J	5.40 J	5.37 J	5.50 J	5.55 J	5.45 J		
Total Dissolved Solids	mg/L	434	463	461	499	453	464	458	451	398		

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1						B-	8R					
Sample Date Sample ID Parent Sample ID		17-Mar-15 JOF-B8R-0315	17-Mar-15 JOF-B8R-0315 DUP JOF-B8R-0315	22-Sep-15 JOF-B8R-0915	22-Mar-16 JOF-B8R-0316	22-Mar-16 JOF-B8R-0316-DUP JOF-B8R-0316	21-Sep-16 B-8R_0921161200_20160930-02	21-Sep-16 JOF-B8R-0916	14-Mar-17 JOF-B-8R	14-Mar-17 JOF-B8R-DUP JOF-B-8R-0317	12-Jun-17 JOF-B8R	18-Sep-17 JOF-B-8R	18-Sep-17 JOF-B8R-DUP JOF-B8R-0917
Sample Depth Sample Type Program	Units	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance
Total Metals			I.										
Antimony	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<2	<2	-	<2	<2
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<1	<1	-	<1	<1
Barium	ug/L	20.7	20.3	30.1	28.2	27.6	-	26.9	29.5	29.8	-	28.3	28.2
Beryllium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<1	<1	-	<1	<1
Boron	ug/L	-	-	-	-		-	1,460	979	994	1,330	1,270	1,280
Cadmium	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	-	<1.00	<1	<1	-	<1	<1
Calcium	ug/L	-	-	-	-	-	-	28,800	38,700	39,200	25,400	29,500	29,300
Chromium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<2	<2	-	<2	<2
Cobalt	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<0.5	<0.5	-	<0.5	<0.5
Copper	ug/L	<5.00	<5.00	<5.00	<5.00	<5.00	-	<5.00	<2	<2	-	<2	2.05
Lead	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<1	<1	-	<1	<1
Lithium	ug/L	=	-	-	-	-	-	<15.0	<5	<5	<5	<5	<5
Magnesium	ug/L						-	l 		Ī .	-		Ī .
Mercury	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	-	0.200 UJ	<0.2	<0.2	-	<0.2	<0.2
Molybdenum	ug/L	_1.				_ .	-	<5.00	<5	<5	<5	<5	<5
Nickel	ug/L	5.31	5.15	9.99	2.87 U*	2.94 U*	-	7.82	3.02	3.33	-	3.42	3.52
Potassium	ug/L	-	-			-	-	-	1,320	1,390	-	1,620	1,620
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<5	<5	-	<5	<5
Silver	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	-	<2.00	<1	<1 12.100	-	<1	<1
Sodium	ug/L	-	2.00 UJ	-	-	-	-	-	12,000	12,100	-	14,300	14,500
Thallium	ug/L	2.00 UJ		<2.00	<1.00	<1.00	-	<1.00	<1		-	<1	<1
Vanadium Zinc	ug/L ug/L	<5.00 <25.0	<5.00 <25.0	<5.00 <25.0	<5.00 <25.0	<5.00 <25.0	-	<5.00 <25.0	<1 9.53	<1 7.48	-	<1 10.3	<1 10
Radiological Para	3	<25.0	<25.0	<25.0	<25.0	<25.0	-	<25.0	9.53	7.48	-	10.3	10
				I	I		0.404 - (.0		0.004 - 1.00 4440	0.000 - / (0.0055)	0.000 - / /0.0000)	0.000 - / (0.0050)	0.040 +/ (0.0004)
Radium-226 Radium-228	pCi/L pCi/L	-	-	-	-	-	0.161 +/-() -0.161 +/-()	-	0.321 +/-(0.114)	0.220 +/-(0.0955)	0.308 +/-(0.0989)	0.298 +/-(0.0950)	0.312 +/-(0.0994) 0.155 +/-(0.201)U
Radium-228 Radium-226+228	pCi/L pCi/L	-	_	-	-	-	-0.161 +/-()	-	0.0427 +/-(0.198)U	0.418 +/-(0.250)	0.0781 +/-(0.197)U	0.227 +/-(0.225)U	0.155 +/-(0.201)U
Anions	poi/L	<u>-</u>	-	-	-	-	-	-	-	-	-	-	-
Chloride	mg/L	_	-	-	_		_	13.4	8.69	9.30	12.2	10.7	10.8
Fluoride	mg/L	<0.100	<0.100	<0.100	<0.100	<0.100		<0.100	<0.500	<0.100	-	<0.100	<0.100
Sulfate	mg/L		-	-	-	-0.100	-	135	119	117	103	94.2	94.7
General Chemistry	,						•			•	•		•
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-			<u>-</u>	-		<u>-</u>
pH (lab)	SU	-	-	-	-	-	-	5.61	6.0	6.0	<u></u> .	5.6	5.7
Total Dissolved Solids	mg/L	-	-	-	-	-	-	184	208	209	191	191	187

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	ĺ							B-8R					
Sample Date Sample ID Parent Sample ID		12-Dec-17 JOF-B-8R-1217	13-Mar-18 JOF-B-8R-0318	13-Mar-18 JOF-B8R-DUP-0318 JOF-B8R-0318	11-Jun-18 JOF-B-8R-0618	11-Sep-18 JOF-B-8R-09112018	11-Sep-18 JOF-B8R-DUP JOF-B-8R-09112018	12-Dec-18 JOF-B-8R	13-Mar-19 B-8R	13-Mar-19 JOF-B8R-DUP B-8R-031319	12-Sep-19 JOF-B8R-0919	4-Mar-20 JOF-B8R-0320	16-Sep-20 JOF-B8R-0920
Sample Depth Sample Type Program	Units	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Field Duplicate Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance
Total Metals				<u> </u>									
Antimony	ug/L	_	<2	<2	-	<2	<2	_	<0.378	<0.378	<0.378	<1.00	<1.00
Arsenic	ug/L	-	<1	<1	_	<1	<1	-	<0.323	<0.323	<0.323	<2.00	<2.00
Barium	ug/L	-	31.6	31.4	_	32	31.8	-	26.7	26.8	45.9	34.7	32.7
Beryllium	ug/L	-	<1	<1	-	<1	<1	-	<0.155	<0.155	<0.182	<0.200	<0.200
Boron	ug/L	1,330	618	614	1,290	1,490	1,430	1,130	510	484	1,720	655	1,740
Cadmium	ug/L	-	<1	<1	-	<1	<1	-	<0.125	<0.125	0.172 J	<0.300	<0.300
Calcium	ug/L	29,900	48,200	48,000	32,400	27,700	27,700	38,700	40,700	37,400	28,800	45,100	32,600
Chromium	ug/L	-	<2	<2	-	<2	<2	-	<1.53	<1.53	2.09 U*	<3.00	<3.00
Cobalt	ug/L	-	<0.5	<0.5	-	<0.5	<0.5	-	0.156 U*	0.119 U*	0.344 J	<0.300	0.798 J
Copper	ug/L	=	<2	<2	-	<2	<2	-	<0.627	<0.627	<0.627	0.376 J	0.559 J
Lead	ug/L		<1	<1	-	<1	<1		<0.128	0.167 J	<0.128	<0.500	<0.500
Lithium	ug/L	<5	<5	<5	<5	<5	<5	<5	<3.14	<3.14	9.15	<3.00	<3.00
Magnesium	ug/L	-	-	-	-	-	-	-	-		-	-	-
Mercury	ug/L	-	<0.2	<0.2	1	<0.2	<0.2	-	<0.101	<0.101	<0.101	<0.0670	<0.0670
Molybdenum	ug/L	<5	<5	<5 1.17	<5	<5 4.6	<5 4.76	<5	<0.61 1.89 U*	<0.61	<0.610	<0.200 1.41 J	<0.200
Nickel	ug/L	-	1.2	1.17	-	4.6		-		1.65 U*	6.23	1	3.45
Potassium Selenium	ug/L	-	- <5	- <5	-	- <5	- <5	-	<2.62	<2.62	<1.51	<2.00	<2.00
Silver	ug/L	-	<5 <1	<1	-	<5 <1	<1	-	<0.121	<0.121	<0.177	<0.300	<0.300
Sodium	ug/L ug/L	-		"	-		-	-	<0.121	<0.121	<0.177	<0.300	<0.300
Thallium		-	<1	<1	-	<1	<1	-	<0.128	<0.128	<0.148	<0.600	<0.600
Vanadium	ug/L ug/L	-	2.28	2.32	-	1.68 U*	1.77 U*	-	0.966 J	<0.899	1.14 U*	<3.30	<3.30
Zinc	ug/L ug/L	-	2.20 <5	<5	-	12.6 U*	14.9 U*	-	4.18 J	3.81 J	18.6 U*	5.62 J	13.7 J
Radiological Parar		-	,	1 13	-	12.0 0	14.5 0	-	4.10 0	3.013	10.0 0	3.02 3	10.7 0
Radium-226	pCi/L	0.259 +/-(0.0926)	0.123 +/-(0.0630)	0.169 +/-(0.0783)	0.135 +/-(0.129)U	0.480 +/-(0.123)	0.366 +/-(0.108)	0.223 +/-(0.0952)U*	0.217 +/-(0.0849)	0.159 +/-(0.0801)	0.651 +/-(0.551)U	1.07 +/-(0.611)	0.403 +/-(0.550)U
Radium-228	pCi/L	0.276 +/-(0.264)U	0.232 +/-(0.211)U	0.132 +/-(0.192)U	0.113 +/-(0.209)U	0.322 +/-(0.205)	0.255 +/-(0.201)U	-0.316 +/-(0.169)U	0.0426 +/-(0.213)Ú	-0.0277 +/-(0.205)U	-0.0508 +/-(0.305)U	0.741 +/-(0.433)	0.496 +/-(0.345)
Radium-226+228	pCi/L	-			-			-	-	-	0.651 +/-(0.629)U	1.81 +/-(0.749)	0.899 +/-(0.649)J
Anions					•	•			•		,	, ,	
Chloride	mg/L	12.3	9.21	9.22	12.5	11.8	12.1	9.41	6.34	5.77	12.0	7.92	10.3
Fluoride	mg/L	-	<0.100	<0.100	_	<0.100	<0.100	-	0.0515 J	0.0500 J	0.0386 J	0.0995 J	0.0416 J
Sulfate	mg/L	103	93.7	93.3	101	75.7	78.2	105	86.9 J	81.9	90.9	104	97.7
General Chemistry													
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-		J	-	_=		-	<u>-</u>			1	
pH (lab)	SU		6.1	6.1	1	5.7 J	5.7 J		6.2 J	6.2 J	6.7 J	6.05 J	5.56 J
Total Dissolved Solids	mg/L	187	199	196	181	193	191	191	170	173	244	270	189

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location				B-8R						B-9		
Sample Date Sample ID Parent Sample ID		17-Mar-21 JOF-GW-B-8R-03172021	16-Sep-21 JOF-GW-B8R-09162021	8-Feb-22 JOF-GW-B-8R-02082022	2-Aug-22 JOF-GW-B-8R-08022022	7-Feb-23 JOF-GW-B-8R-02072023	17-Mar-15 JOF-B9-0315	22-Sep-15 JOF-B9-0915	22-Sep-15 JOF-B9-0915 DUP JOF-B9-0915	21-Mar-16 JOF-B9-0316	20-Sep-16 B-9_0920161200_20160927-01	20-Sep-16 JOF-B9-0916
Sample Depth Sample Type Program	Units	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample State Compliance	48 ft Field Duplicate Sample State Compliance	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample State Compliance			
Total Metals	<u> </u>				J	J				J		
Antimony	ug/L	<1.00	<1.00	<1.00	1.01 U*	<1.00	<2.00	<2.00	<2.00	<2.00	-	<2.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	_	<2.00
Barium	ug/L	30.6	31.1	24.0	32.1	26.5	6.92	6.50	5.74	6.84	-	9.59
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<2.00	<2.00	<2.00	<2.00	-	<2.00
Boron	ug/L	1,280	2,000	998	1,810	1,110	-	-	-	-	-	<200
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<1.00	<1.00	<1.00	<1.00	-	<1.00
Calcium	ug/L	49,000	31,500	42,600	36,600	47,800	-	-	-	-	-	5,830
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<2.00	<2.00	<2.00	<2.00	-	<2.00
Cobalt	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	<2.00	-	<2.00
Copper	ug/L	1.42 J	0.391 J	0.471 J	0.441 J	0.547 J	<5.00	<5.00	<5.00	<5.00	-	<5.00
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<2.00	<2.00	<2.00	<2.00	-	<2.00
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	-	-	-	-	-	<15.0
Magnesium	ug/L	- <0.0670	<0.0670	<0.0670						-	-	-
Mercury	ug/L				<0.0670	<0.0670	<0.200	<0.200	<0.200	<0.200	-	<0.200
Molybdenum Nickel	ug/L	0.219 U* 1.19 J	<0.200 2.31	<0.200 1.11 J	<0.200 1.87 J	<0.200 0.959 J	<2.00	<2.00	<2.00	<2.00	-	<5.00 <2.00
Potassium	ug/L ug/L			i i			<2.00	<2.00			-	<2.00
Selenium	ug/L ug/L	- <2.00	<2.00	<1.50	<1.50	<1.50	<2.00	<2.00	<2.00	<2.00	-	<2.00
Silver	ug/L ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	<2.00	_	<2.00
Sodium	ug/L	-0.500	- 0.500	-	-	-	-	-2.00	-2.00	-	1	-2.00
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	2.00 UJ	<2.00	<2.00	<1.00		<1.00
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	4.76 U*	<5.00	<5.00	<5.00	<5.00	_	<5.00
Zinc	ua/L	12.3 J	9.45 U*	4.48 J	7.61 J	16.4 J	<25.0	<25.0	<25.0	<25.0	<u>-</u>	<25.0
Radiological Parar		.=									1	
Radium-226	pCi/L	0.0582 +/-(0.277)U	0.114 +/-(0.297)U	0.572 +/-(0.574)U	0.262 +/-(0.480)U	-0.0578 +/-(0.237)U	-	-	-	-	-0.192 +/-()	-
Radium-228	pCi/L	0.174 +/-(0.506)U	0.414 +/-(0.266)	0.695 +/-(0.456)	0.0473 +/-(0.428)U	-0.328 +/-(0.278)U	_	<u>-</u>	_	_	0 +/-()	_
Radium-226+228	pCi/L	0.233 +/-(0.577)U	0.529 +/-(0.398)J	1.27 +/-(0.733)J	0.310 +/-(0.643)U	0.000 +/-(0.365)U	-	_	-	_	-	-
Anions		,	, ,								•	
Chloride	mg/L	8.63	10.3	5.36	11.5	8.28	-	-	-	-	-	4.59
Fluoride	mg/L	0.0663 J	0.0714 J	0.0592 J	0.0845 J	0.0642 J	<0.100	<0.100	<0.100	<0.100	-	<0.100
Sulfate	mg/L	110	111	88.0	102	104	-	-	-	-	-	<5.00
General Chemistry												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-		- 0.40 !			-	-	-	-	-	
pH (lab)	SU	5.98 J	5.57 J	6.19 J	5.70 J	6.57 J	-	-	-	-	-	6.27
Total Dissolved Solids	mg/L	247	219	200	189	200	-	-	-	-	-	53.0

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1	1					E	3-9					
Sample Date Sample ID Parent Sample ID		1-Nov-16 JOF-GW-009-11012016	4-Jan-17 JOF-GW-009-01042017	16-Jan-17 JOF-GW-009-01162017	15-Feb-17 JOF-GW-009-02152017	14-Mar-17 JOF-GW-009-03142017	11-Apr-17 JOF-GW-009-04112017	16-May-17 JOF-GW-009-05162017	6-Jun-17 JOF-GW-009-06062017	10-Jul-17 JOF-GW-009-07102017	1-Aug-17 JOF-GW-009-08012017	19-Sep-17 JOF-B-9	19-Sep-17 JOF-GW-009-09192017
Sample Depth Sample Type Program	Units	48 ft Normal Environmental Sample CCR Program	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Samp CCR Program									
Total Metals		-		1					1				'
Antimony	ug/L	0.615 U*	0.449 U*	<0.443	<0.443	<0.443	0.782 U*	<0.443	<0.443	1.4 U*	<0.443	<2	0.916 U*
Arsenic	ug/L	<0.118	0.188 U*	0.329 J	0.225 J	<0.22	0.308 J	0.22 UJ	<0.22	0.3 J	0.268 J	<1	<0.22
Barium	ug/L	7.85 J	9.71 U*	18.4 J	10.4	8.55 J	11.5	7.39 J	7.84 J	9.69 J	7.87 J	<10	6.58 J
Beryllium	ug/L	<0.102	<0.102	0.131 UJ	<0.131	<0.131	<0.131	<0.131	<0.131	<0.131	<0.131	<1	<0.131
Boron	ug/L	15.8 J	12.7 J	7.81 UJ	<7.81	10.8 U*	<7.81	<7.81	<7.81	8.68 U*	<7.81	<80 <1	<7.81
Cadmium	ug/L	<0.152	<0.152	<0.0781	<0.0781	<0.0781	<0.0781	<0.0781	<0.0781	<0.0781	<0.0781		<0.0781
Calcium Chromium	ug/L	5,570 J <0.339	6,540 U* 0.687 U*	5,850 1,21 J	5,660 0.476 J	5,720 0.454 U*	5,660 0.89 J	5,070 0.378 UJ	5,800 <0.378	5,430 0.881 J	5,960 0.501 J	6,070 <2	5,380 0.67 U*
Cobalt	ug/L	0.079 U*	0.667 U*	0.369 J	0.476 J 0.16 J	<0.0947	0.89 J 0.23 J	<0.0947	0.108 J	0.001 J 0.123 J	<0.0947	<0.5	<0.0947
Copper	ug/L ug/L	<0.454	0.123 U*	0.369 J <1.04	2.68 U*	<1.04	0.23 J 1.67 U*	<1.04	<1.04	0.123 J <1.04	1.48 U*	3.01	<1.04
Lead	ug/L	<0.0675	0.178 U*	0.622 J	<0.318	<0.318	0.443 J	<0.318	<0.318	<0.318	<0.318	<1	<0.318
Lithium	ug/L	1.29 U*	6.42 U*	2.82 U*	4.28 U*	<2.12	<2.12	<2.12	<2.12	2.43 U*	4.62 U*	<5	<2.12
Magnesium	ug/L	3,130 J	3,480	3,120	2,970	2,840	3,020	3,100	3,160	2,860	3,240	_	2,870
Mercury	ug/L	<0.0521	<0.0521	<0.0521	<0.0521	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.2	<0.0653
Molybdenum	ug/L	0.93 J	<0.873	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593	<5	<0.593
Nickel	ug/L	<0.416	0.461 U*	0.834 J	2.23	0.94 J	0.53 J	0.271 UJ	0.891 U*	0.373 J	<0.271	<1	0.277 J
Potassium	ug/L	208 J	276 J	348 J	290 J	243 J	285 J	254 J	265 J	294 J	210 J	<500	236 J
Selenium	ug/L	<0.348	<0.348	<1.27	<1.27	1.28 J	<1.27	<1.27	<1.27	<1.27	<1.27	<5	<1.27
Silver	ug/L	-	-	<u>-</u>	_	<u>-</u>	_	_	_	_	<u>-</u>	<1	_
Sodium	ug/L	3,010 J	3,260	2,920	2,540	2,830	2,870	3,160	2,970	3,030	3,120	3,170	3,080
Thallium	ug/L	0.095 U*	<0.036	<0.0531	0.074 U*	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531	<1	<0.0531
Vanadium	ug/L	-	-	-	-	-	-	-	-	-	-	<1	_
Zinc	ug/L	-	-	-	-	-	-	-	-	-	-	<5	-
Radiological Para	meters												
Radium-226	pCi/L	0.0223 +/-(0.12)U	-0.2830 +/-(0.22)U	0.253 +/-(0.32)U	0.434 +/-(0.33)J	0.382 +/-(0.40)U	-0.0766 +/-(0.28)U	0.164 +/-(0.23)U	0.262 +/-(0.26)U	0.208 +/-(0.23)U	0.00000 +/-(0.25)U	0.0319 +/-(0.0403)U	0.0188 +/-(0.38)U
Radium-228	pCi/L	-0.0357 +/-(0.25)U	-0.1220 +/-(0.36)U	0.222 +/-(0.31)U	-0.2080 +/-(0.35)U	-0.1720 +/-(0.31)U	0.310 +/-(0.33)UJ	0.112 +/-(0.47)U	0.387 +/-(0.44)U	0.240 +/-(0.53)U	0.0136 +/-(0.20)U	0.264 +/-(0.214)U	-0.0714 +/-(0.25)U
Radium-226+228	pCi/L	0.0223 +/-(0.27)U	0.00000 +/-(0.42)U	0.475 +/-(0.44)U	0.434 +/-(0.48)J	0.382 +/-(0.51)U	0.310 +/-(0.43)UJ	0.276 +/-(0.52)U	0.649 +/-(0.52)U	0.448 +/-(0.57)U	0.0136 +/-(0.32)U	-	0.0188 +/-(0.46)U
Anions													
Chloride	mg/L	4.40	4.46	3.40	3.68	3.62	4.75	3.25 J	4.56	4.55	4.45	4.75	4.06
Fluoride	mg/L	0.0448 J	0.0439 J	0.0405 J	0.0300 J	0.0532 J	0.0397 J	0.0352 U*	0.0466 J	0.0551 J	0.0371 J	<0.100	0.0334 J
Sulfate	mg/L	0.565 J	<0.503	<0.503	<0.503	0.810 J	<0.503	<0.503	<0.503	0.711 J	0.822 J	<1.00	0.539 J
General Chemistr													
Alkalinity, Bicarbonate	mg/L	25.9	52.8 J	34.3	46.5	20.5	27.0	19.9	33.8	20.1	19.6	-	19.7
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		<5.00
pH (lab)	SU			1.5.	1					<u>-</u>	1	6.2	
Total Dissolved Solids	mg/L	66.0	46.0	23.0	60.0	52.0	58.0	71.0	36.0	33.0	51.0	49.0	48.0

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1	ĺ						B-9					
Sample Date Sample ID		5-Oct-17 JOF-GW-009-10052017	5-Oct-17 JOF-GW-903-10052017	13-Mar-18 JOF-B9-0318	23-May-18 JOF-GW-009-05232018	12-Jun-18 JOF-GW-009-06122018	26-Jun-18 JOF-GW-009-06262018	24-Jul-18 JOF-GW-009-07242018	14-Aug-18 JOF-GW-009-08142018	11-Sep-18 JOF-B-9-09112018	2-Apr-19 JOF-GW-009-04022019	8-Jul-19 JOF-GW-009-07082019	17-Sep-19 JOF-GW-009-09172019
Parent Sample ID			JOF-GW-009-10052017										
Sample Depth		48 ft	48 ft	48 ft	48 ft	48 ft	48 ft	48 ft	48 ft	48 ft	48 ft	48 ft	48 ft
Sample Type		Normal Environmental Sample		Normal Environmental Sample									
Program	Units	CCR Program	CCR Program	State Compliance	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	State Compliance	CCR Program	CCR Program	CCR Program
Total Metals	-												
Antimony	ug/L	-	-	<2	<1.12	<1.12	<1.12	<1.12	<1.12	<2	<0.378	<0.378	<0.378
Arsenic	ug/L	-	-	<1	0.329 J	0.337 J	0.371 U*	<0.323	0.377 U*	<1	<0.323	<0.323	<0.323
Barium	ug/L	-	-	<10	7.79 J	7.5 J	8.15 J	8.13 J	7.99 J	<10	8.05 J	7.39 J	7.90 J
Beryllium	ug/L	-	-	<1	<0.057	<0.057	<0.057	0.098 U*	<0.057	<1	<0.155	<0.155	<0.182
Boron	ug/L	<7.81	<7.81	<80	<30.3	<30.3	<30.3	<30.3	<30.3	<80	<30.3	<30.3	<38.6
Cadmium	ug/L	-	-	<1	<0.125	<0.125	<0.125	<0.125	<0.125	<1	<0.125	<0.125	<0.125
Calcium	ug/L	5,800	5,900	6,520	5,380	5,440	5,900	5,940	5,590	5,670	5,810	6,100	5,170
Chromium	ug/L	-	-	2.02	1.68 U*	1.97 U*	2.08 U*	<0.631	2.16 U*	<2	<1.53	<1.53	<1.53
Cobalt	ug/L	_	_	<0.5	<0.075	0.094 J	<0.075	<0.075	<0.075	<0.5	<0.075	<0.075	<0.0750
Copper	ug/L	_	_	<2	<1.3	<1.3	<1.3	<1.3	<1.3	<2	1.36 J	<0.627	1.69 U*
Lead	ug/L	_	_	<1	<0.094	<0.094	<0.094	0.112 J	0.099 U*	<1	<0.128	<0.128	<0.128
Lithium	ug/L			<5	<2.56	<2.56	<2.56	<2.56	<2.56	<5	<3.14	<3.14	<3.39
Magnesium	ug/L	3.160	3,230	-0	2.890	2.870	3,020	2,950	2,950	10	3,270	3,250	2,880
Mercury	ug/L	3,100	5,250	<0.2	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.2	<0.101	<0.101	<0.101
Molybdenum	ug/L	_	_	<5	<0.474	<0.474	<0.474	<0.474	<0.474	<5	<0.61	<0.61	<0.610
Nickel	ug/L		1 1	<1	<0.312	<0.312	<0.312	0.325 J	0.386 U*	<1	<0.312	0.345 U*	0.358 J
Potassium		238 J	235 J	`'	156 J	189 J	151 J	255 J	253 J	`'	252 J	252 J	237 J
Selenium	ug/L			- <5	<0.813	<0.813	<0.813	255 J <0.813	253 J <0.813	- <5	252 J <2.62	<2.62	237 J <1.51
Silver	ug/L	-	-	<1		1 1 1	<0.013			<1	<0.121	<0.121	<0.177
	ug/L	2.710		<1	-					<1			
Sodium	ug/L	2,710	2,760	Ţ.	2,960	3,050	3,100	2,750	3,190	Ţ.	3,310	3,580	2,960
Thallium	ug/L	-	-	<1	<0.063	<0.063	<0.063	<0.063	<0.063	<1	<0.128	<0.128	<0.148
Vanadium	ug/L	-	-	2.69	-	-	-	-	-	1.76 U*	1.07 U*	<0.899	1.76 U*
Zinc Radiological Para	ug/L	-	-	<5	-	-	-	-	-	<5	<3.22	3.92 J	3.37 J
		T		0.0026 +/ (0.0520)	0.0407 +//0.052011	0.0407 +/ (0.0444)11	0.405 -/ (0.0040)111	0.470 +/ (0.0070) *	0.270 +/ (0.402)\	0.440 +/ (0.0700) 18	0.0004 +/ (0.0746)	0.0072 : / (0.0400)	0.226 +//0.466311
Radium-226	pCi/L	-	-	0.0826 +/-(0.0539)	0.0127 +/-(0.0538)U	0.0187 +/-(0.0414)U	0.105 +/-(0.0810)UJ	0.170 +/-(0.0878)U*	0.279 +/-(0.103)U*	0.149 +/-(0.0700)U*	0.0981 +/-(0.0716)J	-0.0873 +/-(0.0400)U	0.236 +/-(0.466)U
Radium-228 Radium-226+228	pCi/L pCi/L			0.384 +/-(0.227)	0.222 +/-(0.242)U 0.235 +/-(0.248)U	0.0681 +/-(0.223)U 0.0868 +/-(0.227)U	0.541 +/-(0.271) 0.646 +/-(0.283)J	0.295 +/-(0.207)U 0.465 +/-(0.225)U*	0.226 +/-(0.235)U 0.505 +/-(0.257)U*	-0.0619 +/-(0.177)U	0.0365 +/-(0.186)U 0.135 +/-(0.199)J	-0.0572 +/-(0.243)U 0.000 +/-(0.246)U	-0.0736 +/-(0.495)U 0.236 +/-(0.680)U
Anions	poi/L	-		·	0.233 17-(0.240)0	0.0000 17-(0.227)0	0.040 17-(0.203)3	0.403 17-(0.223)0	0.303 17-(0.237)0	-	0.100 1/-(0.100)0	0.000 17-(0.240)0	0.230 1/-(0.000)0
Chloride	mg/L	3.53	3.55	4.85	3.35	3.42	4.23	4.77	4.45	4.89	3.70	4.16	4.48
Fluoride	mg/L	0.0361 J	0.0356 J	<0.100	0.0399 J	0.0487 J	0.0596 J	0.0308 J	0.0282 J	<0.100	0.0458 J	0.0514 J	0.0398 J
Sulfate	mg/L	<0.380	<0.380	<1.00	0.498 J	0.528 J	0.699 J	<0.380	0.646 U*	2.31	0.589 U*	0.674 J	0.980 U*
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	13.4 J	30.9 J	-	18.0	28.0	18.8	41.4	18.2	-	10.0	27.5	26.0
Alkalinity, Carbonate	mg/L	<5.00	<5.00	-	<5.00	<5.00	<5.00	<5.00	<5.00	-	<5.00	<5.00	<5.00
pH (lab)	SU	-	-	6.1	-	-	-	-	-	6.1 J	-	-	-
Total Dissolved Solids	mg/L	41.0	42.0	36.0	57.0	39.0	36.0	40.0	43.0	46.0	43.0 J	<10.0	36.0 J

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		1					B-9						
Sample Date Sample ID Parent Sample ID		9-Oct-19 JOF-GW-009-10092019	22-Jan-20 JOF-GW-009-01222020	4-Mar-20 JOF-GW-009-03042020	21-Jul-20 JOF-GW-009-07212020	9-Sep-20 JOF-GW-009-09092020	9-Feb-21 JOF-GW-B-9-02092021	16-Mar-21 JOF-GW-B-9-03162021	16-Mar-21 JOF-GW-FD02-03162021 JOF-GW-B-9-03162021	27-Jul-21 JOF-GW-B-9-07272021	14-Sep-21 JOF-GW-B-9-09142021	1-Feb-22 JOF-GW-B-9-02012022	15-Mar-22 JOF-GW-B-9-03152022
Sample Depth Sample Type		48 ft Normal Environmental Sample	48 ft Normal Environmental Sample	48 ft Normal Environmental Sample	48 ft	48 ft Normal Environmental Sample	48 ft	48 ft Normal Environmental Sample	48 ft	48 ft Normal Environmental Sample			
Program	Units	CCR Program	CCR Program	CCR Program	State Compliance	State Compliance	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program
Total Metals	<u> I</u>			I.		I.		I.		I.	I.	I	I
Antimony	ug/L	<0.378	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<0.323	<2.00	2.20 U*	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	8.72 J	8.96	8.68	7.34	8.58	8.44	8.18	7.95	7.53	8.92	8.61	8.18
Beryllium	ug/L	<0.182	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	<38.6	5.57 J	<5.20	<5.20	<5.20	<5.20	<5.20	5.39 J	<5.20	<5.20	<5.20	<5.20
Cadmium	ug/L	<0.125	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	6,000	6,060	5,640	5,890	6,060	5,900	6,210	6,230	5,650	5,830	6,020	6,480
Chromium	ug/L	1.53 U*	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	<0.0750	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Copper	ug/L	<0.627	0.454 J	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Lead	ug/L	<0.128	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.811 J	<0.500	<0.500	<0.500
Lithium	ug/L	6.84	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	3,180	3,040	3,050	2,840	3,360	3,580 J	3,360	3,440	3,090	3,460	3,380	3,580
Mercury	ug/L	<0.101	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	0.103 U*	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<0.610	<0.200	<0.200	<0.200	<0.200	0.284 U*	<0.200	<0.200	0.486 U*	<0.200	0.342 U*	<0.200
Nickel	ug/L	<0.336	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	3.06 U*
Potassium	ug/L	215 J	265 J	110 J	204 J	227 J	275 J	245 J	247 J	250 J	233 J	249 J	233 J
Selenium	ug/L	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50
Silver	ug/L	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300 3.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	3,860	3,280	3,080	3,050	3,110	3,390	3,290	.,	2,970	3,190	3,030	3,260
Thallium	ug/L	<0.148	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium Zinc	ug/L	<0.991 <3.22	10.7 U*	<3.30 4.61 J	<3.30 11.0 U*	<3.30 10.5 J	<3.30 <3.30	5.32 U* <3.30	4.43 U* <3.30	<3.30 3.85 J	<3.30 <3.30	<3.30 <3.30	<3.30 <3.30
Radiological Para	meters	*	11.9	4.61 J	11.0 0	10.5 J	<3.30	<3.30	<3.30	3.85 J	<3.30	<3.30	<3.30
Radium-226	pCi/L	0.141 +/-(0.351)U	-0.0822 +/-(0.454)U	0.475 +/-(0.593)U	0.111 +/-(0.490)U	0.358 +/-(0.582)U	0.241 +/-(0.281)U	0.294 +/-(0.293)U	0.0349 +/-(0.225)U	0.422 +/-(0.409)U	0.372 +/-(0.500)U	0.0142 +/-(0.306)U	0.432 +/-(0.442)U
Radium-228	pCi/L	0.228 +/-(0.399)U	-0.0619 +/-(0.310)U	-0.00145 +/-(0.194)U	-0.158 +/-(0.397)U	0.209 +/-(0.243)U	-0.0165 +/-(0.364)U	-0.290 +/-(0.495)U	-0.0710 +/-(0.203)U	-0.0332 +/-(0.542)U	-0.0703 +/-(0.424)U	0.668 +/-(0.422)	1.14 +/-(0.540)U*
Radium-226+228	pCi/L	0.369 +/-(0.531)U	0.000 +/-(0.550)U	0.475 +/-(0.624)U	0.111 +/-(0.631)U	0.567 +/-(0.631)U	0.241 +/-(0.460)U	0.294 +/-(0.576)U	0.0349 +/-(0.303)U	0.422 +/-(0.679)U	0.372 +/-(0.656)U	0.682 +/-(0.521)J	1.57 +/-(0.698)U*
Anions	powe	0.000 17 (0.001)0	0.000 17 (0.000)0	0.110 17 (0.02.170	0.111 17 (0.001)0	0.007 17 (0.001)0	0.211 17 (0.100)0	0.201 17 (0.010)0	0.0010 17 (0.000)0	0.122 17 (0.010)0	0.072 17 (0.000)0	0.002 17 (0.021)0	1.07 17 (0.000)0
Chloride	mg/L	4.49	4.82	4.87	4.74	5.45	5.62	5.65	5.72	6.15	5.52	5.77	5.96
Fluoride	mg/L	0.0459 U*	<0.0330	0.0663 J	<0.0330	0.0666 J	0.0835 J	0.0946 J	0.0900 J	0.0778 J	0.0999 J	0.0561 J	0.0356 J
Sulfate	mg/L	0.668 J	0.512	0.545	0.504	0.827	0.539	0.562	0.565	0.747	0.590	0.555	0.548
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	30.2	26.2	26.4	23.3	26.0	25.4 J	26.7	26.7	26.9	26.1	27.0	26.0
Alkalinity, Carbonate	mg/L	<5.00	<1.45	<1.45	<1.45	<1.45	0.725 UJ	<0.725	<0.725	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	6.2 J	-	6.05 J	-	-	-	6.26 J	6.23 J	-	6.83 J	6.21 J	-
Total Dissolved Solids	mg/L	30.0	57.1 J	42.9	30.0	44.3	31.4 J	50.0 J	42.9 J	40.0	22.9	45.7 J	22.9

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			B-9					8	9-B10			
Sample Date Sample ID Parent Sample ID		2-Aug-22 JOF-GW-B-9-08022022	13-Sep-22 JOF-GW-B-9-09132022	7-Feb-23 JOF-GW-B-9-02072023	17-Mar-15 JOF-B10-0315	22-Sep-15 JOF-B10-0915	21-Mar-16 JOF-B10-0316	21-Mar-16 JOF-B10-0316 DUP JOF-B10-0316	20-Sep-16 89-B10_0920161200_L861582-01	21-Sep-16 89-B10_0921161200_20160928-01	15-Mar-17 JOF- B10	15-Mar-17 JOF-B10-DUP JOF- B10-0317
Sample Depth		48 ft	48 ft	48 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample
Program	Units	CCR Program	CCR Program		State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals									I.		I .	
Antimony	ug/L	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<2.00	<2	-	<2	<2
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2	-	<1	<1
Barium	ug/L	9.22	7.75	8.26	10.6	20.6	14.9	14.0	19.2	-	11.5	11.8
Beryllium	ug/L	<0.200	<0.200	<0.200	<2.00	<2.00	<2.00	<2.00	<2	-	<1	<1
Boron	ug/L	<5.20	<5.20	<5.20	-	-	-	-	<200	-	<80	<80
Cadmium	ug/L	<0.300	<0.300	<0.300	<1.00	<1.00	<1.00	<1.00	<1	-	<1	<1
Calcium	ug/L	6,150	5,790	6,010	-	-	-	-	7,570	-	5,710	6,170
Chromium	ug/L	<3.00	<3.00	<3.00	9.11	2.47	3.86	3.46	<2	-	<2	<2
Cobalt	ug/L	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	<2.00	<2	-	<0.5	<0.5
Copper	ug/L	<0.300	<0.300	<0.300	<5.00	<5.00	<5.00	<5.00	<5	-	<2	<2
Lead	ug/L	<0.500	<0.500	<0.500	<2.00	<2.00	<2.00	<2.00	<2	-	<1	<1
Lithium	ug/L	<3.00	<3.00	<3.00	-	-	-	-	<15	-	<5	<5
Magnesium	ug/L	3,330	3,250	3,440	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.200	<0.200	<0.200	<0.200	<0.2	-	<0.2	<0.2
Molybdenum	ug/L	<0.200	<0.200	0.205 U*	-	-	-	-	<5	-	<5	<5
Nickel	ug/L	<0.600	<0.600	<0.600	5.35	4.93	6.52	6.30	3.68	-	3.5	3.65
Potassium	ug/L	254 J	225 J	227 J	-	-	-	-	-	-	915	948
Selenium	ug/L	<1.50	<1.50	<1.50	<2.00	<2.00	<2.00	<2.00	<2	-	<5	<5
Silver	ug/L	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	<2.00	<2	-	<1	<1
Sodium	ug/L	3,130	2,770	3,080	-	-	-	_	-	-	7,170	7,850
Thallium	ug/L	<0.600	<0.600	<0.600	2.00 UJ	<2.00	<1.00	<1.00	<1	<u>-</u>	<1	<1
Vanadium	ug/L	<3.30	<3.30	<3.30	<5.00	<5.00	<5.00	<5.00	<5	<u> </u>	1.26	1.73
Zinc	ua/L	<3.30	<3.30	<3.30	<25.0	<25.0	<25.0	<25.0	<25	<u>-</u>	10.4	10.8
Radiological Param	neters											
Radium-226	pCi/L	-0.246 +/-(0.309)U	0.143 +/-(0.468)U	0.515 +/-(0.547)U	-	-	-	-	-	-0.118 +/-()	0.134 +/-(0.0815)	0.130 +/-(0.0961)U
Radium-228	pCi/L	0.413 +/-(0.505)U	0.101 +/-(0.773)U	0.629 +/-(0.484)U	-	-	-	_	-	1.27 +/-()	+/-(0.204)U	0.0691 +/-(0.288)U
Radium-226+228	pCi/L	0.413 +/-(0.592)U	0.243 +/-(0.904)U	1.14 +/-(0.730)Ú	-	-	-	-	-	- "	` - '	_`
Anions												
Chloride	mg/L	6.34	6.12	6.17	-	-	-	-	24.3	-	14.2	14.6
Fluoride	mg/L	< 0.0330	0.0454 J	0.0735 J	<0.100	<0.100	<0.100	<0.100	<0.1	-	<0.100	<0.100
Sulfate	mg/L	0.651	0.545	0.563	=	-	-	-	6.85	-	3.60	3.84
General Chemistry	•											
Alkalinity, Bicarbonate	mg/L	27.2 J	26.2	25.2	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	<0.725	<1.45	<1.45	-	-	-	-	-	-	-	-
pH (lab)	SU	6.10 J	-	6.78 J	-	-	-	-	5.52	-	6.2	6.2
Total Dissolved Solids	ma/L	28.0 J	36.0	36.0	l			I .	92		82.0	68.0

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1						89	-B10					
Sample Date Sample ID Parent Sample ID		13-Jun-17 JOF-B10	13-Jun-17 JOF-B10-DUP JOF-B10-0617	19-Sep-17 JOF-B10	11-Dec-17 JOF-B10-1217	14-Mar-18 JOF-B10-0318	12-Jun-18 JOF-B10-0618	12-Sep-18 JOF-B10-09122018	12-Dec-18 JOF-B10	12-Dec-18 JOF-B10-DUP JOF-B10-12122018	12-Mar-19 JOF-B10	10-Sep-19 JOF-B10-0919	3-Mar-20 JOF-B10-0320
Sample Depth Sample Type Program	Units	40 ft Normal Environmental Sample State Compliance	40 ft Field Duplicate Sample State Compliance	40 ft Normal Environmental Sample State Compliance	40 ft Field Duplicate Sample State Compliance	40 ft Normal Environmental Sample State Compliance	40 ft Normal Environmental Sample State Compliance	40 ft Normal Environmental Sample State Compliance					
	0	State Compilation	Ctate Compilation	Ciato Compilation	otato compilanto	otato compitanto	otato oompiianoo	otato compilarios	Otato Sompilarios	Ctate Compilation	Cutto Compilation	Otato Somphanos	Otato Compilation
Total Metals													
Antimony	ug/L	-	-	<2	-	<2	-	<2	-	-	<0.378	<0.378	<1.00
Arsenic	ug/L	-	-	<1	-	<1	-	<1	-	-	<0.323	0.777 J	<2.00
Barium	ug/L	-	-	<10 <1	-	<10 <1	-	<10 <1	-	-	10.3 <0.155	25.8 <0.182	13.9 <0.200
Beryllium	ug/L	- <80	- <80	<80	- <80	<80	- <80	<80	<80	- <80	<30.3	95.1	10.0 U*
Boron Cadmium	ug/L	<0 U	<80	<80 <1	\00	<80 <1	<80	<80 <1	<80	<80	<30.3 0.135 J	95.1 0.163 J	<0.300
Calcium	ug/L ug/L	6.080	6.190	6,250	5,430	5,710	5,210	4.890	6.720	6,490	6,270	6.210	6.170
Chromium	ug/L	0,000	0,190	<2	5,430	2.16	3,210	2.18	0,720	- 0,430	<1.53	4.01 U*	<3.00
Cobalt	ug/L	_	_	<0.5	_	<0.5		<0.5	_		0.131 U*	0.334 J	<0.300
Copper	ug/L	_	<u>-</u>	<2	_	<2	_	<2	_	_	<0.627	<0.627	0.619 J
Lead	ug/L	_	<u>-</u>	<1	_	<1	_	1 UJ	_	_	0.2 J	0.691 J	0.650 J
Lithium	ug/L	<5	<5	5.05	<5	<5	5.26	5.93	<5	<5	4.97 J	9.77	4.25 J
Magnesium	ug/L						-						-
Mercury	ug/L	_	<u>-</u>	<0.2	<u>-</u>	<0.2	_	<0.2	_	_	<0.101	<0.101	<0.0670
Molybdenum	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.61	<0.610	<0.200
Nickel	ug/L	_	_	2.85	_	2.87		2.11		_	3.42	3.87	4.20
Potassium	ug/L	-	-	931	-	_	_	_	_	_	_	_	_
Selenium	ug/L	-	-	<5	-	<5	-	<5	_	-	<2.62	<1.51	<2.00
Silver	ug/L	-	-	<1	-	<1	-	<1	_	-	<0.121	<0.177	<0.300
Sodium	ug/L	-	-	7,360	-	-	-	-	-	-	-	-	-
Thallium	ug/L	-	-	<1	-	<1	-	<1	-	-	<0.128	<0.148	<0.600
Vanadium	ug/L	-	-	<1	-	1.45	-	2.48 U*	-	-	1.09 J	3.62 U*	<3.30
Zinc	ug/L	-	-	7.34	-	7.44	-	7.53 U*	-	-	9.46	14.7 U*	14.9 J
Radiological Para	meters												
Radium-226	pCi/L	0.178 +/-(0.0867)	0.164 +/-(0.0740)	0.258 +/-(0.0988)	0.0903 +/-(0.0586)	0.0644 +/-(0.0468)	0.116 +/-(0.118)U	0.310 +/-(0.100)U*	0.0590 +/-(0.0494)U	0.104 +/-(0.0646)U*	0.173 +/-(0.0812)	0.159 +/-(0.350)U	0.428 +/-(0.577)U
Radium-228	pCi/L	0.000549 +/-(0.159)U	0.0620 +/-(0.180)U	0.277 +/-(0.228)U	0.549 +/-(0.221)	0.162 +/-(0.227)U	0.142 +/-(0.214)U	0.122 +/-(0.173)U	0.287 +/-(0.221)U	0.400 +/-(0.227)	0.245 +/-(0.197)U	0.322 +/-(0.414)U	0.156 +/-(0.500)U
Radium-226+228	pCi/L	=			- ' '		2					0.482 +/-(0.542)U	0.584 +/-(0.764)U
Anions													
Chloride	mg/L	18.9	19.1	15.9	11.7	10.6	11.7	9.34	18.7	18.3	17.2	15.7	15.7
Fluoride	mg/L	-	-	<0.100	-	<0.100	-	<0.100	-	-	0.0503 J	0.0498 J	<0.0330
Sulfate	mg/L	4.86	4.76	3.21	1.15	<1.00	1.05	<1.00	3.30	3.12	3.19 J	3.12	3.18
General Chemistr	у	·	·	·	·	·	·	·	·		·	·	
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	-	-	5.7	-	5.9	-	5.8 J	-	-	5.7 J	6.2 J	5.68 J
Total Dissolved Solids	mg/L	66.0	76.0	74.0	40.0	44.0	66.0	55.0 J	39.0 J	55.0 J	59.0	79.0	77.1

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1	ĺ		89	P-B10			ĺ		В	3-11		
Sample Date Sample ID Parent Sample ID		15-Sep-20 JOF-B10-0920	15-Mar-21 JOF-GW-89-B10-03152021	14-Sep-21 JOF-GW-89-B10-09142021	9-Feb-22 JOF-GW-89-B10-02092022	4-Aug-22 JOF-GW-89-B10-08042022	8-Feb-23 JOF-GW-89-B10-02082023	17-Mar-15 JOF-B11-0315	22-Sep-15 JOF-B11-0915	22-Mar-16 JOF-B11-0316	21-Sep-16 B-11_0921161200_20160928-02	21-Sep-16 B-11_0921161201_L861582-02	16-Mar-17 JOF-B11
Sample Depth Sample Type Program	Units	40 ft Normal Environmental Sample State Compliance	40 ft Normal Environmental Sample	35 ft Normal Environmental Sample State Compliance									
Total Metals		<u> </u>		I .		<u> </u>			I	I .			I
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	-	<2	<2
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	2.02 U*	<2.00	<2.00	<2.00	-	<2	<1
Barium	ug/L	9.49	7.97	10.4	8.53	10.4	10.0	184	244	176	-	363	258
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<2.00	<2.00	<2.00	-	<2	<1
Boron	ug/L	10.5 J	11.6 J	13.2 J	7.29 J	14.4 J	16.7 U*	-	-	-	-	200	183
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<1.00	<1.00	<1.00	-	<1	<1
Calcium	ug/L	5,690	5,960	6,200	5,710	6,280	6,280	-			-	41,100	26,700
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<2.00	<2.00	<2.00	-	<2	<2
Cobalt	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	-	<2	0.726
Copper	ug/L	0.386 J	<0.300	<0.300	<0.300	<0.300	<0.300	<5.00	<5.00	<5.00	-	<5	<2
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<2.00	<2.00	<2.00	-	<2	<1
Lithium	ug/L	4.07 J	4.61 J	<3.00	3.13 J	<3.00	3.36 J	-	-	-	-	<15	<5
Magnesium	ug/L	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.200	<0.200		-	-	-
Mercury	ug/L							<0.200		<0.200	-	<0.2 <5	<0.2
Molybdenum	ug/L	<0.200 3.18	<0.200	<0.200	<0.200 2.43	<0.200	<0.200 2.94	5.51	- 6 22	4.78	-	7.18	<5 6.47
Nickel Potassium	ug/L		2.78	2.60		2.83		5.51	6.22		-	7.10	1,970
Selenium	ug/L ug/L	<2.00	<2.00	<2.00	<1.50	- <1.50	<1.50	<2.00	<2.00	<2.00	-	- <2	1,970
Silver	ug/L ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	-	<2	<1
Sodium	ug/L ug/L	-	<0.300			<0.300	-	~2.00			-	~2	161.000
Thallium	ug/L ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	2.00 UJ	<2.00	<1.00	-	- <1	<1
Vanadium	ug/L ug/L	3.44 J	<3.30	<3.30	<3.30	<3.30	5.89 U*	<5.00	<5.00	<5.00	-	<5	1.18
Zinc	ug/L	9.43 J	6.65 J	7.49 U*	6.94 J	7.34 J	7.10 J	<25.0	<25.0	<25.0	-	<25	12.6
Radiological Para	meters	8.40 0	0.000	7.49 0	0.54 3	1.54 5	7.10 0	~20.0	~20.0	~20.0	-	123	12.0
Radium-226	pCi/L	0.0724 +/-(0.295)U	-0.129 +/-(0.0896)U	0.212 +/-(0.330)U	0.331 +/-(0.472)U	0.255 +/-(0.518)U	0.358 +/-(0.390)U	_	_		0.87 +/-()	-	1.28 +/-(0.228)
Radium-228	pCi/L	0.227 +/-(0.373)U	0.692 +/-(0.394)U*	0.161 +/-(0.244)U	0.245 +/-(0.348)U	-0.0733 +/-(0.378)U	0.344 +/-(0.446)U	_	_	_	1.33 +/-()	_	0.218 +/-(0.259)U
Radium-226+228	pCi/L	0.299 +/-(0.475)U	0.692 +/-(0.404)U*	0.373 +/-(0.410)U	0.576 +/-(0.586)U	0.255 +/-(0.641)U	0.702 +/-(0.592)U	=	_	_	-	_	-
Anions	1 1 2 2		1	1				•	'	1	1		-
Chloride	mg/L	13.4	13.7	18.5	15.0	18.0	15.0	-	-	-	-	392	355
Fluoride	mg/L	0.0546 J	0.0736 J	0.0586 J	0.0581 J	0.0767 J	0.0695 J	<0.100	<0.100	<0.100	_	<0.1	<0.100
Sulfate	mg/L	2.27	2.54	4.29	2.19	4.71	3.58	=	-	-	-	24	26.4
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	5.61 J	5.53 J	5.80 J	5.76 J	12.4 J	5.84 J	-	-	-	-	5.19	5.7
Total Dissolved Solids	mg/L	67.1	35.7 U*	68.6	85.7 J	58.0	45.0	-	-	-	-	870	612

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1 1							B-11						
Sample Date Sample ID Parent Sample ID		13-Jun-17 JOF-B11	19-Sep-17 JOF-B11	19-Sep-17 JOF-B11-DUP JOF-B11-0917	11-Dec-17 JOF-B11-1217	14-Mar-18 JOF-B11-0318	11-Jun-18 JOF-B11-DUP-0618 JOF-B11-0618	12-Jun-18 JOF-B11-0618	13-Sep-18 JOF-B11-09132018	11-Dec-18 JOF-B11	13-Mar-19 JOF-B11	13-Mar-19 JOF-B11-DUP JOF-B11-031319	11-Sep-19 JOF-B11-0919	5-Mar-20 JOF-B11-0320
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance			
Total Metals	1													
Antimony	ug/L	-	<2	<2	-	<2	-	-	<2	-	<0.378	<0.378	<0.378	<1.00
Arsenic	ug/L	-	<1	<1	-	<1	-	-	<1	-	<0.323	<0.323	0.475 J	<2.00
Barium	ug/L	-	384	379	-	240	-	-	259	-	174	174	399	157
Beryllium	ug/L	-	<1	<1	-	<1	-	-	<1	-	<0.155	<0.155	<0.182	<0.200
Boron	ug/L	167	161	164	145	187	134	138	133	148	129	137	152	104
Cadmium	ug/L	-	<1	<1	-	<1	-	-	<1	-	0.15 J	0.233 J	0.381 J	<0.300
Calcium	ug/L	25,000	40,100	39,800	36,200	33,300	17,400	18,500	27,400	27,300	22,400	22,500	39,200	16,800
Chromium	ug/L	-	<2	<2	-	<2	-	-	2.11	-	<1.53	<1.53	3.58 U*	<3.00
Cobalt	ug/L	-	0.935	0.96	-	0.734	-	-	0.749	-	0.556	0.562 U*	1.30	0.565 J
Copper	ug/L	-	<2	<2	-	<2	-	-	<2	-	1.07 J	<0.627	<0.627	0.449 J
Lead	ug/L	-	<1	<1	-	<1	-	-	1 UJ	-	<0.128	<0.128	0.304 J	<0.500
Lithium	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<3.14	<3.14	6.82	<3.00
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	-	-	_	-
Mercury	ug/L	-	<0.2	<0.2	-	<0.2	-	-	<0.2	-	<0.101	<0.101	<0.101	<0.0670
Molybdenum	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	<5	<0.61	<0.61	<0.610	<0.200
Nickel	ug/L	-	7.79	8.05	-	5.59	-	-	5.53	-	5.29	5.28	8.82	4.09
Potassium	ug/L	-	2,520	2,480	_	-	-	-	_	-	-	-	_	_
Selenium	ug/L	-	<5	<5	-	<5	-	-	<5	-	<2.62	<2.62	<1.51	<2.00
Silver	ug/L	-	<1	<1	_	<1	-	-	<1	-	<0.121	<0.121	<0.177	<0.300
Sodium	ug/L	-	242,000	237,000	-	-	-	-	-	-	-	_	_	_
Thallium	ug/L	<u>-</u>	<1	<1	_	<1	_	<u>-</u>	<1	<u>-</u>	<0.128	<0.128	<0.148	<0.600
Vanadium	ug/L	<u>-</u>	<1	<1	_	<1	<u>-</u>	<u>-</u>	2.11 U*	<u>-</u>	<0.899	<0.899	2.49	<3.30
Zinc	ug/L	-	15.4	17.4	_	11.7	-	-	13.3 U*	-	10.7	10	22.5	9.57 J
Radiological Para	meters				•				•				•	
Radium-226 Radium-228 Radium-226+228	pCi/L pCi/L pCi/L	0.968 +/-(0.180) 0.610 +/-(0.217)	1.86 +/-(0.285) 0.887 +/-(0.287)	2.01 +/-(0.304) 0.824 +/-(0.295)	1.56 +/-(0.238) 0.871 +/-(0.250)	1.02 +/-(0.182) 0.759 +/-(0.240)	0.495 +/-(0.197) 0.0726 +/-(0.193)U	0.702 +/-(0.234) 0.379 +/-(0.236)	1.28 +/-(0.215) 0.769 +/-(0.249)	0.845 +/-(0.174) 1.18 +/-(0.312)	0.773 +/-(0.169) 0.398 +/-(0.229)	0.831 +/-(0.175) 0.447 +/-(0.278)	1.87 +/-(0.630) 0.926 +/-(0.567)U* 2.79 +/-(0.847)J	1.26 +/-(0.481) 0.194 +/-(0.392)U 1.45 +/-(0.620)J
Anions					•				•					
Chloride	mg/L	285	472	471	453	302	228	227	279	333	220	219	463	181
Fluoride	mg/L	-	<0.100	<0.100	-	<0.100	-	-	<0.100	-	<0.0263	<0.0263	<0.0263	<0.0330
Sulfate	mg/L	32.2	29.4	30.3	31.0	34.0	35.5	36.1	25.9	29.1	33.9 J	30.4 J	26.7	36.4
General Chemistr	у													
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	-	5.3	5.2	-	5.9	-	-	5.5 J	-	5.7 J	5.8 J	5.7 J	5.46 J
Total Dissolved Solids	mg/L	619	911	915	770	613	426	470	654	550	432	430	912	384

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1			B-11						B-12		
Sample Date Sample ID Parent Sample ID		17-Sep-20 JOF-B11-0920	16-Mar-21 JOF-GW-B11-03162021	15-Sep-21 JOF-GW-B11-09152021	9-Feb-22 JOF-GW-B-11-02092022	3-Aug-22 JOF-GW-B-11-08032022	3-Aug-22 JOF-GW-FD01-08032022 JOF-GW-B-11-08032022	17-Mar-15 JOF-B12-0315	22-Sep-15 JOF-B12-0915	22-Sep-15 JOF-B12-0915 DUP JOF-B12-0915	21-Mar-16 JOF-B12-0316	21-Sep-16 B-12_0921161200_20160928-03
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample CCR Program	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance
Total Metals										I.		
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<2.00	-
Arsenic	ug/L	<2.00	<2.00	2.15 J	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	-
Barium	ug/L	247	169	218	177	183	191	272	502	492	286	-
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<2.00	<2.00	<2.00	<2.00	-
Boron	ug/L	142	120	121	105	109	112	-	-	-	-	-
Cadmium	ug/L	0.356 J	<0.300	<0.300	<0.300	<0.300	<0.300	<1.00	<1.00	<1.00	<1.00	-
Calcium	ug/L	31,400	23,600	28,100	22,800	26,300	26,600					-
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<2.00	<2.00	<2.00	<2.00	-
Cobalt	ug/L	0.866 J	0.517 J	0.736 J	0.373 J	0.393 J	0.408 J	<2.00	<2.00	-	<2.00	-
Copper	ug/L	0.791 J	<0.300	0.582 J	<0.300	1.34 J	0.300 J	<5.00	<5.00	-	<5.00	-
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<2.00	<2.00	<2.00	<2.00	-
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	-	-	-	-	-
Magnesium	ug/L	- <0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	- <0.200	<0.200	<0.200	<0.200	-
Mercury	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200					-
Molybdenum Nickel	ug/L ug/L	6.62	3.83	4.83	3.51	4.16	4.22	12.7	17.5	17.1	16.5	-
Potassium	ug/L ug/L	-	3.63	4.65	3.51	4.10	4.22	12.7	17.5	17.1	10.5	-
Selenium	ug/L ug/L	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<2.00	<2.00	<2.00	<2.00	_
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	<2.00	-
Sodium	ug/L	-	-	-	-	-	-	-	-		-2.00	<u> </u>
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	2.00 UJ	<2.00	<2.00	<1.00	
Vanadium	ug/L	<3.30	<3.30	3.32 J	<3.30	<3.30	<3.30	<5.00	<5.00	-2.00	<5.00	_
Zinc	ua/L	14.0 J	7.28 J	14.5 U*	8.45 J	9.32 J	9.14 J	<25.0	25.9	_	26.5	_
Radiological Para		11.00	7.200	10	0.100	0.020	0.110	20.0	20.0	1	20.0	
Radium-226	pCi/L	1.71 +/-(0.829)	0.704 +/-(0.399)	0.688 +/-(0.447)	1.59 +/-(0.824)	0.512 +/-(0.491)U	0.329 +/-(0.623)U	-	-	-	-	1.86 +/-()
Radium-228	pCi/L	0.477 +/-(0.402)U	0.357 +/-(0.415)Ú	0.269 +/-(0.357)Ú	0.432 +/-(0.369)U	0.573 +/-(0.482)U	0.855 +/-(0.568)	-	_	_	-	0.735 +/-()
Radium-226+228	pCi/L	2.18 +/-(0.921)J	1.06 +/-(0.576)J	0.957 +/-(0.572)J	2.03 +/-(0.903)J	1.09 +/-(0.688)Ú	1.18 +/-(0.843)J	-	-	-	-	- "
Anions												
Chloride	mg/L	298	220	268	202	216 J	238 J	=	-	-	-	-
Fluoride	mg/L	<0.0330	<0.0330	<0.0330	<0.0330	0.0330 UJ	0.0330 UJ	<0.100	<0.100	<0.100	<0.100	-
Sulfate	mg/L	27.5	33.8	31.2	31.9	39.2 J	41.0 J	-	-	-	-	-
General Chemistr												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	5.28 J	5.33 J	5.48 J	5.72 J	5.63 J	5.67 J	-	-	-	-	-
Total Dissolved Solids	mg/L	580	433	567	510	413	416	-	-	-	-	-

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1	1					B-12						
Sample Date Sample ID Parent Sample ID		21-Sep-16 B-12_0921161200_L861582-03	21-Sep-16 B-12_0921161200D_20160928-05 B-12_0921161200_20160928-03	21-Sep-16 B-12_0921161200D_L861582-05 B-12_0921161200D_L861582-05	16-Mar-17 JOF-B12	13-Jun-17 JOF-B12	19-Sep-17 JOF-B12	11-Dec-17 JOF-B12-1217	11-Dec-17 JOF-B12-1217-DUP JOF-B12-1217	14-Mar-18 JOF-B12-0318	12-Jun-18 JOF-B12-0618	13-Sep-18 JOF-B12-09132018	11-Dec-18 JOF-B12
Sample Depth		35 ft	35 ft	35 ft	35 ft	35 ft	35 ft	35 ft	35 ft	35 ft	35 ft	35 ft	35 ft
Sample Type Program	Units	Normal Environmental Sample State Compliance	Field Duplicate Sample State Compliance	Field Duplicate Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Field Duplicate Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance
	Office	State Compliance	State Compliance	State compliance	State Compilance	State Compliance	State compliance	State Compliance	State Compnance	State compnance	State Compilance	State Compliance	State Compliance
Total Metals													
Antimony	ug/L	<2	-	<2	<2	-	<2	-	-	<2	-	<2	-
Arsenic	ug/L	<2	-	<2	<1	-	<1	-	-	<1	-	<1	-
Barium	ug/L	601	-	603	463	-	500	-	-	281	-	544	-
Beryllium	ug/L	<2	-	<2	<1	-	<1	-	1	<1	Ī.,	<1	1.
Boron	ug/L	<200	-	<200	<80	<80	<80	<80	<80	<80	<80	<80	<80
Cadmium	ug/L	<1	-	<1	<1	-	<1	-		<1	-	1.1	-
Calcium	ug/L	56,600	-	56,600	45,700	45,500	51,500	51,500	52,100	47,400	44,600	55,100	43,400
Chromium	ug/L	8.48	-	2.98	<2	-	<2	-	-	<2	-	2.21	-
Cobalt	ug/L	4.43	-	4.47	5.93	-	5.63	-	-	3.08	-	7.7	-
Copper	ug/L	<5	-	<5	<2	-	<2	-	-	<2	-	<2	-
Lead	ug/L	<2	-	<2	<1	-	<1	-	1 -	<1	-	1 UJ	-
Lithium	ug/L	<15	-	<15	<5	<5	<5	<5	<5	<5	<5	<5	<5
Magnesium	ug/L		-	-	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.2	-	<0.2	<0.2	-	<0.2	-	-	<0.2	-	<0.2	-
Molybdenum	ug/L	<5	-	<5	<5 00.5	<5	<5 26	<5	<5	<5 00.5	<5	<5	<5
Nickel	ug/L	26.8	-	26.3	23.5	-		-	-	28.5	-	28.2	-
Potassium Selenium	ug/L	<2	-	<2	3,580 <5	-	4,440 <5	-	-	- <5	-	- <5	-
	ug/L	<2	-	<2	<5	-	1	-	-	<5	-	<5 <1	-
Silver Sodium	ug/L	<2	-	<2	576,000	-	<1 763,000	-	-	<1	-	<1	-
	ug/L	- <1	-	<1	<1	-		-	-	- <1	-	- <1	-
Thallium	ug/L	1	-	· ·		-	<1	-	-		-		-
Vanadium	ug/L	<5 58.6	-	<5 57.2	2.23 41.1	-	1.26 47.6	-	-	<1 55.8	-	2.44 U* 109	-
Zinc Radiological Para	ug/L	00.0	-	57.2	41.1	-	47.6	-	-	55.8	-	109	-
			0.00 . / 0		0.00 (1/0.044)	0.40 - / /0.000	0.00 -/ (0.000)	0.00 : ((0.040)	0.07 . / (0.070)	0.40 (4.0000)	0.44 - (/0.405)	0.00 (1/0.404)	0.47 (7.0040)
Radium-226	pCi/L	-	2.22 +/-()	-	2.33 +/-(0.344)	2.49 +/-(0.338)	3.02 +/-(0.396)	2.63 +/-(0.348)	2.97 +/-(0.379)	2.49 +/-(0.322)	2.11 +/-(0.425)	3.39 +/-(0.421)	2.17 +/-(0.312)
Radium-228 Radium-226+228	pCi/L pCi/L	-	1.73 +/-()	-	1.33 +/-(0.338)	1.39 +/-(0.307)	1.58 +/-(0.349)	2.12 +/-(0.332)	2.72 +/-(0.452)	1.20 +/-(0.306)	0.514 +/-(0.284)	1.82 +/-(0.357)	1.44 +/-(0.332)
Anions	PONE		_	_	-	-	-	-		-	-	-	-
Chloride	mg/L	1,270	_	1,240	970	1,150	1,300	1,260	1,270	888	915	1,160	886
Fluoride	mg/L	<0.1	_	<0.1	<0.500	-	<0.250	,250	- 1,270	<0.250	_	<0.250	_
Sulfate	mg/L	25.1	_	25	18.7	29.8	35.4	36.7	36.7	30.4	31.8	31.0	32.0
General Chemistry	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	-	-	5.32	5.7	-	5.4	-	-	5.7	-	5.5 J	-
Total Dissolved Solids	mg/L	2,080	-	2,410	1,910	2,160	2,430	2,090	2,040	1,600	1,660	2,300	1,420

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1	1		E	3-12			1			B-13		
Sample Date Sample ID Parent Sample ID		13-Mar-19 JOF-B12	12-Sep-19 JOF-B12-0919	5-Mar-20 JOF-B12-0320	16-Sep-20 JOF-B12-0920	16-Mar-21 JOF-GW-B12-03162021	16-Sep-21 JOF-GW-B12-09162021	17-Mar-15 JOF-B13-0315	17-Mar-15 JOF-B13-0315-DUP JOF-B13-0315	22-Sep-15 JOF-B13-0915	21-Mar-16 JOF-B13-0316	20-Sep-16 B-13_0920161200_L861582-04	21-Sep-16 B-13_0921161200_20160928-04
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Field Duplicate Sample State Compliance	42 ft Normal Environmental Sample State Compliance								
Total Metals	1	!						•	1				
Antimony	ug/L	<0.378	<0.378	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<2.00	<2.00	<2	-
Arsenic	ug/L	<0.323	3.21	11.3	5.84	6.79	3.54 J	<2.00	<2.00	<2.00	<2.00	<2	-
Barium	ug/L	254	690	261	370	254	282	1,050	1,060	826	838	754	-
Beryllium	ug/L	<0.155	0.438 J	1.54	0.939	0.646	0.348 J	<2.00	<2.00	<2.00	<2.00	<2	-
Boron	ug/L	43.4 J	70.5 J	<5.20	67.2	45.4	49.6	-	-	-	-	<200	-
Cadmium	ug/L	0.71 J	1.22	0.456 J	0.769 J	0.506 J	0.580 J	2.18	2.42	2.05	2.01	2.17	-
Calcium	ug/L	39,400	65,000	26,100	44,100	36,100	38,200	-	-	-	-	362,000	-
Chromium	ug/L	<1.53	10.8 U*	18.7	10.3	8.54 J	5.36 J	3.66	3.90	5.58	3.23	<2	-
Cobalt	ug/L	4.16	12.4	7.38	8.34	6.87	6.58	5.16	5.26	3.11	3.47	3.21	-
Copper	ug/L	0.675 J	3.39	8.94	5.11	4.21	3.18	<5.00	<5.00	<5.00	<5.00	<5	-
Lead	ug/L	0.143 J	2.01	6.13	3.16	2.63	0.983 J	<2.00	<2.00	<2.00	<2.00	<2	-
Lithium	ug/L	<3.14	7.74	5.11 J	4.16 J	3.86 J	<3.00	-	-	-	-	16	-
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.101	0.175 J	0.129 J	0.0690 J	0.108 J	0.137 J	<0.200	<0.200	0.301	<0.200	<0.2	-
Molybdenum	ug/L	<0.61	<0.610	1.40	0.706 J	0.687 U*	0.277 J	-	-	-	-	<5	-
Nickel	ug/L	23.8	40.1	45.3	38.3	30.2	22.7	22.2	22.4	19.2	19.9	17.6	-
Potassium	ug/L	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<2.62	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2	-
Silver	ug/L	0.158 J	0.355 J	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00	<2.00	<2.00	<2	-
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<0.128	0.225 J	<0.600	<0.600	<0.600	<0.600	2.00 UJ	2.00 UJ	<2.00	<1.00	<1	-
Vanadium	ug/L	0.99 J	9.36	20.5	12.3 J	10.0 U*	4.44 J	<5.00	<5.00	<5.00	<5.00	<5	-
Zinc	ug/L	48.1	89.1	99.5	82.4	61.0	49.4 U*	42.1	41.5	30.6	35.5	34.6	-
Radiological Para	meters												
Radium-226	pCi/L	1.75 +/-(0.274)	3.32 +/-(0.870)	2.89 +/-(0.780)	2.74 +/-(0.792)	1.75 +/-(0.616)	1.70 +/-(0.541)	-	-	-	-	-	3.81 +/-()
Radium-228	pCi/L	0.930 +/-(0.283)	1.47 +/-(0.652)U*	0.736 +/-(0.389)	1.36 +/-(0.500)	0.635 +/-(0.433)Ú*	0.657 +/-(0.382)	-	_	-	-	_	3.41 +/-()
Radium-226+228	pCi/L	- ` ´	4.80 +/-(1.09)J	3.63 +/-(0.871)	4.10 +/-(0.937)	2.38 +/-(0.753)J	2.36 +/-(0.662)	-	-	-	-	-	- "
Anions													
Chloride	mg/L	715	1,560	566	971	725	803	-	-	-	-	987	-
Fluoride	mg/L	0.0301 J	<0.132	<0.0330	<0.0330	<0.0330	<0.0330	<0.100	<0.100	<0.100	<0.100	<0.1	_
Sulfate	mg/L	29.4 J	29.9	32.2	32.0	34.6	35.5	-	-	-	-	38.2	-
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	5.7 J	5.8 J	5.59 J	5.37 J	5.44 J	5.37 J	-	-	-	-	5.14	-
Total Dissolved Solids	mg/L	1,370	2,580	1,200	1,830	1,500	1,560	-	-	-	-	2,550	-

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	ĺ							B-13					
Sample Date Sample ID Parent Sample ID		16-Mar-17 JOF-B13	12-Jun-17 JOF-B13	19-Sep-17 JOF-B13	11-Dec-17 JOF-B13-1217	14-Mar-18 JOF-B13-0318	14-Mar-18 JOF-B13-0318-DUP-0318 JOF-B13-0318	11-Jun-18 JOF-B13-0618	12-Sep-18 JOF-B13-09122018	11-Dec-18 JOF-B13	12-Mar-19 JOF-B13	10-Sep-19 JOF-B13-0919	4-Mar-20 JOF-B13-0320
Sample Depth Sample Type Program	Units	42 ft Normal Environmental Sample State Compliance	42 ft Field Duplicate Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance				
Total Metals	· ·						I.						
Antimony	ug/L	<2	-	<2	-	<2	<2	-	<2	-	<0.378	<0.378	<1.00
Arsenic	ug/L	<1	-	<1	-	<1	<1	-	<1	-	<0.323	0.542 J	<2.00
Barium	ug/L	712	-	668	-	521	524	-	633	-	469	671	570
Beryllium	ug/L	<1	-	<1	-	<1	<1	-	<1	-	0.187 J	<0.182	0.229 J
Boron	ug/L	<80	<80	<80	<80	<80	<80	<80	<80	<80	<30.3	48.2 J	102
Cadmium	ug/L	2.36	-	2.6	-	1.77	1.84	-	2.21	-	1.72	2.41	1.78
Calcium	ug/L	339,000	315,000	356,000	337,000	311,000	309,000	315,000	286,000	309,000	287,000	283,000	301,000
Chromium	ug/L	<2	-	<2	-	<2	<2	-	<2	-	<1.53	3.13 U*	<3.00
Cobalt	ug/L	3.76	-	3.5	-	2.52	2.5	-	2.43	-	1.76	3.08	2.49
Copper	ug/L	<2	-	2.39	-	<2	<2	-	29.6	-	<0.627	0.966 J	0.398 J
Lead	ug/L	<1	-	<1		<1	<1	- 0.75	12.1 J	-	<0.128	0.435 J	<0.500
Lithium	ug/L	9.59	8.31	9.99	8.52	<5	<5	8.75	10.2	9.87	5.57	12.7	7.12 J
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	<0.101	0.260	0.120 J
Mercury	ug/L	<0.2	- <5	<0.2	-	<0.2 <5	<0.2	-	<0.2	-			
Molybdenum	ug/L	<5 40.0	<5	<5 17.3	<5	<5 12	<5 12.1	<5	<5 14.1	<5	<0.61 9.34	<0.610	<0.200
Nickel Potassium	ug/L	18.9 4,810	-	5,120	-	12	12.1	-	14.1	-	9.34	16.5	12.5
Selenium	ug/L	4,610	-	5,120	-	- <5	<5	-	- <5	-	<2.62	<1.51	<2.00
Silver	ug/L	<1	-	<1	-	<1	<1	-	<1	-	<0.121	<0.177	<0.300
Sodium	ug/L	185,000	-	207.000	-			-	<u> </u>	-	<0.121		<0.300
Thallium	ug/L	<1	-	207,000 <1	-	<1	<1	-	<1	-	<0.128	0.236 J	<0.600
Vanadium	ug/L	<1	-	1.09		<1	<1	-	2.09 U*	-	<0.126	2.37 U*	<3.30
Zinc	ug/L	36	-	35.8	-	25.8	26.3	-	55.5 U*	-	22.3	37.4	24.7
Radiological Para	meters	30	-	33.0	·	23.0	20.3	-	33.3 0	-	22.0	37.4	24.1
Radium-226	pCi/L	4.77 +/-(0.577)	4.44 +/-(0.526)	5.05 +/-(0.588)	4.79 +/-(0.548)	3.99 +/-(0.480)	3.81 +/-(0.463)	3.51 +/-(0.589)	4.83 +/-(0.553)	4.38 +/-(0.523)	2.89 +/-(0.390)	4.24 +/-(1.03)	4.81 +/-(1.14)
Radium-228	pCi/L	2.15 +/-(0.416)	2.55 +/-(0.450)	2.11 +/-(0.420)	2.48 +/-(0.410)	1.29 +/-(0.337)	1.48 +/-(0.335)	1.54 +/-(0.343)	1.90 +/-(0.351)	2.12 +/-(0.416)	1.29 +/-(0.323)	1.65 +/-(0.666)U*	1.73 +/-(0.603)
Radium-226+228	pCi/L	-	-			-	-	-	-	-	-	5.89 +/-(1.22)J	6.54 +/-(1.29)
Anions	1 1000		1	1	-	'	'			'	I		
Chloride	mg/L	971	907	1,070	1,030	904	847	982	782	994	871	986	934
Fluoride	mg/L	<0.500	-	<0.500	-	<0.250	<0.100	-	<0.100	1	0.0369 J	<0.132	<0.0330
Sulfate	mg/L	43.2	42.4	43.8	48.0	43.4	44.4	45.4	41.8	44.8	41.7 J	38.1	48.1
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L		-	-	-			-		-			-
pH (lab)	SU	5.4	-	5.0	-	5.4	5.4		5.2 J		5.2 J	5.6 J	5.08 J
Total Dissolved Solids	mg/L	2,020	2,020	2,290	1,670	1,610	1,550	1,740	2,110	1,620	1,450	2,170	1,580

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1			В	-13					99-1	320A		
Sample Date Sample ID Parent Sample ID		16-Sep-20 JOF-B13-0920	15-Mar-21 JOF-GW-B13-03152021	14-Sep-21 JOF-GW-B13-09142021	9-Feb-22 JOF-GW-B-13-02092022	3-Aug-22 JOF-GW-B-13-08032022	7-Feb-23 JOF-GW-B-13-02072023	15-Mar-17 JOF-B20A	12-Jun-17 JOF-B20A	18-Sep-17 JOF-B20A	11-Dec-17 JOF-B20A-1217	13-Mar-18 JOF-B20A-0318	11-Jun-18 JOF-B20A-0618
Sample Depth Sample Type Program	Units	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample CCR Program	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample State Compliance	42 ft Normal Environmental Sample	35 ft Normal Environmental Sample State Compliance					
Total Metals													
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2	-	<2	-	<2	-
Arsenic	ug/L	<2.00	2.28 J	2.38 J	<2.00	<2.00	3.62 J	<1	_	<1	_	<1	_
Barium	ug/L	530	541	525	564	532	494	36.7	_	34.8	_	55	_
Beryllium	ug/L	<0.200	<0.200	0.207 J	<0.200	<0.200	<0.200	<1	-	<1	-	<1	-
Boron	ug/L	45.1	41.8	35.3	26.4	28.3	51.4	317	335	287	258	459	356
Cadmium	ug/L	2.27	2.04	1.70	1.77	1.70	1.57	<1	-	<1	-	<1	-
Calcium	ug/L	318,000	317,000	247,000	236,000	214,000	225,000	14,900	13,900	15,500	15,400	23,600	21,100
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<2	-	<2	-	<2	-
Cobalt	ug/L	2.83	2.93	2.33	1.67	1.53	1.90	0.505	-	<0.5	-	<0.5	-
Copper	ug/L	0.554 J	0.380 J	0.522 J	0.610 J	0.515 J	<0.300	<2	-	2.47	-	<2	-
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<1	-	<1	-	<1	-
Lithium	ug/L	8.13 J	9.51 J	8.39 J	9.18 J	9.72 J	8.15 J	<5	<5	<5	<5	<5	<5
Magnesium	ug/L	-	-	-	-	-	-	-	_	-	-	-	-
Mercury	ug/L	0.202	0.331	0.343	0.226	0.458	0.407	<0.2	-	<0.2	-	<0.2	-
Molybdenum	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<5	<5	<5	<5	<5	<5
Nickel	ug/L	14.8	14.5	12.7	12.2	11.3	11.6	1.67	-	<1	-	1.36	-
Potassium	ug/L	-	-	-	-	-	-	834	_	673	-	-	-
Selenium	ug/L	<2.00	2.07 J	<2.00	<1.50	2.23 J	<1.50	<5	-	<5	-	<5	-
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<1	_	<1	-	<1	-
Sodium	ug/L	-	-	-	-	-	-	10,300	-	11,200	-	-	-
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<1	_	<1	-	<1	-
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	4.47 U*	1.6	_	<1	-	3.17	-
Zinc	ug/L	31.3	26.6	24.5 U*	24.0	24.7	21.0	5.41	_	<5	-	<5	-
Radiological Para	meters												
Radium-226	pCi/L	4.46 +/-(1.12)	4.35 +/-(1.10)	4.16 +/-(1.05)	3.64 +/-(0.913)	0.937 +/-(0.420)	5.32 +/-(1.23)	0.156 +/-(0.0833)	0.104 +/-(0.0672)	0.174 +/-(0.0757)	0.163 +/-(0.0683)	0.247 +/-(0.0910)	0.298 +/-(0.171)
Radium-228	pCi/L	1.70 +/-(0.605)	1.65 +/-(0.712)U*	0.712 +/-(0.343)	1.48 +/-(0.616)	2.10 +/-(0.910)	2.04 +/-(0.801)U*	-0.125 +/-(0.187)Ú	0.0826 +/-(0.241)Ú	0.106 +/-(0.217)Ú	0.111 +/-(0.230)Ú	0.0647 +/-(0.212)Ú	-0.0457 +/-(0.217)
Radium-226+228	pCi/L	6.16 +/-(1.27)	6.01 +/-(1.31)J	4.87 +/-(1.11)	5.12 +/-(1.10)	3.04 +/-(1.00)	7.36 +/-(1.46)J	- '	_` ´	2 ′	<u> </u>	-` ′	- ` ′
Anions		` ,				, ,	,		•				
Chloride	mg/L	904	894	867	771	752	619	54.5	49.5	50.8	53.0	71.8	70.4
Fluoride	mg/L	<0.0330	0.0452 J	<0.0330	0.0422 J	0.0551 J	<0.0330	<0.100	_	<0.100	_	<0.100	_
Sulfate	mg/L	50.8	52.1	40.7	48.6	59.0	42.4	7.17	7.66	7.30	7.14	6.94	7.22
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	4.96 J	4.86 J	5.07 J	5.01 J	5.05 J	5.26 J	5.7	-	4.1	-	5.6	-
Total Dissolved Solids	mg/L	1,780	1,600	1,700	1,670	1,240	1,150	123	146	165	123	183	193

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1					99	-B20A				
Sample Date Sample ID Parent Sample ID		13-Sep-18 JOF-B20A-09132018	13-Sep-18 JOF-B20A-DUP-09132018 JOF-B20A-09132018	11-Dec-18 JOF-B20A	12-Mar-19 JOF-B20A	11-Sep-19 JOF-B20A-0919	3-Mar-20 JOF-B20A-0320	16-Sep-20 JOF-B20A-0920	15-Mar-21 JOF-GW-99-B20A-03152021	15-Mar-21 JOF-GW-FD-03152021 JOF-GW-99-B20A-03152021	15-Sep-21 JOF-GW-99-B20A-09152021
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Field Duplicate Sample State Compliance	35 ft Normal Environmental Sample State Compliance
Total Metals											•
Antimony	ug/L	<2	<2	-	<0.378	<0.378	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<1	<1	-	<0.323	0.535 J	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	48.3	48.2	-	54	64.3	51.1	51.4	46.5	50.2	43.1
Beryllium	ug/L	<1	<1	-	<0.155	<0.182	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	388	377	475	379	363	261 U*	316	287	341	263
Cadmium	ug/L	<1	<1	-	<0.125	<0.125	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	19,800	20,100	19,800	22,300	21,600	20,200	19,900	18,900	20,400	16,000
Chromium	ug/L	<2	<2	-	<1.53	4.19 U*	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	<0.5	<0.5	-	0.213 U*	0.474 J	0.399 J	<0.300	<0.300	<0.300	<0.300
Copper	ug/L	<2	<2	-	<0.627	<0.627	0.356 J	0.310 J	<0.300	<0.300	0.376 J
Lead	ug/L	<1	<1	-	<0.128	0.389 J	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<5	<5	<5	<3.14	6.83	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.2	<0.2	-	<0.101	<0.101	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<5	<5	<5	<0.61	<0.610	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	1.28	1.34	-	1.74 U*	1.73	1.53 J	1.33 J	1.21 J	0.982 J	1.14 J
Potassium	ug/L	-	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<5	<5	-	<2.62	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	<1	<1	-	<0.121	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<1	<1	-	<0.128	<0.148	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	2.21 U*	1.91 U*	-	<0.899	3.15	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	7.31 U*	9.39 U*	-	3.23 J	7.18 U*	5.53 J	4.90 J	<3.30	<3.30	6.90 U*
Radiological Para	meters										
Radium-226	pCi/L	0.413 +/-(0.116)	0.313 +/-(0.0969)U*	0.172 +/-(0.0885)U*	0.358 +/-(0.116)	0.714 +/-(0.360)	0.933 +/-(0.590)	0.0534 +/-(0.388)U	0.107 +/-(0.221)U	0.372 +/-(0.291)	0.729 +/-(0.471)
Radium-228	pCi/L	0.320 +/-(0.221)Ú	0.483 +/-(0.209)	0.439 +/-(0.227)	0.441 +/-(0.228)	0.0683 +/-(0.229)U	-0.0940 +/-(0.226)U	0.161 +/-(0.424)U	-0.0231 +/-(0.271)U	1.24 +/-(0.654)U*	0.375 +/-(0.383)Ú
Radium-226+228	pCi/L	<u>-</u>	- ` ′	-` '	-` ′	0.783 +/-(0.427)J	0.933 +/-(0.632)J	0.214 +/-(0.575)U	0.107 +/-(0.350)Ú	1.62 +/-(0.716)J	1.10 +/-(0.607)J
Anions				•							
Chloride	mg/L	66.8	63.0	71.1	80.8	71.2	68.0	69.3	65.3	64.3	61.9
Fluoride	mg/L	<0.100	<0.100	-	<0.0263	0.0291 J	<0.0330	<0.0330	<0.0330	0.0809 J	<0.0330
Sulfate	mg/L	5.72	5.31	7.02	7.83 J	6.69	8.23	8.29	9.81	9.42	9.54
General Chemistr	у										
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	5.6 J	6.0 J	-	5.6 J	6.0 J	5.52 J	5.46 J	5.47 J	5.39 J	5.57 J
Total Dissolved Solids	mg/L	218	249	81.0	176	167	47.1	169	184	193	181

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			99-B20A						JOF-101				
Sample Date Sample ID Parent Sample ID		9-Feb-22 JOF-GW-99-B20A-02092022	2-Aug-22 JOF-GW-99-B20A-08022022	8-Feb-23 JOF-GW-99-B20A-02082023	1-Nov-16 JOF-GW-013-11012016	1-Nov-16 JOF-GW-903-11012016 JOF-GW-013-11012016	4-Jan-17 JOF-GW-013-01042017	16-Jan-17 JOF-GW-013-01162017	15-Feb-17 JOF-GW-013-02152017	14-Mar-17 JOF-GW-013-03142017	11-Apr-17 JOF-GW-013-04112017	16-May-17 JOF-GW-013-05162017	6-Jun-17 JOF-GW-013-06062017
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample	52 ft Normal Environmental Sample CCR Program	52 ft Field Duplicate Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program
Total Metals			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>
Antimony	ug/L	<1.00	<1.00	<1.00	0.052 U*	<0.0213	0.439 U*	<0.443	<0.443	<0.443	0.642 U*	<0.443	<0.443
Arsenic	ug/L	<2.00	<2.00	2.31 U*	<0.118	<0.118	0.125 U*	<0.22	<0.22	<0.22	<0.22	0.22 UJ	<0.22
Barium	ug/L	39.6	39.1	37.2	7.6 J	7.06 J	6.86 U*	7.84 J	6.99 J	6.46 J	5.52 J	5.87 J	6.6 J
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.102	<0.102	<0.102	0.131 UJ	<0.131	<0.131	<0.131	<0.131	<0.131
Boron	ug/L	281	235	257	11.2 J	5.72 J	5.49 J	7.81 UJ	<7.81	<7.81	<7.81	<7.81	<7.81
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.152	<0.152	<0.152	<0.0781	<0.0781	<0.0781	<0.0781	<0.0781	<0.0781
Calcium	ug/L	15,300	15,200	14,900	2,850 J	2,930	3,210 U*	2,960	2,880	2,860	2,950	2,720	3,130
Chromium	ug/L	<3.00	<3.00	<3.00	<0.339	<0.339	<0.339	<0.378	<0.378	<0.378	<0.378	0.378 UJ	<0.378
Cobalt	ug/L	<0.300	<0.300	<0.300	2.27	2.21	1.6 U*	1.1	2.3	1.72	1.49	1.54	2.07
Copper	ug/L	<0.300	<0.300	<0.300	<0.454	<0.454	0.696 U*	<1.04	1.69 U*	<1.04	1.23 U*	<1.04	<1.04
Lead	ug/L	<0.500	<0.500	<0.500	<0.0675	<0.0675	<0.0675	<0.318	<0.318	<0.318	<0.318	<0.318	<0.318
Lithium	ug/L	<3.00	<3.00	<3.00	1.19 U*	1.62 U*	5.78 U*	3.07 U*	3.74 U*	<2.12	<2.12	<2.12	<2.12
Magnesium	ug/L	-	-	-	1,480 J	1,470 J	1,580 U*	1,450	1,340	1,320	1,430	1,460	1,540
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.0521	<0.0521	<0.0521	<0.0521	<0.0521	<0.0653	<0.0653	<0.0653	<0.0653
Molybdenum	ug/L	<0.200	<0.200	<0.200	<0.873	< 0.873	<0.873	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593
Nickel	ug/L	0.818 J	1.03 J	1.06 J	1.33	1.37	1.32 U*	1.29	1.39	1.15	1.14	0.989 J	1.64 U*
Potassium	ug/L	-	-	-	245 J	265 J	241 J	216 J	230 J	196 J	180 J	210 J	211 J
Selenium	ug/L	<1.50	<1.50	<1.50	<0.348	<0.348	<0.348	<1.27	<1.27	<1.27	<1.27	<1.27	<1.27
Silver	ug/L	<0.300	<0.300	<0.300	-	-	_	-	-	-	-	-	-
Sodium	ug/L	-	-	-	4,290 J	4,230 J	4,020	4,100	3,010	3,210	3,280	3,150	3,470
Thallium	ug/L	<0.600	<0.600	<0.600	0.041 U*	0.053 U*	<0.036	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531
Vanadium	ug/L	<3.30	<3.30	6.37 U*	-	-	-	-	-	-	-	-	-
Zinc	ug/L	3.35 J	<3.30	<3.30	-	-	-	-	-	-	-	-	-
Radiological Para	meters												
Radium-226	pCi/L	-0.0179 +/-(0.353)U	0.333 +/-(0.367)U	0.147 +/-(0.439)U	0.172 +/-(0.35)U	-0.0301 +/-(0.22)U	0.416 +/-(0.54)U	-0.1170 +/-(0.21)U	0.473 +/-(0.35)J	0.569 +/-(0.55)U	0.644 +/-(0.51)U	-0.1260 +/-(0.092)U	0.0156 +/-(0.19)U
Radium-228	pCi/L	0.314 +/-(0.506)U	0.295 +/-(0.491)U	0.524 +/-(0.401)U	0.238 +/-(0.30)U	0.208 +/-(0.27)U	0.126 +/-(0.25)U	0.153 +/-(0.19)U	0.0791 +/-(0.25)U	0.337 +/-(0.25)U	0.132 +/-(0.25)UJ	0.509 +/-(0.44)U	0.360 +/-(0.35)U
Radium-226+228	pCi/L	0.314 +/-(0.617)U	0.628 +/-(0.613)U	0.671 +/-(0.595)U	0.410 +/-(0.46)U	0.208 +/-(0.35)U	0.542 +/-(0.60)U	0.153 +/-(0.28)U	0.552 +/-(0.43)J	0.905 +/-(0.60)U	0.775 +/-(0.57)UJ	0.509 +/-(0.45)U	0.375 +/-(0.39)U
Anions													
Chloride	mg/L	52.7	47.5	47.7	6.75	6.48	4.61	3.78	3.64	3.00	4.64	3.34 J	4.27
Fluoride	mg/L	0.0431 J	0.0476 J	0.0460 J	0.0303 J	0.0242 J	<0.0293	<0.0293	<0.0293	0.0431 J	<0.0293	<0.0293	0.0334 J
Sulfate	mg/L	9.35	9.29	8.93	4.28	4.22	1.28	1.72	1.19	1.10	0.767 J	0.892 J	0.937 J
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	11.9	11.9	24.4 J	32.3	34.3	11.0	10.4	13.3	10.9
Alkalinity, Carbonate	mg/L	-	-	-	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	5.82 J	5.63 J	5.90 J	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	210	144	79.0	50.0	56.0	37.0	26.0	47.0	37.0	32.0	73.0	30.0

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		1					JOI	-101					
Sample Date Sample ID Parent Sample ID		10-Jul-17 JOF-GW-013-07102017	1-Aug-17 JOF-GW-013-08012017	18-Sep-17 JOF-101	19-Sep-17 JOF-GW-013-09192017	5-Oct-17 JOF-GW-013-10052017	13-Mar-18 JOF-101-0318	23-May-18 JOF-GW-013-05232018	12-Jun-18 JOF-GW-013-06122018	26-Jun-18 JOF-GW-013-06262018	24-Jul-18 JOF-GW-013-07242018	14-Aug-18 JOF-GW-013-08142018	11-Sep-18 JOF-101-09112018
Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance				
Total Metals	ı												
Antimony	ug/L	1.54 U*	<0.443	<2	0.753 U*	-	<2	<1.12	<1.12	<1.12	<1.12	<1.12	<2
Arsenic	ug/L	0.233 J	<0.22	<1	<0.22	-	<1	0.371 J	0.387 J	0.36 U*	<0.323	0.37 U*	<1
Barium	ug/L	5.96 J	5.49 J	<10	5.34 J	-	<10	5.38 J	5.63 J	5.83 J	5.63 J	5.28 J	<10
Beryllium	ug/L	<0.131	<0.131	<1	<0.131	-	<1	<0.057	<0.057	<0.057	<0.057	<0.057	<1
Boron	ug/L	27.9 U*	<7.81	<80	<7.81	<7.81	<80	<30.3	<30.3	<30.3	<30.3	<30.3	<80
Cadmium	ug/L	<0.0781	<0.0781	<1	<0.0781	-	<1	<0.125	<0.125	<0.125	<0.125	<0.125	<1
Calcium	ug/L	3,010 <0.378	3,120	3,240	3,240 0.399 U*	3,140	3,590	3,130	3,320 1.96 U*	3,490 1.81 U*	3,240 <0.631	3,240 2.01 U*	3,110
Chromium Cobalt	ug/L	<0.378 2.18	<0.378	<2 0.805	0.399 0	-	<2 0.667	1.48 U* 0.659	0.368 J	0.435 J	0.631 0.273 J	0.366 U*	<2 <0.5
Copper	ug/L ug/L	2.16 <1.04	1.06 1.39 U*	0.605 <2	<1.04	-	<2	<1.3	0.366 J <1.3	0.435 J <1.3	0.273 J <1.3	<1.3	<0.5
Lead	ug/L ug/L	<0.318	<0.318	<1	<0.318	-	<1	<0.094	<0.094	<0.094	<0.094	<0.094	<2
Lithium	ug/L ug/L	2.6 U*	4.84 U*	<5	<2.12	_	<5	<2.56	<2.56	<2.56	<2.56	<2.56	<5
Magnesium	ug/L	1,460	1,540	-	1,560	1,550	-	1,510	1,520	1,620	1,390	1,540	-
Mercury	ug/L	<0.0653	<0.0653	<0.2	<0.0653	-	<0.2	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.2
Molybdenum	ug/L	<0.593	<0.593	<5	<0.593	_	<5	<0.474	<0.474	<0.474	<0.474	<0.474	<5
Nickel	ug/L	1.03	0.81 J	<1	0.881 J	<u>-</u>	<1	0.723 J	0.66 J	0.695 J	0.815 J	0.873 U*	<1
Potassium	ug/L	193 J	161 J	<500	177 J	181 J	_	<136	161 J	<136	166 J	171 J	_
Selenium	ug/L	<1.27	<1.27	<5	<1.27	-	<5	<0.813	<0.813	<0.813	<0.813	<0.813	<5
Silver	ug/L	-	-	<1	-	-	<1	-	_	-	-	-	<1
Sodium	ug/L	3,500	3,500	3,790	3,950	3,120	-	3,510	4,470	3,660	3,070	3,490	-
Thallium	ug/L	< 0.0531	<0.0531	<1	<0.0531	-	<1	< 0.063	<0.063	<0.063	< 0.063	<0.063	<1
Vanadium	ug/L	-	-	<1	-	-	3.22	-	-	-	-	-	1.89 U*
Zinc	ug/L	-	-	<5	-	-	<5	-	-	-	-	-	<5
Radiological Para	meters												
Radium-226	pCi/L	-0.0971 +/-(0.17)U	0.293 +/-(0.48)U	0.0414 +/-(0.0458)U	0.442 +/-(0.55)U	-	0.126 +/-(0.0661)	0.112 +/-(0.0694)	0.0360 +/-(0.0478)U	0.109 +/-(0.0818)J	0.248 +/-(0.107)U*	0.383 +/-(0.128)	0.132 +/-(0.0692)U*
Radium-228	pCi/L	0.798 +/-(0.63)U	0.124 +/-(0.33)U	0.227 +/-(0.217)U	1.02 +/-(0.40)J	-	0.0519 +/-(0.190)U	0.270 +/-(0.235)U	0.273 +/-(0.215)U	0.196 +/-(0.232)U	0.162 +/-(0.233)U	0.229 +/-(0.226)U	0.316 +/-(0.242)U
Radium-226+228	pCi/L	0.798 +/-(0.65)U	0.417 +/-(0.58)U	-	1.46 +/-(0.68)J	-	-	0.382 +/-(0.245)J	0.309 +/-(0.220)U	0.305 +/-(0.246)J	0.410 +/-(0.256)U*	0.612 +/-(0.260)U*	-
Anions													
Chloride	mg/L	4.61	4.37	4.41	4.31	3.36	4.46	3.52	4.19	3.90	4.45	4.81	3.94
Fluoride	mg/L	0.0539 J	0.0301 J	<0.100	<0.0263	<0.0263	<0.100	0.0263 J	0.0284 J	0.0531 J	<0.0263	<0.0263	<0.100
Sulfate	mg/L	1.27	1.28	1.01	1.15	0.736 J	<1.00	0.863 J	1.95	1.22	0.829 J	1.10 U*	<1.00
General Chemistr	_												
Alkalinity, Bicarbonate	mg/L	12.3	12.7	-	7.88	12.4	-	10.5	24.0	9.90	45.3	15.3	-
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<u>-</u> .	<5.00	<5.00		<5.00	<5.00	<5.00	<5.00	<5.00	1
pH (lab)	SU	1		6.1		1	5.9		1			1	6.0 J
Total Dissolved Solids	mg/L	22.0	32.0	28.0	28.0	26.0	26.0	44.0 J	40.0	30.0	33.0	32.0	35.0

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location							JOF-101					
Sample Date Sample ID Parent Sample ID		2-Apr-19 JOF-GW-013-04022019	8-Jul-19 JOF-GW-013-07082019	17-Sep-19 JOF-GW-013-09172019	9-Oct-19 JOF-GW-013-10092019	21-Jan-20 JOF-GW-013-01212020	4-Mar-20 JOF-GW-013-03042020	21-Jul-20 JOF-GW-013-07212020	9-Sep-20 JOF-GW-013-09092020	9-Feb-21 JOF-GW-JOF-101-02092021	16-Mar-21 JOF-GW-JOF-101-03162021	27-Jul-21 JOF-GW-FD03-07272021 JOF-GW-JOF-101-0727202
Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Field Duplicate Sample CCR Program
Total Metals		, and the second							•	<u> </u>	•	
Antimony	ua/l	<0.378	<0.378	<0.378	<0.378	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L ug/L	<0.376	<0.376	<0.376	<0.376	<2.00	2.30 U*	<2.00	<2.00	<2.00	2.24 J	<2.00
Barium	ug/L	7.05 J	4.4 J	4.57 J	5.24 U*	5.67	6.33	4.92	4.80	5.55	4.94	4.79
Beryllium	ug/L	<0.155	<0.155	<0.182	<0.182	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	<30.3	<30.3	<38.6	<38.6	<5.20	7.02 J	<5.20	<5.20	<5.20	<5.20	<5.20
Cadmium	ug/L	<0.125	<0.125	<0.125	<0.125	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	3,500	3,590	3,110	3,730	3,680	3,540	3,650	3,430	3,660	3,560	3,330
Chromium	ug/L	<1.53	<1.53	<1.53	1.72 U*	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	0.612	0.609 U*	0.560	0.236 J	0.324 J	1.29	<0.300	<0.300	0.979 J	<0.300	<0.300
Copper	ug/L	<0.627	<0.627	1.84 U*	<0.627	<0.300	0.674 J	0.347 J	<0.300	<0.300	<0.300	<0.300
Lead	ug/L	0.171 J	<0.128	<0.128	<0.128	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<3.14	<3.14	<3.39	6.52	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	1,690	1,680	1,500	1,650	1,540	1,650	1,590	1,620	1,920 J	1,750	1,570
Mercury	ug/L	<0.101	<0.101	<0.101	<0.101	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	0.0990 U*
Molybdenum	ug/L	<0.61	<0.61	<0.610	<0.610	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	0.413 J	0.582 U*	0.518 J	<0.336	0.630 J	0.789 J	<0.600	<0.600	<0.600	<0.600	<0.600
Potassium	ug/L	169 J	153 J	<156	<156	155 J	<80.0	125 J	123 J	165 J	160 J	127 J
Selenium	ug/L	<2.62	<2.62	<1.51	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	<0.121	<0.121	<0.177	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	3,720	4,190	3,210	4,300	3,630	3,540	3,370	3,590	3,970	3,830	3,430
Thallium	ug/L	<0.128	<0.128	<0.148	<0.148	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	1.40 U*	<0.899	1.10 U*	<0.991	8.10 U*	<3.30	<3.30	<3.30	<3.30	11.3 U*	<3.30
Zinc	ug/L	5.69	3.33 J	<3.22	<3.22	3.49 U*	32.0	5.31 U*	<3.30	<3.30	<3.30	4.96 J
Radiological Para	meters											
Radium-226	pCi/L	0.109 +/-(0.0732)J	0.0310 +/-(0.0622)U	0.351 +/-(0.426)U	-0.0556 +/-(0.309)U	0.999 +/-(0.691)	0.457 +/-(0.557)U	0.0693 +/-(0.425)U	0.0605 +/-(0.500)U	-0.0354 +/-(0.165)U	0.215 +/-(0.259)U	0.279 +/-(0.340)U
Radium-228	pCi/L	0.0716 +/-(0.167)U	0.280 +/-(0.233)U	-0.13 +/-(0.245)U	0.121 +/-(0.372)U	0.156 +/-(0.283)U	0.208 +/-(0.252)U	0.211 +/-(0.333)U	0.238 +/-(0.356)U	0.161 +/-(0.404)U	-0.0939 +/-(0.204)U	-0.165 +/-(0.438)U
Radium-226+228	pCi/L	0.180 +/-(0.182)J	0.311 +/-(0.241)U	0.351 +/-(0.491)U	0.121 +/-(0.484)U	1.16 +/-(0.747)J	0.665 +/-(0.611)U	0.280 +/-(0.540)U	0.298 +/-(0.614)U	0.161 +/-(0.437)U	0.215 +/-(0.330)U	0.279 +/-(0.554)U
Anions												
Chloride	mg/L	3.60	3.98	4.29	4.46	4.42	4.53	4.71	4.41	4.58	4.62	4.79
Fluoride	mg/L	0.0317 J	0.0319 J	0.0348 J	0.0451 U*	<0.0330	<0.0330	<0.0330	<0.0330	0.0436 J	0.0803 J	<0.0330
Sulfate	mg/L	0.790 U*	0.879 J	1.44 U*	0.826 J	0.721	0.710	0.704	0.715	0.677	0.691	0.766
General Chemistr	у											
Alkalinity, Bicarbonate	mg/L	10.0	32.5	32.4	35.6	16.0	15.7	14.7	16.0	13.9 J	14.4	16.3
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<1.45	<1.45	<1.45	<1.45	0.725 UJ	<0.725	<1.45
pH (lab)	SU	-	-	-	6.1 J	-	6.17 J	-	-	-	6.11 J	-
Total Dissolved Solids	mg/L	27.0 J	33.0 J	37.0 J	29.0	50.0 J	42.9	17.1	48.6	41.4 J	40.0 J	25.7

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1				JO	DF-101			
Sample Date Sample ID Parent Sample ID		27-Jul-21 JOF-GW-JOF-101-07272021	14-Sep-21 JOF-GW-FD02-09142021 JOF-GW-JOF-101-09142021	14-Sep-21 JOF-GW-JOF-101-09142021	1-Feb-22 JOF-GW-JOF-101-02012022	15-Mar-22 JOF-GW-JOF-101-03152022	2-Aug-22 JOF-GW-JOF-101-08022022	13-Sep-22 JOF-GW-JOF-101-09132022	7-Feb-23 JOF-GW-JOF-101-02072023
Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Field Duplicate Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Samp
Total Metals									
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	4.82	4.71	4.86	4.87	4.60	4.93	4.58	4.65
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	<5.20	<5.20	<5.20	<5.20	<5.20	<5.20	<5.20	<5.20
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	3,260	3,340	3,460	3,560	3,640	3,370	3,430	3,500
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Copper	ug/L	0.422 J	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	1,520	1,620	1,730	1,670	1,670	1,600	1,590	1,670
Mercury	ug/L	0.107 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	<0.600	<0.600	<0.600	<0.600	1.02 U*	<0.600	<0.600	<0.600
Potassium	ug/L	134 J	124 J	132 J	129 J	120 J	130 J	123 J	109 J
Selenium	ug/L	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<1.50
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	3,360	3,380	3,610	3,570	3,480	3,360	3,100	3,470
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	5.87 J	5.94 J	6.08 J	<3.30	<3.30	5.40 U*	3.92 J	3.95 J
Radiological Para									
Radium-226	pCi/L	0.109 +/-(0.266)U	-0.251 +/-(0.306)U	0.0495 +/-(0.416)U	0.147 +/-(0.289)U	0.817 +/-(0.643)	0.192 +/-(0.490)U	0.452 +/-(0.647)U	0.115 +/-(0.280)U
Radium-228	pCi/L	0.235 +/-(0.319)U	0.235 +/-(0.337)U	0.134 +/-(0.292)U	0.212 +/-(0.415)U	0.882 +/-(0.504)U*	0.719 +/-(0.478)	0.472 +/-(0.735)U	1.08 +/-(0.587)U*
Radium-226+228	pCi/L	0.345 +/-(0.415)U	0.235 +/-(0.455)U	0.184 +/-(0.508)U	0.359 +/-(0.506)U	1.70 +/-(0.817)J	0.910 +/-(0.685)J	0.924 +/-(0.979)U	1.20 +/-(0.650)U*
Anions									
Chloride	mg/L	4.79	4.32	4.32	4.51	4.71	4.72	4.60	4.73
Fluoride	mg/L	<0.0330	0.0973 J	0.0970 J	<0.0330	<0.0330	0.0538 J	0.0344 J	<0.0330
Sulfate	mg/L	0.777	0.698	0.707	0.683	0.685	0.746	0.636	0.680
General Chemistry									
Alkalinity, Bicarbonate	mg/L	16.5	16.5	16.1	16.6	16.0 J	32.2	15.6	14.2 J
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<1.45	<1.45	<1.45	<0.725	<1.45	0.725 UR
pH (lab)	SU	-	6.32 J	5.88 J	6.00 J	-	5.96 J	-	6.27 J
Total Dissolved Solids	mg/L	34.3	17.1	17.1	40.0	37.1 J	20.0 J	18.0	20.0

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location							JOI	-102					
Sample Date		14-Mar-17	12-Jun-17	18-Sep-17	11-Dec-17	13-Mar-18	11-Jun-18	11-Sep-18	11-Dec-18	12-Mar-19	10-Sep-19	3-Mar-20	15-Sep-20
Sample ID		JOF-102	JOF-102	JOF-102	JOF-102-1217	JOF-102-0318	JOF-102-0618	JOF-102-09112018	JOF-102	JOF-102	JOF-102-0919	JOF-102-0320	JOF-102-0920
Parent Sample ID													
Sample Depth		32 ft	32 ft	32 ft	32 ft	32 ft	32 ft	32 ft	32 ft	32 ft	32 ft	32 ft	32 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample				Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample		Normal Environmental Sample	
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals	1		1	1		1	1	1	1	1	1	1	1
Antimony	ug/L	<2	-	<2	-	<2	-	<2	-	<0.378	<0.378	<1.00	<1.00
Arsenic	ug/L	<1	-	<1	-	<1	-	<1	-	1.04	<0.323	2.24 J	<2.00
Barium	ug/L	24.4	-	26.3	-	29.1	-	25.6	-	23.2	33.5	28.2	26.7
Beryllium	ug/L	<1	-	<1	-	<1	-	<1	-	<0.155	<0.182	<0.200	<0.200
Boron	ug/L	1,090	1,040	1,110	1,030	1,010	870	979	993	712	920	601 U*	806
Cadmium	ug/L	<1	-	<1	-	<1	-	<1	-	0.133 J	0.192 J	<0.300	<0.300
Calcium	ug/L	20,900	18,700	21,100	20,900	22,800	19,800	18,400	19,000	18,000	19,900	21,600	17,600
Chromium	ug/L	<2	-	<2	-	<2	-	2.14	-	<1.53	2.43 U*	<3.00	<3.00
Cobalt	ug/L	<0.5	-	<0.5	-	<0.5	-	<0.5	-	0.219 U*	0.142 J	<0.300	<0.300
Copper	ug/L	<2	-	2.86	_	<2	_	<2	-	<0.627	<0.627	0.468 J	0.421 J
Lead	ug/L	<1	-	<1	_	<1	_	<1	-	<0.128	0.194 J	<0.500	<0.500
Lithium	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	3.37 J	4.52 J	<3.00	<3.00
Magnesium	ug/L	_	_	_	_	_	_	<u>-</u>	_	<u>-</u>	<u>-</u>	_	_
Mercury	ug/L	<0.2	_	<0.2	_	<0.2	_	<0.2	_	<0.101	<0.101	<0.0670	<0.0670
Molybdenum	ug/L	<5	<5	<5	<5	<5	<5	<5	<5	1.2 J	<0.610	0.775 J	<0.200
Nickel	ug/L	7.87		6.8		6.72		5.79		6.58	6.70	5.73	6.64
Potassium	ug/L	958	_	1,080	_	-	_	-	_	-	-	-	-
Selenium	ug/L	<5	_	<5	_	<5	_	<5	_	<2.62	<1.51	<2.00	<2.00
Silver	ug/L	<1		<1		<1		<1		<0.121	<0.177	<0.300	<0.300
Sodium	ug/L	20.600	_	21,200	_	1	_	1	_				-
Thallium	ug/L	<1	_	<1	-	<1	_	<1	_	<0.128	<0.148	<0.600	<0.600
		<1	-		-	3.32	-	2.45 U*	-	<0.899	1.78 U*	<3.30	<3.30
Vanadium Zinc	ug/L	49.2	-	<1 32.4	-	29.9	-	2.45 U*	-	27.8	39.1	28.6	30.6
Radiological Para	meters	49.2	-	32.4	-	29.9	-	20.2 0	-	21.0	39.1	20.0	30.0
Radium-226	pCi/L	0.240 +/-(0.0992)	0.207 +/-(0.0829)	0.165 +/-(0.0741)	0.199 +/-(0.0833)	0.190 +/-(0.0835)	0.182 +/-(0.141)	0.238 +/-(0.0855)U*	0.171 +/-(0.0850)U*	0.144 +/-(0.0705)	0.749 +/-(0.598)	0.415 +/-(0.492)U	0.589 +/-(0.612)U
Radium-228	pCi/L	0.277 +/-(0.248)U	0.217 +/-(0.193)U	0.335 +/-(0.226)U	0.310 +/-(0.228)U	0.0867 +/-(0.200)U	0.0138 +/-(0.227)	0.176 +/-(0.212)U	0.318 +/-(0.229)U	0.265 +/-(0.248)U	-0.445 +/-(0.360)U	0.216 +/-(0.263)U	0.0192 +/-(0.241)U
Radium-226+228	pCi/L	-	-	-	-	-	-	-	-	-	0.749 +/-(0.698)J	0.631 +/-(0.558)U	0.608 +/-(0.657)U
Anions		•	'	1	'	'					1	1	, , , , , , , , , , , , , , , , , , , ,
Chloride	mg/L	15.0	13.6	13.0	14.5	13.4	15.1	13.2	14.1	12.4	14.1	12.4	13.7
Fluoride	mg/L	<0.100	-	<0.100	_	<0.100	_	<0.100	-	0.0703 J	0.0422 J	0.111	0.0493 J
Sulfate	mg/L	95.9	96.4	95.8	95.2	96.4	99.6	73.5	81.9	92.9 J	76.2	85.8	78.6
General Chemistr	<u>, </u>												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	5.2	-	5.7	-	5.5	-	5.2 J	-	5.9 J	6.1 J	5.78 J	5.18 J
Total Dissolved Solids	mg/L	176	182	184	171	181	177	180	103	194	156	181	167

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Empire Pare	Sample Location	1			JOF-	102						JOF-103		
Sample Type Program	Sample ID						JOF-GW-FD01-02072023				JOF-GW-903-01042017			15-Mar-17 JOF-GW-015-03152017
Value State Compliance State Compliance State Compliance State Compliance CCR Program													11111	50.5 ft
## AFFERDAL 100 110		Units					Field Duplicate Sample	Normal Environmental Sample						Normal Environmental Sample CCR Program
Arener wight 4-200 4-200 4-200 4-200 4-200 4-200 4-200 0.086 J 0.081 U 0.781 U 0.783 0.766 J 0.085 J 0	Total Metals							I.						
Selium Up	Antimony	ug/L												0.845 J
Berylliam ugl														0.656 J
Section Upl. Set 754 808 819 915 922 8.510 7.370 7.510 8.500 J 9.380														31.4
Cadmission Up	•													<0.131
Calculum Upl. 20,900 15,900 24,100 10,000 21,600 21,700 24,000 43,														8,540
Chromism Upt <3.00														3.94
Cabal														60,900 <0.378
Copper				1 1 1 1	1 1 1 1									<0.378 58.2
Lead														58.2 <1.04
Lithium Up <3.00 <3.00 3.88 <3.00 3.04 <3.00 10.7 15 U* 17.6 U* 12.6 U* 12.6 U* 12.6 U* 14.00														<0.318
Magnesium Upl. -														10.3
Mircury Ugl. 40.0670 40.0670 40.0670 40.0670 40.0670 40.0670 40.0670 40.0671 40.0621			43.00		3.36 3	43.00		43.00						13,300
Moybearum upt 0.273 U' <0.200 0.302 U' <0.200 0.487 U' 0.224 U' <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0.873 <0			<0.0670		<0.0670	<0.0670		<0.0670						<0.0653
No.fee														0.749 J
Polassium Ug L C200 C200 C4.50 C4.														130
Selenium Ugil <2.00 <2.00 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1.50 <1								-						1.180
Silver Ugit Co.			<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<0.348	0.399 U*	0.734 U*			<1.27
Sodium ug/L - - - - - - - - -			<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	-	-	_	-	_	_
Vanadium vg/L 33.0 33.			-	-	-	-		-	20,200 J	20,600	21,300	20,100	16,800	19,300
The	Thallium u	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	0.045 U*	<0.036	< 0.036	<0.0531	0.078 U*	<0.0531
Radion-226 pC/L 0.389 +/-(0.357)U 0.266 +/-(0.379)U 0.119 +/-(0.605)U 0.275 +/-(0.387)U 0.254 +/-(0.351)U 0.254 +/-(0.351)U 0.254 +/-(0.351)U 0.255 +/-(0.387)U 0.255 +/-(0.387)U 0.255 +/-(0.387)U 0.255 +/-(0.289)U 0.0684 +/-(0.474)U 0.119 +/-(0.605)U 0.111 +/-(0.351)U 0.261 +/-(0.231)U 0.500 +/-(0.289)U 0.500 +/-(0.2	Vanadium u	ug/L						6.06 U*	-	-	-	-	-	-
Radium-228 pCi/L 0.389 +/-(0.357)U 0.256 +/-(0.379)U 0.119 +/-(0.360)U 0.275 +/-(0.387)U 0.931 +/-(0.605) 0.311 +/-(0.351)U 0.240 +/-(0.36)U -0.3160 +/-(0.27)U 0.196 +/-(0.44)U 0.123 +/-(0.31)U -0.0163 +/-(0.20)U 0.179 +/	Zinc u	ug/L	31.0	34.5 U*	27.1	33.0	30.5	29.4	-	-	-	-	-	-
Radium-228 pG/L $1.35 + I - (0.696)U^*$ $0.403 + I - (0.328)U$ $0.230 + I - (0.289)U$ $0.0649 + I - (0.474)U$ $0.141 + I - (0.369)U$ $0.484 + I - (0.416)U$ $0.0241 + I - (0.23)U$ $0.500 + I - (0.33)U$ $0.500 + I - (0.33$	Radiological Paramet	ters												
Radium-226+228 PCI/L 1.74 +/- (0.782)U* 0.659 +/- (0.501)U 0.349 +/- (0.62)U 0.349 +/- (0.612)U 0.349 +/- (0.544)U 0.240 +/- (0.43)U 0.500 +/- (0.47)U 1.09 +/- (0.72)U 0.507 +/- (0.42)U 0.156 +/- (0.29)U 0.367	Radium-226 p	pCi/L	0.389 +/-(0.357)U	0.256 +/-(0.379)U	0.119 +/-(0.360)U	0.275 +/-(0.387)U	0.931 +/-(0.605)	0.311 +/-(0.351)U	0.240 +/-(0.36)U	-0.3160 +/-(0.27)U	0.196 +/-(0.44)U	0.123 +/-(0.31)U	-0.0163 +/-(0.20)U	0.179 +/-(0.42)U
Anions	Radium-228 p	pCi/L	1.35 +/-(0.696)U*	0.403 +/-(0.328)U	0.230 +/-(0.289)U	0.0649 +/-(0.474)U	0.141 +/-(0.369)U	0.484 +/-(0.416)U	-0.0281 +/-(0.23)U	0.500 +/-(0.38)U	0.891 +/-(0.57)U	0.383 +/-(0.28)U	0.156 +/-(0.21)U	0.189 +/-(0.48)U
Chloride	Radium-226+228 p	pCi/L	1.74 +/-(0.782)U*	0.659 +/-(0.501)U	0.349 +/-(0.462)U	0.340 +/-(0.612)U	1.07 +/-(0.709)J	0.794 +/-(0.544)U	0.240 +/-(0.43)U	0.500 +/-(0.47)U	1.09 +/-(0.72)U	0.507 +/-(0.42)U	0.156 +/-(0.29)U	0.367 +/-(0.64)U
Fluoride mg/L 0.0638 J 0.0373 J 0.0634 J 0.0493 J 0.0700 J 0.0701 J 0.578 0.559 0.573 0.571 0.571 0.571 5.016te mg/L 0.0638 J 0.0373 J 0.0634 J 0.0634 J 0.0493 J 0.0702 J 79.1 78.8 199 206 224 199 206 228														
Sulfate mg/L 82.8 79.8 86.6 71.7 79.1 78.8 199 224 199 206 228 General Chemistry Alkalinity, Bicarbonate Malkalinity, Carbonate PH (lab) mg/L - - - 15.4 26.4 J 24.4 J 28.3 2														21.0
General Chemistry Gene														0.654
Alkalinity, Bicarbonate mg/L - - - - - 15.4 26.4 J 24.4 J 28.3 28.3		mg/L	82.8	79.8	86.6	71.7	79.1	78.8	199	224	199	206	228	196
Alkalinity, Carbonate mg/L <5.00 <5.00 <5.00 <5.00 <5.00 <5.00						I		1	15.4	00.4.1	04.4.1	00.0	00.0	44.6
pH (lab) SU 5.21 J 5.28 J 5.67 J 5.27 J 5.77 J 5.75 J	**		-	-	-	-		-						11.5
				- 5 20 1	- 	5 27 1		- 5 75 1				<5.00		<5.00
Total Dissolved Solids mg/L 163 139 210 133 147 146 447 359 356 412 460	F · · (·)		5.21 J 163	5.28 J 130	5.67 J 210	5.27 J 133	5.77 J 147	5.75 J 146	447	350	356	412	460	426

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		1					JOF	-103					
Sample Date Sample ID Parent Sample ID		12-Apr-17 JOF-GW-015-04122017	17-May-17 JOF-GW-015-05172017	7-Jun-17 JOF-GW-015-06072017	11-Jul-17 JOF-GW-015-07112017	2-Aug-17 JOF-GW-015-08022017	20-Sep-17 JOF-103	20-Sep-17 JOF-GW-015-09202017	6-Oct-17 JOF-GW-015-10062017	15-Mar-18 JOF-103-0318	24-May-18 JOF-GW-015-05242018	13-Jun-18 JOF-GW-015-06132018	26-Jun-18 JOF-GW-015-06262018
Sample Depth Sample Type Program	Units	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program
Total Metals													
Antimony	ug/L	1.76 U*	<0.443	1.85 J	2.1 U*	0.548 J	<2	0.82 U*	-	<2	<1.12	<1.12	<1.12
Arsenic	ug/L	0.729 J	0.489 J	0.657 J	0.726 J	0.676 U*	<1	0.679 J	-	<1	0.655 J	0.675 J	0.656 U*
Barium	ug/L	28.5	30.7	28.6	28.7	30.8	28.4	28	-	36.6	28.7	29.9	30.4
Beryllium	ug/L	0.197 J	0.19 J	0.147 J	0.319 J	0.258 J	<1	0.188 J	-	<1	0.259 J	0.257 J	0.162 J
Boron	ug/L	6,870	7,720	7,480	5,930	6,670	7,110	9,660	6,810	7,620	7,070	7,340	6,120
Cadmium	ug/L	3.71	5.46	3.99	3.48	3.06	3.14	2.9	-	3.16	3.37	2.92	3.13
Calcium	ug/L	60,400	59,300	60,100	59,000	64,400	62,200	60,500	58,400	65,800	57,800	60,400	64,500
Chromium	ug/L	<0.378	0.378 UJ	<0.378	0.523 J	<0.378	<2	<0.378	-	<2	1.52 U*	1.84 U*	1.84 U*
Cobalt	ug/L	57.8	47.5	51.2	51.3	67.9	56.3	50.5	-	58.1	52.5	58	53.6
Copper	ug/L	1.46 U*	<1.04	<1.04	<1.04	1.74 U*	<2	<1.04	-	<2	<1.3	<1.3	<1.3
Lead	ug/L	<0.318	<0.318	0.457 J	<0.318	<0.318	<1	<0.318	-	<1	0.098 J	<0.094	<0.094
Lithium	ug/L	106	11.9	10.1	13.6 U*	12.6 U*	10.2	10.1	-	12.4	11.3	11.4 U*	8.88
Magnesium	ug/L	13,600	15,200	14,300	13,600	15,200	-	13,800	14,000	-	13,600	13,900	14,500
Mercury	ug/L	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653	<0.2	0.0693 J	-	<0.2	<0.0653	<0.0653	<0.0653
Molybdenum Nickel	ug/L	0.805 J 127	<0.593 106 J	0.791 J 108	<0.593 109	<0.593 119	<5 108	<0.593 108	-	<5 114	<0.474 109	<0.474 111	<0.474 116
Potassium	ug/L	1,080	1,170	1,120	992	1,100	1,110	1,130	1,070		955	1,060	985
Selenium	ug/L ug/L	1,060 <1.27	1,170 <1.27	<1.27	992 <1.27	<1.27	1,110 <5	<1.27	1,070	- <5	<0.813	<0.813	<0.813
Silver	ug/L		<1.27	-1.21	- 1.27	<1.21	<1	<1.27	-	<1			
Sodium	ug/L ug/L	18.100	20.900	20.600	19.600	21,200	20.300	19.300	16.900		19.000	19.100	19.400
Thallium	ug/L	<0.0531	<0.0531	0.101 J	<0.0531	<0.0531	<1	<0.0531	10,900	<1	<0.063	<0.063	<0.063
Vanadium	ug/L		40.0331	0.1013	-	-	<1	-0.0351	<u> </u>	1.98	-	-	-
Zinc	ug/L		<u> </u>	<u> </u>	1	<u> </u>	94.4	<u> </u>	<u> </u>	96.5	1	_]
Radiological Para	meters	_	-			_	04.4	-	-	30.0	-	-	-
Radium-226	pCi/L	0.310 +/-(0.44)U	0.0864 +/-(0.19)U	0.0574 +/-(0.19)U	0.0618 +/-(0.26)U	-0.0924 +/-(0.27)U	0.113 +/-(0.0671)	-0.0676 +/-(0.33)U	-	0.104 +/-(0.0583)	0.0611 +/-(0.0599)U	0.101 +/-(0.0629)	0.0692 +/-(0.0820)UJ
Radium-228	pCi/L	0.355 +/-(0.24)UJ	0.274 +/-(0.33)U	0.198 +/-(0.39)U	0.304 +/-(0.69)U	0.796 +/-(0.53)Ú	0.253 +/-(0.209)Ú	0.437 +/-(0.61)Ú	-	0.0393 +/-(0.180)Ú	0.247 +/-(0.220)Ú	0.225 +/-(0.214)Ú	0.146 +/-(0.184)Ú
Radium-226+228	pCi/L	0.665 +/-(0.50)UJ	0.360 +/-(0.38)U	0.255 +/-(0.43)U	0.365 +/-(0.74)U	0.796 +/-(0.60)U	-	0.437 +/-(0.69)U	-	-	0.308 +/-(0.228)U	0.325 +/-(0.223)J	0.215 +/-(0.201)UJ
Anions													
Chloride	mg/L	29.9	26.4	30.3	31.9	30.3	35.3	35.1	27.5	29.6	28.1	29.7	30.9
Fluoride	mg/L	0.614	0.563	0.543	0.718	0.663	0.507	0.530	0.564	0.613	0.589	0.843	0.551
Sulfate	mg/L	224	201	198	219	199	196	207	195	199	202	196	195
General Chemistr	<u>, </u>												
Alkalinity, Bicarbonate	mg/L	15.1	10.5	21.9	11.8	14.7	-	8.87	10.8	-	5.50	9.00	9.90
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	-	<5.00	<5.00	-	<5.00	<5.00	<5.00
pH (lab)	SU	-	-	-	-	-	5.4	-	-	5.7	-	-	-
Total Dissolved Solids	mg/L	426	441	443	430	411	433	428	431	421	437	460	427

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1 1							JOF-103						
Sample Date Sample ID Parent Sample ID		25-Jul-18 JOF-GW-015-07252018	14-Aug-18 JOF-GW-015-08142018	12-Sep-18 JOF-103-09122018	3-Apr-19 JOF-GW-015-04032019	9-Jul-19 JOF-GW-015-07092019	18-Sep-19 JOF-GW-015-09182019	18-Sep-19 JOF-GW-903-09182019 JOF-GW-015-09182019	10-Oct-19 JOF-GW-015-10102019	23-Jan-20 JOF-GW-015-01232020	23-Jan-20 JOF-GW-903-01232020 JOF-GW-015-01232020	5-Mar-20 JOF-GW-015-03052020	23-Jul-20 JOF-GW-015-07232020	23-Jul-20 JOF-GW-903-0723202 JOF-GW-015-0723202
Sample Depth		50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft	50.5 ft
Sample Type	Nor	rmal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample
Program	Units	CCR Program	CCR Program	State Compliance	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	CCR Program	State Compliance	State Compliance
Total Metals						I .								
Antimony	ug/L	<1.12	<1.12	<2	<0.378	0.58 J	0.435 J	<0.378	<0.378	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<0.323	0.541 U*	<1	0.573 J	2.78	0.606 J	0.541 J	0.526 J	<2.00	2.02 J	2.80 U*	<2.00	<2.00
Barium	ug/L	27.8	30.3	28.5	32.4	30.4 U*	28.3	27.4	33.9	28.6	29.8	32.0	29.8	29.8
Beryllium	ug/L	0.247 U*	0.184 J	<1	0.16 J	1.36 U*	0.627 J	0.327 J	0.220 J	0.281 J	0.269 J	<1.00	0.211 J	0.259 J
Boron	ug/L	6,640	7,410	7,210	7,000	6,370	6,860	6,980	6,650	8,760	8,250	8,200	8,090	8,210
Cadmium	ug/L	2.5	2.82	2.69	2.8	3.71	2.30	2.18	2.76	3.07	3.28	2.76	2.56	2.37
Calcium	ug/L	57,400	59,100	58,600	61,600	65,600	56,400	56,200	63,100	63,800	67,700	59,900	66,300	64,200
Chromium	ug/L	<0.631	1.3 U*	<2	1.95 U*	<1.53	<1.53	<1.53	<1.53	<3.00	<3.00	<15.0	<3.00	<3.00
Cobalt	ug/L	45.7 <1.3	57.5 <1.3	49.8	61.9	59.8 1.77 U*	51.5	50.3 1.80 U*	52.7 <0.627	55.9	58.4	59.6	52.4 0.621 J	52.0 0.607 J
Copper	ug/L			<2 <1	0.952 J		1.51 U*	1.80 U* <0.128	<0.627	1.28 J	1.20 J <0.500	<1.50 <0.500	<0.521 J	<0.500
Lead Lithium	ug/L ug/L	<0.094 9.61	<0.094 10.4	11.7	<0.128 10.6	1.2 U* 11.5	<0.128 12.4	9.22	10.7	<0.500 10.2	11.0	<15.0	10.6	10.5
Magnesium	ug/L	12,600	13,700	11.7	15,400	15,200	13,700	13,600	14,800	14,000	14,700	14,500	16,500	16,500
Mercury	ug/L	0.0969 U*	<0.0653	<0.2	<0.101	<0.101	<0.101	<0.101	<0.101	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<0.474	<0.474	<5	<0.61	1.33 U*	<0.610	<0.610	<0.610	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	99.8	123	105	120	122	111	110	119	118	123	129	118	119
Potassium	ug/L	968	1,090	-	1,230	1,280	1,150	1.100	1,260	1,060	1,120	966 J	1.170	1,180
Selenium	ug/L	<0.813	<0.813	<5	<2.62	<2.62	<1.51	<1.51	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ua/L	-	-	<1	<0.121	<0.121	<0.177	<0.177	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	16,700	18,900	-	21,600	22,000	18,500	18,400	20,700	20,100	21,000	20,200	19,000	19,500
Thallium	ug/L	<0.063	< 0.063	<1	<0.128	2.29 U*	1.08	<0.148	<0.148	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	-	-	1.69 U*	1.71 U*	1.48	1.63 U*	1.12 U*	<0.991	<3.30	<3.30	<16.5	<3.30	<3.30
Zinc	ug/L	-	-	101	102	110 U*	96.0	95.9	96.3	98.9	104	96.5	92.0	93.4
Radiological Para	meters													
Radium-226	pCi/L	0.296 +/-(0.105)U*	0.220 +/-(0.0946)U*	0.296 +/-(0.0996)U*	0.115 +/-(0.0837)	-0.0295 +/-(0.0698)U	0.543 +/-(0.580)U	0.518 +/-(0.526)U	0.511 +/-(0.450)U	0.794 +/-(0.637)U	0.552 +/-(0.609)U	1.14 +/-(0.753)	0.244 +/-(0.447)U	0.174 +/-(0.373)U
Radium-228	pCi/L	0.236 +/-(0.220)U	0.197 +/-(0.201)U	-0.0182 +/-(0.197)U	-0.0528 +/-(0.208)U	0.130 +/-(0.281)Ú	0.504 +/-(0.455)U	0.223 +/-(0.364)U	-0.189 +/-(0.463)U	0.421 +/-(0.329)U	0.396 +/-(0.349)U	0.356 +/-(0.351)U	0.101 +/-(0.245)U	-0.0338 +/-(0.274)U
Radium-226+228	pCi/L	0.532 +/-(0.244)U*	0.416 +/-(0.222)U*	-` '	0.115 +/-(0.224)J	0.130 +/-(0.290)U	1.05 +/-(0.737)U	0.740 +/-(0.640)U	0.511 +/-(0.646)Ú	1.22 +/-(0.717)U	0.948 +/-(0.702)U	1.49 +/-(0.831)J	0.345 +/-(0.510)U	0.174 +/-(0.462)Ú
Anions														
Chloride	mg/L	31.7	31.3	26.1	30.1	32.1	31.5	32.3	29.1	29.2	28.8	29.6	31.5	30.6
Fluoride	mg/L	0.510	0.497	0.514	0.529	0.607	0.569	0.616	0.508	0.679	0.682	0.745	0.793	0.793
Sulfate	mg/L	210	228	165	195 J	198	219	220	192	203	202	211	231	220
General Chemistr	у													
Alkalinity, Bicarbonate	mg/L	9.85	<5.00	-	7.00	11.8	11.3	11.5	11.7	11.8	12.6	10.8	11.0	11.2
Alkalinity, Carbonate	mg/L	<5.00	<5.00	-	<5.00	<5.00	<5.00	<5.00	<5.00	<1.45	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	5.3 J	-	-	-	-	5.4 J	-	-	5.26 J	-	-
Total Dissolved Solids	mg/L	444	432	405	397	392	455	471	436	419	371	443	426	430

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1						JOF-103					
Sample Date Sample ID Parent Sample ID		9-Sep-20 JOF-GW-015-09092020	9-Sep-20 JOF-GW-903-09092020 JOF-GW-015-09092020	10-Feb-21 JOF-GW-JOF-103-02102021	18-Mar-21 JOF-GW-JOF-103-03182021	29-Jul-21 JOF-GW-JOF-103-07292021	16-Sep-21 JOF-GW-JOF-103-09162021	2-Feb-22 JOF-GW-JOF-103-02022022	15-Mar-22 JOF-GW-FD02-03152022 JOF-GW-JOF-103-03152022	15-Mar-22 JOF-GW-JOF-103-03152022	4-Aug-22 JOF-GW-JOF-103-08042022	14-Sep-22 JOF-GW-FD02-09142022 JOF-GW-JOF-103-09142022
Sample Depth Sample Type Program	Units	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Field Duplicate Sample State Compliance	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Field Duplicate Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Field Duplicate Sample CCR Program				
Total Metals	-											
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	28.8	29.4	31.1	32.1	31.0	29.9	31.0	30.6	30.7	34.2	34.9
Beryllium	ug/L	0.309 J	0.300 J	0.268 J	0.304 U*	0.256 J	0.315 J	0.294 J	0.359 J	0.327 J	0.367 J	0.395 J
Boron	ug/L	8,060	8,090	7,410	7,670	7,530	7,030	7,930	7,040	7,080	7,430	7,730
Cadmium	ug/L	2.51	2.76	4.66	2.89	2.36	11.6	2.70	4.96	5.01	3.13	10.8
Calcium	ug/L	61,300	61,600	63,200	65,700	61,000	62,200	66,300	66,900	66,800	63,200	66,400
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	53.5	55.1 0.571 J	56.8	58.4	48.7 0.676 J	49.9	50.9 0.553 J	53.2	53.5 1.15 J	43.5 0.650 J	43.9 1.59 J
Copper Lead	ug/L	0.615 J <0.500	<0.500	1.49 J <0.500	0.656 U* <0.500	<0.500	2.49 <0.500	<0.500	1.24 J <0.500	<0.500	<0.500	<0.500
Lithium	ug/L ug/L	10.7	11.1	11.0	11.0	10.0	10.8	10.6	11.1	11.2	11.9	10.5
Magnesium	ug/L	15,500	15,700	15,300 J	16,800 J	14,200	14,600	15,700	15,500	15,700	15,400	14,700
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.0670	0.0950 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	120	123	127	137	110	114	124	118	120	117	116
Potassium	ug/L	1,130	1,160	1,440	1,460	1,160	1,190	1,390	1,210	1,220	1,480	1,320
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<1.50
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	20,500	20,900	21,600	23,800	20,300	21,600	21,300	21,600	21,800	23,000	21,000
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	94.8	97.3	100	97.0	85.5	90.7	90.1	92.3	92.2	92.2	84.5
Radiological Para												
Radium-226	pCi/L	0.748 +/-(0.637)U	0.596 +/-(0.605)U	0.659 +/-(0.506)	0.328 +/-(0.289)U	-0.00384 +/-(0.392)U	0.00114 +/-(0.263)U	0.110 +/-(0.399)U	0.626 +/-(0.535)U	0.270 +/-(0.433)U	-0.0420 +/-(0.233)U	0.706 +/-(0.666)U
Radium-228	pCi/L	-0.0318 +/-(0.186)U	0.0834 +/-(0.216)U	0.126 +/-(0.282)U	0.170 +/-(0.269)U	0.144 +/-(0.414)U	0.466 +/-(0.348)U	0.173 +/-(0.341)U	1.12 +/-(0.575)U*	0.348 +/-(0.411)UJ	-0.576 +/-(0.351)U	0.279 +/-(0.346)U
Radium-226+228	pCi/L	0.748 +/-(0.663)U	0.679 +/-(0.643)U	0.785 +/-(0.579)J	0.498 +/-(0.395)U	0.144 +/-(0.571)U	0.467 +/-(0.437)U	0.283 +/-(0.525)U	1.75 +/-(0.786)U*	0.618 +/-(0.597)UJ	0.000 +/-(0.421)U	0.985 +/-(0.751)U
Anions												
Chloride	mg/L	30.2	30.3	31.8	29.8	30.6	31.9	29.3	30.3	30.3	31.4	31.1
Fluoride Sulfate	mg/L ma/L	0.700 216	0.730 218	0.678 226	0.619 218	0.861 220	0.739 219	0.602 220	0.662 218	0.650 218	0.778 228	0.649 222
General Chemistr		210	2.0	LLU	210	220	2.10	LLO	210	210	220	- LLL
Alkalinity, Bicarbonate	mg/L	10.6	10.2	6.97 J	6.17 J	18.3	14.1	11.8	13.0 J	12.0 J	17.8 J	17.4
Alkalinity, Carbonate	mg/L	<1.45	<1.45	0.725 UJ	0.77 J	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	ma/L	410	416	460	471	423	433	457	416	426	439	443

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		JOF	-103	1			JOF-10-	ļ			
Sample Date Sample ID Parent Sample ID		14-Sep-22 JOF-GW-JOF-103-09142022	7-Feb-23 JOF-GW-JOF-103-02072023	3-Nov-16 JOF-GW-016-11032016	5-Jan-17 JOF-GW-016-01052017	18-Jan-17 JOF-GW-016-01182017	16-Feb-17 JOF-GW-016-02162017	15-Mar-17 JOF-GW-016-03152017	12-Apr-17 JOF-GW-016-04122017	17-May-17 JOF-GW-016-05172017	17-May-17 JOF-GW-903-05172017 JOF-GW-016-05172017
Sample Depth Sample Type Program	Units	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample	57 ft Normal Environmental Sample CCR Program	57 ft Field Duplicate Sample CCR Program						
Total Metals	•			•		•					
Antimony	ug/L	<1.00	<1.00	0.025 U*	0.524 U*	<0.443	<0.443	<0.443	0.571 U*	<0.443	<0.443
Arsenic	ug/L	<2.00	<2.00	0.982 J	0.982 U*	0.643 J	0.964 J	0.657 J	0.784 J	0.756 J	0.856 J
Barium	ug/L	34.7	36.0	38.1	34.7	33.3	33.7	28.8	31.7	34.2	34
Beryllium	ug/L	0.331 J	0.330 J	<0.102	<0.102	<0.131	<0.131	<0.131	<0.131	<0.131	<0.131
Boron	ug/L	7,710	7,800	4,110	3,630	3,820	4,470	4,070	3,090	3,670	3,650
Cadmium	ug/L	12.7	6.54	<0.152	0.241 J	0.158 J	0.157 J	0.116 J	0.149 J	0.236 J	0.174 J
Calcium	ug/L	67,700 <3.00	69,500 <3.00	72,500 J <0.339	79,100 J <0.339	73,600 <0.378	70,100 <0.378	69,500 <0.378	65,200 <0.378	64,400 0.378 UJ	64,200 0.378 UJ
Chromium	ug/L	<3.00 45.6	<3.00 48.0	1.56	2.09	1.6	<0.378			1.52	1.47
Cobalt Copper	ug/L	45.6 1.94 J	48.0 0.615 J	<0.454	0.725 U*	<1.04	1.48 1.45 U*	1.51 <1.04	2.01 <1.04	1.52 <1.04	<1.47
Lead	ug/L ug/L	<0.500	<0.500	<0.0675	<0.0675	<0.318	<0.318	<0.318	<0.318	<0.318	<0.318
Lithium	ug/L	10.7	11.0	4.48 U*	9.84 U*	5.72 U*	6.07 U*	4.72 J	4.45 J	4.73 J	4.96 J
Magnesium	ug/L	14.900	16,400	17,400 J	17,700	16,800	14,700	14,400	14,300	16,100	16,200
Mercury	ug/L	<0.0670	<0.0670	<0.0521	<0.0521	<0.0521	<0.0521	<0.0653	<0.0653	<0.0653	<0.0653
Molybdenum	ug/L	<0.200	<0.200	<0.873	<0.873	<0.593	<0.593	<0.593	<0.593	<0.593	<0.593
Nickel	ug/L	117	124	7.82	10.9 J	8.33	9.06	9.27	7.6	5.97 J	6.75 J
Potassium	ug/L	1,330	1,450	1,880	1,910	1,810	1,860	1,670	1,560	1,710	1,710
Selenium	ug/L	<1.50	<1.50	<0.348	0.443 U*	<1.27	<1.27	1.77 J	<1.27	<1.27	<1.27
Silver	ug/L	<0.300	<0.300	-	-	-	-	-	-	-	-
Sodium	ug/L	21,500	22,800	50,300 J	47,500	46,200	37,600	42,900	40,500	47,400	47,500
Thallium	ug/L	<0.600	<0.600	<0.036	<0.036	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531	<0.0531
Vanadium	ug/L	<3.30	<3.30	-	-	-	-	-	-	-	-
Zinc	ug/L	87.0	90.1	-	-	-	-	-	-	-	-
Radiological Paran											
Radium-226	pCi/L	-0.184 +/-(0.355)U	-0.0201 +/-(0.425)U	-0.0719 +/-(0.21)U	0.399 +/-(0.55)U	0.549 +/-(0.38)J	0.218 +/-(0.29)U	0.0118 +/-(0.37)U	0.315 +/-(0.39)U	-0.1050 +/-(0.13)U	-0.0260 +/-(0.15)U
Radium-228	pCi/L pCi/L	0.755 +/-(0.555)U	0.600 +/-(0.447)U	0.383 +/-(0.27)U	0.0374 +/-(0.33)U	0.0330 +/-(0.21)U	0.109 +/-(0.24)U	0.179 +/-(0.22)U	0.267 +/-(0.22)UJ	0.321 +/-(0.31)U	0.216 +/-(0.34)U
Radium-226+228 Anions	pCI/L	0.755 +/-(0.659)U	0.600 +/-(0.617)U	0.383 +/-(0.34)U	0.436 +/-(0.64)U	0.582 +/-(0.44)J	0.327 +/-(0.38)U	0.191 +/-(0.44)U	0.582 +/-(0.45)UJ	0.321 +/-(0.33)U	0.216 +/-(0.37)U
		04.0	00.0	11.0	47.0	00.0	14.5	40.0	47.0	44.4	11.1
Chloride	mg/L	31.8	30.8	14.8	17.3	23.0	14.5	13.9	17.6	14.4	14.4
Fluoride Sulfate	mg/L mg/L	0.567 230	0.646 222	0.257 268	0.249 273	0.289 280	0.239 306	0.247 257	0.290 291	0.245 276	0.247 278
General Chemistry		230	222	200	213	260	300	231	291	210	210
Alkalinity, Bicarbonate	mg/L	17.4	11.0 J	21.4	24.4 J	24.2	44.4	11.5	13.5	15.5	14.0
Alkalinity, Carbonate	mg/L	<1.45	0.725 UR	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	-1.45	0.723 010	-5.00	-5.00		-5.00		-5.00	-5.00	
Total Dissolved Solids	ma/L	437	431	505	495	516	506	499	489	488	491

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1						JOF-10	4					
Sample Date Sample ID Parent Sample ID		6-Jun-17 JOF-GW-016-06062017	11-Jul-17 JOF-GW-016-07112017	2-Aug-17 JOF-GW-016-08022017	20-Sep-17 JOF-104	20-Sep-17 JOF-GW-016-09202017	6-Oct-17 JOF-GW-016-10062017	15-Mar-18 JOF-104-0318	24-May-18 JOF-GW-016-05242018	13-Jun-18 JOF-GW-016-06132018	27-Jun-18 JOF-GW-016-06272018	25-Jul-18 JOF-GW-016-07252018	25-Jul-18 JOF-GW-903-07252018 JOF-GW-016-07252018
Sample Depth		57 ft	57 ft	57 ft	57 ft	57 ft	57 ft	57 ft	57 ft	57 ft	57 ft	57 ft	57 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample
Program	Units	CCR Program	CCR Program	CCR Program	State Compliance	CCR Program	CCR Program	State Compliance	CCR Program				
Total Metals		 						ı					
Antimony	ug/L	<0.443	1.04 U*	<0.443	<2	1.51 U*	-	<2	<1.12	<1.12	<1.12	<1.12	<1.12
Arsenic	ug/L	1.07 U*	0.791 J	0.887 U*	<1	0.772 J	-	1.22	0.959 J	0.77 J	0.685 J	0.506 J	0.496 J
Barium	ug/L	31.2	32.1	31.4	28.8	29.3	-	34.8	36.3	35.7	35.9	31.2	30.8
Beryllium	ug/L	<0.131	<0.131	<0.131	<1	<0.131	-	<1	0.071 J	0.067 J	<0.057	0.067 U*	<0.057
Boron	ug/L	3,510	2,730	3,090	3,660	4,650	3,360	3,710	3,370	3,650	3,090	3,330	3,390
Cadmium	ug/L	0.144 J	0.143 J	0.194 J	<1	0.232 J		<1	0.199 J	0.266 J	0.263 J	0.251 J	0.306 J
Calcium	ug/L	66,100	63,800	68,000	70,000	66,200 0.455 U*	67,200	70,800	62,600 1.41 U*	68,600 1.99 U*	73,000 1.95 U*	66,100	66,200 <0.631
Chromium	ug/L	<0.378 1.52	<0.378 1.47	<0.378	<2		-	<2 1.9		1.99 0	1.95 0	<0.631	0.985
Cobalt Copper	ug/L ug/L	1.52 <1.04	<1.04	1.33 1.9 U*	0.929 <2	1.05 <1.04	-	1.9	2.55	1.71	1.5 <1.3	1.09	0.985 <1.3
Lead		<0.318	<0.318	<0.318	<1	<0.318	-	<1	<0.094	<0.094	<0.094	<0.094	<0.094
Lithium	ug/L ug/L	3.41 J	4.24 U*	6.48 U*	<5	4.04 J	_	5.03	5.39	4.59 U*	2.57 J	3.88 J	3.27 J
Magnesium	ug/L	15,400	14,400	15,800	-5	15,000	15,700	3.03	14,100	15,300	15,800	14,300	14,200
Mercury	ug/L	<0.0653	<0.0653	<0.0653	<0.2	<0.0653	-	<0.2	<0.0653	<0.0653	<0.0653	<0.0653	<0.0653
Molybdenum	ug/L	<0.593	<0.593	<0.593	<5	<0.593	_	<5	<0.474	<0.474	<0.474	<0.474	<0.474
Nickel	ug/L	8.06	5.7	5.58	5.22	5.27	_	6.34	6.22	5.71	5.66	4.57	5.25
Potassium	ug/L	1,730	1,550	1,680	1,680	1,630	1,660	-	1,500	1,670	1.600	1.510	1,510
Selenium	ug/L	<1.27	<1.27	<1.27	<5	<1.27	-	<5	<0.813	<0.813	<0.813	<0.813	<0.813
Silver	ug/L	-	_	-	<1	_	_	<1	-	_	_	-	_
Sodium	ug/L	47,100	44,400	46,300	46,900	44,000	39,700	-	41,300	44,200	44,100	40,100	39,500
Thallium	ug/L	<0.0531	<0.0531	<0.0531	<1	<0.0531	-	<1	<0.063	<0.063	<0.063	<0.063	<0.063
Vanadium	ug/L	=	-	-	<1	-	-	1.91	-	-	-	-	-
Zinc	ug/L	-	-	-	5.36	-	-	7.39	-	-	-	-	-
Radiological Para	ameters												
Radium-226	pCi/L	-0.0920 +/-(0.11)U	-0.1040 +/-(0.23)U	0.314 +/-(0.45)U	0.0990 +/-(0.0742)U	-0.1260 +/-(0.34)U	-	0.0825 +/-(0.0551)	0.194 +/-(0.0992)	0.0469 +/-(0.0488)U	0.0463 +/-(0.0659)UJ	0.317 +/-(0.107)U*	0.315 +/-(0.106)U*
Radium-228	pCi/L	0.133 +/-(0.39)U	0.459 +/-(0.36)U	0.364 +/-(0.23)J	0.462 +/-(0.235)	0.526 +/-(0.36)U	-	0.127 +/-(0.191)U	0.169 +/-(0.201)U	0.226 +/-(0.213)U	0.136 +/-(0.192)U	0.0272 +/-(0.170)UJ	0.408 +/-(0.214)J
Radium-226+228	pCi/L	0.133 +/-(0.40)U	0.459 +/-(0.43)U	0.678 +/-(0.51)J	-	0.526 +/-(0.49)U	-	-	0.363 +/-(0.224)J	0.272 +/-(0.219)U	0.183 +/-(0.203)UJ	0.345 +/-(0.201)U*	0.723 +/-(0.239)U*
Anions													
Chloride	mg/L	14.7	18.6	17.3	19.2	19.0	15.2	18.2	15.0	15.5	18.1	19.1	19.0
Fluoride	mg/L	0.245	0.304	0.255	0.223	0.223	0.241	0.290	0.246	0.267	0.316	0.244	0.299
Sulfate	mg/L	262	283	284	276	293	277	288	271	272	275	306	308
General Chemistr	<u> </u>												
Alkalinity, Bicarbonate	mg/L	13.9	12.7	13.7	-	<5.00	5.67	-	<5.00	12.0	23.8	11.3	12.8
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00		<5.00	<5.00		<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU		-	-	5.7	-	-	6.1	-	-	-	-	-
Total Dissolved Solids	mg/L	517	497	473	493	486	490	481	473	521	485	493	506

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1 1							JOF-104						
Sample Date Sample ID Parent Sample ID	15-Aug JOF-GW-016-		15-Aug-18 JOF-GW-903-08152018 JOF-GW-016-08152018	12-Sep-18 JOF-104-09122018	12-Sep-18 JOF-104-DUP JOF-104-09122018	3-Apr-19 JOF-GW-016-04032019	9-Jul-19 JOF-GW-016-07092019	9-Jul-19 JOF-GW-903-07092019 JOF-GW-016-07092019	18-Sep-19 JOF-GW-016-09182019	10-Oct-19 JOF-GW-016-10102019	10-Oct-19 JOF-GW-903-10102019 JOF-GW-016-10102019	23-Jan-20 JOF-GW-016-01232020	5-Mar-20 JOF-GW-016-03052020	5-Mar-20 JOF-GW-903-03052020 JOF-GW-016-03052020
Sample Depth Sample Type Program	57 fi Normal Environm Units CCR Pro	ental Sample	57 ft Field Duplicate Sample CCR Program	57 ft Normal Environmental Sample State Compliance	57 ft Field Duplicate Sample State Compliance	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Field Duplicate Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Field Duplicate Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft
Total Metals	<u> </u>													
Antimony	ug/L 7.96	J	1.12 UJ	<2	<2	<0.378	<0.378	<0.378	0.893 J	<0.378	<0.378	<1.00	<1.00	<1.00
Arsenic	ug/L 0.627		0.481 U*	<u>-</u> <1	- <1	0.746 J	0.631 U*	0.734 U*	0.602 J	0.617 J	0.676 J	<2.00	2.83 U*	2.91 U*
Barium	ug/L 27.3		27.5	29.1	30.7	34.6	28.6 U*	29.2 U*	26.9	30.1	30.0	27.4	26.2	26.4
Beryllium	ug/L <0.05		<0.057	<1	<1	<0.155	<0.155	<0.155	<0.182	<0.182	<0.182	<0.200	<0.200	<0.200
Boron	ug/L 2,51		2,510	3.690	3,820	3.730	3.330	3,540	3.160	3,230	3.180	4.090	3.890	3,930
Cadmium	ug/L 0.351		0.345 U*	<1	<1	0.802 J	0.357 U*	0.43 U*	0.321 J	0.361 J	0.339 J	<0.300	<0.300	0.300 J
Calcium	ug/L 60,50		61,500	65,400	69,700	71,700	78,300	80,300	60,200	71,800	72,400	74,500	63,900	68,200
Chromium	ug/L <0.63		<0.631	<2	<2	<1.53	<1.53	<1.53	<1.53	<1.53	1.57 U*	<3.00	<3.00	<3.00
Cobalt	ug/L 0.78		0.786	0.712	0.761	1.73	1.46	1.56	1.19	0.620	0.675	1.31	0.914 J	0.960 J
Copper	ug/L <1.3		<1.3	<2	<2	0.719 J	<0.627	<0.627	1.47 U*	<0.627	<0.627	<0.300	<0.300	<0.300
Lead	ug/L 0.282		0.154 U*	<1	<1	<0.128	<0.128	<0.128	<0.128	<0.128	<0.128	<0.500	<0.500	<0.500
Lithium	ug/L 4.31 l		3.94 U*	5.36	5.23	3.54 J	3.52 J	3.7 J	3.42 J	4.08 J	3.74 J	3.42 J	<3.00	3.13 J
Magnesium	ug/L 12,80		12,800	0.00	0.20	16,200	16,900	17,600	13,900	15,900	16,200	16,100	14,100	14,800
Mercury	ug/L <0.06		<0.0653	<0.2	<0.2	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101	<0.0670	<0.0670	<0.0670
Molybdenum			<0.474	<5	<5	<0.61	<0.61	<0.61	<0.610	<0.610	<0.610	<0.200	<0.200	<0.200
Nickel	ug/L <0.47 ug/L 4.84		4.6	4.42	4.7	6.88	7.02	7.14	5.58	5.48	5.57	6.08	5.49	5.79
Potassium			1,420	4.42		1.790	2.110	2,180	4.970	2,050	2,080	1.740	1.510	1,610
Selenium	,		<0.813	- <5	- <5	1,790 <2.62	<2.62	<2.62	4,970 <1.51	2,050 <1.51	2,000 <1.51	<2.00	<2.00	<2.00
		3		<1	<1		<0.121	<0.121	<0.177	1	<0.177	<0.300	<0.300	<0.300
Silver	ug/L - 36,30		36,000	<1	· ·	<0.121		50,700		<0.177			43,000	<0.300 44,900
Sodium				<u>,</u>	ļ - <u>-</u>	45,800	48,100		41,100	46,800	47,200	45,600		
Thallium	ug/L <0.06	3	<0.063	<1	<1	<0.128	<0.128	<0.128	<0.148	<0.148	<0.148	<0.600	<0.600	<0.600
Vanadium	ug/L -		-	1.91 U*	1.97 U*	1.32 U*	<0.899	<0.899	1.37 U*	1.11	<0.991	<3.30	<3.30	<3.30
Zinc Radiological Para	ug/L -		-	7.35 U*	14 U*	16.4	15.6 U*	15.1 U*	10.2 U*	9.65	6.26	9.97 J	6.52 J	6.81 J
		404114	0.000 //0.4459/19	0.000 //0.00001/19	0.050 //0.000///	0.110.110.0010			0.570 //0.500	0.400 //0.4000//	0.100 1.0000001	0.000 //0.000///	0.400 4.00 550011	0.005 //0.54011
Radium-226	pCi/L 0.355 +/-(0.		0.329 +/-(0.115)U*	0.280 +/-(0.0922)U*	0.252 +/-(0.0881)U*	0.116 +/-(0.0818)	-0.0220 +/-(0.0800)U	0.0345 +/-(0.0704)U	0.579 +/-(0.562)U	0.400 +/-(0.463)U	-0.139 +/-(0.325)U	0.673 +/-(0.627)U	0.466 +/-(0.559)U	0.327 +/-(0.548)U
Radium-228	pCi/L 0.249 +/-(0		0.163 +/-(0.210)U	-0.0210 +/-(0.191)U	-0.00185 +/-(0.179)U	0.134 +/-(0.234)U	0.198 +/-(0.260)U	0.0471 +/-(0.265)U	0.276 +/-(0.328)U	-0.204 +/-(0.453)U	0.765 +/-(0.537)U	0.746 +/-(0.482)	-0.0408 +/-(0.212)U	0.0753 +/-(0.325)U
Radium-226+228 Anions	pCi/L 0.605 +/-(0.	248)U*	0.491 +/-(0.239)U*	-	-	0.250 +/-(0.248)J	0.198 +/-(0.272)U	0.0816 +/-(0.274)U	0.856 +/-(0.651)U	0.400 +/-(0.648)U	0.765 +/-(0.628)U	1.42 +/-(0.791)J	0.466 +/-(0.598)U	0.403 +/-(0.638)U
Chloride	mg/L 19.0		18.9	16.5	16.1	18.0	18.9	18.5	19.4	18.2	18.0	17.4	17.3	17.4
Fluoride	mg/L 0.22		0.227	0.276	0.261	0.256	0.246	0.244	0.283	0.200	0.186	0.339	0.331	0.284
Sulfate	mg/L 297		310	289	291	271 J	284	283	283	294	287	262	266	273
General Chemistry														
Alkalinity, Bicarbonate	mg/L 10.8		11.3	-	-	11.5	30.2	30.8	20.1	35.4	36.9	16.0	14.5	14.7
Alkalinity, Carbonate	mg/L <5.0)	<5.00	-	-	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<1.45	<1.45	<1.45
pH (lab)	SU -		-	5.8 J	5.7 J	-	-	-	-	5.7 J	5.7 J	-	5.79 J	5.77 J
Total Dissolved Solids	mg/L 499		495	480	482	466	462	450	500	490	487	466	547	469

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1 1						JOF-104					
Sample Date Sample ID Parent Sample ID		22-Jul-20 JOF-GW-016-07222020	10-Sep-20 JOF-GW-016-09102020	10-Feb-21 JOF-GW-FD-02102021 JOF-GW-JOF-104-02102021	10-Feb-21 JOF-GW-JOF-104-02102021	18-Mar-21 JOF-GW-JOF-104-03182021	29-Jul-21 JOF-GW-JOF-104-07292021	16-Sep-21 JOF-GW-JOF-104-09162021	1-Feb-22 JOF-GW-JOF-104-02012022	16-Mar-22 JOF-GW-JOF-104-03162022	4-Aug-22 JOF-GW-FD02-08042022 JOF-GW-JOF-104-08042022	4-Aug-22 JOF-GW-JOF-104-08042022
Sample Depth Sample Type Program	Units	57 ft Normal Environmental Sample State Compliance	57 ft Normal Environmental Sample State Compliance	57 ft Field Duplicate Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Field Duplicate Sample CCR Program	57 ft Normal Environmental Sample CCR Program
Total Metals	<u> </u>											
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	28.0	25.1	24.6	25.4	25.6	24.1	24.5	24.0	22.3	38.3	38.0
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	3,520	3,750	3,540	3,430	3,290	3,510	3,120	3,490	3,160	3,080	3,070
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.464 J	0.462 J
Calcium	ug/L	67,900	65,700	66,000	66,300	66,600	61,700	61,100	69,200	68,000	58,000	57,400
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	1.14 <0.300	0.709 J <0.300	0.649 J <0.300	0.643 J <0.300	0.765 J 0.311 U*	0.706 J <0.300	0.570 J <0.300	0.643 J <0.300	0.529 J <0.300	0.545 J 0.533 J	0.562 J 1.08 J
Copper Lead	ug/L ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L ug/L	<3.00	3.27 J	3.28 J	3.38 J	3.28 J	3.31 J	3.37 J	<3.00	3.08 J	3.24 J	3.19 J
Magnesium	ug/L	14,700	15,500	15,100 J	15,200 J	15,700 J	14,400	14,900	14,600	14,700	14,100	14,100
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	0.107 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<0.200	0.290 U*	<0.200	<0.200	<0.200	0.832 U*	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	5.65	4.99	5.39	5.29	5.95	4.45	4.40	4.88	5.76	6.89	7.29
Potassium	ug/L	1,690	1,570	1,810	1,830	1,750	1,550	1,570	1,590	1,540	1,620	1,640
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	41,900	44,600	44,000	43,900	46,200	41,800	44,400	41,700	41,800	42,800	43,300
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	10.5 U*	5.94 J	4.54 J	4.02 J	5.57 J	5.94 J	4.56 J	4.85 J	3.86 J	8.71 J	9.58 J
Radiological Para	meters											
Radium-226	pCi/L	0.0831 +/-(0.472)U	0.480 +/-(0.590)U	0.282 +/-(0.379)U	0.0881 +/-(0.308)U	0.158 +/-(0.249)U	0.692 +/-(0.581)U	0.301 +/-(0.340)U	0.134 +/-(0.264)U	0.212 +/-(0.319)U	0.0973 +/-(0.214)U	0.0570 +/-(0.321)U
Radium-228	pCi/L	0.221 +/-(0.519)U	-0.0550 +/-(0.296)U	0.302 +/-(0.283)U	0.134 +/-(0.274)U	0.0750 +/-(0.373)U	0.600 +/-(0.486)U	0.0723 +/-(0.406)U	0.550 +/-(0.405)U	0.707 +/-(0.503)U	0.747 +/-(0.550)U	0.114 +/-(0.449)U
Radium-226+228	pCi/L	0.304 +/-(0.701)U	0.480 +/-(0.660)U	0.585 +/-(0.473)U	0.222 +/-(0.412)U	0.233 +/-(0.448)U	1.29 +/-(0.757)U	0.374 +/-(0.529)U	0.684 +/-(0.483)U	0.919 +/-(0.595)U	0.845 +/-(0.590)U	0.171 +/-(0.552)U
Anions												
Chloride	mg/L	17.1	17.1	17.7	17.3	16.1	16.3	17.6	15.4	17.1	17.4	17.5
Fluoride	mg/L	0.313	0.284	0.313	0.314	0.289	0.347	0.335	0.268	0.248	0.405	0.432
Sulfate	mg/L	260	265	280	271	248	273	277	246	256	256	263
General Chemistry	<u> </u>											
Alkalinity, Bicarbonate	mg/L	14.9	15.1	9.95 J	9.45 J	9.45 J	13.1	12.5	14.0	13.0 J	25.2 J	15.0 J
Alkalinity, Carbonate	mg/L	<1.45	<1.45	0.725 UJ	0.725 UJ	0.725 UJ	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	<u>.</u> .	-	-	l . <u></u> .		-	-	-	<u>.</u>
Total Dissolved Solids	mg/L	436	460	494	501	463	484	480	449	430	430	421

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			JOF-104		1			JOF	-105			
Sample Date Sample ID Parent Sample ID		13-Sep-22 JOF-GW-JOF-104-09132022	7-Feb-23 JOF-GW-JOF-104-02072023	7-Feb-23 JOF-GW-FD02-02072023 JOF-GW-JOF-104-02072023	14-Mar-17 JOF-105	12-Jun-17 JOF-105	18-Sep-17 JOF-105	11-Dec-17 JOF-105-1217	13-Mar-18 JOF-105-0318	12-Jun-18 JOF-105-0618	11-Sep-18 JOF-105-09112018	11-Dec-18 JOF-105
Sample Depth Sample Type Program	Units	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample	57 ft Field Duplicate Sample	32.5 ft Normal Environmental Sample State Compliance							
Program	Ullits	CCK Program			State Compilance	State Compnance	State Compilance	State Compliance				
Total Metals		•										
Antimony	ug/L	<1.00	<1.00	<1.00	<2	-	<2	-	<2	-	<2	-
Arsenic	ug/L	<2.00	<2.00	<2.00	<1	-	<1	-	1.04	-	<1	-
Barium	ug/L	35.5	31.4	31.8	155	-	123	-	109	-	124	-
Beryllium	ug/L	<0.200	<0.200	<0.200	<1	-	<1	-	<1	-	<1	-
Boron	ug/L	3,290	3,290	3,250	2,250	1,950	2,200	2,030	1,980	1,860	1,850	1,870
Cadmium	ug/L	0.316 J	0.330 J	0.320 J	<1	450,000	<1	-	<1	-	<1	-
Calcium Chromium	ug/L	64,000 <3.00	66,800 <3.00	65,900 <3.00	166,000 <2	153,000	146,000 <2	138,000	118,000 <2	130,000	133,000	145,000
Cobalt	ug/L	0.697 J	0.742 J	0.783 J	12	-	7.96	-	5.77	-	6.28	-
Copper	ug/L ug/L	<0.300	<0.300	<0.300	12 <2	-	3.75	-	5.77 <2	-	6.26 <2	-
Lead	ug/L	<0.500	<0.500	<0.500	<1	_	<1	_	<1	_	<1	_
Lithium	ug/L	3.17 J	3.27 J	3.27 J	<5	<5	<5	<5	<5	<5	<5	<5
Magnesium	ug/L	14,000	14,900	15,500	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.2	_	0.201	_	<0.2	_	0.407	_
Molybdenum	ug/L	<0.200	<0.200	<0.200	<5	<5	<5	<5	<5	<5	<5	<5
Nickel	ug/L	5.96	5.57	5.79	15.4		10.7		9.43		10.6	-
Potassium	ug/L	1,520	1,610	1,620	2,450	_	2,290	_	-	_	_	-
Selenium	ug/L	<1.50	<1.50	<1.50	<5	-	<5	-	<5	-	<5	-
Silver	ug/L	<0.300	<0.300	<0.300	<1	-	<1	-	<1	-	<1	-
Sodium	ug/L	42,200	44,500	45,100	74,400	-	71,600	-	-	-	-	-
Thallium	ug/L	<0.600	<0.600	<0.600	<1	-	<1	-	<1	-	<1	-
Vanadium	ug/L	<3.30	<3.30	<3.30	<1	-	<1	-	2.72	-	2.27 U*	-
Zinc	ug/L	6.62 J	4.66 J	4.83 J	39.3	-	28	-	25.9	-	77.4	-
Radiological Para												
Radium-226	pCi/L	0.0805 +/-(0.469)U	0.193 +/-(0.344)U	-0.0644 +/-(0.274)U	1.42 +/-(0.249)	1.45 +/-(0.231)	0.883 +/-(0.171)	0.959 +/-(0.178)	0.863 +/-(0.176)	1.18 +/-(0.317)	1.14 +/-(0.198)	1.24 +/-(0.224)
Radium-228	pCi/L	0.487 +/-(0.588)U	0.536 +/-(0.450)U	0.498 +/-(0.476)U	0.382 +/-(0.265)U	0.376 +/-(0.213)	0.554 +/-(0.263)	0.257 +/-(0.220)U	0.242 +/-(0.218)U	0.477 +/-(0.258)	0.629 +/-(0.234)	0.417 +/-(0.232)
Radium-226+228	pCi/L	0.568 +/-(0.752)U	0.728 +/-(0.566)U	0.498 +/-(0.549)U	-	-	-	-	-	-	-	-
Anions					•							
Chloride	mg/L	16.4	17.2	17.8	461	415	387	362	264	381	331	405
Fluoride	mg/L	0.338	0.334	0.336	<0.100		<0.100		<0.100		<0.100	_ .
Sulfate	mg/L	250	257	259	100	99.4	102	107	93.5	98.9	71.3	88.3
General Chemistr	<u>, </u>				1				1			1
Alkalinity, Bicarbonate	mg/L	16.0	12.2 J	12.6 J	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	<1.45	0.725 UR	0.725 UR	<u></u>	-		-		-	_:.	-
pH (lab)	SU	.5.	i		5.1		5.2		5.6		5.0 J	1
Total Dissolved Solids	mg/L	424	436	438	964	1,060	959	744	686	906	1,170	816

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF-1	105				
Sample Date Sample ID Parent Sample ID		13-Mar-19 JOF-105	11-Sep-19 JOF-105-0919	4-Mar-20 JOF-105-0320	17-Sep-20 JOF-105-0920	17-Mar-21 JOF-GW-JOF-105-03172021	14-Sep-21 JOF-GW-FD-09142021 JOF-GW-JOF-105-09142021	14-Sep-21 JOF-GW-JOF-105-09142021	8-Feb-22 JOF-GW-JOF-105-02082022	3-Aug-22 JOF-GW-JOF-105-08032022	7-Feb-23 JOF-GW-JOF-105-02072023
Sample Depth Sample Type Program	Units	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Field Duplicate Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample
Total Metals		<u> </u>							1		1
Antimony	ug/L	<0.378	0.575 J	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	0.48 J	0.763 J	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	3.13 J
Barium	ug/L	94	130	104	92.5	105	114	120	138	169	117
Beryllium	ug/L	0.277 J	0.777 J	0.219 J	0.202 J	<0.200	0.211 J	0.222 J	0.221 J	<0.200	<0.200
Boron	ug/L	1,540	1,690	1,210	1,360	766	984	999	1,110	1,020	1,630
Cadmium	ug/L	0.475 J	0.889 J	0.545 J	0.650 J	0.533 J	0.528 J	0.560 J	0.597 J	0.665 J	0.505 J
Calcium	ug/L	117,000 <1.53	139,000	111,000 <3.00	110,000	88,700 <3.00	116,000 <3.00	118,000	160,000 <3.00	187,000 <3.00	150,000 <3.00
Chromium Cobalt	ug/L	<1.53 5.05	3.23 U* 6.94	<3.00 5.92	<3.00 6.24	<3.00 5.49	<3.00 5.00	<3.00 5.06	<3.00 5.87	<3.00 5.52	3.89
Copper	ug/L ug/L	<0.627	1.00 U*	0.496 J	0.24 0.751 J	0.727 J	0.828 J	0.493 J	0.518 J	0.373 J	<0.300
Lead	ug/L ug/L	<0.128	0.260 J	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<3.14	6.49	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	-0.14	-	-0.00		-0.00					
Mercury	ug/L	0.267	0.493	0.342	0.270	0.348	0.505	0.498	0.314	0.307	0.238
Molybdenum	ug/L	<0.61	<0.610	0.242 J	<0.200	0.246 U*	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	8.85	11.2	9.24	8.66	8.30	7.18	7.47	8.78	9.97	7.60
Potassium	ug/L	-	-	-	-	-	-	-	-	-	_
Selenium	ug/L	<2.62	2.11 J	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50
Silver	ug/L	<0.121	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<0.128	0.514 U*	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	0.936 J	2.14	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	5.06 U*
Zinc	ug/L	22.8	35.9	26.4	24.8	21.7	25.0 U*	27.0 U*	26.3	26.2	18.3 J
Radiological Para											
Radium-226	pCi/L	0.834 +/-(0.170)	1.02 +/-(0.415)	1.59 +/-(0.805)	1.76 +/-(0.827)	1.52 +/-(0.687)	1.06 +/-(0.557)	1.47 +/-(0.674)	1.50 +/-(0.520)	1.10 +/-(0.694)	1.06 +/-(0.630)
Radium-228 Radium-226+228	pCi/L pCi/L	0.200 +/-(0.275)U	0.250 +/-(0.408)U 1.27 +/-(0.582)J	0.673 +/-(0.414) 2.27 +/-(0.905)	0.509 +/-(0.324) 2.27 +/-(0.888)	0.903 +/-(0.545)U* 2.42 +/-(0.877)J	0.280 +/-(0.304)UJ 1.34 +/-(0.634)J	0.899 +/-(0.443)J 2.37 +/-(0.807)J	0.434 +/-(0.393)U 1.93 +/-(0.652)J	0.741 +/-(0.533)U 1.84 +/-(0.875)J	0.767 +/-(0.446)U* 1.83 +/-(0.772)J
Anions	POIL	-	1.21 17-(0.002)0	2.21 17-(0.000)	2.27 17-(0.000)	2.72 17-(0.011)0	1.04 1/-(0.004)0	2.57 17-(0.007)0	1.00 1/-(0.002)0	1.04 17-(0.010)0	1.00 1/-(0.112)0
Chloride	mg/L	295	391	290	296	343	418	417	490	628	405
Fluoride	mg/L	0.0450 J	0.0310 J	0.0537 J	0.0661 J	0.0435 J	0.0434 J	0.0538 J	<0.0330	0.0379 J	<0.0330
Sulfate	mg/L	89.2 J	77.3	88.8	88.0	71.1	78.9	79.8	75.5	107	96.3
General Chemistr	ry										
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-			-		504.1		544	5.45.1
pH (lab)	SU	5.5 J	5.6 J	5.19 J	5.12 J	4.86 J	5.10 J	5.64 J	5.27 J	5.14 J	5.45 J
Total Dissolved Solids	mg/L	751	890	696	720	689	1,020 J	1,300 J	1,140	1,130	824

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1	I					JOF-106					
Sample Date Sample ID Parent Sample ID		15-May-18 JOF-106-0518	13-Jun-18 JOF-106-0618	13-Sep-18 JOF-106-09132018	11-Dec-18 JOF-106	13-Mar-19 JOF-106	11-Sep-19 JOF-106-0919	3-Mar-20 JOF-106-0320	3-Mar-20 JOF-106-DUP-0320 JOF-106-0320	16-Sep-20 JOF-106-0920	16-Mar-21 JOF-GW-JOF-106-03162021	15-Sep-21 JOF-GW-JOF-106-09152021
Sample Depth Sample Type Program	Units	31 ft Normal Environmental Sample State Compliance	31 ft	31 ft Normal Environmental Sample State Compliance	31 ft Normal Environmental Sample State Compliance	31 ft Normal Environmental Samp State Compliance						
Total Metals		<u> </u>		1		1						1
Antimony	ug/L	<2	-	<2	<2	<0.378	0.422 J	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	<1	-	<1	<1	<0.323	0.564 J	<2.00	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	190	-	179	178	203	221	213	212	208	202	181
Beryllium	ug/L	<1	-	<1	<1	0.173 J	0.339 J	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	424	374	293	358	342	321	293 U*	277 U*	378	355	233
Cadmium	ug/L	<1	-	<1	<1	0.292 J	0.352 J	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	29,300	30,600	28,900	31,900	30,900	33,200	31,400	31,400	33,000	34,300	29,000
Chromium	ug/L	<2 5.21	-	<2	<2 1.5	<1.53 1.51	3.68 U* 1.38	<3.00 1.17	<3.00 1.15	<3.00 1.28	<3.00	<3.00 0.974 J
Cobalt Copper	ug/L ug/L	5.21 <2	-	1.77 <2	1.5	1.51 <0.627	0.637 U*	<0.300	<0.300	1.28 0.659 J	1.15 <0.300	0.974 J 0.402 J
Lead	ug/L ug/L	<1	-	<1	<1	<0.027	0.166 J	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L ug/L	<5	- <5	<5	<5	<3.14	5.20	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L		10	10	-		-		-0.00		-	-
Mercury	ug/L	<0.2	_	<0.2	<0.2	<0.101	<0.101	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	<5	<5	<5	<5	<0.61	<0.610	<0.200	<0.200	<0.200	<0.200	<0.200
Nickel	ug/L	5.8		4.61	4.6	5.62	4.88	4.92	4.94	4.99	4.59	5.96
Potassium	ug/L	-	-	_	_	_	_	-	_	-	_	_
Selenium	ug/L	<5	-	<5	<5	<2.62	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	<1	-	<1	<1	<0.121	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<1	-	<1	<1	<0.128	0.241 U*	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	1.25	-	1.85 U*	1.91	<0.899	2.66	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	17.3	-	20.5 U*	14.5	17.9	18.5	15.2 J	16.2 J	15.5 J	13.0 J	15.5 U*
Radiological Para	ameters											
Radium-226	pCi/L	0.723 +/-(0.150)	0.833 +/-(0.261)	0.988 +/-(0.181)	0.638 +/-(0.146)	0.740 +/-(0.158)	0.877 +/-(0.402)	1.90 +/-(0.876)	1.66 +/-(0.910)	1.68 +/-(0.576)	1.11 +/-(0.497)	1.27 +/-(0.604)
Radium-228	pCi/L	0.464 +/-(0.230)	0.317 +/-(0.250)	0.392 +/-(0.226)	0.485 +/-(0.252)	0.571 +/-(0.245)	-0.002 +/-(0.388)U	0.590 +/-(0.337)	0.504 +/-(0.326)	0.428 +/-(0.330)U	1.32 +/-(0.690)U*	0.426 +/-(0.308)U
Radium-226+228	pCi/L	-	-	-	-	-	0.877 +/-(0.559)J	2.49 +/-(0.939)	2.16 +/-(0.967)	2.11 +/-(0.663)J	2.43 +/-(0.850)J	1.70 +/-(0.678)J
Anions												
Chloride	mg/L	121	119	93.1	121	138	124	126	128	124	120	112
Fluoride	mg/L	<0.100	-	<0.100	<0.100	<0.0263	<0.0263	<0.0330	<0.0330	<0.0330	<0.0330	<0.0330
Sulfate	mg/L	24.2	26.0	17.5	22.2	25.9 J	21.4	25.3	25.6	27.2	25.6	24.8
General Chemistr												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	<u>-</u> .	-		1	1	_ : .					1
pH (lab)	SU	5.4		5.5 J	3.7 J	5.2 J	5.6 J	5.10 J	5.08 J	5.05 J	5.03 J	5.23 J
Total Dissolved Solids	mg/L	283	328	320	199	300	290	231 J	321 J	337	316	317

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1		JOF-106					JOF	·-107			
Sample Date Sample ID Parent Sample ID		10-Feb-22 JOF-GW-JOF-106-02102022	3-Aug-22 JOF-GW-JOF-106-08032022	8-Feb-23 JOF-GW-JOF-106-02082023	15-May-18 JOF-107-0518	15-May-18 JOF-107-DUP-0518 JOF-107-0518	13-Jun-18 JOF-107-0618	13-Sep-18 JOF-107-09132018	12-Dec-18 JOF-107	12-Mar-19 JOF-107	11-Sep-19 JOF-107-0919	11-Sep-19 JOF-107-DUP-0919 JOF-107-0919
Sample Depth Sample Type Program	Units	31 ft Normal Environmental Sample State Compliance	31 ft Normal Environmental Sample State Compliance	31 ft Normal Environmental Sample	40 ft Normal Environmental Sample State Compliance	40 ft Field Duplicate Sample State Compliance	40 ft Normal Environmental Sample State Compliance	40 ft Field Duplicate Sample State Compliance				
Total Metals		<u> </u>	'							1		1
Antimony	ug/L	<1.00	<1.00	<1.00	<2	<2	-	<2	<2	<0.378	<0.378	<0.378
Arsenic	ug/L	2.03 J	<2.00	3.00 U*	<1	<1	-	<1	<1	<0.323	0.613 J	0.623 J
Barium	ug/L	203	204	428	125	121	-	176	135	107	217	210
Beryllium	ug/L	<0.200	<0.200	<0.200	<1	<1	-	<1	<1	<0.155	<0.182	<0.182
Boron	ug/L	184	152	231	<80	<80	<80	<80	124	47.7 J	93.3	78.9 J
Cadmium	ug/L	<0.300	<0.300	0.383 J	<1	<1	-	<1	<1	<0.125	<0.125	0.131 J
Calcium	ug/L	32,000	34,400 <3.00	54,400	18,000	18,000	19,600	26,600	22,100	17,300	32,400	31,800 3.51 U*
Chromium	ug/L	<3.00 0.944 J	<3.00 0.907 J	<3.00 1.74	<2 8.44	<2	-	<2 2.13	2.16	<1.53 0.551	3.16 U* 0.813	0.860
Cobalt Copper	ug/L	0.944 J <0.300	0.907 J 0.327 J	<0.300	8.44 <2	8.22 <2		2.13 <2	0.891	<0.627	<0.627	0.860 0.648 U*
Lead	ug/L	<0.500	<0.500	<0.500	<1	<1		<1	<1	0.174 J	0.351 J	0.388 J
Lithium	ug/L ug/L	<3.00	<3.00	<3.00	<5	<5	- <5	<5	<5	<3.14	3.76 J	4.09 J
Magnesium	ug/L	-		-				-	-		3.703	4.05 5
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.2	<0.2	_	<0.2	<0.2	<0.101	<0.101	<0.101
Molybdenum	ug/L	<0.200	<0.200	<0.200	<5	<5	<5	<5	<5	<0.61	<0.610	<0.610
Nickel	ug/L	4.28	5.09	7.53	4.57	4.93		2.7	1.63	1.84 U*	1.66	1.55
Potassium	ug/L	-	_	<u>-</u>		_	<u>-</u>	<u>-</u>	-	_ ·	-	-
Selenium	ug/L	<1.50	<1.50	<1.50	<5	<5	-	<5	<5	<2.62	<1.51	<1.51
Silver	ug/L	<0.300	<0.300	<0.300	<1	<1	-	<1	<1	<0.121	<0.177	<0.177
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<0.600	<0.600	<0.600	<1	<1	-	<1	<1	<0.128	0.176 U*	<0.148
Vanadium	ug/L	<3.30	<3.30	6.51 U*	1.21	1.11	-	2.32 U*	2.95	<0.899	2.52	2.84
Zinc	ug/L	13.1 J	16.9 J	20.1	5.73	5.94	-	13.4 U*	5.01	<3.22	9.76 U*	10.7 U*
Radiological Para	meters											
Radium-226	pCi/L	0.512 +/-(0.346)	0.954 +/-(0.752)U	1.39 +/-(0.759)	0.304 +/-(0.0993)	0.483 +/-(0.156)	0.383 +/-(0.176)	0.560 +/-(0.137)	0.478 +/-(0.126)	0.345 +/-(0.110)	0.699 +/-(0.393)	0.285 +/-(0.288)U
Radium-228	pCi/L	0.224 +/-(0.216)U	0.457 +/-(0.487)U	1.48 +/-(0.581)U*	0.00618 +/-(0.212)U	1.04 +/-(0.309)	0.125 +/-(0.232)	0.386 +/-(0.228)	0.241 +/-(0.214)U	0.325 +/-(0.217)U	0.0656 +/-(0.253)U	0.251 +/-(0.295)U
Radium-226+228	pCi/L	0.736 +/-(0.408)J	1.41 +/-(0.896)U	2.86 +/-(0.956)J	-	-	-	-	-	-	0.765 +/-(0.468)J	0.536 +/-(0.412)U
Anions												
Chloride	mg/L	137	129	328	68.2	76.1	85.7	103	102	74.7	146	144
Fluoride	mg/L	<0.0330	<0.0330	0.0518 J	<0.100	<0.100	-	<0.100	<0.100	<0.0263	<0.0263	<0.0263
Sulfate	mg/L	21.8	17.9	28.9	20.1	22.6	29.7	15.2	23.1	23.2 J	17.8	18.3
General Chemistr												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L		1			<u>-</u>	-	_ = .		_ : .	l . . .	1
pH (lab)	SU	5.31 J	5.12 J	5.26 J	5.7	5.8	I	5.6 J	2.6 J	5.8 J	6.0 J	6.1 J
Total Dissolved Solids	mg/L	347	234	611	224	231	264	347	224	188	313	330

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF-107						JOF-109	
Sample Date Sample ID Parent Sample ID		4-Mar-20 JOF-107-0320	15-Sep-20 JOF-107-0920	15-Sep-20 JOF-107-DUP-0920 JOF-107-0920	16-Mar-21 JOF-GW-JOF-107-03162021	15-Sep-21 JOF-GW-JOF-107-09152021	10-Feb-22 JOF-GW-JOF-107-02102022	4-Aug-22 JOF-GW-JOF-107-08042022	8-Feb-23 JOF-GW-FD01-02082023 JOF-GW-JOF-107-02082023	8-Feb-23 JOF-GW-JOF-107-02082023	3-Dec-19 JOF-GW-021-20191203	11-Feb-20 JOF-GW-021-20200211	7-Apr-20 JOF-GW-021-20200407
Sample Depth		40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	39 ft	39 ft	39 ft
Sample Type		Normal Environmental Sample			Normal Environmental Sample			Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance			EIP	EIP	EIP
Total Metals		<u> </u>	'	'		1	'					1	·
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	2.28 J	<2.00	2.57 U*	2.38 U*	0.328 J	<2.00	<2.00
Barium	ug/L	135	188	179	170	269	245	285	193	193	17.1	14.9	14.7
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	0.331 J	0.300 J	0.391 J
Boron	ug/L	75.7	59.3	59.5	58.6	52.0	55.4	57.9	49.3	47.2	84.5	80.0	71.7
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.316 J	<0.300	<0.300
Calcium	ug/L	19,800	28,900	29,100	28,900	38,200	32,100	40,800	30,100	29,800	18,400	17,000	16,500
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	1.63 J	<3.00	<3.00
Cobalt	ug/L	0.542 J	1.04	1.15	0.440 J	0.678 J	0.322 J	<0.300	0.639 J	0.624 J	2.56	0.570 J	0.467 J
Copper	ug/L	<0.300	0.403 J	0.585 J	<0.300	0.416 J	<0.300	0.527 J	<0.300	<0.300	1.09 J	0.939 U*	0.941 J
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.172 J	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.39	<3.00	<3.00
Magnesium	ug/L	-	<0.0670	<0.0670	-	<0.0670	-	<0.0670	<0.0670	<0.0670	4,250	5,010	5,140
Mercury	ug/L	<0.0670			<0.0670		<0.0670				<0.101	<0.0670	<0.0670
Molybdenum Nickel	ug/L	<0.200	<0.200 1.48 J	<0.200	<0.200 0.985 J	<0.200 1.58 J	<0.200 1.31 J	0.371 U*	<0.200 1.50 J	<0.200 1.50 J	<0.610 36.2	0.235 U* 27.2	<0.200 22.4
Nickei Potassium	ug/L	1.28 J		1.72 J				3.62		1.50 J	1.110	1,260	1,290
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50	<1.50	<1.51	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300
Sodium	ug/L		<0.300	<0.300	<0.300	<0.300	<0.300	<0.300		<0.300	7.360	7.420	6.980
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	0.170 J	<0.600	<0.600
Vanadium	ug/L ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	6.29 U*	5.50 U*	1.30	<3.30	<3.30
Zinc	ug/L	5.98 J	4.18 J	4.59 J	<3.30	9.76 U*	<3.30	4.15 J	<3.30	<3.30	51.5	45.8	47.3
Radiological Para	meters	0.30 0	4.10 0	4.59 5	15.50	9.70 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13.30	31.3	45.0	47.5
Radium-226	pCi/L	1.41 +/-(0.760)	0.780 +/-(0.605)U	0.658 +/-(0.578)U	0.414 +/-(0.314)	0.152 +/-(0.328)U	1.35 +/-(0.824)	1.47 +/-(0.894)	0.760 +/-(0.645)U	0.472 +/-(0.480)U	0.765 +/-(0.398)	0.828 +/-(0.645)U	0.680 +/-(0.500)U
Radium-228	pCi/L	0.112 +/-(0.235)U	0.503 +/-(0.380)U	0.279 +/-(0.479)U	0.516 +/-(0.590)U	0.362 +/-(0.324)U	0.598 +/-(0.319)	0.496 +/-(0.487)U	1.00 +/-(0.518)U*	0.644 +/-(0.434)U*	-0.0935 +/-(0.274)U	0.273 +/-(0.378)U	0.0308 +/-(0.254)U
Radium-226+228	pCi/L	1.52 +/-(0.795)J	1.28 +/-(0.715)U	0.937 +/-(0.751)U	0.930 +/-(0.668)J	0.515 +/-(0.461)U	1.95 +/-(0.884)	1.96 +/-(1.02)J	1.76 +/-(0.827)U*	1.12 +/-(0.647)U*	0.765 +/-(0.484)J	1.10 +/-(0.748)U	0.711 +/-(0.561)U
Anions				, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,				(/ .	1 (1)		1 (, , , , , , , , , , , , , , , , , , , ,
Chloride	mg/L	84.2	142	141	126	234	229	265	219	229	38.6	39.3	39.2
Fluoride	mg/L	< 0.0330	<0.0330	<0.0330	0.0414 J	<0.0330	<0.0330	0.0522 J	<0.0330	<0.0330	0.0408 J	0.122	0.105
Sulfate	mg/L	22.2	24.9	25.1	26.8	33.3	39.4	49.7	56.6	57.5	5.17	4.63	4.09
General Chemistr	у												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	27.2	14.8 J	12.5
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	<5.00	<1.45	<1.45
pH (lab)	SU	5.62 J	5.57 J	5.57 J	5.67 J	5.58 J	5.71 J	5.80 J	5.84 J	6.10 J	-	-	-
Total Dissolved Solids	mg/L	211	344	361	353	553	486	509	432	425	112	92.9	281 J

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF-109					JOF-110	
Sample Date Sample ID Parent Sample ID		9-Jun-20 JOF-GW-021-20200609	12-Aug-20 JOF-GW-021-20200812	13-Oct-20 JOF-GW-021-20201013	19-Mar-21 JOF-GW-JOF-109-03192021	27-Jul-21 JOF-GW-JOF-109-07272021	17-Mar-22 JOF-GW-JOF-109-03172022	15-Sep-22 JOF-GW-JOF-109-09152022	4-Dec-19 JOF-GW-022-20191204	12-Feb-20 JOF-GW-022-20200212	7-Apr-20 JOF-GW-022-20200407
Sample Depth Sample Type Program	Units	39 ft Normal Environmental Sample EIP	39 ft Normal Environmental Sample CCR Program	39 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample EIP	57 ft Normal Environmental Sample EIP	57 ft Normal Environmental Sample EIP				
Total Metals											<u> </u>
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	3.75	3.59 J	2.07 J
Barium	ug/L	14.2	13.9	14.7	16.7	15.9	18.9	26.4	76.0	66.3	65.4
Beryllium	ug/L	0.362 J	0.348 J	0.374 J	0.306 J	0.406 J	0.323 J	0.534	<0.182	<0.200	<0.200
Boron	ug/L	81.5	67.2	64.1	71.3	64.4	131	111	1,290	1,410	1,460
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.322 U*	<0.125	<0.300	<0.300
Calcium	ug/L	17,900	16,000	16,100	19,100	17,800	22,200	30,200	19,300	19,300	18,600
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	2.98	<3.00	<3.00
Cobalt	ug/L	0.415 J	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	5.47	4.44 J	3.69
Copper	ug/L	0.910 J	1.05 J	0.873 U*	1.05 J	1.48 J	1.01 J	1.25 J	<0.627	<0.300	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.284 J	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	12.9 U*	3.05 J	<3.00
Magnesium	ug/L	5,080	5,000	5,040	6,360	5,970	7,640	10,300	4,860	5,090	4,990
Mercury	ug/L	<0.0670	<0.0670	<0.0670	0.125 U*	0.110 U*	0.0780 J	0.142 J	<0.101	<0.0670	<0.0670
Molybdenum Nickel	ug/L	<0.200 22.3	<0.200 19.7	<0.200 19.5	<0.200 22.5	0.262 U* 19.5	<0.200 24.6	<0.200 27.6	<0.610 8.85	0.343 U* 9.63	0.244 J 8.34
Potassium	ug/L	1,360	1,150	1,250	1.410	1,330	1,510	1,730	350 J	340	331
Selenium	ug/L ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.51	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300
Sodium	ug/L	7.820	6.990	6.790	8.540	7.610	8.690	11.000	39.500	40.600	36.800
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.148	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	5.49 U*	<3.30	<3.30	<3.30	<3.30	2.42	<3.30	<3.30
Zinc	ua/L	47.7	45.7	48.8	52.3	48.6	57.9 J	71.4	13.2 U*	5.29 J	6.21 U*
Radiological Para	ameters	•									
Radium-226	pCi/L	0.846 +/-(0.454)	1.36 +/-(0.818)	0.741 +/-(0.516)U*	1.24 +/-(0.706)	1.14 +/-(0.641)	0.828 +/-(0.489)	1.23 +/-(0.772)	0.332 +/-(0.556)U	0.599 +/-(0.602)U	0.588 +/-(0.537)U
Radium-228	pCi/L	-0.00890 +/-(0.355)U	0.522 +/-(0.344)	-0.0120 +/-(0.232)U	0.326 +/-(0.478)U	0.142 +/-(0.260)U	2.36 +/-(0.959)U*	0.900 +/-(0.682)U	-0.21 +/-(0.261)U	0.304 +/-(0.333)U	0.599 +/-(0.382)U*
Radium-226+228	pCi/L	0.846 +/-(0.577)J	1.89 +/-(0.888)	0.741 +/-(0.565)U*	1.56 +/-(0.853)J	1.29 +/-(0.692)J	3.19 +/-(1.08)J	2.13 +/-(1.03)J	0.332 +/-(0.614)U	0.902 +/-(0.688)U	1.19 +/-(0.659)U*
Anions											
Chloride	mg/L	41.6	41.5	42.6	48.5	54.4	60.0	86.2	52.4	50.8	49.3
Fluoride	mg/L	0.0969 J	0.158	<0.0330	0.0995 J	0.121	0.110	0.102	0.376	0.405 J	0.402
Sulfate	mg/L	4.25	3.91	3.57	3.50	3.57	7.56	6.20	27.5	26.0	23.8
General Chemisti	ry										
Alkalinity, Bicarbonate	mg/L	12.1	11.0 J	11.0	7.76 J	8.84 J	10.0 J	7.80 J	52.5	43.0	42.3
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<1.45	0.725 UJ	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45
pH (lab)	SU	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	87.1	117	106	199	147	201	147	242	189	181 J

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1				JOF-110				1	JOF	:-111	
Sample Date Sample ID		11-Jun-20 JOF-GW-022-20200611	12-Aug-20 JOF-GW-022-20200812	14-Oct-20 JOF-GW-022-20201014	16-Mar-21 JOF-GW-JOF-110-03162021	27-Jul-21 JOF-GW-JOF-110-07272021	15-Mar-22 JOF-GW-JOF-110-03152022	13-Sep-22 JOF-GW-JOF-110-09132022	4-Dec-19 JOF-GW-023-20191204	12-Feb-20 JOF-GW-023-20200212	7-Apr-20 JOF-GW-023-20200407	11-Jun-20 JOF-GW-023-20200611
Parent Sample ID Sample Depth Sample Type		57 ft Normal Environmental Sample					57 ft Normal Environmental Sample					
Program	Units	EIP	EIP	EIP	EIP	EIP	CCR Program	CCR Program	EIP	EIP	EIP	EIP
Total Metals		 	'	'	'	1		1	•	1	1	1
Antimony	ug/L	<1.00	<1.00	1.40 J	<1.00	1.21 J	<1.00	<1.00	<0.378	<1.00	<1.00	<1.00
Arsenic	ug/L	<2.00	2.14 J	<2.00	3.40 J	<2.00	<2.00	<2.00	6.61	7.91	3.02 J	5.19
Barium	ug/L	75.1	63.8	70.3	67.9	66.7	70.6	70.7	49.0	31.9	24.5	30.9
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	0.725	<0.200	<0.200	<0.182	<0.200	0.310 J	<0.200
Boron	ug/L	1,670	1,500	1,430	1,460	1,530	1,310	1,480	4,450	5,540	4,550	5,000
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	0.481 J	<0.300	<0.300	0.179 J	<0.300	0.418 J	<0.300
Calcium	ug/L	18,900	17,200	17,000	18,800	17,800	19,000	19,300	426,000	449,000	419,000	464,000
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	2.84	<3.00	<3.00	<3.00
Cobalt	ug/L	3.30	2.75	2.53	2.58	2.98	2.26	2.16	98.8	195 J	218	203
Copper	ug/L	0.419 U*	<0.300	0.349 U*	0.347 U*	0.745 J	<0.300	<0.300	0.787 J	<0.300	<0.300	0.369 U*
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	2.41	<0.500	<0.500	<0.128	<0.500	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	3.97 J	3.00 J	<3.00	<3.00	40.4	9.95 J	3.15 J	3.10 J
Magnesium	ug/L	4,790	4,380	4,380	5,190	4,660	5,150	5,010	30,000	22,100	19,300	23,000
Mercury	ug/L	<0.0670	<0.0670	0.0740 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.101	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	0.200 U*	0.261 J	0.205 J	0.343 U*	1.37 U*	0.221 J	<0.200	48.5	16.1	9.66	29.8
Nickel	ug/L	8.92	7.90	8.57	9.17	9.31	8.79	8.55	26.8	46.7	57.3	53.5
Potassium	ug/L	380	254 J	338	333	374	313	324	46,000	53,500	47,000	56,900
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.51	<2.00	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300	<0.300
Sodium	ug/L	35,600	34,800	33,500	38,500	33,700	37,200	34,700	177,000	191,000	247,000	272,000
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	0.163 J	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	9.63 J	<3.30	<3.30	10.1 U*	1.36	<3.30	<3.30	<3.30
Zinc Radiological Para	ug/L	8.23 U*	7.44 J	13.8 U*	7.63 J	7.43 J	5.64 J	5.86 J	49.1	57.8	111	101
Radium-226	pCi/L	0.328 +/-(0.424)U	-0.0168 +/-(0.463)U	0.808 +/-(0.631)U	0.112 +/-(0.234)U	0.0807 +/-(0.407)U	0.301 +/-(0.543)U	0.868 +/-(0.713)U	0.481 +/-(0.292)	0.595 +/-(0.323)	0.799 +/-(0.406)	1.87 +/-(0.930)
Radium-228	pCi/L	0.0457 +/-(0.403)U	0.0258 +/-(0.336)U	0.166 +/-(0.375)U	-0.433 +/-(0.324)U	0.292 +/-(0.421)U	0.406 +/-(0.473)U	0.410 +/-(0.497)U	1.02 +/-(0.484)U*	0.726 +/-(0.443)	0.759 +/-(0.519)U*	0.740 +/-(0.403)
Radium-226+228	pCi/L	0.374 +/-(0.585)U	0.0258 +/-(0.572)U	0.974 +/-(0.734)U	0.112 +/-(0.400)U	0.232 1/-(0.421)0 0.373 +/-(0.586)U	0.706 +/-(0.721)U	1.28 +/-(0.869)U	1.50 +/-(0.565)J	1.32 +/-(0.549)	1.56 +/-(0.659)J	2.61 +/-(1.01)
Anions	1 1-4	(0.000/0	, , , , , , , , , , , , , , , , , , , ,			, , , , , , , , , , , , , , , , , , , ,		(0.000/0				, (,
Chloride	mg/L	48.8 J	49.6	48.4	53.8	56.2	61.4	59.2	456	452	643	736 J
Fluoride	mg/L	0.518	0.565	0.432	0.430	0.426	0.397	0.452	0.150 J	0.143 J	0.271	0.241 J
Sulfate	mg/L	27.3 J	25.1	24.8	25.2	25.8	25.7	24.9	930	938	783	930 J
General Chemistry												
Alkalinity, Bicarbonate	mg/L	38.0	37.4	36.0	35.1	35.2	33.4	32.8	81.9	40.6	19.0	34.6
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<1.45	<0.725	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45	<1.45
pH (lab)	SU	.5.			<u>.</u>		<u>.</u> .	<u>.</u>				
Total Dissolved Solids	mg/L	180	193	207	201	220	204	201	2,160	2,090	2,280	2,500

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	I			JOF	-111					JOF-112		
Sample Date Sample ID Parent Sample ID		12-Aug-20 JOF-GW-023-20200812	14-Oct-20 JOF-GW-023-20201014	16-Mar-21 JOF-GW-JOF-111-03162021	28-Jul-21 JOF-GW-JOF-111-07282021	15-Mar-22 JOF-GW-JOF-111-03152022	13-Sep-22 JOF-GW-JOF-111-09132022	2-Dec-19 JOF-GW-024-20191202	11-Feb-20 JOF-GW-024-20200211	7-Apr-20 JOF-GW-024-20200407	9-Jun-20 JOF-GW-024-20200609	9-Jun-20 JOF-GW-DUP01-20200609 JOF-GW-024-20200609
Sample Depth Sample Type Program	Units	46 ft Normal Environmental Sample EIP	46 ft Normal Environmental Sample CCR Program	46 ft Normal Environmental Sample CCR Program	29.5 ft Normal Environmental Sample EIP	29.5 ft Field Duplicate Sample EIP						
Total Metals				•				•			•	
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	11.5	19.2	26.0	12.5	51.6	35.2	0.579 J	<2.00	<2.00	<2.00	<2.00
Barium	ug/L	48.3	43.8	44.2	40.5	40.6	33.2	58.8	51.5	55.4	60.7	57.1
Beryllium	ug/L	<0.200	<0.200	<0.200	0.352 J	<0.200	<0.200	0.223 U*	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	5,260	5,190	5,560	5,290	5,140	7,280	56.6 J	31.0	36.2	40.2	41.2
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.357 J	1.23	0.523 J	0.523 J	0.531 J
Calcium Chromium	ug/L	476,000 <3.00	482,000 <3.00	502,000 <3.00	461,000 <3.00	551,000 <3.00	457,000 <3.00	31,600 2.15	28,700 <3.00	34,600 <3.00	37,000 <3.00	37,000 <3.00
Cobalt	ug/L	132	109	77.8	113	13.7	19.4	112	112	105	108	105
Copper	ug/L ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.637 J	<0.300	<0.300	<0.300	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.128	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	17.5	35.9	46.2	25.1	106	55.7	3.80 J	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	31,300	29,200	33,400	30,100	31,500	26,500	13,100	13,900	14,000	13,900	13,800
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.101	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	48.8	40.4	47.4	38.6	77.2	96.1	0.746 J	0.595 U*	0.923 J	0.965 J	0.870 J
Nickel	ug/L	35.4	29.8	19.7	30.1	3.05	4.13	10.3	10.4	8.93	9.22	8.67
Potassium	ug/L	50,600	46,700	46,400	45,700	48,600	50,800	861	844	1,030	1,070	1,070
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.51	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	226,000	194,000	163,000	192,000	130,000	91,100	25,600	24,400	26,000	29,500	29,300
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	0.493 U*	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	1.31	<3.30	<3.30	<3.30	<3.30
Zinc Radiological Para	ug/L	63.8	57.6	22.2	45.0	<3.30	3.93 J	17.2 U*	16.3 J	12.4 U*	12.5 J	11.7 J
		0.744 + / (0.000)	4.50 -/ /0.747) 1	0.707 (1/0.407)	1.00 - / /0.005)	1.40 - / (0.700)	0.000 -/ (0.544)	0.04 - / /0.040)	0.00 (7.0704)	0.50 (1/0.714)	0.40 -/ (0.750)	0.04 - / (0.007)
Radium-226 Radium-228	pCi/L pCi/L	0.711 +/-(0.363) 0.801 +/-(0.386)	1.56 +/-(0.747)U* 0.754 +/-(0.452)	0.767 +/-(0.427) 1.24 +/-(0.607)	1.60 +/-(0.805)	1.49 +/-(0.789)	0.333 +/-(0.544)U 0.905 +/-(0.612)U*	2.81 +/-(0.812) -0.03 +/-(0.330)U	2.86 +/-(0.781) 0.484 +/-(0.418)U	2.50 +/-(0.714)	2.46 +/-(0.753) 0.0551 +/-(0.328)U	3.31 +/-(0.897) 0.127 +/-(0.350)U
Radium-226+228	pCi/L	1.51 +/-(0.530)	2.31 +/-(0.452)	2.00 +/-(0.742)	1.18 +/-(0.561) 2.78 +/-(0.982)	0.395 +/-(0.427)U 1.89 +/-(0.897)J	1.24 +/-(0.819)U*	2.81 +/-(0.876)J	3.35 +/-(0.418)U	0.635 +/-(0.497)U 3.13 +/-(0.870)J	2.52 +/-(0.822)J	3.44 +/-(0.963)J
Anions	POIL	1.01 17-(0.000)	2.01 17-(0.010)0	2.50 17-(0.142)	2.70 17-(0.302)	1.00 17-(0.007)0	1.24 17-(0.010)0	2.01 17-(0.070)0	0.00 17-(0.000)0	3.10 17-(0.070)0	2.02 17-(0.022)0	0.44 17-(0.300)0
Chloride	mg/L	603	493	426	490	244	146	47.3	41.7	34.8	35.2	34.0
Fluoride	mg/L	0.187	0.179	0.180	0.188	0.386	0.198	0.379	0.441	0.390	0.429	0.420
Sulfate	mg/L	1,010	1,070	1,210	1,110	1,580	1,390	61.0	49.4	58.2	62.7	61.7
General Chemistry	/											·
Alkalinity, Bicarbonate	mg/L	65.2	64.4	60.6	65.3	41.0	71.2	106	79.4	94.3	96.9	94.5
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<0.725	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	2,590	2,610	2,570	2,640	2,770	2,340	268	201	279 J	240	220

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	ĺ				JOF-112				1	JOI	F-113	
Sample Date Sample ID Parent Sample ID		13-Aug-20 JOF-GW-024-20200813	13-Oct-20 JOF-GW-024-20201013	16-Mar-21 JOF-GW-FD03-03162021 JOF-GW-JOF-112-03162021	16-Mar-21 JOF-GW-JOF-112-03162021	28-Jul-21 JOF-GW-JOF-112-07282021	16-Mar-22 JOF-GW-JOF-112-03162022	15-Sep-22 JOF-GW-JOF-112-09152022	4-Dec-19 JOF-GW-025-20191204	12-Feb-20 JOF-GW-025-20200212	8-Apr-20 JOF-GW-025-20200408	10-Jun-20 JOF-GW-025-20200610
Sample Depth		29.5 ft	29.5 ft	29.5 ft	29.5 ft	29.5 ft	29.5 ft	29.5 ft	43.5 ft	43.5 ft	43.5 ft	43.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	EIP	EIP	EIP	EIP	EIP	CCR Program	CCR Program	EIP	EIP	EIP	EIP
Total Metals	<u> </u>								II.	I .		
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00	<1.00
Arsenic	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	1.62	4.16 J	<2.00	3.21 J
Barium	ug/L	57.0	64.8	61.1	59.0	61.5	86.0	88.3	29.4	24.4	23.5	23.4
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.182	<0.200	<0.200	<0.200
Boron	ug/L	36.3	36.1	43.1	36.8	39.4	33.2	38.3	15,500	16,100	16,100	18,600
Cadmium	ug/L	0.551 J	0.576 J	0.528 J	0.537 J	0.708 J	1.40	1.38 U*	0.535 J	3.31	1.64	2.01
Calcium	ug/L	29,900 <3.00	29,900 <3.00	34,300 <3.00	33,600 <3.00	26,900 <3.00	31,800 <3.00	30,400 <3.00	538,000	606,000	590,000	658,000 <3.00
Chromium Cobalt	ug/L	<3.00 102	<3.00 105	<3.00 101	97.2	98.4	<3.00 116	<3.00 84.5	2.15 7.83	<3.00 3.90 J	<3.00 3.34	3.00
Copper	ug/L ug/L	0.532 J	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.655 J	<0.300	0.325 J	0.343 U*
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.128	<0.500	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	156	133	118	128
Magnesium	ug/L	15,000	13,400	14,500	14,200	12,300	14,800	15,600	6,860	7,000	6,520	6,480
Mercury	ug/L	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.101	<0.0670	<0.0670	<0.0670
Molvbdenum	ug/L	0.760 J	0.824 J	0.874 U*	0.763 U*	0.717 U*	0.541 J	0.441 J	204	235	229	251
Nickel	ug/L	8.81	8.54	9.35	9.04	7.93	8.72	6.92	123	123	113	115
Potassium	ug/L	809	915	1,060	1,040	864	923	991	59,200	66,100	64,700	79,600
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.51	<2.00	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300	<0.300
Sodium	ug/L	27,100	25,400	33,300	32,500	28,200	23,000	23,800	62,700	54,200	46,200	58,500
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	0.676 J	0.758 J	0.811 J	0.823 J	0.874 J
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	1.22	<3.30	<3.30	<3.30
Zinc	ug/L	13.8 J	14.8 U*	11.9 J	12.0 J	10.7 J	14.7 J	12.2 J	173	236	234	247
Radiological Para	meters											
Radium-226	pCi/L	3.31 +/-(0.894)	3.05 +/-(0.857)	3.67 +/-(0.967)	3.57 +/-(0.951)	3.66 +/-(0.938)	4.32 +/-(1.05)	4.05 +/-(1.05)	3.49 +/-(0.906)	2.44 +/-(0.689)	3.07 +/-(0.801)	3.13 +/-(0.848)
Radium-228	pCi/L	-0.325 +/-(0.351)U	0.785 +/-(0.616)U	-0.00587 +/-(0.326)U	-0.243 +/-(0.286)U	0.145 +/-(0.458)U	1.29 +/-(0.609)U*	-0.0967 +/-(0.526)U	0.853 +/-(0.574)U*	0.275 +/-(0.335)U	1.13 +/-(0.733)	0.399 +/-(0.323)U
Radium-226+228	pCi/L	3.31 +/-(0.960)J	3.83 +/-(1.06)J	3.67 +/-(1.02)J	3.57 +/-(0.993)J	3.81 +/-(1.04)J	5.61 +/-(1.22)J	4.05 +/-(1.17)J	4.34 +/-(1.07)J	2.72 +/-(0.766)J	4.21 +/-(1.09)	3.53 +/-(0.907)J
Anions									T.			
Chloride	mg/L	31.6	32.0	39.0	38.7	31.9	59.6	73.2	38.8	43.1	64.8	53.3
Fluoride	mg/L	0.452	0.434	0.444	0.445	0.496	0.380	0.375	0.164	0.642 J	<0.330	<0.0330
Sulfate	mg/L	56.6	52.9	65.4	65.3	57.0	47.7	33.4	1,390	1,530	1,530	1,510
General Chemistr	<u> </u>											
Alkalinity, Bicarbonate	mg/L	92.6	103	97.8	98.4	102	74.2	70.4	22.9	16.6	15.7	15.5
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<0.725	<0.725	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45	<1.45
pH (lab)	SU	213	267	234	246	234	233	219	2.330	2.330	2.390	- 2 200
Total Dissolved Solids	mg/L	213	267	234	246	234	233	219	2,330	2,330	2,390	2,290

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF-113				1	JOF	F-114	
Sample Date Sample ID Parent Sample ID		13-Aug-20 JOF-GW-025-20200813	13-Aug-20 JOF-GW-DUP01-20200813 JOF-GW-025-20200813	15-Oct-20 JOF-GW-025-20201015	18-Mar-21 JOF-GW-JOF-113-03182021	29-Jul-21 JOF-GW-JOF-113-07292021	17-Mar-22 JOF-GW-JOF-113-03172022	15-Sep-22 JOF-GW-JOF-113-09152022	4-Dec-19 JOF-GW-026-20191204	12-Feb-20 JOF-GW-026-20200212	8-Apr-20 JOF-GW-026-20200408	10-Jun-20 JOF-GW-026-20200610
Sample Depth		43.5 ft	43.5 ft	43.5 ft	43.5 ft	43.5 ft	43.5 ft	43.5 ft	39.5 ft	39.5 ft	39.5 ft	39.5 ft
Sample Type		Normal Environmental Sample	Field Duplicate Sample		Normal Environmental Sample	Normal Environmental Sample				Normal Environmental Sample	_ · · · · · · · · · · · · · · · · · · ·	
Program	Units	EIP	EIP	EIP	EIP	EIP	CCR Program	CCR Program	EIP	EIP	EIP	EIP
Total Metals	-		'			1	·		•	1	1	1
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00	<1.00
Arsenic	ug/L	3.24 J	3.11 J	2.82 J	3.02 J	<2.00	3.68 J	<2.00	1.11	4.03 J	2.15 J	3.40 J
Barium	ug/L	23.3	23.5	24.4	23.3	21.4	22.8	21.1	24.0	20.4	21.5	20.5
Beryllium	ug/L	0.203 J	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	0.619 J	1.00	0.767	0.784
Boron	ug/L	15,700	15,700	15,600	15,300	13,500	13,900	16,100	10,700	11,200	12,500	15,900
Cadmium	ug/L	3.31	3.42	7.10	2.65	5.98	2.06	1.67 U*	0.335 J	0.346 J	<0.300	<0.300
Calcium	ug/L	553,000	531,000	580,000	583,000	500,000	550,000	548,000	469,000	548,000	543,000	629,000
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	2.84	<3.00	<3.00	<3.00
Cobalt	ug/L	2.65	2.74	2.48	2.34 J	1.74	1.85	1.79	76.9	77.3 J	68.2	68.7
Copper	ug/L	1.36 J	1.49 J	1.17 U*	0.415 J	0.634 J	0.400 J	0.483 J	1.79 J	1.24 U*	1.32 J	1.24 U*
Lead Lithium	ug/L	<0.500	<0.500 121	<0.500 123	<0.500 134	<0.500	<0.500 117	<0.500 114	<0.128 101	<0.500	<0.500	<0.500 87.6
	ug/L	121 6,710	6,760	6,540	7,160	115 6,690	6,720	6,790	48,500	81.1 48,300	83.4 58,300	60,500
Magnesium Mercury	ug/L ug/L	<0.0670	<0.0670	<0.0670	<0.0670	0.104 U*	<0.0670	<0.0670	46,500 <0.101	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	262	258	236	238	232	256	205	<0.610	<0.200	<0.200	0.277 J
Nickel	ug/L	115	115	117	114	98.9	109	112	24.0	22.1	17.9	17.7 U*
Potassium	ug/L	59,500	59,000	61,700	60,300	55,100	58,400	55,800	95,900	113,000	113,000	122,000
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.51	<2.00	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300	<0.300
Sodium	ug/L	42,500	41.800	42.700	43.800	37,600	39,700	36,600	328.000	345.000	333.000	390.000
Thallium	ug/L	0.883 J	0.857 J	0.919 J	0.954 J	0.913 J	0.935 J	0.909 J	0.636 J	0.637 J	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	1.46	<3.30	<3.30	<3.30
Zinc	ug/L	246	240	292 J	236	273	267 J	247	70.6	64.4	51.9	50.6
Radiological Para	meters											
Radium-226	pCi/L	3.25 +/-(0.906)	3.63 +/-(0.954)	3.77 +/-(1.00)	3.26 +/-(0.876)	3.07 +/-(0.834)	2.79 +/-(0.825)	2.61 +/-(0.790)	2.56 +/-(0.730)	2.71 +/-(0.763)	1.92 +/-(0.603)	2.01 +/-(0.670)
Radium-228	pCi/L	0.207 +/-(0.340)U	0.524 +/-(0.442)U	0.293 +/-(0.341)U	0.239 +/-(0.421)U	0.918 +/-(0.549)	1.98 +/-(0.881)U*	1.20 +/-(0.730)	2.26 +/-(0.828)	2.18 +/-(0.828)	2.04 +/-(0.702)	2.12 +/-(0.738)
Radium-226+228	pCi/L	3.46 +/-(0.968)J	4.16 +/-(1.05)J	4.07 +/-(1.06)J	3.49 +/-(0.972)J	3.99 +/-(0.999)	4.77 +/-(1.21)J	3.81 +/-(1.08)	4.82 +/-(1.10)	4.89 +/-(1.13)	3.96 +/-(0.925)	4.13 +/-(0.997)
Anions												
Chloride	mg/L	70.0	69.9	65.8	68.0	70.5	70.9	67.7	258	252	257	252
Fluoride	mg/L	0.178	0.175	0.168	0.239	0.0824 J	0.177	0.157	<0.0658	0.106 J	<0.330	<0.0330
Sulfate	mg/L	1,480	1,500	1,440	1,540	1,550	1,530	1,460	1,800	2,090	2,100	2,050
General Chemistry												
Alkalinity, Bicarbonate	mg/L	13.9	13.9	13.1	9.55 J	13.3	13.8	14.4	<5.00	6.00 J	<1.45	2.35 J
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<1.45	0.725 UJ	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45	<1.45
pH (lab)	SU			_ - -		_ -	_ .	1				_ <u>-</u>
Total Dissolved Solids	mg/L	2,320	2,370	2,340	2,380	2,400	2,440	2,280	3,240	3,220	3,350	3,310

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF-114				1	JOI	- -117	
Sample Date Sample ID Parent Sample ID		13-Aug-20 JOF-GW-026-20200813	14-Oct-20 JOF-GW-026-20201014	18-Mar-21 JOF-GW-JOF-114-03182021	28-Jul-21 JOF-GW-FD02-07282021 JOF-GW-JOF-114-07282021	28-Jul-21 JOF-GW-JOF-114-07282021	16-Mar-22 JOF-GW-JOF-114-03162022	13-Sep-22 JOF-GW-JOF-114-09132022	5-Dec-19 JOF-GW-027-20191205	12-Feb-20 JOF-GW-027-20200212	8-Apr-20 JOF-GW-027-20200408	11-Jun-20 JOF-GW-027-20200611
Sample Depth		39.5 ft	39.5 ft	39.5 ft	39.5 ft	39.5 ft	39.5 ft	39.5 ft	40.5 ft	40.5 ft	40.5 ft	40.5 ft
Sample Type		Normal Environmental Sample			Field Duplicate Sample	Normal Environmental Sample			Normal Environmental Sample			
Program	Units	EIP	EIP	EIP	EIP	EIP	CCR Program	CCR Program	EIP	EIP	EIP	EIP
Total Metals	-								•	1		
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00	<1.00
Arsenic	ug/L	2.78 J	<2.00	3.28 J	<2.00	<2.00	2.80 J	<2.00	28.5	33.9	32.1	28.4
Barium	ug/L	20.1	20.3	20.8	18.6	18.2	19.1	18.3	95.4	89.7	88.8	88.9
Beryllium	ug/L	0.858	1.10	0.909	0.870	0.827	0.845	0.892	<0.182	<0.200	<0.200	<0.200
Boron	ug/L	11,500	11,600	11,800	11,600	11,600	11,400	11,100	<386	12.7 J	15.6	17.8 U*
Cadmium	ug/L	0.307 J	<0.300	<0.300	0.337 J	<0.300	<0.300	0.417 J	<0.125	<0.300	<0.300	<0.300
Calcium	ug/L	505,000 <3.00	518,000 <3.00	523,000 <3.00	484,000 <3.00	479,000 <3.00	504,000 <3.00	501,000 <3.00	89,500 3.10 U*	96,700	96,700	92,200 <3.00
Chromium	ug/L	<3.00 68.9	<3.00 71.1	<3.00 65.5 J	<3.00 60.6	<3.00 58.8	<3.00 55.7		25.7	<3.00 24.2 J	<3.00 21.5	<3.00 20.1
Cobalt Copper	ug/L	68.9 1.80 J	2.82 U*	2.22	1.79 J	1.63 J	2.92	55.5 1.40 J	25.7 0.697 J	24.2 J <0.300	<0.300	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.128	<0.500	<0.500	<0.500
Lithium	ug/L ug/L	79.5	77.5	92.8	77.8	74.8	78.6	73.0	12.9 U*	<3.00	<3.00	<3.00
Magnesium	ug/L	53,300	47,900	55,400	54,100	54,100	51,800	50,900	30,400	31,100	30,300	28,900
Mercury	ug/L	<0.0670	<0.0670	<0.0670	0.0990 U*	0.0950 U*	<0.0670	<0.0670	<0.101	<0.670	<0.0670	<0.0670
Molybdenum	ug/L	<0.200	<0.200	0.443 U*	0.212 U*	<0.200	<0.200	<0.200	26.8	29.3	29.6	30.4
Nickel	ug/L	18.8	20.4	16.4	16.3	15.9	15.0	16.3	10.1	6.96	5.94	5.26 U*
Potassium	ug/L	106,000	104,000	103,000	94,000	94,500	95,300	94,400	2,760	2,890	3,000	2,790
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.51	<2.00	<2.00	<2.00
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300	<0.300
Sodium	ug/L	313,000	307,000	315,000	281,000	282,000	259,000	229,000	35,900	39,300	34,900	34,200
Thallium	ug/L	0.609 J	0.741 J	<0.600	0.606 J	<0.600	<0.600	<0.600	<0.148	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	1.18	<3.30	<3.30	<3.30
Zinc	ug/L	53.7	68.0	45.9	50.2	49.1	40.4	43.5	4.62 U*	<3.30	3.61 U*	<3.30
Radiological Para			0.40 4.40 =0.50	0.40.440.000	(== ((= ===)		101 (10 500)	1.00 (1.00 000)	1 20 (40 570)	1 =0 1 (0 ==0)	1 =0 1 (0 ==0)	0.01 (10.710)
Radium-226	pCi/L	2.38 +/-(0.712)	2.18 +/-(0.735)	2.19 +/-(0.692)	1.72 +/-(0.578)	2.39 +/-(0.749)	1.84 +/-(0.583)	1.87 +/-(0.677)	1.80 +/-(0.579)	1.73 +/-(0.576)	1.72 +/-(0.570)	2.61 +/-(0.748)
Radium-228 Radium-226+228	pCi/L pCi/L	1.42 +/-(0.689) 3.81 +/-(0.991)	2.26 +/-(0.755) 4.44 +/-(1.05)	1.86 +/-(0.710) 4.05 +/-(0.992)	2.49 +/-(0.840) 4.22 +/-(1.02)	2.85 +/-(0.953) 5.24 +/-(1.21)	2.54 +/-(0.858)U* 4.38 +/-(1.04)J	2.20 +/-(0.985)U* 4.07 +/-(1.19)J	0.897 +/-(0.496) 2.69 +/-(0.763)	0.499 +/-(0.342) 2.23 +/-(0.670)	0.589 +/-(0.364) 2.31 +/-(0.677)	0.538 +/-(0.346) 3.15 +/-(0.824)
Anions	pCI/L	3.81 +/-(0.991)	4.44 +/-(1.05)	4.05 +/-(0.992)	4.22 +/-(1.02)	5.24 +/-(1.21)	4.38 +/-(1.04)3	4.07 +/-(1.19)3	2.69 +/-(0.763)	2.23 +/-(0.670)	2.31 +/-(0.677)	3.15 +/-(0.024)
Chloride	ma/l	233	224	213	224	223	194	192	82.3	79.3	77.8	81.6 J
Fluoride	mg/L mg/L	0.0814 J	0.0623 J	0.0496 J	0.0541 J	0.0537 J	0.410	0.0641 J	0.793	0.972 J	0.864	0.957
Sulfate	mg/L	1.980	1.890	2.090	2.120	2.130	2.130	2.060	6.80	8.68	7.30	7.27 J
General Chemistr		1,000	1,500	2,000	2,120	2,100	2,100	2,000	0.00	0.00	1.00	7.2.0
Alkalinity, Bicarbonate	mg/L	1.96 J	1.76 J	0.725 UJ	<1.45	<1.45	1.80 J	<1.45	322	348	332	303
Alkalinity, Carbonate	mg/L	<1.45	<1.45	0.725 UJ	<1.45	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45	<1.45
pH (lab)	sŭ	-	-	-	- '	-	-	-	-	-	- 1	- '
Total Dissolved Solids	mg/L	3,270	3,250	3,380	3,410	3,370	3,300	3,150	470	464	454	403

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	1			JOF	F-117				JOF-1	18	
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type		13-Aug-20 JOF-GW-027-20200813 40.5 ft Normal Environmental Sample	15-Oct-20 JOF-GW-027-20201015 40.5 ft Normal Environmental Sample	19-Mar-21 JOF-GW-JOF-117-03192021 40.5 ft Normal Environmental Sample	29-Jul-21 JOF-GW-JOF-117-07292021 40.5 ft Normal Environmental Sample	16-Mar-22 JOF-GW-JOF-117-03162022 40.5 ft Normal Environmental Sample	14-Sep-22 JOF-GW-JOF-117-09142022 40.5 ft Normal Environmental Sample	3-Dec-19 JOF-GW-028-20191203 48.5 ft Normal Environmental Sample	11-Feb-20 JOF-GW-028-20200211 48.5 ft Normal Environmental Sample	9-Apr-20 JOF-GW-028-20200409 48.5 ft Normal Environmental Sample	9-Apr-20 JOF-GW-DUP01-20200409 JOF-GW-028-20200409 48.5 ft Field Duplicate Sample
Program	Units	EIP	EIP	EIP	EIP	CCR Program	CCR Program	EIP	EIP	EIP	EIP
Total Metals			'	1		1			1		
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.378	<1.00	<1.00	<1.00
Arsenic	ug/L	32.8	31.9	32.8	27.8	28.8	27.6	1.30	3.11 U*	2.18 J	2.25 J
Barium	ug/L	81.8	92.0	90.3	79.3	89.6	84.0	22.3	22.2	30.6	31.4
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.182	<0.200	<0.200	<0.200
Boron	ug/L	14.6 J	13.9 J	15.0	11.2 J	11.9 J	10.6 J	57.3 J	59.4	65.5	63.9
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.125	<0.300	0.382 J	0.353 J
Calcium	ug/L	84,600	91,800	93,700	81,900	92,900	83,400	31,200	29,900	40,600	42,100
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	1.58 J	<3.00	<3.00	<3.00
Cobalt	ug/L	20.6	20.4	18.5 J	15.1	14.4	14.7	2.41	1.86	3.02	3.08
Copper	ug/L	<0.300	<0.300	<0.300	0.500 J	<0.300	<0.300	<0.627	<0.300	<0.300	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.128	<0.500	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.39	<3.00	<3.00	<3.00
Magnesium	ug/L	28,600	28,500	31,700	27,800	32,900	30,400	5,730	5,970	7,140	7,330
Mercury	ug/L	<0.0670 30.8	<0.0670	<0.0670 24.6	<0.0670 24.5	<0.0670	<0.0670	<0.101 <0.610	<0.0670	<0.0670 0.344 J	<0.0670
Molybdenum Nickel	ug/L	30.8 5.52	26.7 6.00	24.6 5.96	24.5 5.18	20.8 5.81	22.5 5.72	<0.610 8.56	<0.200 7.12	9.16	0.341 J 9.68
Potassium	ug/L	2,510	2,780	2,820	2,370	2,870	2.490	932	1,020	1,300	1,290
Selenium	ug/L ug/L	2,510 <2.00	<2.00	<2.00	<2.00	2,870 <1.50	2,490 <1.50	932 <1.51	1,020 <2.00	<2.00	1,290 <2.00
Silver	ug/L ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.177	<0.300	<0.300	<0.300
Sodium	ug/L ug/L	32.800	34,100	37,100	30.500	39,600	33,500	26.800	24.400	44.500	46.000
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.148	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	1.33	<3.30	<3.30	<3.30
Zinc	ug/L	<3.30	<3.30	<3.30	4.04 J	<3.30	<3.30	5.51 U*	4.56 J	10.1 U*	10.6 U*
Radiological Para	3	-0.00	-0.00	-0.00	4.04 0	-0.00	10.00	0.010	4.50 0	10.1 0	10.0 0
Radium-226	pCi/L	2.57 +/-(0.762)	3.72 +/-(0.981)	3.01 +/-(0.822)	2.40 +/-(0.736)U*	2.69 +/-(0.797)	1.88 +/-(1.03)	0.273 +/-(0.412)U	-0.436 +/-(0.380)U	0.751 +/-(0.648)U	1.21 +/-(0.707)
Radium-228	pCi/L	0.580 +/-(0.494)U	0.534 +/-(0.394)U	0.230 +/-(0.447)U	0.509 +/-(0.480)U	0.708 +/-(0.495)U*	0.946 +/-(0.894)U	-0.264 +/-(0.347)U	0.303 +/-(0.484)U	0.757 +/-(0.647)U	-0.514 +/-(0.374)U
Radium-226+228	pCi/L	3.15 +/-(0.908)J	4.25 +/-(1.06)J	3.24 +/-(0.936)J	2.91 +/-(0.879)U*	3.40 +/-(0.938)J	2.82 +/-(1.36)J	0.273 +/-(0.539)U	0.303 +/-(0.616)U	1.51 +/-(0.916)U	1.21 +/-(0.800)J
Anions		,	, , ,					, ,	, ,		` '
Chloride	mg/L	79.3	78.5	81.6	86.1	94.1	87.9	11.6	10.3	14.2	13.8
Fluoride	mg/L	0.984	0.851	0.826	0.829	0.836	0.854	0.0818 J	0.344	0.498	0.523
Sulfate	mg/L	5.42	3.86	2.63	1.49	0.507 U*	0.611	99.7	81.0	127	125
General Chemistry	у										
Alkalinity, Bicarbonate	mg/L	327	334	323 J	324	308	303	50.5	41.0	64.8	64.0
Alkalinity, Carbonate	mg/L	<1.45	<1.45	0.725 UJ	<1.45	<1.45	<1.45	<5.00	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	431	476	473 J	479	496	479	214	190	259	254

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF-	118			
Sample Date Sample ID Parent Sample ID		10-Jun-20 JOF-GW-028-20200610	13-Aug-20 JOF-GW-028-20200813	14-Oct-20 JOF-GW-028-20201014	18-Mar-21 JOF-GW-JOF-118-03182021	29-Jul-21 JOF-GW-JOF-118-07292021	17-Mar-22 JOF-GW-JOF-118-03172022	14-Sep-22 JOF-GW-FD03-09142022 JOF-GW-JOF-118-09142022	14-Sep-22 JOF-GW-JOF-118-0914202
Sample Depth Sample Type Program	Units	48.5 ft Normal Environmental Sample EIP	48.5 ft Normal Environmental Sample CCR Program	48.5 ft Field Duplicate Sample CCR Program	48.5 ft Normal Environmental Sam CCR Program				
Total Metals									
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	2.81 J	2.66 J	<2.00	2.79 J	<2.00	4.23 J	<2.00	<2.00
Barium	ug/L	25.6	24.4	24.1	31.9	22.4	37.3	20.1	20.0
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	76.9	61.2	62.0	132	99.4	924	510	517
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	39,700	35,400	34,600	74,700	48,500	169,000	75,300	72,400
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	3.05	3.07	2.93	9.29 J	6.58	43.5	22.0	22.3
Copper	ug/L	<0.300	0.490 J	<0.300	<0.300	0.353 J	<0.300	0.314 J	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	3.46 J	<3.00	8.12 J	5.76 J	5.68 J
Magnesium	ug/L	6,300	6,750	6,980	17,600	11,200	27,300	12,100	12,300
Mercury	ug/L	<0.0670	<0.0670	0.0670 U*	0.0760 U*	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	0.234 J	0.210 J	<0.200	0.292 U*	0.285 U*	0.302 U*	<0.200	<0.200
Nickel	ug/L	8.03 U*	11.2	13.0	43.4	26.2	38.0	16.6	16.8
Potassium	ug/L	1,270	936	976	1,250	977	2,540	1,820	1,820
Selenium	ug/L	<2.00	<2.00	<2.00	<2.00	<2.00	<1.50	<1.50	<1.50
Silver	ug/L	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	41,800	32,800	34,400	71,700	44,100	48,900	20,800	21,000
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30 5.50 U*	<3.30 9.71 J	<3.30	<3.30 20.6	<3.30 18.5 J	<3.30	<3.30	<3.30 5.96 J
Zinc Radiological Parar	ug/L	5.50 U	9.71 J	10.8 U*	20.6	18.5 J	18.9 J	6.26 J	5.96 J
Radium-226	pCi/L	0.345 +/-(0.372)U	0.513 +/-(0.534)U	0.563 +/-(0.511)U	0.110 +/-(0.225)U	0.462 +/-(0.489)U	0.414 +/-(0.455)U	0.333 +/-(0.563)U	0.445 +/-(0.596)U
Radium-228	pCi/L	-0.173 +/-(0.326)U	0.513 +/-(0.534)U 0.293 +/-(0.447)U	0.136 +/-(0.240)U	0.110 +/-(0.225)U 0.120 +/-(0.327)U	0.462 +/-(0.469)U 0.142 +/-(0.443)U	1.13 +/-(0.455)U*	0.0624 +/-(0.393)U	-0.134 +/-(0.617)U
Radium-226+228	pCi/L	0.345 +/-(0.494)U	0.293 +/-(0.447)U 0.806 +/-(0.696)U	0.136 +/-(0.240)U 0.699 +/-(0.565)U	0.120 +/-(0.327)U 0.230 +/-(0.397)U	0.142 +/-(0.443)U 0.604 +/-(0.660)U	1.13 +/-(0.702)U* 1.54 +/-(0.837)U*	0.0624 +/-(0.393)U 0.395 +/-(0.687)U	0.134 +/-(0.617)U
Anions	poi/L	0.343 17-(0.434)0	0.000 17-(0.000)0	0.039 17-(0.303)0	0.230 17-(0.337)0	0.004 17-(0.000)0	1.34 17-(0.037)0	0.393 17-(0.001)0	0.443 17-(0.030)0
Chloride	mg/L	11.6	12.9	12.5	18.8	13.5	14.1	9.57	9.76
Fluoride	mg/L	0.480	0.449	0.356	0.405	0.387	0.522	0.386	0.392
Sulfate	mg/L	100	116	120	297	204	786	321	326
General Chemistry								*	
Alkalinity, Bicarbonate	mg/L	51.5	50.3	42.9	42.3 J	42.4	45.6	44.0 J	35.6 J
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<1.45	0.725 UJ	<1.45	<1.45	<1.45	<1.45
pH (lab)	sŭ	- 1	-	- 1	-	-	-	-	-
Total Dissolved Solids	mg/L	250	246	286	527	364	1,270	548	517

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	I					J	OF-119				
Sample Date Sample ID Parent Sample ID		3-Dec-19 JOF-GW-029-20191203	3-Dec-19 JOF-GW-DUP01-20191203 JOF-GW-029-20191203	11-Feb-20 JOF-GW-029-20200211	11-Feb-20 JOF-GW-DUP01-20200211 JOF-GW-029-20200211	9-Apr-20 JOF-GW-029-20200409	9-Jun-20 JOF-GW-029-20200609	13-Aug-20 JOF-GW-029-20200813	13-Oct-20 JOF-GW-029-20201013	13-Oct-20 JOF-GW-DUP01-20201013 JOF-GW-029-20201013	18-Mar-21 JOF-GW-JOF-119-03182021
Sample Depth		42.5 ft	42.5 ft	42.5 ft	42.5 ft	42.5 ft	42.5 ft	42.5 ft	42.5 ft	42.5 ft	42.5 ft
Sample Type	Units	Normal Environmental Sample EIP	Field Duplicate Sample EIP	Normal Environmental Sample EIP	Field Duplicate Sample EIP	Normal Environmental Sample EIP	Normal Environmental Sample EIP	Normal Environmental Sample EIP	Normal Environmental Sample EIP	Field Duplicate Sample EIP	Normal Environmental Sample EIP
Program	Units	EIP	EIP	EIP	EIP	EIP	EIP	EIP	EIP	EIP	EIP
Total Metals	1	 			1		1	1		1	1
Antimony	ug/L	<0.378	<0.378	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1.56 J
Arsenic	ug/L	1.36	1.29	3.77 U*	3.59 U*	<2.00	3.11 J	2.50 J	<2.00	<2.00	3.22 J
Barium	ug/L	38.9	38.9	41.0	41.7	29.1	40.4	39.4	35.5	36.5	35.3
Beryllium	ug/L	<0.182	<0.182	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	<38.6	<38.6	37.0	36.2	28.5	40.2	29.6	22.2	19.8	30.4
Cadmium	ug/L	<0.125	<0.125	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	22,200	21,700	25,800 <3.00	25,600 <3.00	21,200	27,500	24,700	20,700 <3.00	20,600	28,200 <3.00
Chromium Cobalt	ug/L	<1.53 2.22	2.12 2.49		3.06	<3.00 0.723 J	<3.00 3.00	<3.00 2.21	<3.00 1.91	<3.00 1.94	<3.00 1.70 J
Copper	ug/L ug/L	2.22 <0.627	<0.627	3.04 <0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	0.410 J
Lead	ug/L	<0.128	<0.128	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<3.39	<3.39	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	4,240	4,170	5,070	5,140	4,210	4,640	4,560	3,960	3,920	5,180
Mercury	ug/L	<0.101	<0.101	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	0.0820 U*
Molybdenum	ug/L	<0.610	<0.610	0.789 U*	0.795 U*	0.354 J	0.721 J	0.455 J	0.386 J	0.334 J	0.724 U*
Nickel	ug/L	2.47	2.60	2.79	2.63	1.58 J	2.41	2.05	1.66 J	1.69 J	1.54 J
Potassium	ug/L	1,480	1,480	1,600	1,640	1,930	1,720	1,350	1,310	1,300	1,530
Selenium	ug/L	<1.51	<1.51	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	<0.177	<0.177	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	52,100	52,800	62,300	60,800	45,600	59,200	41,900	33,800	33,700	52,000
Thallium	ug/L	<0.148	<0.148	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	0.999 J	1.65	<3.30	<3.30	<3.30	<3.30	<3.30	3.83 U*	3.89 U*	<3.30
Zinc	ug/L	5.09 U*	3.79 U*	<3.30	<3.30	6.82 U*	3.63 J	4.52 J	3.71 U*	6.32 U*	<3.30
Radiological Para											
Radium-226	pCi/L	0.752 +/-(0.696)U	0.453 +/-(0.531)U	0.804 +/-(0.682)U	0.275 +/-(0.550)U	0.241 +/-(0.541)U	0.0436 +/-(0.211)U	0.456 +/-(0.465)U	0.0515 +/-(0.274)U	0.284 +/-(0.326)U	0.00997 +/-(0.187)U
Radium-228	pCi/L	-0.211 +/-(0.267)U	-0.358 +/-(0.364)U	-0.397 +/-(0.318)U	0.108 +/-(0.507)U	0.287 +/-(0.407)U	0.238 +/-(0.280)U	0.130 +/-(0.341)U	-0.0856 +/-(0.329)U	0.0159 +/-(0.268)U	0.489 +/-(0.564)U
Radium-226+228	pCi/L	0.752 +/-(0.746)U	0.453 +/-(0.644)U	0.804 +/-(0.752)U	0.383 +/-(0.748)U	0.527 +/-(0.677)U	0.282 +/-(0.351)U	0.586 +/-(0.577)U	0.0515 +/-(0.428)U	0.300 +/-(0.422)U	0.499 +/-(0.595)U
Anions											
Chloride	mg/L	24.8	24.9	21.5	21.4	22.3	22.9	21.6	21.1	21.0	20.6
Fluoride	mg/L	0.0719 J	0.203 J	0.411	0.408	0.420	0.407	0.413	0.350	0.378	0.414
Sulfate	mg/L	65.6	66.3	53.8	53.7	53.1	44.9	36.9	27.9	28.0	39.0
General Chemistry							1	1			
Alkalinity, Bicarbonate	mg/L	99.3	101	113	111	118	111	99.6	83.4	84.5	114 J
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	0.725 UJ
pH (lab)	SU	235	234	- 246 J	249	199	240	171	176	- 171	247
Total Dissolved Solids	mg/L	See notes on lest page	234	246 J	249	199	240	1/1	1/6	1/1	247

Table H.1-10- Groundwater Analytical Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			JO	DF-119	
Sample Date Sample ID Parent Sample ID		28-Jul-21 JOF-GW-JOF-119-07282021	17-Mar-22 JOF-GW-FD03-03172022 JOF-GW-JOF-119-03172022	17-Mar-22 JOF-GW-JOF-119-03172022	14-Sep-22 JOF-GW-JOF-119-09142022
Sample Depth		42.5 ft	42.5 ft	42.5 ft	42.5 ft
Sample Type		Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	EIP	CCR Program	CCR Program	CCR Program
Total Metals					
Antimony	ug/L	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	2.33 J	3.40 J	3.27 J	<2.00
Barium	ug/L	39.7	33.7	34.1	31.5
Beryllium	ug/L	<0.200	<0.200	<0.200	<0.200
Boron	ug/L	34.6	28.1	29.2	20.9
Cadmium	ug/L	<0.300	<0.300	<0.300	<0.300
Calcium	ug/L	25,100	27,700	27,400	21,300
Chromium	ug/L	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	2.16	1.58	1.54	1.57
Copper	ug/L	<0.300	<0.300	<0.300	<0.300
Lead	ug/L	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	<3.00	<3.00	<3.00	<3.00
Magnesium	ug/L	4,560	4,890	4,810	3,790
Mercury	ug/L	0.101 U*	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	0.543 U*	0.677 U*	0.646 U*	0.296 J
Nickel	ug/L	1.80 J	1.29 J	1.29 J	2.05
Potassium	ug/L	1,320	1,430	1,400	1,240
Selenium	ug/L	<2.00	<1.50	<1.50	<1.50
Silver	ug/L	< 0.300	<0.300	<0.300	<0.300
Sodium	ug/L	40,800	42,700	41,400	31,100
Thallium	ug/L	<0.600	<0.600	<0.600	<0.600
Vanadium	ug/L	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	<3.30	<3.30	<3.30	<3.30
Radiological Parar					
Radium-226	pCi/L	0.124 +/-(0.324)U	0.0943 +/-(0.349)U	0.220 +/-(0.279)U	0.130 +/-(0.429)U
Radium-228	pCi/L	0.425 +/-(0.371)U	0.941 +/-(0.614)U*	0.726 +/-(0.408)U*	0.714 +/-(0.463)U*
Radium-226+228	pCi/L	0.549 +/-(0.493)U	1.04 +/-(0.706)U*	0.946 +/-(0.494)U*	0.843 +/-(0.631)U*
Anions					
Chloride	mg/L	22.1	20.4	20.4	21.1
Fluoride	mg/L	0.421	0.399	0.397	0.386
Sulfate	mg/L	32.3	28.8	28.8	19.7
General Chemistry					
Alkalinity, Bicarbonate	mg/L	112	109	113	85.0
Alkalinity, Carbonate	mg/L	<1.45	<1.45	<1.45	<1.45
pH (lab)	SU	-	-	-	-
Total Dissolved Solids	mg/L	213	237	220	154

Notes:

Please note that units have been converted automatically in this table, and significant figures may not have been maintained.

15.2 measured concentration did not exceed the indicated standard

**Total Concentration Co

analyte was not detected at a concentration greater than the Method Detection Limit Parameter not analyzed / not available. feet Identification < 0.03

ft ID

quantitation is approximate due to limitations identified during data validation result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level This compound was not detected, but the reporting or detection limit should be considered estimated due to a bias identified during data validation. Unreliable reporting or detection limit; compound may or may not be present in sample.

mg/L pCi/L SU ug/L milligrams per Liter picocuries per Liter standard unit

micrograms per Liter

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-AP1				
Sample Date		23-Sep-15	22-Mar-16	22-Mar-16	21-Sep-16	2-Nov-16	5-Jan-17	18-Jan-17	16-Feb-17	15-Mar-17
Sample ID		10-AP1_0923151200_L790475-01	10-AP1_0322161200_L825030-01	JOF-10-AP1-0316	10-AP1_0921161200_L861578-01	JOF-GW-001-11022016	JOF-GW-001-01052017	JOF-GW-001-01182017	JOF-GW-001-02162017	JOF-GW-001-03152017
Parent Sample ID										
Sample Depth		47 ft	47 ft	47 ft	47 ft	47 ft	47 ft	47 ft	47 ft	47 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	CCR Program				
Field Parameters		l .	I .						I	
Dissolved Oxygen	%	-	-	-	-	41.1	2.0	2.8	3.6	2.5
Dissolved Oxygen	mg/L	=			1.3	3.67	0.20	0.26	0.36	0.24
ORP	mV	=	345	345	348	66.7	114.0	129.6	134.6	124.9
pH (field)	SU	-	5.5	5.5	-	5.45	5.54	5.43	5.50	5.37
	uS/cm	-	693	693	675	700	700	700	700	700
Specific Cond. (Field)										
Specific Cond. (Field) Temperature, Water (C)	DEG C	21.1	21.1	21.1	24.5	20.8	16.9	17.9	17.5	16.6

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-	AP1				
Sample Date Sample ID Parent Sample ID		11-Apr-17 JOF-GW-001-04112017	17-May-17 JOF-GW-001-05172017	6-Jun-17 JOF-GW-001-06062017	11-Jul-17 JOF-GW-001-07112017	2-Aug-17 JOF-GW-001-08022017	20-Sep-17 JOF-AP1	20-Sep-17 JOF-GW-001-09202017	6-Oct-17 JOF-GW-001-10062017	15-Mar-18 JOF-AP1-0318	24-May-18 JOF-GW-001-05242018
Sample Depth Sample Type Program	Units	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Samp CCR Program				
Field Parameters	•	•									
Dissolved Oxygen	%	4.4	3.9	8.7	2.4	1.8	-	2.1	2.9	-	4.8
Dissolved Oxygen	mg/L	0.43	0.36	0.89	0.23	0.16	0.55	0.19	0.27	0.5	0.45
ORP	mV	133.8	135.7	190.4	119.3	124.1	367	142.6	157.6	413	129.4
pH (field)	SU	5.40	5.34	5.30	5.39	5.32	-	5.35	5.37	5.5	5.27
Specific Cond. (Field)	uS/cm	710	700	700	640	650	673	640	590	682	700
Temperature, Water (C)	DEG C	19.1	19.4	19.9	20.1	20.3	-	20.7	20.1	-	19.4
Turbidity, field	NTU	4 63	1 05	4 95	4.47	2 22		2.60	4 29		4.66

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10	AP1				
Sample Date Sample ID Parent Sample ID		13-Jun-18 JOF-GW-001-06132018	27-Jun-18 JOF-GW-001-06272018	25-Jul-18 JOF-GW-001-07252018	15-Aug-18 JOF-GW-001-08152018	12-Sep-18 JOF-AP1-09122018	3-Apr-19 JOF-GW-001-04032019	10-Jul-19 JOF-GW-001-07102019	18-Sep-19 JOF-GW-001-09182019	9-Oct-19 JOF-GW-001-10092019	22-Jan-20 JOF-GW-001-01222020
Sample Depth Sample Type Program	Units	47 ft Normal Environmental Sample CCR Program	47 ft Normal Environmental Sample State Compliance	47 ft Normal Environmental Sample CCR Program							
Field Parameters	•		1		1		1			1	
Dissolved Oxygen	%	2.7	2.5	3.4	2.2	-	2.7	1.3	1.7	5.4	4.8
Dissolved Oxygen	mg/L	0.25	0.23	0.29	0.21	0.5	0.25	0.12	0.15	0.47	0.48
ORP	mV	162.3	193.3	121.7	175.3	391	208.9	-101.4	150.2	150.4	138.5
pH (field)	SU	5.29	5.24	5.39	5.25	5.4	5.29	5.30	5.27	5.27	5.41
Specific Cond. (Field)	uS/cm	610	600	600	610	662	620	610	610	570	540
Temperature, Water (C)	DEG C	19.5	19.8	19.7	19.9	21.3	19.1	22.3	21.8	22.2	15.4
Turbidity, field	NTU	4.82	4.44	3.67	4.12	9.1	4.38	4.10	4.21	4.67	7.81

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-AP1				
Sample Date		6-Mar-20	22-Jul-20	10-Sep-20	10-Feb-21	18-Mar-21	28-Jul-21	15-Sep-21	2-Feb-22	16-Mar-22
Sample ID		JOF-GW-001-03062020	JOF-GW-001-07222020	JOF-GW-001-09102020	JOF-GW-10-AP1-02102021	JOF-GW-10-AP1-03182021	JOF-GW-10-AP1-07282021	JOF-GW-10-AP1-09152021	JOF-GW-10-AP1-02022022	JOF-GW-10-AP1-03162022
Parent Sample ID		47 ft								
Sample Depth Sample Type		Normal Environmental Sample	47 II Normal Environmental Sample							
Program	Units	CCR Program	State Compliance	State Compliance	CCR Program					
		<u> </u>	·							
Field Parameters										
Dissolved Oxygen	%	2.6	4.0	4.0	2.2	4.1	4.3	3.5	3.7	3.9
Dissolved Oxygen	mg/L	0.25	0.35	0.35	0.22	0.40	0.36	0.31	0.36	0.39
ORP	mV	122.6	159.8	129.3	102.3	156.0	46.7	293.2	168.8	50.2
ORP pH (field)	mV SU	122.6 5.25	159.8 5.32			156.0 5.29		1 1		
-···		-		129.3	102.3		46.7	293.2	168.8	50.2
pH (field)	SU	5.25	5.32	129.3 5.13	102.3 5.38	5.29	46.7 5.60	293.2 5.36	168.8 5.40	50.2 5.42

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			10-AP1				10-AP3		
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	3-Aug-22 JOF-GW-10-AP1-08032022 47 ft Normal Environmental Sample CCR Program	14-Sep-22 JOF-GW-10-AP1-09142022 47 ft Normal Environmental Sample CCR Program	8-Feb-23 JOF-GW-10-AP1-02082023 47 ft Normal Environmental Sample	23-Sep-15 10-AP3_0923151200_L790475-03 45.5 ft Normal Environmental Sample State Compliance	22-Mar-16 10-AP3_0322161200_L825030-02 45.5 ft Normal Environmental Sample State Compliance	22-Mar-16 JOF-10-AP3-0316 45.5 ft Normal Environmental Sample State Compliance	22-Sep-16 10-AP3_0922161200_L861581-02 45.5 ft Normal Environmental Sample State Compliance	2-Nov-16 JOF-GW-002-11022016 45.5 ft Normal Environmental Sample CCR Program
Field Parameters	•				<u> </u>				
Dissolved Oxygen	%	0.1	2.3	3.2	-	-	-	-	-
Dissolved Oxygen	mg/L	0.01	0.21	0.31	-	1	1	1.4	0.45
ORP	mV	148.9	138.6	153.3	-	446	446	421	92.4
pH (field)	SU	5.44	5.41	5.36	-	5.1	5.1	4.9	4.98
Specific Cond. (Field)	uS/cm	580	567	663	-	1,235	1,235	1,219	1,260
Temperature, Water (C)	DEG C	22.8	20.5	17.1	23.6	21.9	21.9	19.3	18.4
Turbidity, field	NTU	27.1	14.7	3.65	4.9	8.2	8.2	1.1	3.99

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-	AP3				
Sample Date Sample ID Parent Sample ID		5-Jan-17 JOF-GW-002-01052017	17-Jan-17 JOF-GW-002-01172017	15-Feb-17 JOF-GW-002-02152017	14-Mar-17 JOF-GW-002-03142017	12-Apr-17 JOF-GW-002-04122017	16-May-17 JOF-GW-002-05162017	6-Jun-17 JOF-GW-002-06062017	11-Jul-17 JOF-GW-002-07112017	2-Aug-17 JOF-GW-002-08022017	20-Sep-17 JOF-AP3
Sample Depth Sample Type Program	Units	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample State Compliance								
Field Parameters			1		1		1	1		1	
Dissolved Oxygen	%	1.5	3.0	2.5	3.3	9.0	10.2	45.5	8.8	2.8	-
Dissolved Oxygen	mg/L	0.15	0.29	0.25	0.33	0.88	0.96	4.29	0.85	0.24	0.37
ORP	mV	144.1	196.5	181.4	198.5	204.2	169.0	236.8	164.1	229.9	437
pH (field)	SU	5.14	5.00	5.10	5.09	4.94	4.92	4.77	4.93	4.89	-
Specific Cond. (Field)	uS/cm	1,220	1,200	1,220	1,240	1,200	1,210	1,200	1,140	1,140	1,165
Temperature, Water (C)	DEG C	16.0	17.3	16.8	15.8	17.6	18.1	18.5	19.2	19.4	-
Turbidity, field	NTU	1.81	2.74	4.24	3.23	3.28	2.24	3.17	1.38	0.46	-

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-	AP3				
Sample Date Sample ID Parent Sample ID		20-Sep-17 JOF-GW-002-09202017	6-Oct-17 JOF-GW-002-10062017	14-Mar-18 JOF-AP3-0318	23-May-18 JOF-GW-002-05232018	13-Jun-18 JOF-GW-002-06132018	26-Jun-18 JOF-GW-002-06262018	24-Jul-18 JOF-GW-002-07242018	14-Aug-18 JOF-GW-002-08142018	12-Sep-18 JOF-AP3-09122018	3-Apr-19 JOF-GW-002-04032019
Sample Depth Sample Type Program	Units	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample State Compliance	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample State Compliance	45.5 ft Normal Environmental Sample CCR Program				
Field Parameters		<u> </u>					ı	ı			
Dissolved Oxygen	%	1.7	3.8	-	3.0	4.1	2.5	5.4	2.4	-	2.2
Dissolved Oxygen	mg/L	0.16	0.37	0.6	0.30	0.40	0.23	0.46	0.26	0.4	0.22
ORP	mV	190.6	222.0	523	138.4	137.5	272.6	204.7	250.2	443	255.1
pH (field)	SU	4.92	4.96	5.1	4.83	4.91	4.85	5.02	4.86	5	4.92
Specific Cond. (Field)	uS/cm	1,140	1,030	1,111	1,170	1,050	1,060	1,050	1,070	1,135	1,000
Temperature, Water (C)	DEG C	19.2	18.6	-	18.2	18.1	18.8	18.8	18.6	19.1	17.4
Turbidity, field	NTU	1 15	0.29	_	4 92	2.09	1 96	1.85	1 41	0.4	4.35

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						10-	AP3				
Sample Date Sample ID Parent Sample ID		10-Jul-19 JOF-GW-002-07102019	18-Sep-19 JOF-GW-002-09182019	9-Oct-19 JOF-GW-002-10092019	23-Jan-20 JOF-GW-002-01232020	6-Mar-20 JOF-GW-002-03062020	22-Jul-20 JOF-GW-002-07222020	9-Sep-20 JOF-GW-002-09092020	10-Feb-21 JOF-GW-10-AP3-02102021	18-Mar-21 JOF-GW-10-AP3-03182021	28-Jul-21 JOF-GW-10-AP3-07282021
Sample Depth Sample Type Program	Units	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample State Compliance	45.5 ft Normal Environmental Sample State Compliance	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample CCR Program	45.5 ft Normal Environmental Sample CCR Program				
Field Parameters	ı						ı			1	
Dissolved Oxygen	%	0.8	2.4	6.0	7.1	3.5	4.0	2.4	3.1	2.5	1.9
Dissolved Oxygen	mg/L	0.07	0.22	0.58	0.72	0.36	0.36	0.22	0.31	0.26	0.18
ORP	mV	-74.8	222.1	184.3	218.4	151.8	257.9	182.3	132.1	186.3	82.8
pH (field)	SU	4.97	4.88	4.94	5.04	4.96	4.95	4.97	5.13	4.99	5.27
Specific Cond. (Field)	uS/cm	1,010	990	930	860	950	1,080	1,100	980	1,010	1,070
Temperature, Water (C)	DEG C	18.4	19.0	18.6	14.6	15.2	19.3	18.9	15.3	16.5	17.8
Turbidity, field	NTU		4.07	3.25			4.02		2.01		I .

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location				10-2	AP3				B-6R	
Sample Date		15-Sep-21	2-Feb-22	16-Mar-22	3-Aug-22	14-Sep-22	8-Feb-23	17-Mar-15	22-Mar-16	21-Sep-16
Sample ID Parent Sample ID		JOF-GW-10-AP3-09152021	JOF-GW-10-AP3-02022022	JOF-GW-10-AP3-03162022	JOF-GW-10-AP3-08032022	JOF-GW-10-AP3-09142022	JOF-GW-10-AP3-02082023	JOF-B6R-0315	JOF-B6R-0316	JOF-B6R-0916
Sample Depth		45.5 ft	20.5 ft	20.5 ft	20.5 ft					
Sample Type		Normal Environmental Sample								
Program	Units	CCR Program		State Compliance	State Compliance	State Compliance				
Field Parameters	1			ı	1		1	<u> </u>		1
Dissolved Oxygen	%	2.1	2.4	2.0	0.1	0.5	2.0	-	-	-
Dissolved Oxygen	mg/L	0.20	0.23	0.20	0.01	0.05	0.19	2.9	1.1	2.5
ORP	mV	316.8	237.8	13.0	258.5	175.6	197.9	510	520	540
	SU	5.04	5.06	5.05	5.02	5.02	5.00	5	5.2	4.9
pH (field)										
pH (field) Specific Cond. (Field)	uS/cm	1,010	920	920	880	860	950	547	616	650
		1,010 18.2	920 16.9	920 17.0	880 18.7	860 18.5	950 17.0	547 18.7	616 15.3	650 24.1

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						В-	6R				
Sample Date Sample ID Parent Sample ID		21-Sep-16 JOF-B8R-DUP-0916	14-Mar-17 JOF-B6R	12-Jun-17 JOF-B6R	18-Sep-17 JOF-B6R	12-Dec-17 JOF-B6R-1217	13-Mar-18 JOF-B6R-0318	11-Jun-18 JOF-B6R-0618	11-Sep-18 JOF-B6R-09112018	12-Mar-19 B-6R	12-Sep-19 JOF-B6R-0919
Sample Depth Sample Type Program	Units	20.5 ft Normal Environmental Sample State Compliance									
Field Parameters	-	•									
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	=	2.3	1.7	1.3	1.9	1.7	1.3	1.5	2.2	1.56
ORP	mV	=	604	588	576	598	628	587	634	630	565
pH (field)	SU	5.47	5	4.9	5	5	5.1	4.9	5	4.9	5.05
Specific Cond. (Field)	uS/cm	=	600	640	629	615	576	624	632	571	647
	DE0.0					_	_	_	22.5	16.7	26.75
Temperature, Water (C)	DEG C	-	-	-	-	-	_		22.0	10.7	20.73

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					B-6R					B-8R	
Sample Date Sample ID Parent Sample ID		4-Mar-20 JOF-B6R-0320	16-Sep-20 JOF-B6R-0920	17-Mar-21 JOF-GW-B-6R-03172021	15-Sep-21 JOF-GW-B6R-09152021	8-Feb-22 JOF-GW-B-6R-02082022	2-Aug-22 JOF-GW-B-6R-08022022	7-Feb-23 JOF-GW-B-6R-02072023	17-Mar-15 JOF-B8R-0315	22-Sep-15 JOF-B8R-0915	22-Mar-16 JOF-B8R-0316
Sample Depth Sample Type Program	Units	20.5 ft Normal Environmental Sample State Compliance	20.5 ft Normal Environmental Sample	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Sample State Compliance	16 ft Normal Environmental Samp State Compliance					
Field Parameters		+		1	1				•	1	
Dissolved Oxygen	%	-	-	16	15.8	18.5	22.9	18.5	-	-	-
Dissolved Oxygen	mg/L	2.2	1.24	1.54	1.34	1.75	1.87	1.69	3.9	1.8	4.1
ORP	mV	554	623	718	596	553	499	471	494	430	452
pH (field)	SU	5.0	4.95	4.83	4.82	5.09	4.97	4.94	5.3	4.7	5.9
Specific Cond. (Field)	uS/cm	564	641	628	644	607	644	581	255	286	297
Temperature, Water (C)	DEG C	15.5	22.4	15.4	22.37	16.62	24.63	18.82	15.6	23.5	10.4
							0.00				

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						B-	-8R				
Sample Date Sample ID Parent Sample ID		21-Sep-16 JOF-B8R-0916	14-Mar-17 JOF-B-8R	12-Jun-17 JOF-B8R	18-Sep-17 JOF-B-8R	12-Dec-17 JOF-B-8R-1217	13-Mar-18 JOF-B-8R-0318	11-Jun-18 JOF-B-8R-0618	11-Sep-18 JOF-B-8R-09112018	13-Mar-19 B-8R	12-Sep-19 JOF-B8R-0919
Sample Depth Sample Type Program	Units	16 ft Normal Environmental Sample State Compliance									
Field Parameters		!		1			1	1		1	
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	2.3	4.1	1.4	1.2	1.2	3.8	2	2.6	4.9	1.01
ORP	mV	478	400	555	520	528	514	457	564	569	488
pH (field)	SU	5.61	5.6	5	5.2	5.2	5.9	5.6	5.2	5.8	5.13
Specific Cond. (Field)	uS/cm	285	344	297	281	288	331	301	291	280	292
Temperature, Water (C)	DEG C	24.4	-	-	-	-	-	-	22.5	13	25.23

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					B-8R					B-9	
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	4-Mar-20 JOF-B8R-0320 16 ft Normal Environmental Sample State Compliance	16-Sep-20 JOF-B8R-0920 16 ft Normal Environmental Sample State Compliance	17-Mar-21 JOF-GW-B-8R-03172021 16 ft Normal Environmental Sample State Compliance	16-Sep-21 JOF-GW-B8R-09162021 16 ft Normal Environmental Sample State Compliance	8-Feb-22 JOF-GW-B-8R-02082022 16 ft Normal Environmental Sample State Compliance	2-Aug-22 JOF-GW-B-8R-08022022 16 ft Normal Environmental Sample State Compliance	7-Feb-23 JOF-GW-B-8R-02072023 16 ft Normal Environmental Sample	17-Mar-15 JOF-B9-0315 48 ft Normal Environmental Sample State Compliance	22-Sep-15 JOF-B9-0915 48 ft Normal Environmental Sample State Compliance	21-Mar-16 JOF-B9-0316 48 ft Normal Environmental Samp State Compliance
Field Parameters		ļ	I	<u> </u>	I .	I		<u> </u>		<u> </u>	1
Dissolved Oxygen	%	-	-	31	12.2	32.5	26.3	52.2	-	-	-
Dissolved Oxygen	mg/L	3.7	1.1	3.12	1.06	3.36	2.12	4.78	7.8	6.7	6.7
ORP	mV	522	240	777	257	457	492	433	459	347	364
pH (field)	SU	5.8	5.3	5.58	5.08	5.85	5.24	5.76	5.7	5.8	5.8
Specific Cond. (Field)	uS/cm	346	611	349	314	304	327	357	60	61	61
Temperature, Water (C)	DEG C	14.6	22.5	14.4	20.37	13.31	25.52	19.05	17.2	15.6	14.4
Turbidity, field	NTU	0.0	0.0	0.4	0.0	0.4	0.90	1 2	15	1.1	1.1

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						В	-9				
Sample Date Sample ID Parent Sample ID		20-Sep-16 JOF-B9-0916	1-Nov-16 JOF-GW-009-11012016	4-Jan-17 JOF-GW-009-01042017	16-Jan-17 JOF-GW-009-01162017	15-Feb-17 JOF-GW-009-02152017	14-Mar-17 JOF-GW-009-03142017	11-Apr-17 JOF-GW-009-04112017	16-May-17 JOF-GW-009-05162017	6-Jun-17 JOF-GW-009-06062017	10-Jul-17 JOF-GW-009-07102017
Sample Depth Sample Type Program	Units	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample CCR Program								
Field Parameters	1				I	ı	I	I	ı	I	
Dissolved Oxygen	%	-	-	56.5	56.6	55.3	53.0	54.2	68.5	73.9	54.0
Dissolved Oxygen	mg/L	7.4	8.01	5.85	5.56	5.66	5.59	5.48	6.65	6.85	5.11
ORP	mV	500	189.2	186.1	177.3	179.1	168.8	156.7	164.7	220.6	218.4
pH (field)	SU	5.5	5.87	5.65	5.56	5.69	5.66	5.45	5.28	5.47	5.32
Specific Cond. (Field)	uS/cm	66	65	70	70	70	69	69	68	70	67
Temperature, Water (C)	DEG C	20.5	18.0	13.9	16.6	14.5	12.8	16.4	16.8	17.2	18.0
Turbidity, field	NTU	8.5	32.8	4.33	21.1	4.26	6.78	12.4	4.21	4.18	4.96

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	[В	-9				
Sample Date Sample ID Parent Sample ID		1-Aug-17 JOF-GW-009-08012017	19-Sep-17 JOF-B-9	19-Sep-17 JOF-GW-009-09192017	5-Oct-17 JOF-GW-009-10052017	13-Mar-18 JOF-B9-0318	23-May-18 JOF-GW-009-05232018	12-Jun-18 JOF-GW-009-06122018	26-Jun-18 JOF-GW-009-06262018	24-Jul-18 JOF-GW-009-07242018	14-Aug-18 JOF-GW-009-08142018
Sample Depth Sample Type Program	Units	48 ft Normal Environmental Sample CCR Program	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample CCR Program	48 ft Normal Environmental Sample CCR Program	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample CCR Program				
Field Parameters	<u> </u>									J.	
Dissolved Oxygen	%	63.5	-	62.1	58.5	-	62.9	59.6	58.1	55.4	56.0
Dissolved Oxygen	mg/L	5.96	7	6.00	5.57	6.87	6.01	5.82	5.57	5.28	5.40
ORP	mV	169.1	481	171.0	171.7	513	149.9	156.2	254.3	165.3	217.7
pH (field)	SU	5.76	5.6	5.60	5.91	5.67	5.33	5.14	5.61	5.78	5.41
Specific Cond. (Field)	uS/cm	66	68	63	61	67	70	69	59	62	60
Temperature, Water (C)	DEG C	17.9	-	17.9	17.0	-	17.0	17.0	17.4	18.2	17.0
Turbidity, field	NTU	11.28	-	4.36	2.71	_	3.67	4.21	4.18	4.40	3.95

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						В	-9				
Sample Date Sample ID Parent Sample ID		11-Sep-18 JOF-B-9-09112018	2-Apr-19 JOF-GW-009-04022019	8-Jul-19 JOF-GW-009-07082019	17-Sep-19 JOF-GW-009-09172019	9-Oct-19 JOF-GW-009-10092019	22-Jan-20 JOF-GW-009-01222020	4-Mar-20 JOF-GW-009-03042020	21-Jul-20 JOF-GW-009-07212020	9-Sep-20 JOF-GW-009-09092020	9-Feb-21 JOF-GW-B-9-02092021
Sample Depth Sample Type Program	Units	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample CCR Program	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample State Compliance	48 ft Normal Environmental Sample CCR Program					
Field Parameters							ı				
Dissolved Oxygen	%	-	65.2	63.2	61.8	57.8	67.9	69.1	77.2	64.1	58.3
Dissolved Oxygen	mg/L	6.8	5.76	6.05	5.90	5.64	6.67	6.65	7.43	6.06	5.85
ORP	mV	551	227.6	22.0	230.8	159.1	226.4	155.9	229.1	176.3	176.4
pH (field)	SU	5.6	5.21	5.46	5.02	5.80	5.48	5.48	5.46	5.25	5.89
Specific Cond. (Field)	uS/cm	68	62	64	60	60	55	63	64	76.4	70
Temperature, Water (C)	DEG C	17.9	16.5	17.3	17.5	16.3	15.5	16.1	17.2	18.2	15.4
Turbidity, field	NTU	1.5	3.93	4.63	3.85	2.81	4.41	4.92	3.37	4.71	4.54

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					В	3-9			
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	16-Mar-21 JOF-GW-B-9-03162021 48 ft Normal Environmental Sample CCR Program	27-Jul-21 JOF-GW-B-9-07272021 48 ft Normal Environmental Sample CCR Program	14-Sep-21 JOF-GW-B-9-09142021 48 ft Normal Environmental Sample CCR Program	1-Feb-22 JOF-GW-B-9-02012022 48 ft Normal Environmental Sample CCR Program	15-Mar-22 JOF-GW-B-9-03152022 48 ft Normal Environmental Sample CCR Program	2-Aug-22 JOF-GW-B-9-08022022 48 ft Normal Environmental Sample CCR Program	13-Sep-22 JOF-GW-B-9-09132022 48 ft Normal Environmental Sample CCR Program	7-Feb-23 JOF-GW-B-9-02072023 48 ft Normal Environmental Sample
Field Parameters	<u> </u>			J.					
Dissolved Oxygen	%	61.3	52.6	70.8	51.7	53.7	61.7	60.7	60.2
Dissolved Oxygen	mg/L	6.03	4.85	6.61	5.14	5.39	5.56	5.73	6.02
ORP	mV	206	106.8	358.4	177.0	76.5	237.9	146.4	194.0
pH (field)	SU	5.8	5.94	5.80	5.90	6.07	5.50	5.87	5.78
Specific Cond. (Field)	uS/cm	72	116	72	68	68	65	62	73.4
Temperature, Water (C)	DEG C	17.2	18.8	18.6	15.0	15.7	18.9	17.9	15.4
Turbidity, field	NTU	3.85	4.26	4.84	4.12	4.10	4.29	3.10	3.59

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						89-B10				
Sample Date		17-Mar-15	22-Sep-15	21-Mar-16	20-Sep-16	13-Jun-17	19-Sep-17	11-Dec-17	12-Sep-18	12-Mar-19
Sample ID Parent Sample ID		JOF-B10-0315	JOF-B10-0915	JOF-B10-0316	89-B10_0920161201_L861582-01	JOF-B10	JOF-B10	JOF-B10-1217	JOF-B10-09122018	JOF-B10
Sample Depth		40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft	40 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Field Parameters				I	I			I .		
Tiola Faramotoro										
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	-
	% mg/L	6.7	- 5.9	- 5.8	- 6.4	- 5.9	- 6.1	- 6.4	- 6	- 5.96
Dissolved Oxygen	% mg/L mV	- 6.7 455	- 5.9 393	- 5.8 431	- 6.4 528	- 5.9 490	- 6.1 519	- 6.4 524	- 6 572	- 5.96 605
Dissolved Oxygen Dissolved Oxygen		6.7 455 5.2			- 6.4 528 -	- 5.9 490 5	- 6.1 519 5.2		- 6 572 5.2	
Dissolved Oxygen Dissolved Oxygen ORP	mV	5.2	393	431	- 6.4 528 - 128	- 5.9 490 5 104	- 6.1 519 5.2 88	524		605
Dissolved Oxygen Dissolved Oxygen ORP pH (field)	mV SU	5.2	393 5.3	431 5.3	-	- 5.9 490 5 104	5.2	524 5.2	5.2	605

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					89-	B10			
Sample Date		10-Sep-19	3-Mar-20	15-Sep-20	15-Mar-21	14-Sep-21	9-Feb-22	4-Aug-22	8-Feb-23
Sample ID		JOF-B10-0919	JOF-B10-0320	JOF-B10-0920	JOF-GW-89-B10-03152021	JOF-GW-89-B10-09142021	JOF-GW-89-B10-02092022	JOF-GW-89-B10-08042022	JOF-GW-89-B10-02082023
Parent Sample ID									
Sample Depth		40 ft							
Sample Type	l	Normal Environmental Sample							
Program	Units	State Compliance							
Field Parameters		<u> </u>	1	1	1		1	1	
Dissolved Oxygen	%	-	-	-	60.7	69.9	59.9	65.0	61.2
Dissolved Oxygen	mg/L	6	5.9	5.97	5.84	5.83	5.25	6.11	5.78
ORP	mV	567	512	428	571	435	524	517	467
pH (field)	SU	5.2	5.3	5.2	5.13	5.27	5.25	4.95	5.02
Specific Cond. (Field)	uS/cm	95	86	83	73	107	85	108	90
Temperature, Water (C)	DEG C	25.9	18.9	22.0	16.47	24.94	16.52	23.90	19.99
remperature, water (O)									

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						B-	-11				
Sample Date Sample ID		17-Mar-15 JOF-B11-0315	22-Sep-15 JOF-B11-0915	22-Mar-16 JOF-B11-0316	21-Sep-16 B-11_0921161200_L861582-02	13-Jun-17 JOF-B11	19-Sep-17 JOF-B11	11-Dec-17 JOF-B11-1217	13-Sep-18 JOF-B11-09132018	13-Mar-19 JOF-B11	11-Sep-19 JOF-B11-0919
Parent Sample ID Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance									
Field Parameters			1		I					I	
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	1.8	1.1	1	1.6	1.1	0.9	1.27	1.3	1.7	0.4
ORP	mV	458	416	485	509	508	539	546	557	598	578
pH (field)	SU	5.2	5.1	5.2	-	4.9	5	5.22	5.1	5.5	5
Specific Cond. (Field)	uS/cm	791	966	809	1,421	1,115	1,634	1,535	1,150	852	1,576
Temperature, Water (C)	DEG C	18.8	23	18.7	20.9	-	-	-	24.1	19.7	25
Turbidity, field	NTU	1	2.7	E 2	E A				6.7	6.6	15.5

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location				B-	-11				В	-12	
Sample Date Sample ID Parent Sample ID		5-Mar-20 JOF-B11-0320	17-Sep-20 JOF-B11-0920	16-Mar-21 JOF-GW-B11-03162021	15-Sep-21 JOF-GW-B11-09152021	9-Feb-22 JOF-GW-B-11-02092022	3-Aug-22 JOF-GW-B-11-08032022	17-Mar-15 JOF-B12-0315	22-Sep-15 JOF-B12-0915	21-Mar-16 JOF-B12-0316	21-Sep-16 B-12_0921161201_L861582-0
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Sample CCR Program	35 ft Normal Environmental Sample State Compliance	35 ft Normal Environmental Samp State Compliance				
Field Parameters											
Dissolved Oxygen	%	-	-	6.9	59.4	58.3	60.00	-	-	-	-
Dissolved Oxygen	mg/L	1.2	0.4	0.69	5.26	5.35	5.15	2.5	0.8	2.1	1.7
ORP	mV	532	451	502	458	507	486	461	409	452	470
pH (field)	SU	5.3	5.0	5.16	5.04	5.35	5.07	5.5	5.3	5.3	5.1
Specific Cond. (Field)	uS/cm	740	1,118	820	978	860	854	2,506	3,374	2,458	4,120
Temperature, Water (C)	DEG C	18.2	21.8	17.07	20.07	18.12	21.80	19.6	21.1	18.9	20.3
Turbidity, field	NTU	54.0	24.9	23.3	15.7	17	4.7	0.0	17	2.0	62.1

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						В-	-12				
Sample Date		13-Jun-17	19-Sep-17	11-Dec-17	13-Sep-18	13-Mar-19	12-Sep-19	5-Mar-20	16-Sep-20	16-Mar-21	16-Sep-21
Sample ID		JOF-B12	JOF-B12	JOF-B12-1217	JOF-B12-09132018	JOF-B12	JOF-B12-0919	JOF-B12-0320	JOF-B12-0920	JOF-GW-B12-03162021	JOF-GW-B12-09162021
Parent Sample ID											
Sample Depth		35 ft	35 ft								
Sample Type		Normal Environmental Sample	Normal Environmental Sampl								
Program	Units	State Compliance	State Compliance								
Field Parameters		!		ı			1			1	
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	3.7	30.7
Dissolved Oxygen	mg/L	1.2	0.9	0.88	0.8	3.5	0.4	2.6	0.9	0.43	2.50
ORP	mV	520	540	568	567	610	518	538	444	541	449
pH (field)	SU	5	5.1	5.05	5	5.1	5.1	5.3	5.1	5.19	5.07
Specific Cond. (Field)	uS/cm	3,878	4,185	3,540	4,041	2,525	4,547	2,009	3,378	2,449	2,774
Temperature, Water (C)	DEG C	=	-	-	28	23.8	22.2	14.3	22.8	19	24.09

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						В	13				
Sample Date Sample ID Parent Sample ID		17-Mar-15 JOF-B13-0315	22-Sep-15 JOF-B13-0915	21-Mar-16 JOF-B13-0316	20-Sep-16 B-13_0920161200_L861582-04	12-Jun-17 JOF-B13	19-Sep-17 JOF-B13	11-Dec-17 JOF-B13-1217	12-Sep-18 JOF-B13-09122018	12-Mar-19 JOF-B13	10-Sep-19 JOF-B13-0919
Sample Depth Sample Type Program	Units	42 ft Normal Environmental Sample State Compliance									
Field Parameters			1	ı	1						
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	5.4	5.4	5.1	6.1	5.4	5.2	5.77	5.43	4.8	5.3
ORP	mV	415	429	493	529	551	542	579	567	584	564
pH (field)	SU	4.7	4.9	4.8	-	4.7	4.8	4.79	4.74	5	4.8
Specific Cond. (Field)	uS/cm	3,763	3,146	3,476	3,222	3,110	3,367	3,115	2,901	2,420	3,122
Temperature, Water (C)	DEG C	21.5	22.7	19.9	19.9	-	-	-	21.42	15.3	24.5
Turbidity, field	NTU	5.1	5.2	9.4	13.1	-	-	-	7.3	4.8	9.3

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					B-13					99-B20A	
Sample Date		4-Mar-20	16-Sep-20	15-Mar-21	14-Sep-21	9-Feb-22	3-Aug-22	7-Feb-23	15-Mar-17	12-Jun-17	18-Sep-17
Sample ID		JOF-B13-0320	JOF-B13-0920	JOF-GW-B13-03152021	JOF-GW-B13-09142021	JOF-GW-B-13-02092022	JOF-GW-B-13-08032022	JOF-GW-B-13-02072023	JOF-B20A	JOF-B20A	JOF-B20A
Parent Sample ID											
Sample Depth		42 ft	35 ft	35 ft	35 ft						
Sample Type		Normal Environmental Sample									
Program	Units	State Compliance	State Compliance	State Compliance	CCR Program	State Compliance	State Compliance		State Compliance	State Compliance	State Compliance
Field Parameters	<u> </u>						I			I	I
Dissolved Oxygen	%	-	-	54	66.2	50.0	60.5	50.6	-	-	-
Dissolved Oxygen	mg/L	4.9	4.9	4.99	5.38	5.17	5.01	4.80	5.9	6.2	5.9
ORP	mV	565	453	599	454	513	552	473	553	475	482
pH (field)	SU	4.9	4.7	4.65	4.73	4.74	4.49	4.68	5.1	5.3	5.3
Specific Cond. (Field)	uS/cm	3,056	3,100	2,996	2,746	2,599	2,496	2,384	222	220	214
Temperature, Water (C)	DEG C	16.9	19.3	17.8	24.15	12.84	23.44	17.03	-	-	-
Turbidity, field	NTU	5.0	4.9	4.9	4.6	0.9	2.3	49	_	_	_

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						99-E	320A				
Sample Date Sample ID Parent Sample ID		11-Dec-17 JOF-B20A-1217	13-Mar-18 JOF-B20A-0318	11-Jun-18 JOF-B20A-0618	13-Sep-18 JOF-B20A-09132018	12-Mar-19 JOF-B20A	11-Sep-19 JOF-B20A-0919	3-Mar-20 JOF-B20A-0320	16-Sep-20 JOF-B20A-0920	15-Mar-21 JOF-GW-99-B20A-03152021	15-Sep-21 JOF-GW-99-B20A-09152021
Sample Depth Sample Type Program	Units	35 ft Normal Environmental Sample State Compliance									
Field Parameters	•	!		1			1	1		1	1
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	56.1	57.2
Dissolved Oxygen	mg/L	5.69	5.5	5.3	5.43	5.3	5.3	5.14	5.00	5.11	5.07
ORP	mV	535	476	560	531	618	530	521	436	568	446
pH (field)	SU	5.27	5.3	5.2	5.2	5.1	5.2	5.31	5.2	5.22	5.03
Specific Cond. (Field)	uS/cm	219	301	291	300	328	300	278	293	266	256
Temperature, Water (C)	DEG C	-	-	-	20.01	17.9	22.8	19.6	22.7	19.13	20.19
	NTH						12.8				

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	9-Feb-22 JOF-GW-99-B20A-02092022 35 ft Normal Environmental Sample State Compliance	99-B20A 2-Aug-22 JOF-GW-99-B20A-08022022 35 ft Normal Environmental Sample State Compliance	8-Feb-23 JOF-GW-99-B20A-02082023 35 ft Normal Environmental Sample	1-Nov-16 JOF-GW-013-11012016 52 ft Normal Environmental Sample CCR Program	4-Jan-17 JOF-GW-013-01042017 52 ft Normal Environmental Sample CCR Program	JOF-101 16-Jan-17 JOF-GW-013-01162017 52 ft Normal Environmental Sample CCR Program	15-Feb-17 JOF-GW-013-02152017 52 ft Normal Environmental Sample CCR Program	14-Mar-17 JOF-GW-013-03142017 52 ft Normal Environmental Sample CCR Program
Field Parameters									
Dissolved Oxygen	%	54.0	68.2	54.4	-	49.7	52.4	58.4	51.7
Dissolved Oxygen	mg/L	5.16	5.44	5.11	6.63	5.21	5.18	5.80	5.53
ORP	mV	530	503	459	200.1	177.4	185.8	181.2	180.5
pH (field)	SU	5.27	5.13	5.10	5.62	5.39	5.18	5.33	5.51
Specific Cond. (Field)	uS/cm	241	226	213	47	46	49	46	46
Temperature, Water (C)	DEG C	16.84	25.87	17.96	18.6	13.3	16.9	15.4	12.4
Turbidity, field	NTU	4.6	3.9	4.1	0.37	0.44	1.47	0.77	0.98

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	·-101				
Sample Date Sample ID Parent Sample ID		11-Apr-17 JOF-GW-013-04112017	16-May-17 JOF-GW-013-05162017	6-Jun-17 JOF-GW-013-06062017	10-Jul-17 JOF-GW-013-07102017	1-Aug-17 JOF-GW-013-08012017	18-Sep-17 JOF-101	19-Sep-17 JOF-GW-013-09192017	5-Oct-17 JOF-GW-013-10052017	13-Mar-18 JOF-101-0318	23-May-18 JOF-GW-013-05232018
Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program				
Field Parameters							ı				
Dissolved Oxygen	%	57.5	59.4	78.4	65.1	65.7	-	67.2	57.0	-	63.9
Dissolved Oxygen	mg/L	5.68	5.64	7.36	5.38	5.97	7.01	5.68	5.68	6.9	6.00
ORP	mV	175.6	209.4	238.0	258.1	199.4	465	174.9	190.6	500	144.0
pH (field)	SU	5.07	4.60	5.09	4.79	5.64	5.39	5.49	5.75	5.5	5.07
Specific Cond. (Field)	uS/cm	47	48	48	48	45	45	47	50	45	49
Temperature, Water (C)	DEG C	16.8	18.2	18.6	21.8	19.8	-	22.3	19.5	-	18.6
Turbidity, field	NTU	1.29	0.57	1.03	0.44	0.01	_	0.01	0.01	-	1.00

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	-101				
Sample Date Sample ID Parent Sample ID		12-Jun-18 JOF-GW-013-06122018	26-Jun-18 JOF-GW-013-06262018	24-Jul-18 JOF-GW-013-07242018	14-Aug-18 JOF-GW-013-08142018	11-Sep-18 JOF-101-09112018	2-Apr-19 JOF-GW-013-04022019	8-Jul-19 JOF-GW-013-07082019	17-Sep-19 JOF-GW-013-09172019	9-Oct-19 JOF-GW-013-10092019	21-Jan-20 JOF-GW-013-01212020
Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Samp CCR Program						
Field Parameters	•	!		1	1			1		1	
Dissolved Oxygen	%	62.0	62.7	64.9	62.1	-	65.7	72.8	73.7	65.2	70.2
Dissolved Oxygen	mg/L	5.84	5.76	6.15	5.82	7	6.39	6.76	6.63	6.29	7.18
ORP	mV	173.6	256.7	176.0	205.1	581	221.5	74.8	225.4	147.1	237.7
pH (field)	SU	5.19	5.41	5.46	5.08	5.4	5.13	5.20	4.69	5.60	5.80
Specific Cond. (Field)	uS/cm	56	44	43	43	46	46	45	44	42	39
Temperature, Water (C)	DEG C	18.5	19.4	18.00	18.6	18.6	16.5	18.8	20.2	16.9	14.2
Turbidity, field	NTU	0.56	0.44	0.43	0.47	1.2	4 67	2 66	1.66	1.70	E 2E

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	-101				
Sample Date Sample ID Parent Sample ID		4-Mar-20 JOF-GW-013-03042020	21-Jul-20 JOF-GW-013-07212020	9-Sep-20 JOF-GW-013-09092020	9-Feb-21 JOF-GW-JOF-101-02092021	16-Mar-21 JOF-GW-JOF-101-03162021	27-Jul-21 JOF-GW-JOF-101-07272021	14-Sep-21 JOF-GW-JOF-101-09142021	1-Feb-22 JOF-GW-JOF-101-02012022	15-Mar-22 JOF-GW-JOF-101-03152022	2-Aug-22 JOF-GW-JOF-101-08022022
Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample State Compliance	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sampl CCR Program					
Field Parameters		!		1	1		1	1		1	
Dissolved Oxygen	%	69.5	76.4	70.3	78.6	63.9	68.1	77.4	57.6	63.5	71.1
Dissolved Oxygen	mg/L	6.82	7.08	6.63	7.92	6.42	6.48	7.42	5.71	6.20	6.67
ORP	mV	149.9	192.0	188.0	129.1	196	93.4	326.4	167.1	81.9	256.0
pH (field)	SU	5.19	5.10	4.64	5.87	5.73	5.97	5.55	5.79	5.97	5.09
Specific Cond. (Field)	uS/cm	47	48	52.5	49	50	88	48	46	46	44
Temperature, Water (C)	DEG C	16.5	19.0	18.2	15	15.2	17.8	17.4	16.3	15.5	17.9
	NTU	4 97	3.65	1 74		0.62	1 52				

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		JOF	-101				JOF-102			
Sample Date Sample ID		13-Sep-22 JOF-GW-JOF-101-09132022	7-Feb-23 JOF-GW-JOF-101-02072023	14-Mar-17 JOF-102	12-Jun-17 JOF-102	18-Sep-17 JOF-102	11-Dec-17 JOF-102-1217	13-Mar-18 JOF-102-0318	11-Jun-18 JOF-102-0618	11-Sep-18 JOF-102-09112018
Parent Sample ID Sample Depth Sample Type Program	Units	52 ft Normal Environmental Sample CCR Program	52 ft Normal Environmental Sample	32 ft Normal Environmental Sample State Compliance						
Field Parameters	<u>I</u>					1	I	I		
Dissolved Oxygen	%	72.4	70.6	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	6.97	6.88	3	2.6	2.8	2.5	2.9	2.8	2.5
ORP	mV	172.3	209.2	613	466	423	557	427	568	519
pH (field)	SU	5.69	5.60	4.7	4.8	4.9	4.8	5.31	5	4.9
Specific Cond. (Field)	uS/cm	42.4	49.9	277	280	283	273	285	281	270
Temperature, Water (C)	DEG C	17.1	16.5	-	<u>-</u>	-	-	-	-	17
Turbidity, field	NTU	1.02								

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		1				JOF-102				
Sample Date		12-Mar-19	10-Sep-19	3-Mar-20	15-Sep-20	15-Mar-21	14-Sep-21	8-Feb-22	2-Aug-22	7-Feb-23
Sample ID Parent Sample ID		JOF-102	JOF-102-0919	JOF-102-0320	JOF-102-0920	JOF-GW-JOF-102-03152021	JOF-GW-JOF-102-09142021	JOF-GW-JOF-102-02082022	JOF-GW-JOF-102-08022022	JOF-GW-JOF-102-02072023
Sample Depth		32 ft Normal Environmental Sample	32 ft Normal Environmental Sample	32 ft Normal Environmental Sample	32 ft Normal Environmental Sample	32 ft Normal Environmental Sample	32 ft Normal Environmental Sample			
Sample Type Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	Normai Environmentai Sampie
Field Demandana	I									
Field Parameters										
Dissolved Oxygen	%	-	-	-	-	26.5	28.0	25.3	29.5	29.5
	% mg/L	2.7	- 2.4	- 2.6	- 2.53	26.5 2.71	28.0 2.45	25.3 2.69	29.5 2.41	29.5 3.00
Dissolved Oxygen	% mg/L mV	- 2.7 521	- 2.4 496	- 2.6 420	- 2.53 366			1 1		
Dissolved Oxygen Dissolved Oxygen		- 2.7 521 5.5				2.71	2.45	2.69	2.41	3.00
Dissolved Oxygen Dissolved Oxygen ORP	mV			420	366	2.71 460	2.45 435	2.69 479	2.41 527	3.00 436
Dissolved Oxygen Dissolved Oxygen ORP pH (field)	mV SU	5.5	496 5	420 5.5	366 5.13	2.71 460 4.96	2.45 435 4.90	2.69 479 5.26	2.41 527 4.69	3.00 436 5.11

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	-103				
Sample Date Sample ID Parent Sample ID		3-Nov-16 JOF-GW-015-11032016	4-Jan-17 JOF-GW-015-01042017	17-Jan-17 JOF-GW-015-01172017	15-Feb-17 JOF-GW-015-02152017	15-Mar-17 JOF-GW-015-03152017	12-Apr-17 JOF-GW-015-04122017	17-May-17 JOF-GW-015-05172017	7-Jun-17 JOF-GW-015-06072017	11-Jul-17 JOF-GW-015-07112017	2-Aug-17 JOF-GW-015-08022017
Sample Depth Sample Type Program	Units	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Samp CCR Program								
Field Parameters		-		1	1		1	1		1	
Dissolved Oxygen	%	11.9	1.8	3.0	4.0	3.6	2.8	39.7	7.7	1.7	2.8
Dissolved Oxygen	mg/L	1.07	0.17	0.31	0.41	0.37	0.27	3.61	0.75	0.15	0.25
ORP	mV	101.3	144.0	177.7	158.1	123.3	199.2	142.4	159.1	151.1	144.6
pH (field)	SU	5.16	5.31	5.21	5.26	5.15	5.13	5.03	5.09	5.14	5.07
Specific Cond. (Field)	uS/cm	580	580	575	581	581	580	590	580	542	550
Temperature, Water (C)	DEG C	19.6	17.4	17.9	17.4	17.4	18.6	19.6	19.2	20.0	20.9
Turbidity, field	NTU	2 60	0.99	0.26	0.36	0.52	1 02	0.26	4 02	4 43	0.67

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	:-103				
Sample Date Sample ID Parent Sample ID		20-Sep-17 JOF-103	20-Sep-17 JOF-GW-015-09202017	6-Oct-17 JOF-GW-015-10062017	15-Mar-18 JOF-103-0318	24-May-18 JOF-GW-015-05242018	13-Jun-18 JOF-GW-015-06132018	26-Jun-18 JOF-GW-015-06262018	25-Jul-18 JOF-GW-015-07252018	14-Aug-18 JOF-GW-015-08142018	12-Sep-18 JOF-103-09122018
Sample Depth Sample Type Program	Units	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample State Compliance				
Field Parameters		!		1			1	1		1	
Dissolved Oxygen	%	-	1.9	3.5	-	1.7	4.9	2.6	5.0	2.8	-
Dissolved Oxygen	mg/L	0.21	0.17	0.33	0.4	0.16	0.44	0.24	0.61	0.23	0.3
ORP	mV	415	152.7	177.3		143.8	168.3	231.1	143.8	227.7	438
pH (field)	SU	5.04	5.06	5.10	5.2	4.94	4.99	4.93	5.06	4.81	5
Specific Cond. (Field)	uS/cm	568	550	497	565	590	521	520	509	522	568
Temperature, Water (C)	DEG C	-	20.7	20.0	-	18.7	19.3	19.7	19.4	19.6	22.4
Turbidity, field	NTU	_	0.53	0.01	_	4.24	1.41	1.91	0.76	0.67	1.2

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	·-103				
Sample Date Sample ID Parent Sample ID		3-Apr-19 JOF-GW-015-04032019	9-Jul-19 JOF-GW-015-07092019	18-Sep-19 JOF-GW-015-09182019	10-Oct-19 JOF-GW-015-10102019	23-Jan-20 JOF-GW-015-01232020	5-Mar-20 JOF-GW-015-03052020	23-Jul-20 JOF-GW-015-07232020	9-Sep-20 JOF-GW-015-09092020	10-Feb-21 JOF-GW-JOF-103-02102021	18-Mar-21 JOF-GW-JOF-103-03182021
Sample Depth Sample Type Program	Units	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Normal Environmental Sample State Compliance	50.5 ft Normal Environmental Sample CCR Program	50.5 ft Normal Environmental Sample CCR Program					
Field Parameters	ı						ı				
Dissolved Oxygen	%	4.3	1.5	0.4	2.0	3.2	2.4	2.1	2.8	1.7	2.3
Dissolved Oxygen	mg/L	0.39	0.15	0.04	0.18	0.31	0.23	0.19	0.26	0.16	0.22
ORP	mV	235.2	-113.7	210.6	144.6	189.3	125.1	199.5	189.6	107	186
pH (field)	SU	4.84	4.93	4.68	5.00	5.06	5.08	4.93	4.79	5.03	4.94
Specific Cond. (Field)	uS/cm	530	533	527	499	470	520	590	610	590	590
Temperature, Water (C)	DEG C	18.8	19.5	19.9	19.1	17.6	17.9	18.9	19.5	17.5	17.4
Turbidity, field				2.87			1 35		2 31	0.96	

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	ĺ				JOF-103			
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	29-Jul-21 JOF-GW-JOF-103-07292021 50.5 ft Normal Environmental Sample CCR Program	16-Sep-21 JOF-GW-JOF-103-09162021 50.5 ft Normal Environmental Sample CCR Program	2-Feb-22 JOF-GW-JOF-103-02022022 50.5 ft Normal Environmental Sample CCR Program	15-Mar-22 JOF-GW-JOF-103-03152022 50.5 ft Normal Environmental Sample CCR Program	4-Aug-22 JOF-GW-JOF-103-08042022 50.5 ft Normal Environmental Sample CCR Program	14-Sep-22 JOF-GW-JOF-103-09142022 50.5 ft Normal Environmental Sample CCR Program	7-Feb-23 JOF-GW-JOF-103-02072023 50.5 ft Normal Environmental Sample
Field Parameters								
Dissolved Oxygen	%	1.7	1.9	2.5	1.8	0.0	1.3	1.6
Dissolved Oxygen	mg/L	0.16	0.17	0.22	0.16	0.00	0.12	0.15
ORP	mV	-1.5	256.4	178.4	10.8	122.1	83.1	127.8
pH (field)	SU	5.63	5.17	5.12	5.41	5.26	5.28	5.06
Specific Cond. (Field)	uS/cm	640	590	562	547	525	521	605
	DEG C	18.6	19.0	17.8	18.2	19.3	19.0	18.3
Temperature, Water (C)	DEGC	10.0	19.0	17.0	10.2	10.0	10.0	10.0

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	[JOF	104				
Sample Date Sample ID Parent Sample ID		3-Nov-16 JOF-GW-016-11032016	5-Jan-17 JOF-GW-016-01052017	18-Jan-17 JOF-GW-016-01182017	16-Feb-17 JOF-GW-016-02162017	15-Mar-17 JOF-GW-016-03152017	12-Apr-17 JOF-GW-016-04122017	17-May-17 JOF-GW-016-05172017	6-Jun-17 JOF-GW-016-06062017	11-Jul-17 JOF-GW-016-07112017	2-Aug-17 JOF-GW-016-08022017
Sample Depth Sample Type Program	Units	57 ft Normal Environmental Sample CCR Program									
Field Parameters	ı	<u> </u>			1		1	1		1	<u> </u>
Dissolved Oxygen	%	21.6	2.9	3.2	4.2	2.4	2.5	32.9	38.7	2.5	2.6
Dissolved Oxygen	mg/L	1.97	0.28	0.31	0.42	0.22	0.24	3.04	3.65	0.23	0.23
ORP	mV	3.6	102.5	126.0	111.9	113.3	193.6	134.6	199.4	28.3	119.0
pH (field)	SU	5.41	5.51	5.36	5.41	5.29	5.44	5.28	5.22	5.48	5.36
Specific Cond. (Field)	uS/cm	670	700	700	700	690	680	690	690	630	650
Temperature, Water (C)	DEG C	18.1	16.3	17.0	17.5	16.6	17.8	19.0	18.8	19.8	19.6
Turbidity, field	NTU	0.42	0.00	0.17	0.68	0.34	0.92	1.43	1.19	0.25	2.98

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	-104				
Sample Date Sample ID Parent Sample ID		20-Sep-17 JOF-104	20-Sep-17 JOF-GW-016-09202017	6-Oct-17 JOF-GW-016-10062017	15-Mar-18 JOF-104-0318	24-May-18 JOF-GW-016-05242018	13-Jun-18 JOF-GW-016-06132018	27-Jun-18 JOF-GW-016-06272018	25-Jul-18 JOF-GW-016-07252018	15-Aug-18 JOF-GW-016-08152018	12-Sep-18 JOF-104-09122018
Sample Depth Sample Type Program	Units	57 ft Normal Environmental Sample State Compliance	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample State Compliance	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sampl State Compliance				
Field Parameters	1	 		1	1			1		1	1
Dissolved Oxygen	%	-	2.1	3.6	-	3.2	3.6	2.4	4.2	2.7	-
Dissolved Oxygen	mg/L	0.55	0.18	0.31		0.30	0.33	0.23	0.40	0.27	0.25
ORP	mV	317	132.4	154.8	310	95.7	163.5	186.5	139.1	195.6	424
pH (field)	SU	5.39	5.38	5.40	5.7	5.32	5.32	5.23	5.36	5.21	5.29
Specific Cond. (Field)	uS/cm	683	650	600	653	690	620	620	610	630	694
Temperature, Water (C)	DEG C	-	19.9	19.1	-	18.6	19.0	18.8	18.8	18.7	21.44
Turbidity, field	NTU			0.18			2 27		1.85	3 95	

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	:-104				
Sample Date Sample ID Parent Sample ID		3-Apr-19 JOF-GW-016-04032019	9-Jul-19 JOF-GW-016-07092019	18-Sep-19 JOF-GW-016-09182019	10-Oct-19 JOF-GW-016-10102019	23-Jan-20 JOF-GW-016-01232020	5-Mar-20 JOF-GW-016-03052020	22-Jul-20 JOF-GW-016-07222020	10-Sep-20 JOF-GW-016-09102020	10-Feb-21 JOF-GW-JOF-104-02102021	18-Mar-21 JOF-GW-JOF-104-03182021
Sample Depth Sample Type Program	Units	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample State Compliance	57 ft Normal Environmental Sample State Compliance	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program					
Field Parameters					1		1			1	
Dissolved Oxygen	%	3.1	2.7	-0.6	2.2	3.0	2.5	3.2	5.0	1.8	2.1
Dissolved Oxygen	mg/L	0.29	0.25	-	0.21	0.30	0.24	0.30	0.48	0.16	0.2
ORP	mV	215.3	-100.4	176.2	148.7	165.2	131.7	200.1	144.6	85.9	141.6
pH (field)	SU	5.29	5.43	5.28	5.33	5.43	5.37	5.39	5.19	5.36	5.31
Specific Cond. (Field)	uS/cm	620	660	620	600	558	610	650	700	640	640
Temperature, Water (C)	DEG C	18.1	19.0	19.0	18.2	17.2	17.5	19.8	18.4	17.3	16.9
Turbidity, field	NTU	2.01	2.58	0.42	3.26	0.72	1.13	3.18	3.30	0.8	1.38

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	I				JOF-104			
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	29-Jul-21 JOF-GW-JOF-104-07292021 57 ft Normal Environmental Sample CCR Program	16-Sep-21 JOF-GW-JOF-104-09162021 57 ft Normal Environmental Sample CCR Program	1-Feb-22 JOF-GW-JOF-104-02012022 57 ft Normal Environmental Sample CCR Program	16-Mar-22 JOF-GW-JOF-104-03162022 57 ft Normal Environmental Sample CCR Program	4-Aug-22 JOF-GW-JOF-104-08042022 57 ft Normal Environmental Sample CCR Program	13-Sep-22 JOF-GW-JOF-104-09132022 57 ft Normal Environmental Sample CCR Program	7-Feb-23 JOF-GW-JOF-104-02072023 57 ft Normal Environmental Sample
Field Parameters								
Dissolved Oxygen	%	2.8	2.3	0.9	2.0	4.0	3.1	1.4
Dissolved Oxygen	mg/L	0.26	0.22	0.08	0.20	0.37	0.29	0.13
ORP	mV	78.2	351.1	101.3	16.9	243.0	134.1	154.4
pH (field)	SU	5.47	5.44	5.43	5.39	5.30	5.51	5.27
O: (E:-1-1)	uS/cm	690	650	590	581	546	547	637
Specific Cond. (Field)								
Temperature, Water (C)	DEG C		18.5	17.6	17.3	18.6	18.5	18.0

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF	-105				
Sample Date		14-Mar-17	12-Jun-17	18-Sep-17	11-Dec-17	13-Mar-18	12-Jun-18	11-Sep-18	13-Mar-19	11-Sep-19	4-Mar-20
Sample ID		JOF-105	JOF-105	JOF-105	JOF-105-1217	JOF-105-0318	JOF-105-0618	JOF-105-09112018	JOF-105	JOF-105-0919	JOF-105-0320
Parent Sample ID											
Sample Depth		32.5 ft									
Sample Type		Normal Environmental Sample									
Program	Units	State Compliance									
Field Parameters				I					ı	I	
Dissolved Oxygen	%	-	-	-	-	-	-	-	-	-	-
Dissolved Oxygen	mg/L	2.4	2	1.9	1.9	2.4	1.8	1.9	2.5	2	2.4
ORP	mV	601	5.16	509	592	492	539	589	614	580	542
pH (field)	SU	4.7	4.8	4.8	4.8	5.5	4.6	4.7	5.3	4.8	5.1
Specific Cond. (Field)	uS/cm	1,672	1,592	1,445	1,337	1,106	1,366	1,499	1,085	1,401	1,196
Temperature, Water (C)	DEG C	-	-	-	-	-	-	19.9	17	25.9	17.2
	NTU										

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location				JOF-105					JOF-106		
Sample Date Sample ID Parent Sample ID		17-Sep-20 JOF-105-0920	17-Mar-21 JOF-GW-JOF-105-03172021	14-Sep-21 JOF-GW-JOF-105-09142021	8-Feb-22 JOF-GW-JOF-105-02082022	7-Feb-23 JOF-GW-JOF-105-02072023	15-May-18 JOF-106-0518	13-Jun-18 JOF-106-0618	13-Sep-18 JOF-106-09132018	13-Mar-19 JOF-106	11-Sep-19 JOF-106-0919
Sample Depth Sample Type Program	Units	32.5 ft Normal Environmental Sample State Compliance	32.5 ft Normal Environmental Sample	31 ft Normal Environmental Sample State Compliance							
Field Parameters	•										
Dissolved Oxygen	%	-	29	25.3	26.2	24.8	-	-	-	-	-
Dissolved Oxygen	mg/L	2.3	2.83	2.17	2.45	2.24	3	2.9	3.4	2.5	3.4
ORP	mV	447	782	467	564	461	562	474	578	620	556
pH (field)	SU	4.7	4.61	4.66	4.83	4.84	4.95	4.6	4.9	4.9	4.9
Specific Cond. (Field)	uS/cm	1,150	1,226	1,567	1,870	1,618	481	468	459	554	495
Temperature, Water (C)	DEG C	19.9	15.84	22.17	17.73	19.5	-	-	23.9	17	26
	NTH										

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF-106					JOF-107	
Sample Date Sample ID Parent Sample ID		3-Mar-20 JOF-106-0320	16-Sep-20 JOF-106-0920	16-Mar-21 JOF-GW-JOF-106-03162021	15-Sep-21 JOF-GW-JOF-106-09152021	10-Feb-22 JOF-GW-JOF-106-02102022	3-Aug-22 JOF-GW-JOF-106-08032022	8-Feb-23 JOF-GW-JOF-106-02082023	15-May-18 JOF-107-0518	13-Jun-18 JOF-107-0618	13-Sep-18 JOF-107-09132018
Sample Depth Sample Type Program	Units	31 ft Normal Environmental Sample State Compliance	31 ft Normal Environmental Sample	40 ft Normal Environmental Sample State Compliance	40 ft Normal Environmental Sample State Compliance	40 ft Normal Environmental Sample State Compliance					
Field Parameters		!			1		1	1	•	1	•
Dissolved Oxygen	%	-	-	32.6	36.5	38.2	38.3	14.0	-	-	-
Dissolved Oxygen	mg/L	2.79	2.5	3.02	3.21	3.76	3.17	1.35	1.15	1.07	0.8
ORP	mV	546	442	554	461	505	532	477	497	412	534
pH (field)	SU	4.98	4.8	4.79	4.65	4.70	4.59	4.66	5.54	5.08	5.2
Specific Cond. (Field)	uS/cm	523	521	480	461	505	512	1,278	341	378	498
Temperature, Water (C)	DEG C	18.28	21.1	17.98	20.45	14.90	23.79	16.48	-	-	21.4
	NTU					0.00	4.00				

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location						JOF-107				
Sample Date		12-Mar-19	11-Sep-19	4-Mar-20	15-Sep-20	16-Mar-21	15-Sep-21	10-Feb-22	4-Aug-22	8-Feb-23
Sample ID		JOF-107	JOF-107-0919	JOF-107-0320	JOF-107-0920	JOF-GW-JOF-107-03162021	JOF-GW-JOF-107-09152021	JOF-GW-JOF-107-02102022	JOF-GW-JOF-107-08042022	JOF-GW-JOF-107-02082023
Parent Sample ID										
Sample Depth		40 ft	40 ft							
Sample Type		Normal Environmental Sample	Normal Environmental Sample							
Program	Units	State Compliance								
Field Parameters										
Dissolved Oxygen	%	-	-	-	-	11.3	9.8	9.0	23.5	7.4
Dissolved Oxygen Dissolved Oxygen	% mg/L	- 1.2	- 1.2	0.7	- 0.12	11.3 1.01	9.8 0.88	9.0 0.93	23.5 2.18	7.4 0.73
	% mg/L mV	1.2 592	505	- 0.7 509	417	1.01 517	0.88 439	9.0 0.93 436	2.18 494	449
Dissolved Oxygen	mV SU	592 5.3	505 5.3	509 5.5	417 5.3	1.01 517 5.23	0.88 439 5.10	436 5.18	2.18 494 5.09	449 5.27
Dissolved Oxygen ORP	mV SU uS/cm	592 5.3 350	505 5.3 590		417 5.3 601	1.01 517 5.23 526	0.88 439 5.10 918	436	2.18 494 5.09 1,053	449 5.27 874
Dissolved Oxygen ORP pH (field)	mV SU	592 5.3	505 5.3	509 5.5	417 5.3	1.01 517 5.23	0.88 439 5.10	436 5.18	2.18 494 5.09	449 5.27

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location	ĺ				JOF	·-109			
Sample Date Sample ID Parent Sample ID		3-Dec-19 JOF-GW-021-20191203	11-Feb-20 JOF-GW-021-20200211	7-Apr-20 JOF-GW-021-20200407	9-Jun-20 JOF-GW-021-20200609	12-Aug-20 JOF-GW-021-20200812	13-Oct-20 JOF-GW-021-20201013	19-Mar-21 JOF-GW-JOF-109-03192021	27-Jul-21 JOF-GW-JOF-109-07272021
Sample Depth Sample Type Program	Units	39 ft Normal Environmental Sample EIP							
Field Parameters	•	!		1	1		1	1	
Dissolved Oxygen	%	24.6	40.7	33.1	10.3	32.8	34.6	31.1	34.4
Dissolved Oxygen	mg/L	2.45	4.12	3.18	0.93	2.99	3.24	3.12	3.15
ORP	mV	162.4	223.8	113.4	122.6	136.4	153.3	234.9	139.6
pH (field)	SU	5.67	5.63 J	5.17	5.17	4.84	5.05	5.91	5.08
Specific Cond. (Field)	uS/cm	189.3	169.5	164.1	188.1	273.8	193.7	207	218
Temperature, Water (C)	DEG C	15.5	14.7	17.2	20.0	19.7	19.1	15.2	18.9
Turbidity, field	NTU	7 91	13.3	4.36	4.72	4.66	4.71	4.92	4.70

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		JOF	-109				JOF-110			
Sample Date Sample ID Parent Sample ID		17-Mar-22 JOF-GW-JOF-109-03172022	15-Sep-22 JOF-GW-JOF-109-09152022	4-Dec-19 JOF-GW-022-20191204	12-Feb-20 JOF-GW-022-20200212	7-Apr-20 JOF-GW-022-20200407	11-Jun-20 JOF-GW-022-20200611	12-Aug-20 JOF-GW-022-20200812	14-Oct-20 JOF-GW-022-20201014	16-Mar-21 JOF-GW-JOF-110-03162021
Sample Depth Sample Type		39 ft Normal Environmental Sample	39 ft Normal Environmental Sample	57 ft Normal Environmental Sample						
Program	Units	CCR Program	CCR Program	EIP						
Field Parameters										
Dissolved Oxygen	%	33.0	35.9	4.5		1.0	44.4	0.4	4.0	F.0
		33.0	35.9	4.5	5.9	4.2	14.1	8.1	4.2	5.0
Dissolved Oxygen	mg/L	3.25	3.36	4.5 0.44	0.59	4.2 0.39	14.1	0.70	0.48	0.49
	mg/L mV			4.5 0.44 24.7		=		8.1 0.70 -8.0		
Dissolved Oxygen		3.25	3.36	-	0.59	0.39	1.21	1	0.48	0.49
Dissolved Oxygen ORP	mV	3.25 166.3	3.36 193.4	24.7	0.59 31.4	0.39 52.0	1.21 74.0	-8.0	0.48 109.6	0.49 112.0
Dissolved Oxygen ORP pH (field)	mV SU	3.25 166.3 4.79	3.36 193.4 5.13	24.7 5.85	0.59 31.4 5.75	0.39 52.0 5.46	1.21 74.0 5.43	-8.0 5.25	0.48 109.6 5.29	0.49 112.0 4.92

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			JOF-110				JOF	⁻ -111		
Sample Date Sample ID Parent Sample ID		27-Jul-21 JOF-GW-JOF-110-07272021	15-Mar-22 JOF-GW-JOF-110-03152022	13-Sep-22 JOF-GW-JOF-110-09132022	4-Dec-19 JOF-GW-023-20191204	12-Feb-20 JOF-GW-023-20200212	7-Apr-20 JOF-GW-023-20200407	11-Jun-20 JOF-GW-023-20200611	12-Aug-20 JOF-GW-023-20200812	14-Oct-20 JOF-GW-023-20201014
Sample Depth Sample Type Program	Units	57 ft Normal Environmental Sample EIP	57 ft Normal Environmental Sample CCR Program	57 ft Normal Environmental Sample CCR Program	46 ft Normal Environmental Sample EIP					
Field Parameters	•		1	1		1	1	1		1
Dissolved Oxygen	%	6.7	5.0	5.2	1.8	5.1	6.1	4.2	5.7	4.1
Dissolved Oxygen	mg/L	0.69	0.50	0.46	0.18	0.50	0.59	0.38	0.50	0.36
ORP	mV	97.7	102.3	98.9	-62.7	26.5	108.7	34.3	-27.7	-21.4
pH (field)	SU	5.45	5.05	5.45	6.40	5.85	5.42	5.80	6.12	6.13
Specific Cond. (Field)	uS/cm	318	319	333.2	3,027	3,054	2,978	3,420	3,709	3,328
Temperature, Water (C)	DEG C	22.9	15.7	20.6	17.6	15.9	19.1	19.4	20.7	19.3
romporataro, vvator (o)										

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			JOF	-111				JOF-112		
Sample Date Sample ID Parent Sample ID		16-Mar-21 JOF-GW-JOF-111-03162021	28-Jul-21 JOF-GW-JOF-111-07282021	15-Mar-22 JOF-GW-JOF-111-03152022	13-Sep-22 JOF-GW-JOF-111-09132022	2-Dec-19 JOF-GW-024-20191202	11-Feb-20 JOF-GW-024-20200211	7-Apr-20 JOF-GW-024-20200407	9-Jun-20 JOF-GW-024-20200609	13-Aug-20 JOF-GW-024-20200813
Sample Depth Sample Type Program	Units	46 ft Normal Environmental Sample EIP	46 ft Normal Environmental Sample EIP	46 ft Normal Environmental Sample CCR Program	46 ft Normal Environmental Sample CCR Program	29.5 ft Normal Environmental Sample EIP				
Field Parameters	<u> </u>									
Dissolved Oxygen	%	3.4	4.4	0.0	0.0					
			4.4	3.2	3.2	3.2	44.7	3.5	3.0	3.8
Dissolved Oxygen	mg/L	0.33	0.41	0.31	3.2 0.29	3.2 0.31	44.7 4.39	3.5 0.33	3.0 0.29	3.8 0.35
	mg/L mV	0.33 -82.7		-		-		3.5		
Dissolved Oxygen			0.41	0.31	0.29 -116.9 6.71	0.31	4.39	0.33	0.29	0.35
Dissolved Oxygen ORP	mV	-82.7	0.41 21.6	0.31 -88.2	0.29 -116.9	0.31 48.1	4.39 51.5	0.33 19.9	0.29 52.2	0.35 74.0
Dissolved Oxygen ORP pH (field)	mV SU	-82.7 5.93	0.41 21.6 6.31	0.31 -88.2 6.42	0.29 -116.9 6.71	0.31 48.1 6.27	4.39 51.5 6.29 J	0.33 19.9 6.10	0.29 52.2 6.10	0.35 74.0 6.22

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location				JOF-112				JOF	-113	
Sample Date		13-Oct-20	16-Mar-21	28-Jul-21	16-Mar-22	15-Sep-22	4-Dec-19	12-Feb-20	8-Apr-20	10-Jun-20
Sample ID		JOF-GW-024-20201013	JOF-GW-JOF-112-03162021	JOF-GW-JOF-112-07282021	JOF-GW-JOF-112-03162022	JOF-GW-JOF-112-09152022	JOF-GW-025-20191204	JOF-GW-025-20200212	JOF-GW-025-20200408	JOF-GW-025-20200610
Parent Sample ID										
Sample Depth		29.5 ft	43.5 ft	43.5 ft	43.5 ft	43.5 ft				
Sample Type		Normal Environmental Sample								
Program	Units	EIP	EIP	EIP	CCR Program	CCR Program	EIP	EIP	EIP	EIP
Field Parameters	1									
Dissolved Oxygen	%	3.4	1.7	2.9	2.3	15.9	4.8	12.7	4.1	11.5
Dissolved Oxygen	mg/L	0.30	0.16	0.28	0.21	1.42	0.48	1.24	0.39	1.01
ORP	mV	81.2	47.4	126.9	54.8	24.4	81.2	91.0	87.9	143.3
ORP pH (field)	mV SU	81.2 5.84	47.4 5.60	126.9 6.11	54.8 5.88	24.4 6.17	81.2 6.02	91.0 5.91	87.9 5.81	143.3 5.84
		Ī								
pH (field)	SU	5.84	5.60	6.11	5.88	6.17	6.02	5.91	5.81	5.84

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location				JOF	:-113				JOF-114	
Sample Date Sample ID		13-Aug-20 JOF-GW-025-20200813	15-Oct-20 JOF-GW-025-20201015	18-Mar-21 JOF-GW-JOF-113-03182021	29-Jul-21 JOF-GW-JOF-113-07292021	17-Mar-22 JOF-GW-JOF-113-03172022	15-Sep-22 JOF-GW-JOF-113-09152022	4-Dec-19 JOF-GW-026-20191204	12-Feb-20 JOF-GW-026-20200212	8-Apr-20 JOF-GW-026-20200408
Parent Sample ID Sample Depth Sample Type Program	Units	43.5 ft Normal Environmental Sample EIP	43.5 ft Normal Environmental Sample CCR Program	43.5 ft Normal Environmental Sample CCR Program	39.5 ft Normal Environmental Sample EIP	39.5 ft Normal Environmental Sample EIP	39.5 ft Normal Environmental Sample EIP			
Field Parameters	<u> </u>									
Dissolved Oxygen	%	4.9	2.4	2.4	2.2	3.9	2.0	0.7	F 0	2.9
			2.4	3.4	3.3	3.9	3.0	2.1	5.3	2.9
Dissolved Oxygen	mg/L	0.48	0.23	0.32	0.31	0.34	0.33	0.27	0.46	0.27
Dissolved Oxygen ORP	mg/L mV	0.48 115.5						0.27 119.3		_
, ,			0.23	0.32	0.31	0.34	0.33	-	0.46	0.27
ORP	mV	115.5	0.23 163.6	0.32 155.0	0.31 98.9	0.34 146.0	0.33 126.5	119.3	0.46 159.1	0.27 145.5
ORP pH (field)	mV SU	115.5 5.92	0.23 163.6 5.70	0.32 155.0 5.75	0.31 98.9 5.73	0.34 146.0 5.59	0.33 126.5 5.79	119.3 4.98	0.46 159.1 4.64	0.27 145.5 4.45

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF-114			
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	10-Jun-20 JOF-GW-026-20200610 39.5 ft Normal Environmental Sample EIP	13-Aug-20 JOF-GW-026-20200813 39.5 ft Normal Environmental Sample EIP	14-Oct-20 JOF-GW-026-20201014 39.5 ft Normal Environmental Sample EIP	18-Mar-21 JOF-GW-JOF-114-03182021 39.5 ft Normal Environmental Sample EIP	28-Jul-21 JOF-GW-JOF-114-07282021 39.5 ft Normal Environmental Sample EIP	16-Mar-22 JOF-GW-JOF-114-03162022 39.5 ft Normal Environmental Sample CCR Program	13-Sep-22 JOF-GW-JOF-114-09132022 39.5 ft Normal Environmental Sample CCR Program
Field Parameters	•							
Dissolved Oxygen	%	3.8	4.2	3.5	61.9	2.6	3.1	1.8
Dissolved Oxygen	mg/L	0.35	0.38	0.31	5.73	0.24	0.28	0.17
ORP	mV	101.7	170.5	189.6	141.9	165.6	146.6	186.6
pH (field)	SU	4.70	4.61	4.45	4.58	4.53	4.23	5.14
Specific Cond. (Field)	uS/cm	3,727	4,108	3,748	3,720	3,600	3,550	3,567
Temperature, Water (C)	DEG C	19.7	20.2	19.5	18.5	19.6	18.9	19.8
Turbidity, field	NTU	4.62	3.45	1.81	1.88	2.13	1.26	0.46

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location					JOF	F-117			
Sample Date Sample ID Parent Sample ID		5-Dec-19 JOF-GW-027-20191205	12-Feb-20 JOF-GW-027-20200212	8-Apr-20 JOF-GW-027-20200408	11-Jun-20 JOF-GW-027-20200611	13-Aug-20 JOF-GW-027-20200813	15-Oct-20 JOF-GW-027-20201015	19-Mar-21 JOF-GW-JOF-117-03192021	29-Jul-21 JOF-GW-JOF-117-07292021
Sample Depth Sample Type Program	Units	40.5 ft Normal Environmental Sample EIP							
Field Parameters									
Dissolved Oxygen	%	3.0	10.9	1.1	3.2	1.6	1.3	1.4	5.8
Dissolved Oxygen	mg/L	0.30	1.07	0.09	0.29	0.14	0.12	0.14	0.51
ORP	mV	-104.8	-111.8	-121.3	-97.9	119.5	-106.8	-124.1	-64.2
pH (field)	SU	6.64	6.60	6.49	6.41	6.34	6.46	7.18	6.97
Specific Cond. (Field)	uS/cm	1,004	1,075	951	1,032	1,616	1,067	1,080	1,070
Temperature, Water (C)	DEG C	16.8	15.9	19.4	19.8	21.6	19.2	16.3	22.3
remperature, water (C)	DEGC	10.0	10.0	10.7	10.0	20	.0.2	10.0	22.0

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location		JOF	F-117			JOF	-118		
Sample Date Sample ID Parent Sample ID		16-Mar-22 JOF-GW-JOF-117-03162022	14-Sep-22 JOF-GW-JOF-117-09142022	3-Dec-19 JOF-GW-028-20191203	11-Feb-20 JOF-GW-028-20200211	9-Apr-20 JOF-GW-028-20200409	10-Jun-20 JOF-GW-028-20200610	13-Aug-20 JOF-GW-028-20200813	14-Oct-20 JOF-GW-028-20201014
Sample Depth Sample Type Program	Units	40.5 ft Normal Environmental Sample CCR Program	40.5 ft Normal Environmental Sample CCR Program	48.5 ft Normal Environmental Sample EIP					
E: ::B /									
Field Parameters									
Dissolved Oxygen	%	3.2	2.5	2.5	3.6	11.6	2.2	3.1	2.0
	% mg/L	3.2 0.31	2.5 0.23	0.23	3.6 0.34	11.6 1.08	2.2 0.21	3.1 0.28	2.0 0.18
Dissolved Oxygen	% mg/L mV	0.31 -82.7	1	=		1.08 69.5			
Dissolved Oxygen Dissolved Oxygen	% mg/L mV SU	0.31 -82.7 6.24	0.23 -125.5 6.50	0.23 79.6 5.79	0.34 -42.0 5.87 J	1.08	0.21 95.1 5.68	0.28 83.3 5.62	0.18 96.6 5.49
Dissolved Oxygen Dissolved Oxygen ORP	mV SU uS/cm	0.31 -82.7	0.23 -125.5	0.23 79.6	0.34 -42.0	1.08 69.5	0.21 95.1	0.28 83.3	0.18 96.6
Dissolved Oxygen Dissolved Oxygen ORP pH (field)	mV SU	0.31 -82.7 6.24	0.23 -125.5 6.50	0.23 79.6 5.79	0.34 -42.0 5.87 J	1.08 69.5 5.92	0.21 95.1 5.68	0.28 83.3 5.62	0.18 96.6 5.49

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location			JOF	-118		JOF-119						
Sample Date Sample ID Parent Sample ID		18-Mar-21 JOF-GW-JOF-118-03182021	29-Jul-21 JOF-GW-JOF-118-07292021	17-Mar-22 JOF-GW-JOF-118-03172022	14-Sep-22 JOF-GW-JOF-118-09142022	3-Dec-19 JOF-GW-029-20191203	11-Feb-20 JOF-GW-029-20200211	9-Apr-20 JOF-GW-029-20200409	9-Jun-20 JOF-GW-029-20200609	13-Aug-20 JOF-GW-029-20200813		
Sample Depth Sample Type Program	Units	48.5 ft Normal Environmental Sample EIP	48.5 ft Normal Environmental Sample EIP	48.5 ft Normal Environmental Sample CCR Program	48.5 ft Normal Environmental Sample CCR Program	42.5 ft Normal Environmental Sample EIP						
Field Parameters												
Dissolved Oxygen	%	1.6	2.5	2.3	0.9	2.8	3.5	22.1	3.7	2.3		
						2.0	0.0					
Dissolved Oxygen	mg/L	0.16	0.22	0.21	0.09	0.28	0.36	2.27	0.35	0.21		
Dissolved Oxygen ORP	mg/L mV	0.16 99.5				-			-			
7.0	mV SU	99.5 5.69	0.22 113.1 5.47	0.21	0.09 6.6 5.66	0.28 87.0 6.22	0.36 0.4 6.51 J	2.27 48.0 6.32	0.35 60.8 6.06	0.21 41.2 6.04		
ORP	mV SU uS/cm	99.5	0.22 113.1	0.21 15.5	0.09 6.6	0.28 87.0	0.36 0.4	2.27 48.0	0.35 60.8	0.21 41.2		
ORP pH (field)	mV SU	99.5 5.69	0.22 113.1 5.47	0.21 15.5 5.61	0.09 6.6 5.66	0.28 87.0 6.22	0.36 0.4 6.51 J	2.27 48.0 6.32	0.35 60.8 6.06	0.21 41.2 6.04		

Table H.1-11- Groundwater Quality Results (March 2015 - February 2023) Johnsonville Fossil Plant

Sample Location Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	13-Oct-20 JOF-GW-029-20201013 42.5 ft Normal Environmental Sample EIP	18-Mar-21 JOF-GW-JOF-119-03182021 42.5 ft Normal Environmental Sample EIP	JOF-119 28-Jul-21 JOF-GW-JOF-119-07282021 42.5 ft Normal Environmental Sample EIP	17-Mar-22 JOF-GW-JOF-119-03172022 42.5 ft Normal Environmental Sample CCR Program	14-Sep-22 JOF-GW-JOF-119-09142022 42.5 ft Normal Environmental Sample CCR Program
Field Parameters						
Dissolved Oxygen	%	2.2	14.1	8.0	11.2	1.3
Dissolved Oxygen	mg/L	0.21	1.40	0.08	1.05	0.12
ORP	mV	87.2	74.1	95.2	118.7	49.3
pH (field)	SU	5.83	6.50	6.23	6.06	6.20
Specific Cond. (Field)	uS/cm	301.2	343	351	352	290
Temperature, Water (C)	DEG C	17.7	16.1	18.0	16.8	17.9
Turbidity, field	NTU	0.42	4.69	0.95	2.24	3.43

Notes:

Please note that units have been converted automatically in this table, and significant figures may not have been maintained.

Parameter not analyzed / not available.

% percent

Cond. conductance

DEG C degrees Celsius

ft feet below top of casing identification

J quantitation is approximate due to limitations identified during data validation

 $\mbox{mg/L}$ $\mbox{milligrams per Liter}$ \mbox{mV} $\mbox{milliVolts}$

NTU Nephelometric Turbidity Unit

ORP Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

SU Standard Units

uS/cm microSiemens per centimeter

Table H.1-12 - Screening Levels for Groundwater Johnsonville Fossil Plant

CCR Parameters	Groundwater	Groundwater Screening Levels					
	(μg/L)	Source					
CCR Rule Appendix III Constituents :	_						
Boron	4,000	RSL					
Calcium							
Chloride	250,000	SMCL					
Fluoride	4,000	MCL					
рН	6.5 8.5 S.U.	SMCL					
Sulfate	250,000	SMCL					
Total Dissolved Solids	500,000	SMCL					
CCR Rule Appendix IV Constituents :							
Antimony	6	MCL					
Arsenic	10	MCL					
Barium	2,000	MCL					
Beryllium	4	MCL					
Cadmium	5	MCL					
Chromium (total)	100	MCL					
Cobalt	6	CCR Rule GWPS					
Fluoride	4,000	MCL					
Lead	15	CCR Rule GWPS					
Lithium	40	CCR Rule GWPS					
Mercury	2	MCL					
Molybdenum	100	CCR Rule GWPS					
Radium-226 & 228	5 pCi/L	MCL					
Selenium	50	MCL					
Thallium	2	MCL					
TDEC Appendix I Constituents :							
Copper	1,300	MCLG					
Nickel	100	TN MCL					
Silver	100	TN SMCL					
Vanadium	86	RSL					
Zinc	5,000	SMCL					

Notes:

CCR - coal combustion residuals

CCR Rule - Coal Combustion Residuals rule, USEPA Title 40, Code of Federal Regulations, Part 257

GWPS - groundwater protection standards

MCL - USEPA maximum contaminant level

MCLG - Maximum contaminant level goal

pCi/L - picocuries per liter

RSL - USEPA regional screening level

SMCL - USEPA secondary maximum contaminant level

S.U. - standard units

TN MCL - maximum contaminant level promulgated by State of Tennessee

TN SMCL - secondary maximum contaminant level promulgated by State of Tennessee

TDEC - Tennessee Department of Environmental and Conservation

μg/L - micrograms per liter

USEPA - United States Environmental Protection Agency

Table H.1-13 - Summary of Statistically Significant Concentrations/Values Johnsonville Fossil Plant

Parameter	Backç	ground		Upgra	adient		Active Ash Pond 2				Ash Disposal Area 1		
	B-9	JOF-101	B-13	JOF-109	JOF-112	JOF-119	10-AP1	10-AP3	JOF-103	JOF-104	JOF-118	JOF-110	JOF-111
CCR Rule Appendix III Paramet	ers		•		•	•		•	•	•	•		
Boron	Green*	Green*	Green	Green	Green	Green	Red	Red	Red	Green	Green	Green	Red
Chloride	Green	Green	Red	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Fluoride ¹ (also Appendix IV)	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
рН	Red	Red	Red	Red	Red	Red	Red	Red	Red	Red	Red	Red	Green
Sulfate	Green	Green	Green	Green	Green	Green	Green	Red	Green	Green	Green	Green	Red
Total Dissolved Solids	Green	Green	Red	Green	Green	Green	Green	Red	Green	Green	Green	Green	Red
CCR Rule Appendix IV Paramet	ers												
Antimony	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green	Green*	Green*	Green*
Arsenic	Green	Green	Green	Green*	Green*	Green	Green	Green	Green	Green	Green	Green	Red
Barium	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Beryllium	Green*	Green*	Green*	Green	Green*	Green*	Green	Green	Green	Green*	Green*	Green*	Green*
Cadmium	Green*	Green*	Green	Green*	Green	Green*	Green	Green	Green	Green	Green*	Green*	Green*
Chromium	Green	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Cobalt	Green	Green	Green	Green	Red	Green	Green	Red	Red	Green	Red	Green	Green
Lead	Green	Green*	Green*	Green*	Green*	Green*	Green	Green	Green*	Green*	Green*	Green*	Green*
Lithium	Green*	Green*	Green	Green*	Green*	Green*	Green	Green	Green	Green	Green*	Green*	Green
Mercury	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Molybdenum	Green*	Green*	Green*	Green*	Green	Green	Green*	Green*	Green*	Green*	Green*	Green	Green
Radium-226+228	Green	Green	Green	Green	Green	Green*	Green	Green	Green	Green	Green*	Green*	Green
Selenium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Thallium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*
TDEC Appendix I Parameters													
Copper	Green*	Green*	Green	Green	Green*	Green*	Green	Green	Green	Green*	Green*	Green*	Green*
Nickel	Green	Green	Green	Green	Green	Green	Green	Green	Red	Green	Green	Green	Green
Silver	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Vanadium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Zinc	Green	Green	Green	Green	Green	Green*	Green	Green	Green	Green	Green	Green	Green

Table H.1-13 - Summary of Statistically Significant Concentrations/Values Johnsonville Fossil Plant

Parameter	Former Coal Yard		DuPont Road Dredge Cell						South Rail Loop Area 4				
	JOF-113	JOF-114	JOF-117	89-B10	99-B20A	B-11	B-12	JOF-105	JOF-106	JOF-107	B-6R	B-8R	JOF-102
CCR Rule Appendix III Parame	ters												
Boron	Red	Red	Green	Green	Green	Green	Green	Green	Green	Green	Red	Green	Green
Chloride	Green	Green	Green	Green	Green	Green	Red	Red	Green	Green	Green	Green	Green
Fluoride ¹ (also Appendix IV)	Green	Green	Green	Green	Green	Green*	Green*	Green	Green*	Green*	Green	Green	Green
pH	Red	Red	Green	Red	Red	Red	Red	Red	Red	Red	Red	Red	Red
Sulfate	Red	Red	Green	Green	Green	Green	Green	Green	Green	Green	Red	Green	Green
Total Dissolved Solids	Red	Red	Green	Green	Green	Green	Red	Red	Green	Green	Green	Green	Green
CCR Rule Appendix IV Parame	eters							•		•	•		
Antimony	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Arsenic	Green	Green	Red	Green*	Green*	Green*	Green	Green	Green*	Green*	Green*	Green*	Green*
Barium	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Beryllium	Green*	Green	Green*	Green*	Green*	Green*	Green	Green	Green*	Green*	Green*	Green*	Green*
Cadmium	Green	Green	Green*	Green*	Green*	Green*	Green	Green	Green*	Green*	Green	Green*	Green*
Chromium	Green*	Green*	Green*	Green	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
Cobalt	Green	Red	Red	Green*	Green*	Green	Green	Green	Green	Green	Green*	Green*	Green*
Lead	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
Lithium	Red	Red	Green*	Green	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
Mercury	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green	Green*	Green*	Green	Green*	Green*
Molybdenum	Red	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green*	Green*
Radium-226+228	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Selenium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Thallium	Green	Green	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
TDEC Appendix I Parameters													
Copper	Green	Green	Green*	Green*	Green	Green	Green	Green	Green*	Green*	Green	Green	Green
Nickel	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Silver	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Vanadium	Green*	Green*	Green*	Green	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
Zinc	Green	Green	Green*	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green

No statistically significant concentration greater than or equal to the GSL for constituents other than pH and no statistically significant difference outside the GSL range for pH.

| Creen* | Limited dataset (sample size <5 or <4 detected values), but none of the available results are greater than or equal to the GSL or outside the GSL range for pH.

| Red | Statistically significant concentration greater than or equal to the GSL for constituents other than pH or a statistically significant difference outside the GSL range for pH.

Notes:

CCR Rule - Title 40, Code of Federal Regulations, Part 257

GSL - Groundwater Screening Level established for the TDEC Order EI (see Appendix A.2)

TDEC - Tennessee Department of Environment and Conservation

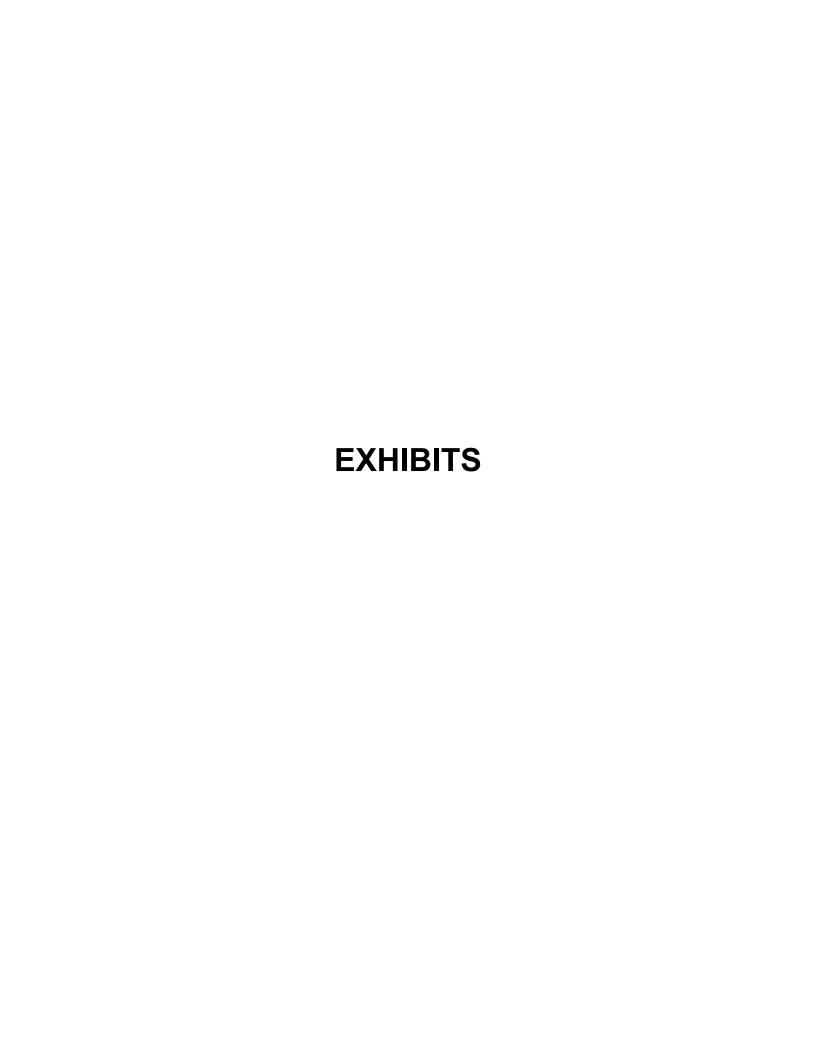
Bold colors are used to represent CCR Rule Appendix IV Parameter and TDEC Appendix I Parameter results; subdued colors represent CCR Rule Appendix III Parameter results.

See Appendix E.3 for full description of statistical methods applied.

1Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table, fluoride has been grouped with the Appendix III constituents to avoid duplication of results.

Table H.1-14 - Linear Regression Results Groundwater Investigation - Johnsonville Fossil Plant - New Johnsonville, Tennessee

Well	Constituent Type	Constituent	p-value	Trend summary ¹
B-9	CCR Rule Appendix III Parameters	pH (field)	0.253	No trend
JOF-101	CCR Rule Appendix III Parameters	pH (field)	0.0433	Increasing
B-13	CCR Rule Appendix III Parameters	Chloride	0.0004	Decreasing
		pH (field)	0.1005	No trend
		Total Dissolved Solids	0.001	Decreasing
	CCR Rule Appendix IV Parameters	Radium-226+228	0.0027	Decreasing
JOF-109	CCR Rule Appendix III Parameters	pH (field)	0.266	No trend
JOF-112	CCR Rule Appendix III Parameters	pH (field)	0.3615	No trend
	CCR Rule Appendix IV Parameters	Cobalt	0.103	No trend
		Radium-226+228	0.0107	Increasing
JOF-119	CCR Rule Appendix III Parameters	pH (field)	0.6925	No trend
10-AP1	CCR Rule Appendix III Parameters	Boron	0.7411	No trend
		pH (field)	0.8037	No trend
		Sulfate	0.012	Decreasing
		Total Dissolved Solids	0.0001	Decreasing
	CCR Rule Appendix IV Parameters	Cadmium	0.9244	No trend
10-AP3	CCR Rule Appendix III Parameters	Boron	0.0147	Decreasing
		pH (field)	0.0454	Increasing
		Sulfate	<0.0001	Decreasing
		Total Dissolved Solids	<0.0001	Decreasing
	CCR Rule Appendix IV Parameters	Cadmium	0.0983	No trend
	· · · · · · · · · · · · · · · · · · ·	Cobalt	<0.0001	Decreasing
	TDEC Appendix I Parameters	Nickel	<0.0001	Decreasing
JOF-103	CCR Rule Appendix III Parameters	Boron	0.7657	No trend
	FF	pH (field)	0.5267	No trend
	CCR Rule Appendix IV Parameters	Cadmium	0.4028	No trend
	Pr	Cobalt	0.0046	Decreasing
		Lithium	0.2356	No trend
	TDEC Appendix I Parameters	Nickel	0.7934	No trend
JOF-104	CCR Rule Appendix III Parameters	Boron	0.0844	No trend
	government and motors	pH (field)	0.9308	No trend
		Sulfate	0.0005	Decreasing
		Total Dissolved Solids	<0.0001	Decreasing
	CCR Rule Appendix IV Parameters	Antimony	0.8513	No trend
JOF-118	CCR Rule Appendix III Parameters	pH (field)	0.1249	No trend
	FF	Sulfate	0.0148	Increasing
		Total Dissolved Solids	0.0216	Increasing
	CCR Rule Appendix IV Parameters	Cobalt	0.0067	Increasing
JOF-110	CCR Rule Appendix III Parameters	pH (field)	0.1396	No trend
JOF-111	CCR Rule Appendix III Parameters	Boron	0.018	Increasing
	2 2. C. Carlo	Chloride	0.0097	Decreasing
		pH (field)	0.0365	Increasing
		Sulfate	0.0004	Increasing
		Total Dissolved Solids	0.124	No trend
	CCR Rule Appendix IV Parameters	Arsenic	0.002	Increasing
	Correction Appendix 11 Farameters	Cobalt	0.0055	Decreasing
		Lithium	0.0239	Increasing
JOF-113	CCR Rule Appendix III Parameters	Boron	0.2219	No trend
23. 110	2. Crais Appendix III Farameters	pH (field)	0.028	Decreasing
		Sulfate	0.5691	No trend
		Total Dissolved Solids	0.5959	No trend
	CCR Rule Appendix IV Parameters	Cadmium	0.8489	No trend
	Continuid Appoindix IV I didinicters	Cobalt	0.048	Decreasing
	Ī			
		II ithium	U U40€	l jecreacina
		Lithium Molybdenum	0.0496 0.882	Decreasing No trend


Table H.1-14 - Linear Regression Results
Groundwater Investigation - Johnsonville Fossil Plant - New Johnsonville, Tennessee

Well	Constituent Type	Constituent	p-value	Trend summary ¹
JOF-114	CCR Rule Appendix III Parameters	Boron	0.5414	No trend
		Chloride	<0.0001	Decreasing
		pH (field)	0.9294	No trend
		Sulfate	0.1776	No trend
		Total Dissolved Solids	0.6965	No trend
	CCR Rule Appendix IV Parameters	Cobalt	0.0001	Decreasing
		Lithium	0.0685	No trend
		Radium-226+228	0.7926	No trend
JOF-117	CCR Rule Appendix III Parameters	pH (field)	0.9978	No trend
	CCR Rule Appendix IV Parameters	Arsenic	0.1441	No trend
		Cobalt	0.0001	Decreasing
89-B10	CCR Rule Appendix III Parameters	pH (field)	0.1437	No trend
99-B20A	CCR Rule Appendix III Parameters	pH (field)	0.1223	No trend
B-11	CCR Rule Appendix III Parameters	Chloride	0.0164	Decreasing
		pH (field)	0.8329	No trend
		Total Dissolved Solids	0.0205	Decreasing
B-12	CCR Rule Appendix III Parameters	Chloride	0.0697	No trend
		pH (field)	0.1152	No trend
		Total Dissolved Solids	0.0998	No trend
	CCR Rule Appendix IV Parameters	Arsenic	0.0414	Increasing
		Cobalt	0.0056	Increasing
		Radium-226+228	0.3418	No trend
JOF-105	CCR Rule Appendix III Parameters	Chloride	0.1649	No trend
		pH (field)	0.6217	No trend
		Total Dissolved Solids	0.5108	No trend
	CCR Rule Appendix IV Parameters	Cobalt	0.0079	Decreasing
JOF-106	CCR Rule Appendix III Parameters	Chloride	0.0545	No trend
		pH (field)	0.044	Decreasing
		Total Dissolved Solids	0.0953	No trend
JOF-107	CCR Rule Appendix III Parameters	Chloride	<0.0001	Increasing
		pH (field)	0.261	No trend
		Total Dissolved Solids	0.001	Increasing
	CCR Rule Appendix IV Parameters	Cobalt	0.075	No trend
B-6R	CCR Rule Appendix III Parameters	Boron	0.5366	No trend
		pH (field)	0.1358	No trend
		Sulfate	0.1931	No trend
		Total Dissolved Solids	0.9939	No trend
B-8R	CCR Rule Appendix III Parameters	pH (field)	0.3931	No trend
JOF-102	CCR Rule Appendix III Parameters	pH (field)	0.5119	No trend

Notes

CCR Rule - Title 40, Code of Federal Regulations, Part 257 p-value - probability value

1. Trend evaluated using linear regression. Slope considered significant when p<0.05.

H.1-1

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2023-08-17 Technical Review by MD on 2023-08-17 New Johnsonville, Tennessee

> 1,350 1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)

Former Stilling Pond (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) and Esri World Imagery

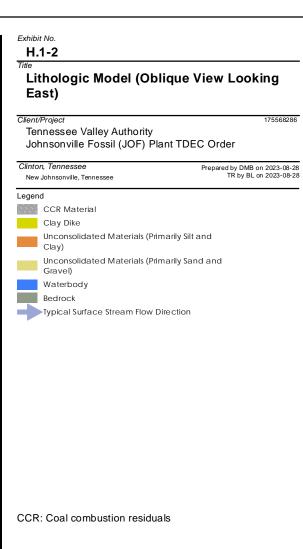
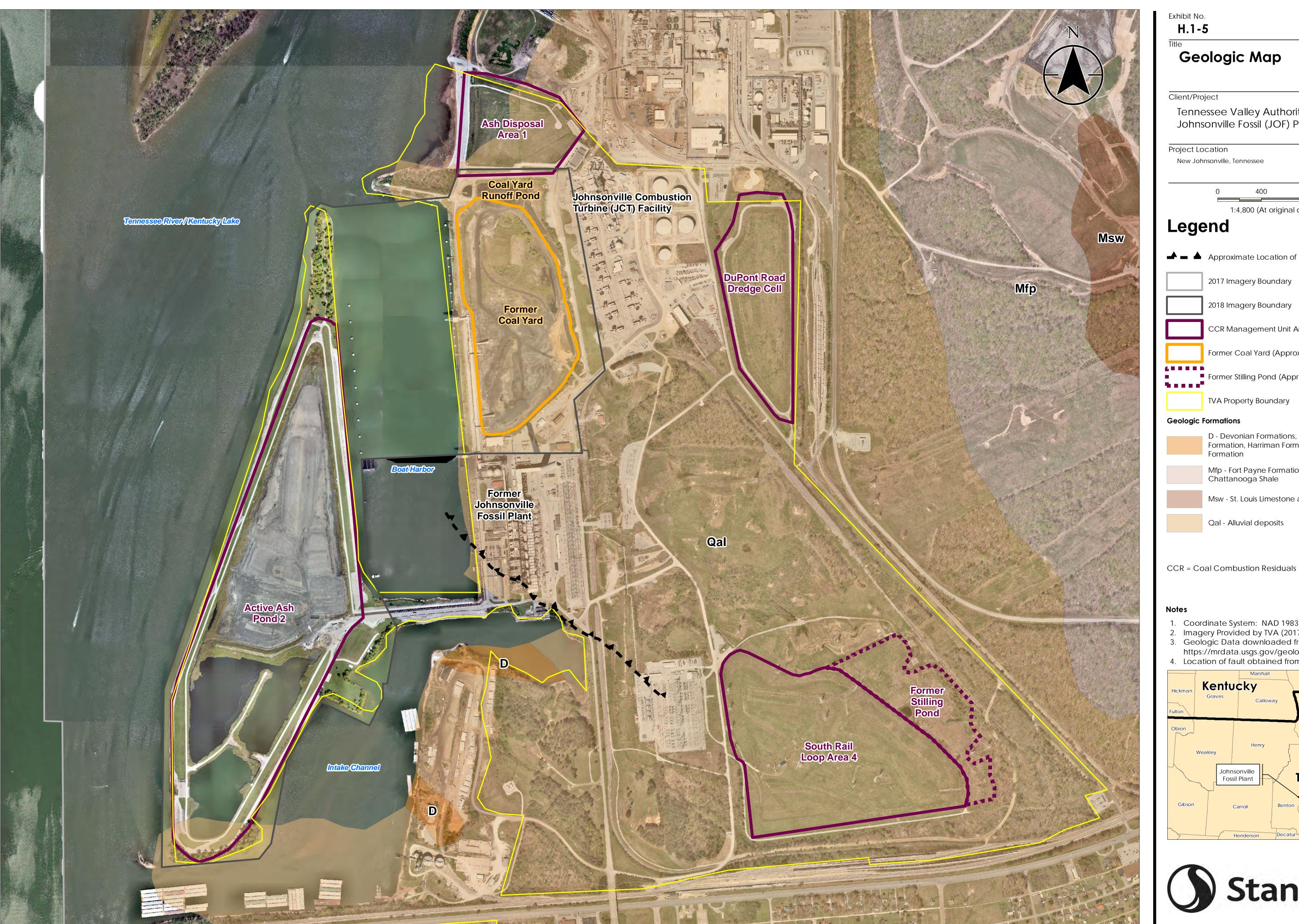


Exhibit No. H.1-3 Lithologic Model - Primarily Silts and Clays (Oblique View Looking East) Client/Project Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order Prepared by DMB on 2023-08-28 TR by BL on 2023-08-28 New Johnsonville, Tennessee Legend Clay Dike Unconsolidated Materials (Primarily Silt and Clay) Unconsolidated Materials (Primarily Sand and Waterbody Bedrock Typical Surface Stream Flow Direction



Geologic Map

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2023-08-21 Technical Review by MD on 2023-08-21 New Johnsonville, Tennessee

1,200 1:4,800 (At original document size of 22x34)

Legend

▲ Approximate Location of Inferred Thrust Fault (1948)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)

Former Stilling Pond (Approximate)

TVA Property Boundary

Geologic Formations

D - Devonian Formations, includes Pegram Formation, Camden Formation, Harriman Formation, Flat Gap Limestone, and Ross Formation

Mfp - Fort Payne Formation or Fort Payne Formation and Chattanooga Shale

Msw - St. Louis Limestone and Warsaw Limestone

Qal - Alluvial deposits

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (2017 and 2018-09-18) and Esri World Imagery
 Geologic Data downloaded from
- https://mrdata.usgs.gov/geology/state/state.php?state=TN
- 4. Location of fault obtained from Kellberg, 1948

Page 01 of 01

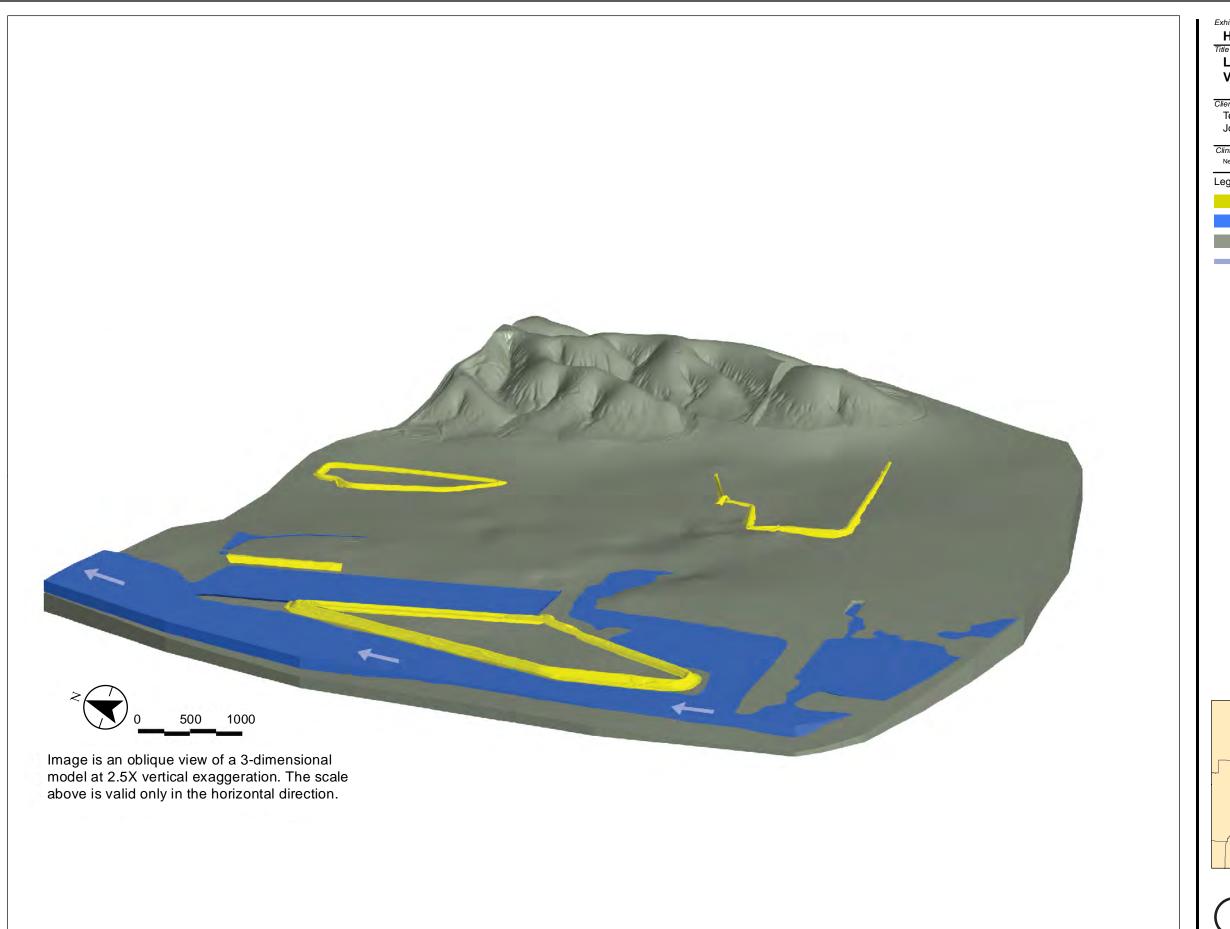


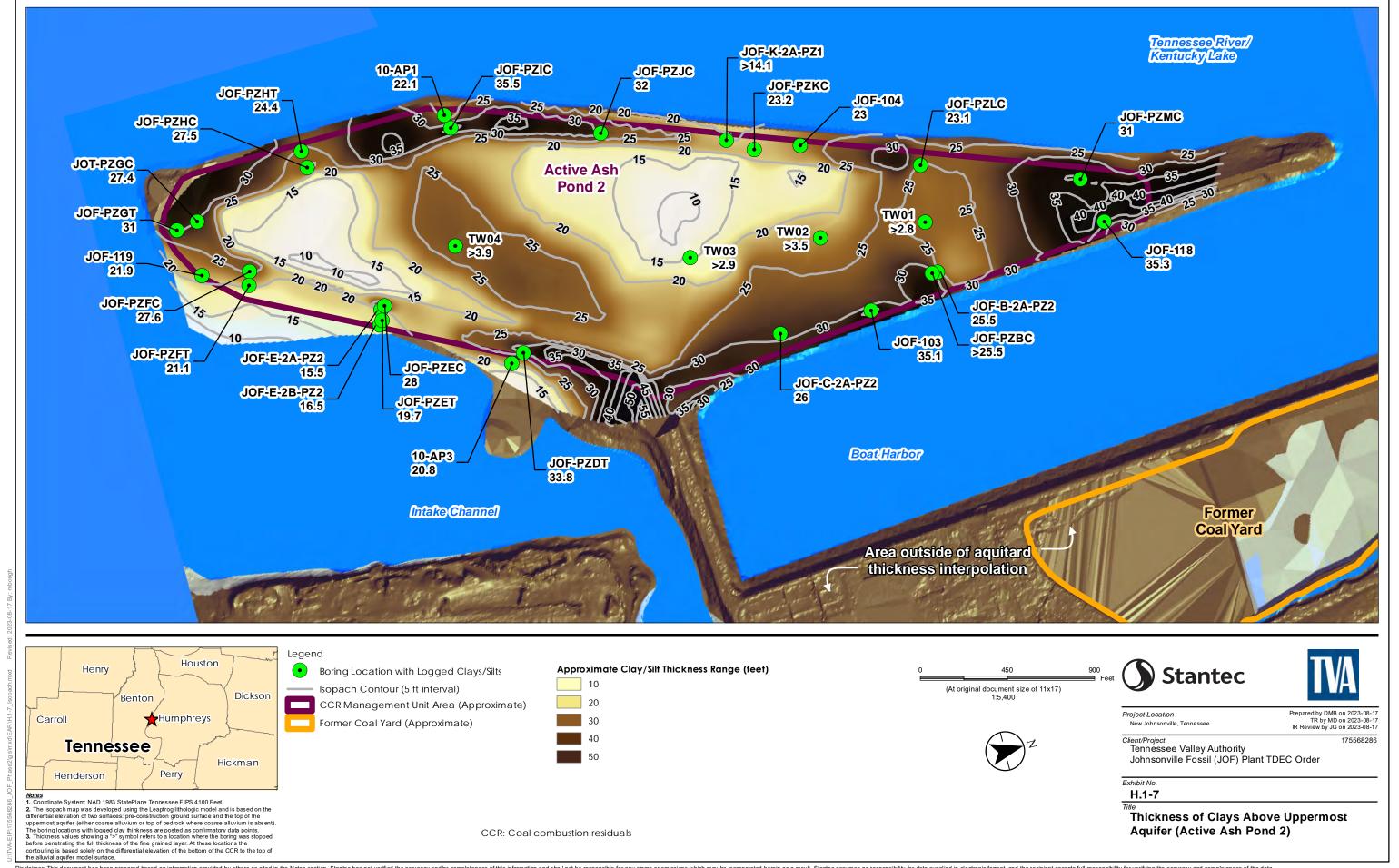
Exhibit No.

H.1-6

Title

Lithologic Model - Top of Bedrock (Oblique View Looking East)

Client/Project 175568286


Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order

Clinton, Tennessee
New Johnsonville, Tennessee
Regend
Clay Dike
Waterbody
Bedrock
Typical Surface Stream Flow Direction

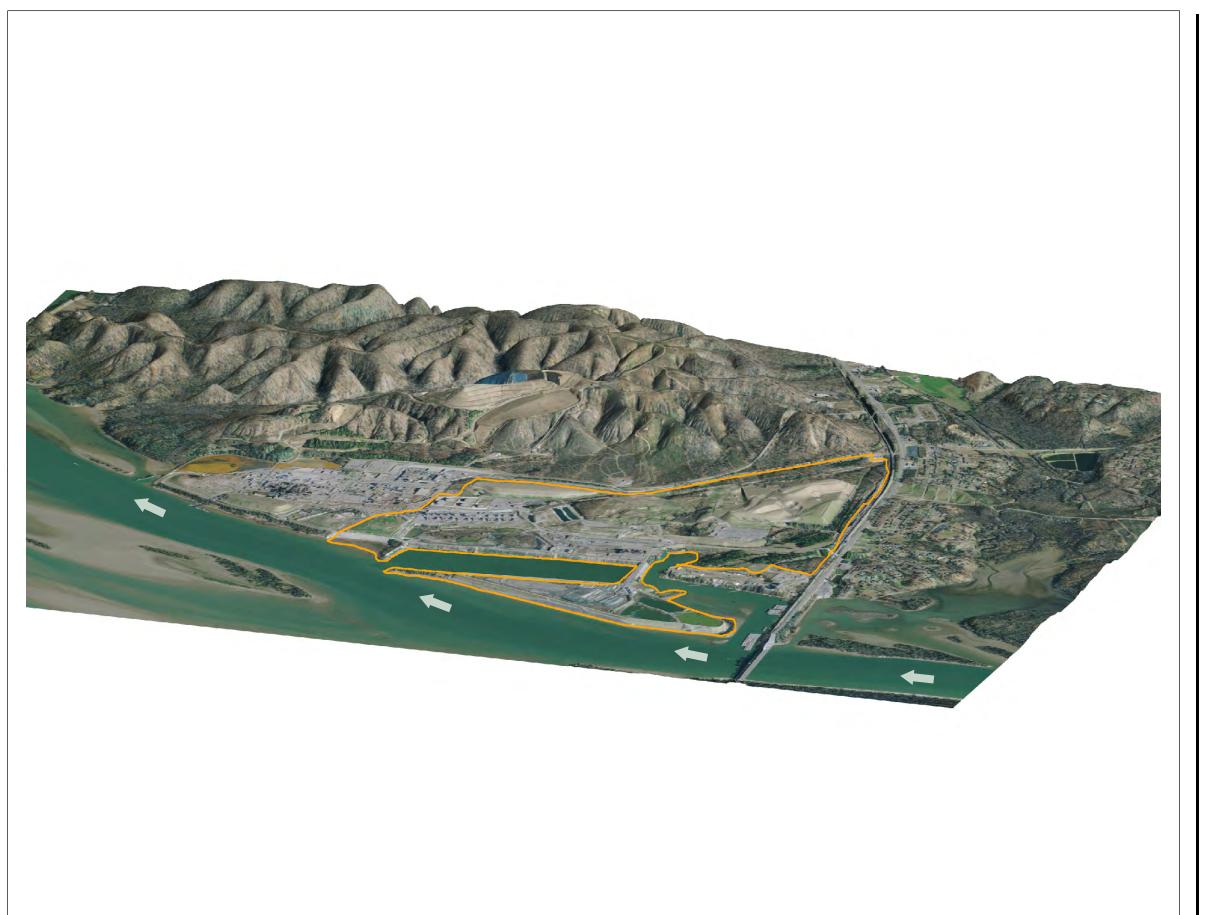


Exhibit No.

H.1-8

Lithologic Model - Physiographic Setting (Oblique View Looking East)

Client/Project

Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order

New Johnsonville, Tennessee

Prepared by DMB on 2023-08-28 TR by BL on 2023-08-28

Typical Surface Stream Flow Direction

Property Boundary

Historical Stream Alignments and **USGS StreamStats Map**

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by KB on 2024-01-10 Technical Review by JG on 2024-01-10 New Johnsonville, Tennessee

1:4,800 (At original document size of 22x34)

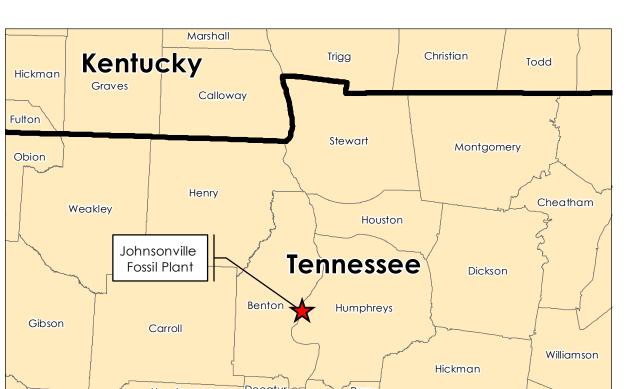
Legend

Historic Stream (Approximate)

2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)


Former Stilling Pond (Approximate)

JOF Plant Watershed (Approximate)

— — — — JOF Plan Watershed Stream Network (Approximate)

Watershed Reference Point

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (2017 & 2018) and Esri World Imagery
 Historic Streams obtained from topographic map USGS, Johnsonville
- Quadrangle, 1936
 4. Watershed and Stream Network obtained from USGS StreamStats Tool

South Rail Loop Area 4 Channel Station use

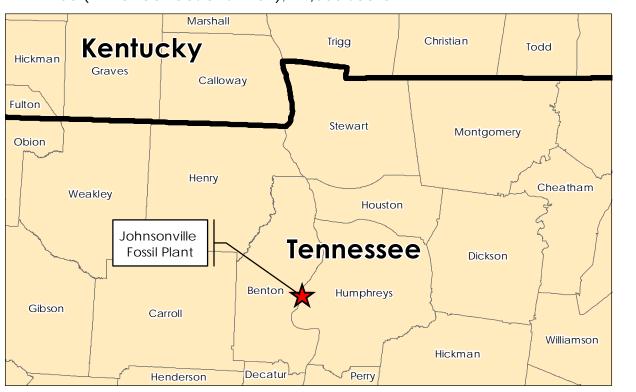
H.1-10

Topographic Map -USGS (1950)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-18 Technical Review by MD on 2024-01-18 New Johnsonville, Tennessee


1:3,600 (At original document size of 22x34)

Legend

CCR Management Unit Area (Approximate) Former Stilling Pond (Approximate) TVA Property Boundary

CCR = Coal Combustion Residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Topographic Map: Tennessee Valley Authority and the Department of the Interior Geological Survey; Johnsonville Tennessee Quadrangle, 1950 (minor corrections 1952); 24,000 scale

Groundwater Elevation Contour Map, Event #5 (August 10-11, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well groundwater elevation in feet above mean sea level (ft amsl)
- Other Monitoring Well
- groundwater elevation in ft amsl
 - Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2)
- Piezometer in CCR pore water elevation in ft amsl; value not used for contouring
- Temporary well in CCR pore water elevation in ft amsl; value not used for contouring
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl

Surface Stream Flow

Interpolated Groundwater Contour (5 ft interval; elevations are in ft amsl)

Groundwater Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)

■Former Stilling Pond (Approximate)

**** CCR: Coal combustion residuals

*Groundwater and pore water elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet

- Imagery Provided by TVA (2017 & 2018) and Esri World Imagery
 Groundwater contours were created using Surfer Version 16.1.350

(December 13, 2018) and manual adjustment

Manual Groundwater and Pore Water **Gauging Locations**

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29 New Johnsonville, Tennessee

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
 - Piezometer, groundwater label in blue text, (e.g., JOF-B01B) pore water label in yellow highlighted black text (e.g., JOF-B01A)
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)

Former Stilling Pond (Approximate)

CCR: Coal combustion residuals

*Nested VWPZ sensors monitoring pore water and groundwater in the same borehole, and the location is shown by a single symbol.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) and Esri World Imagery

H.1-13a

JOF Instrumentation Used for Surface Water / Pore Water / Groundwater Hydrograph Comparison (Active Ash Pond 2)

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29 New Johnsonville, Tennessee

1:3,600 (At original document size of 22x34)

Legend

Piezometer

2017 Imagery Boundary

2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) and Esri World Imagery

H.1-13b

JOF Instrumentation Used for Surface Water / Pore Water / Groundwater Hydrograph Comparison (DuPont Dredge Cell)

Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29 New Johnsonville, Tennessee

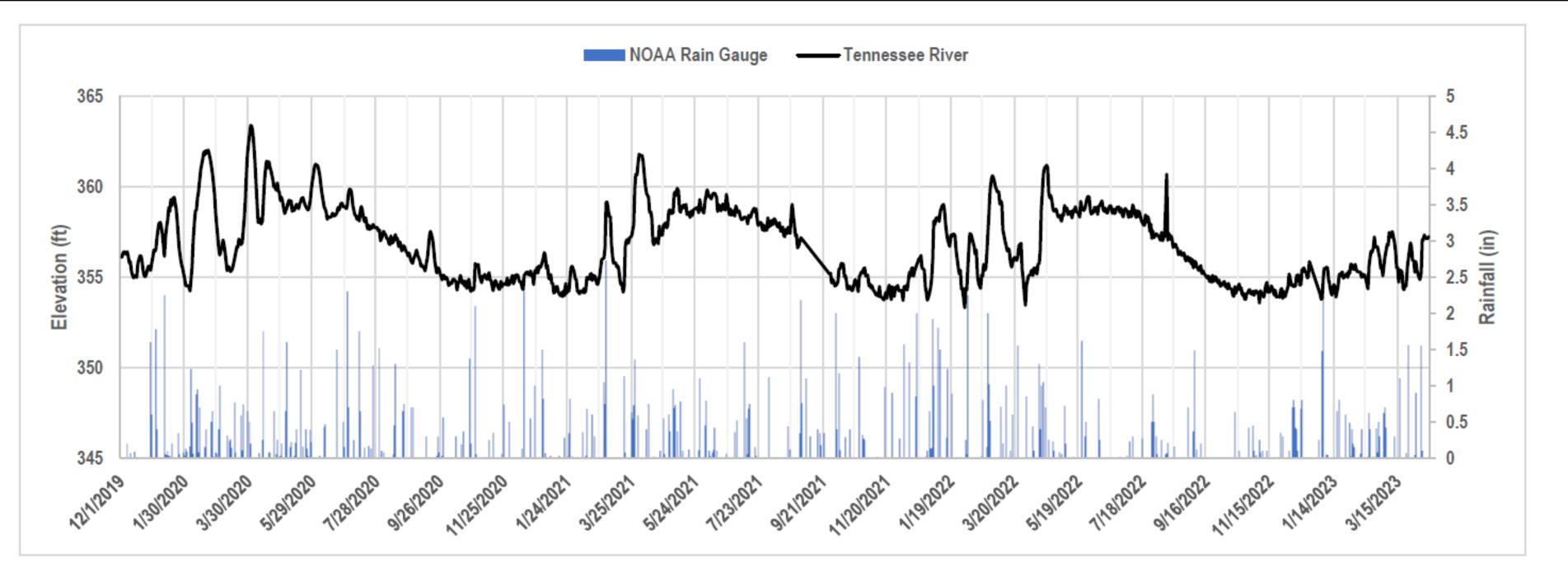
1:1,200 (At original document size of 22x34)

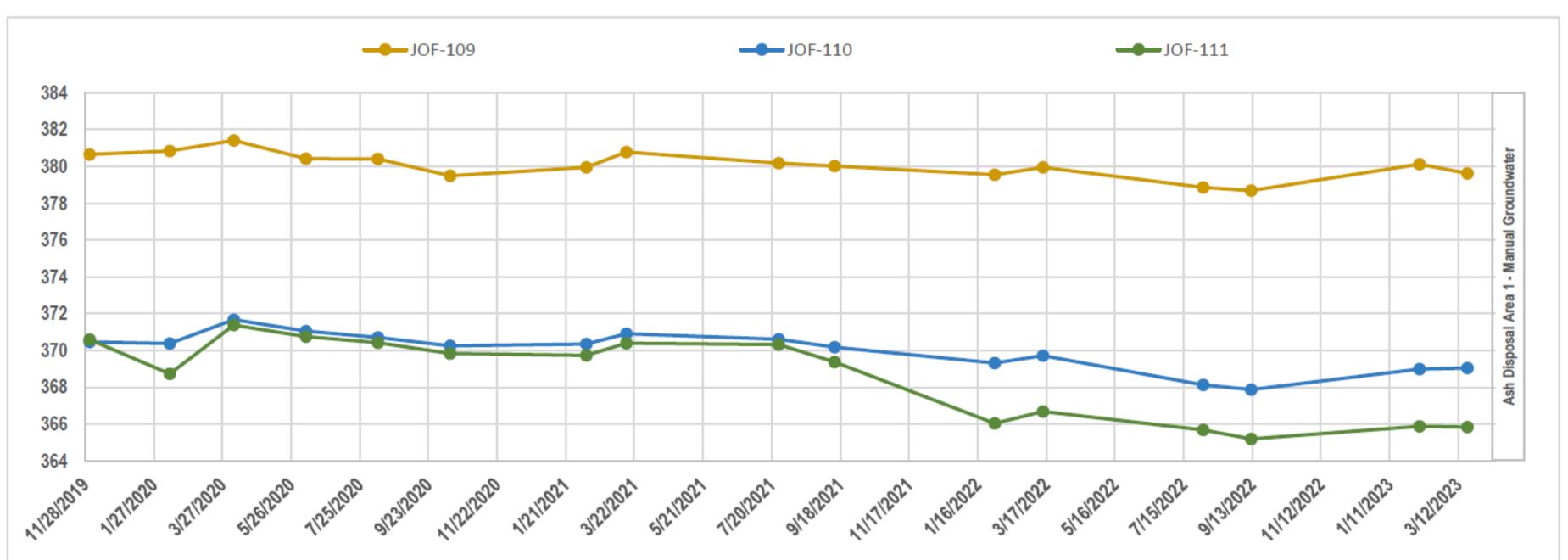
Legend

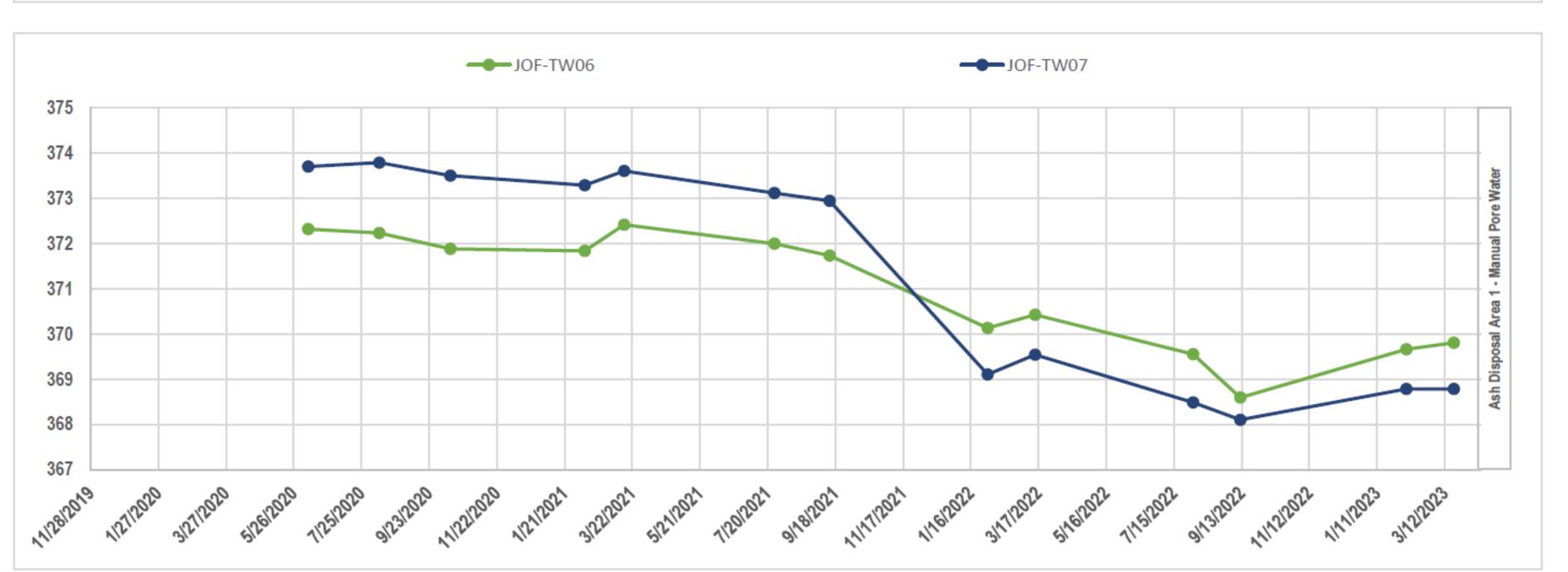
Piezometer

CCR Management Unit Area (Approximate)

CCR: Coal combustion residuals


	Northing	Easting
Piezometer Name	(TN STP NAD83)	(TN STP NAD83)
JOF_DDC_PZ8	625,452.01	1,383,168.03
JOF_DDC_PZ9	625,211.63	1,383,569.34
JOF_DDC_PZ10	624,538.21	1,383,283.95

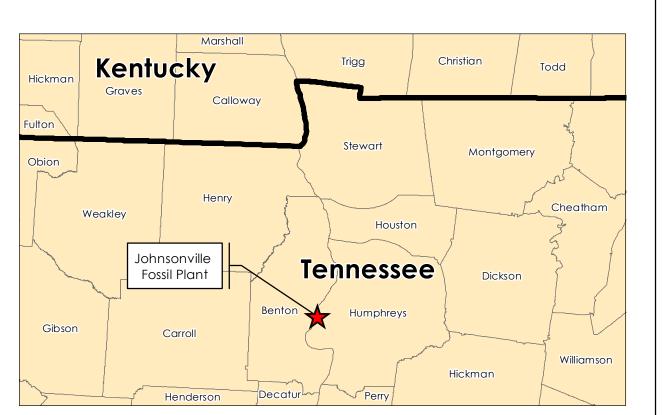

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017)



H.1-14

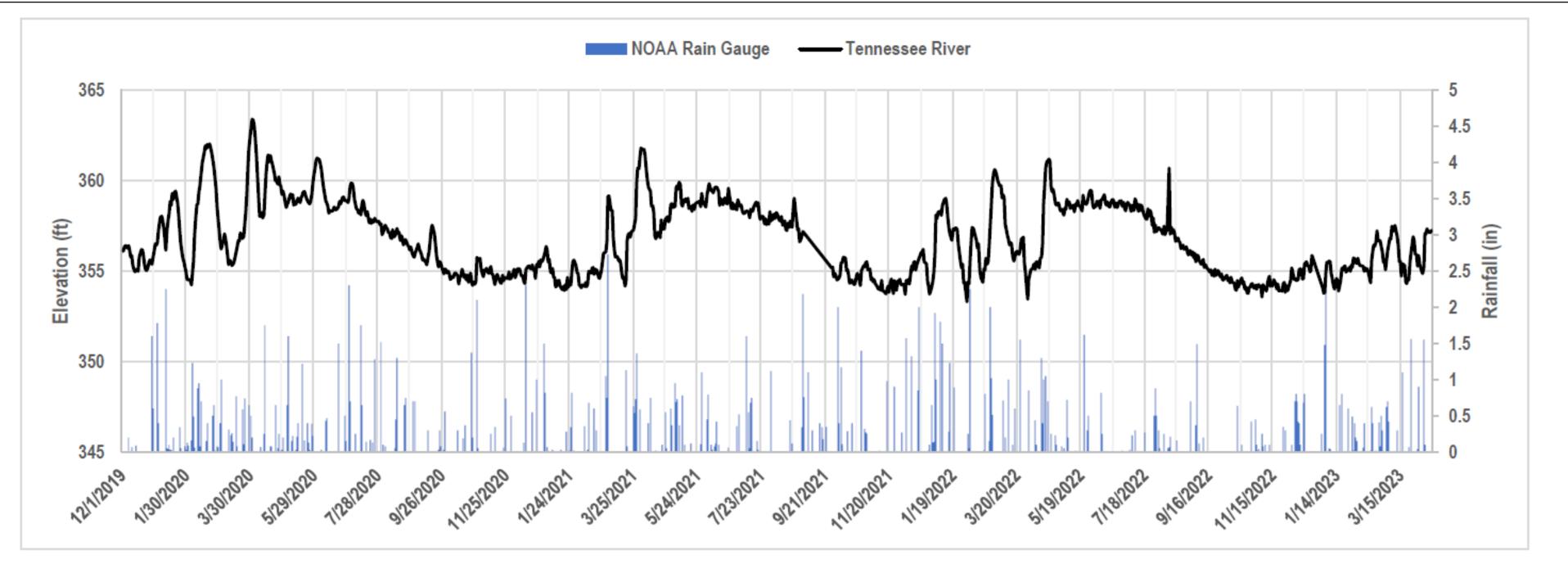
Manually Gauged Instrument Hydrographs - Ash Disposal Area 1

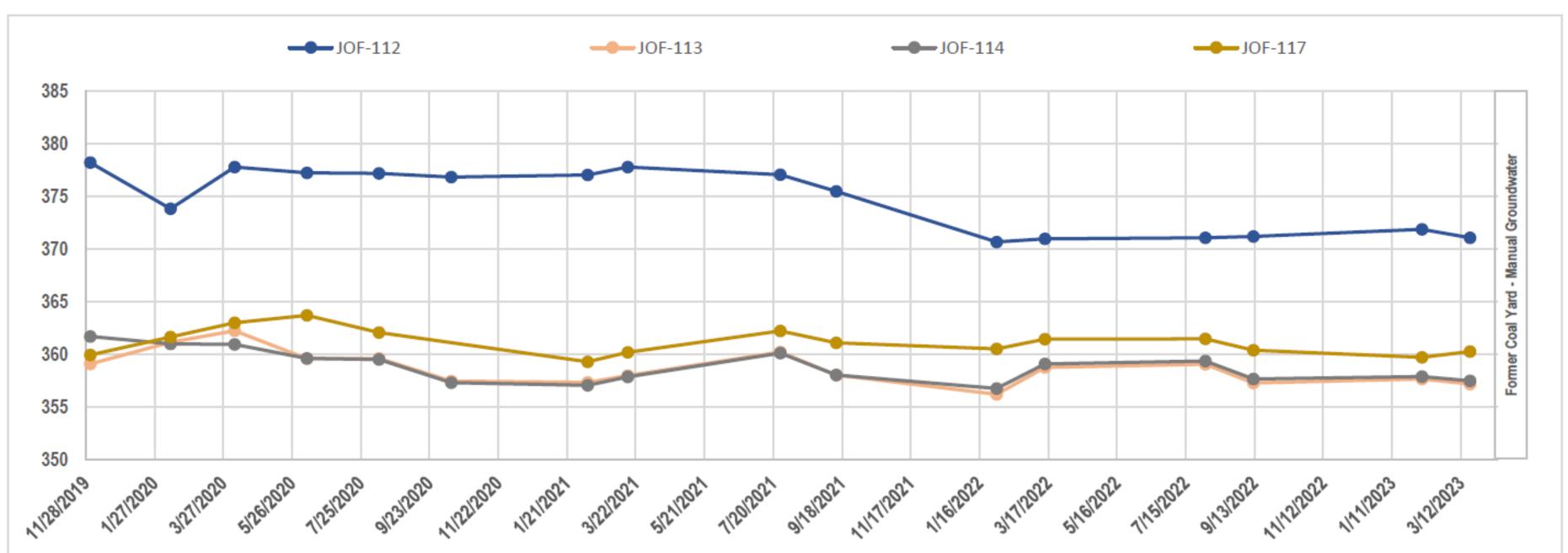
Client/Project

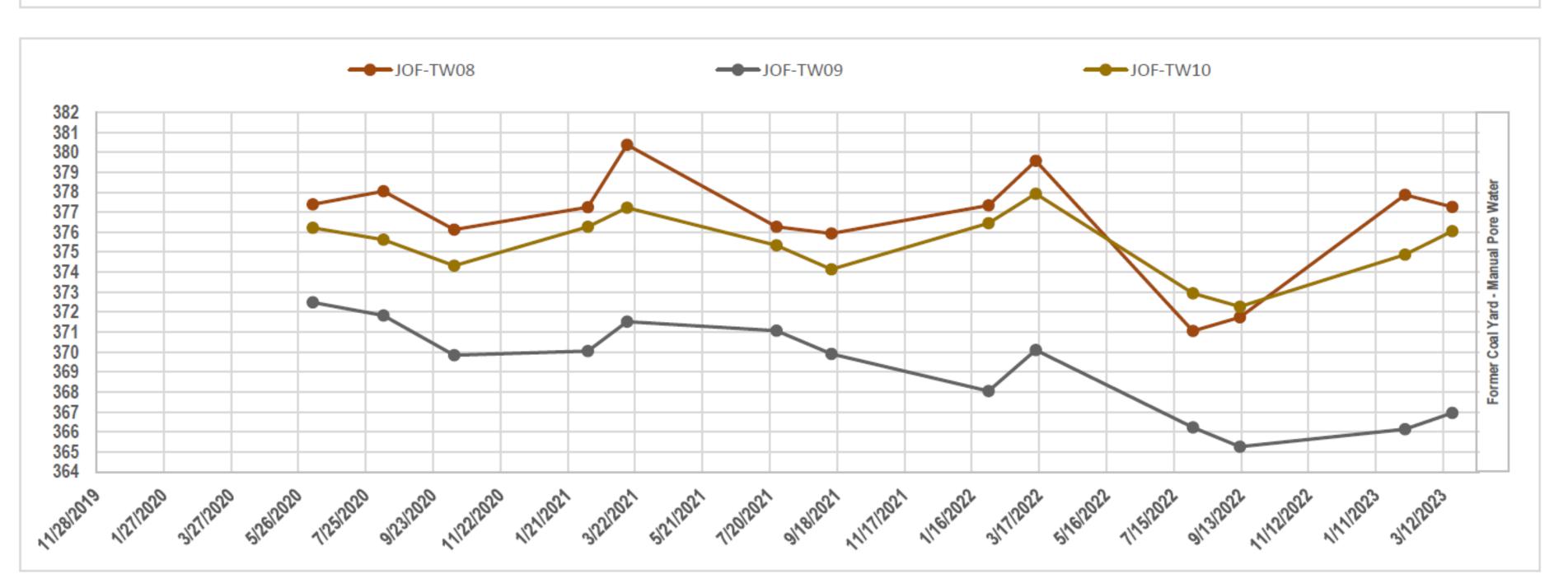

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location

New Johnsonville, Tennessee


175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27

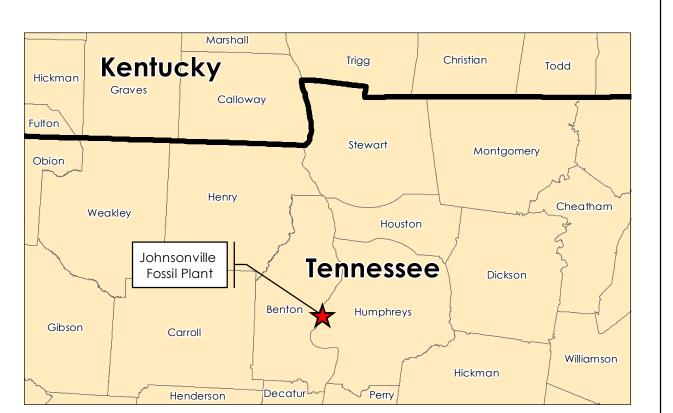

Legend



H.1-15

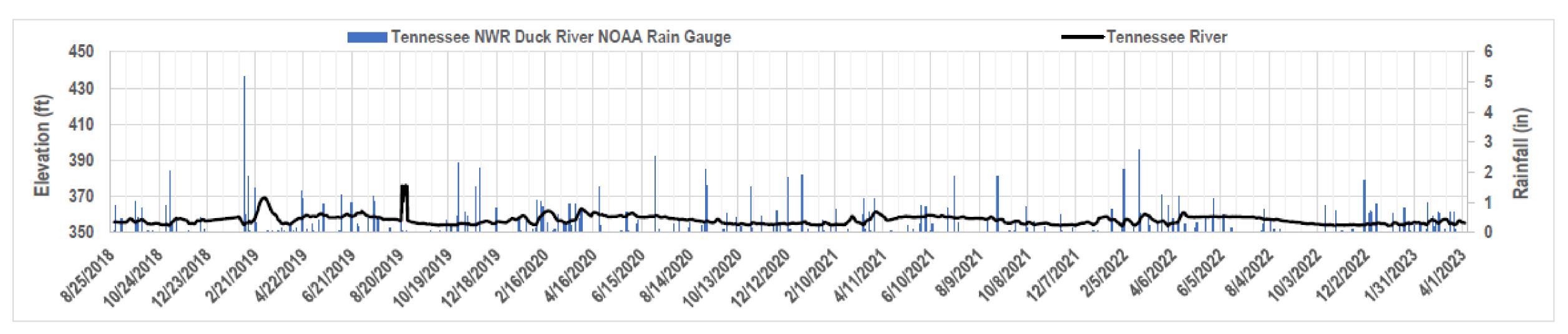
Manually Gauged Instrument **Hydrographs - Former Coal Yard**

Client/Project


Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location

New Johnsonville, Tennessee


175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27

Legend

H.1-16a

Automated Instrument Hydrographs -**DuPont Road Dredge Cell**

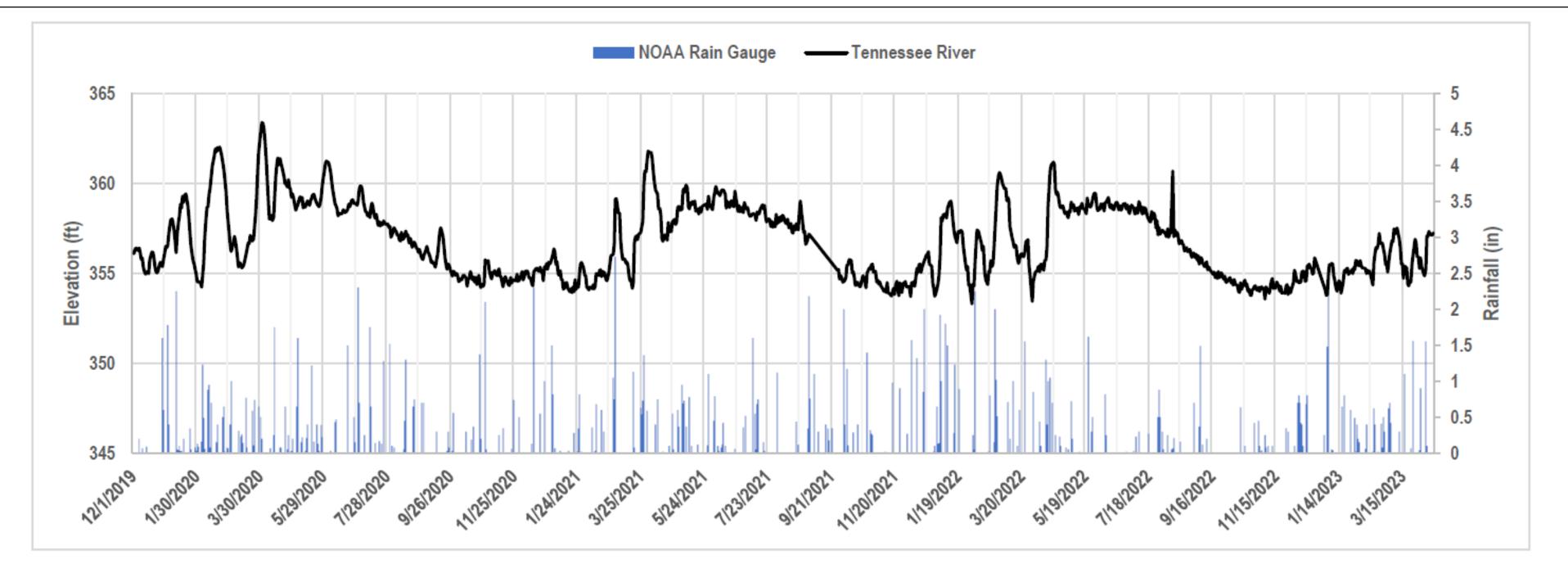
Client/Project

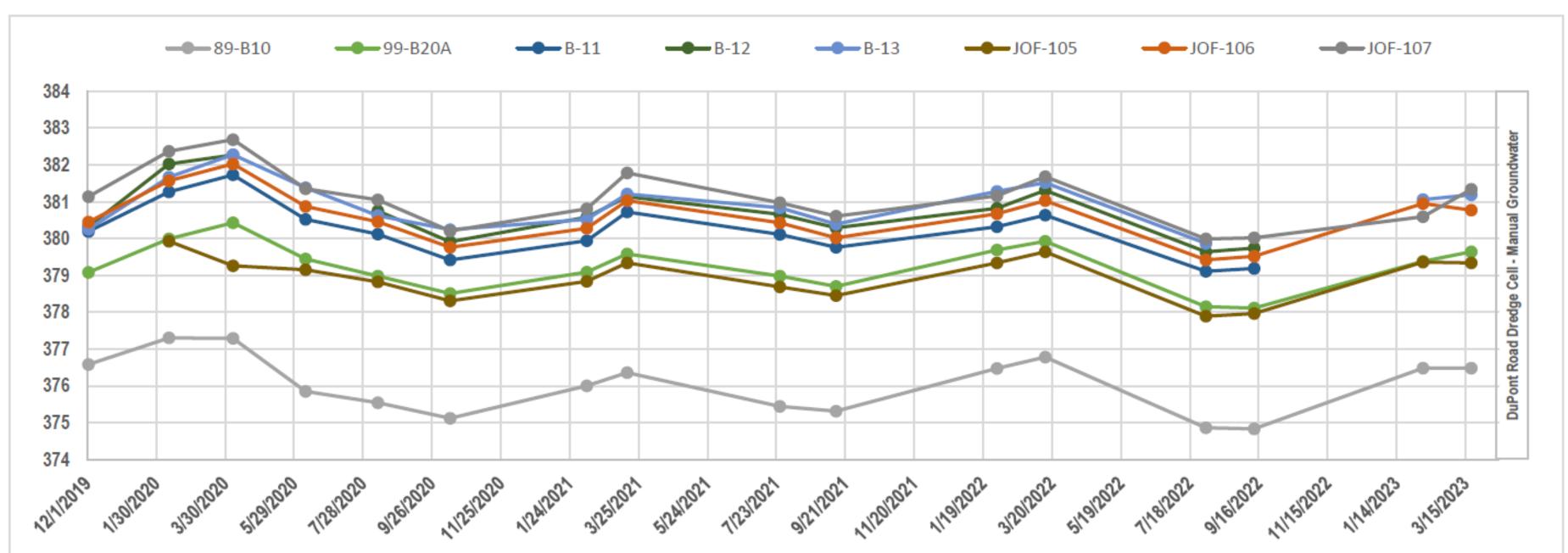
Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

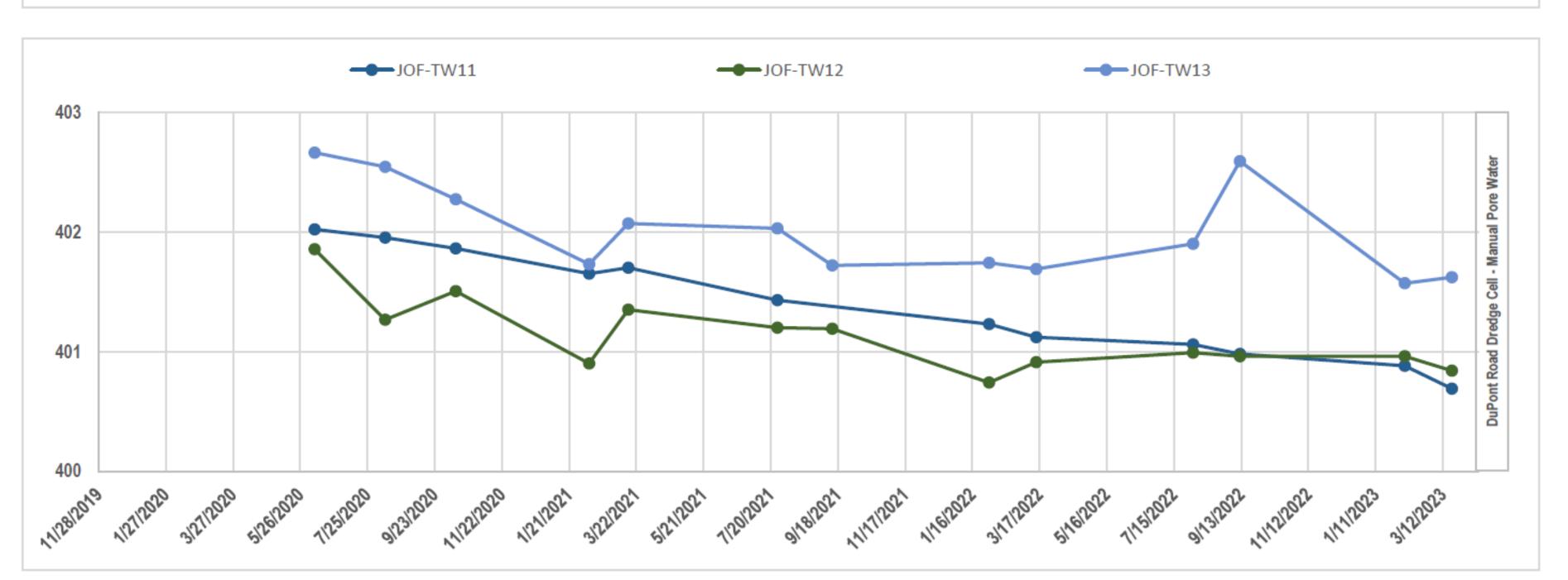
Project Location

New Johnsonville, Tennessee

175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27


Legend

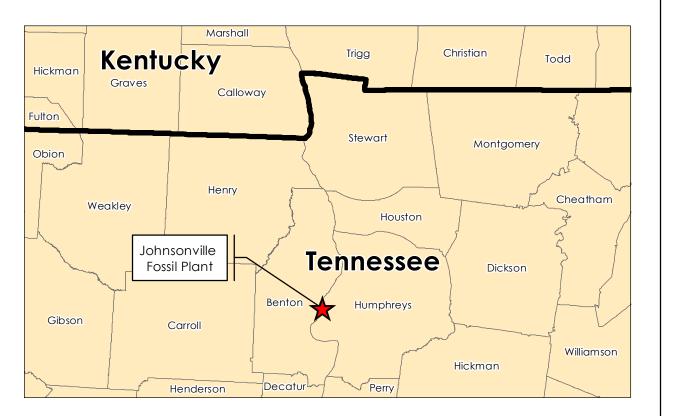

ft - feet



H.1-16b

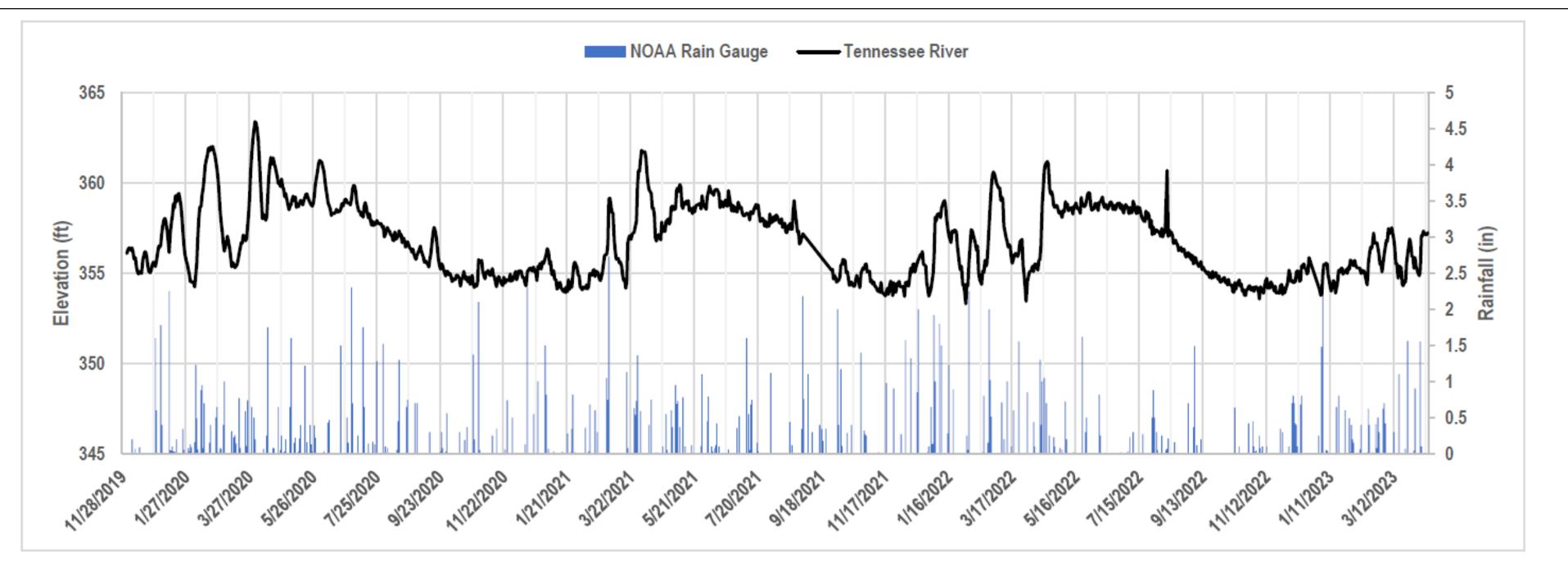
Manually Gauged Instrument Hydrographs -**DuPont Road Dredge Cell**

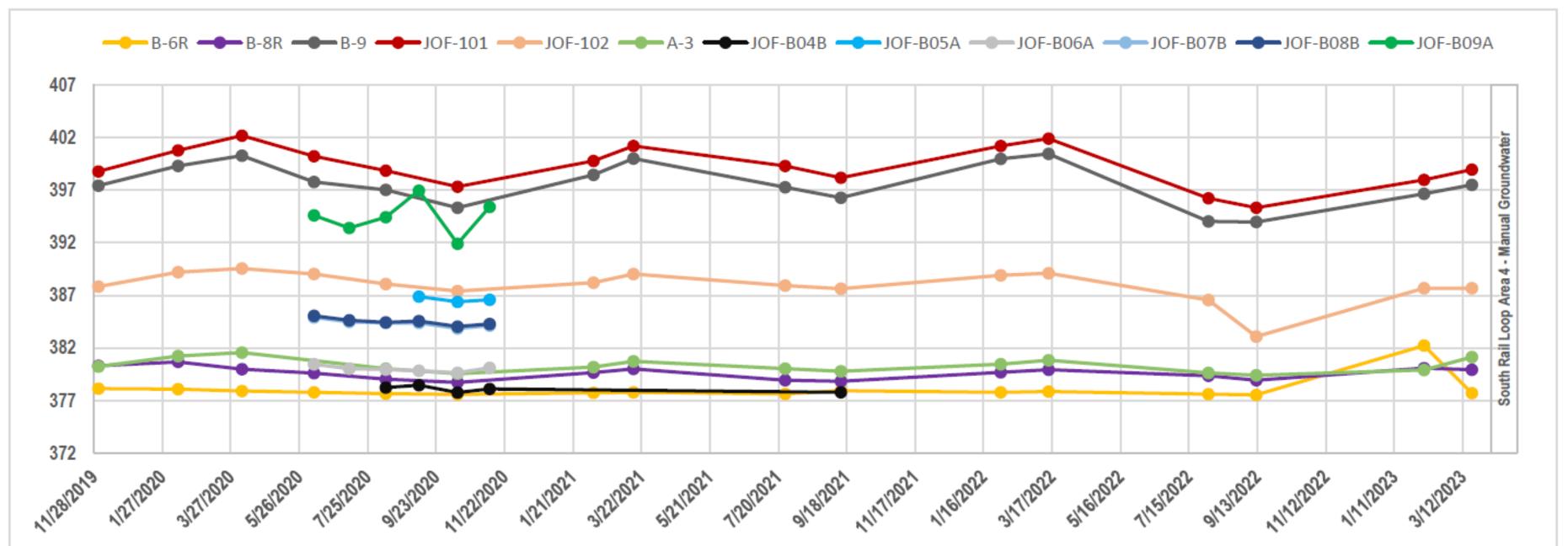
Client/Project

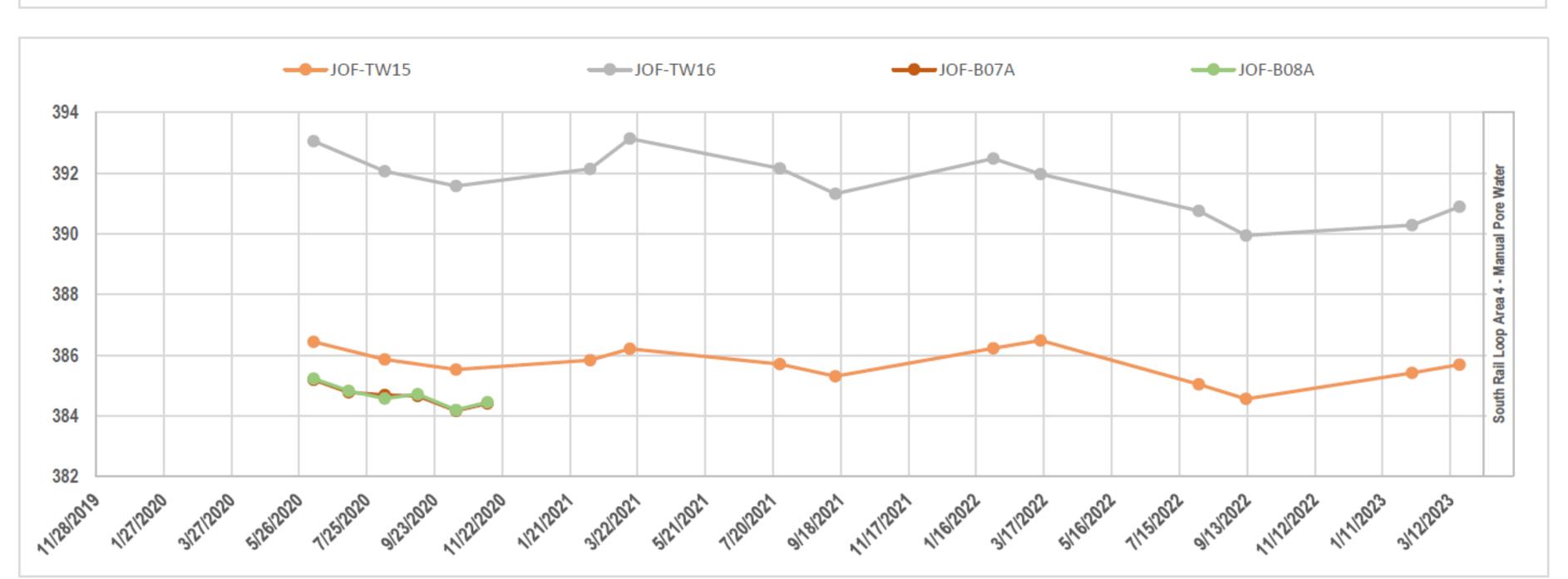

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location

New Johnsonville, Tennessee


175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27


Legend



H.1-17

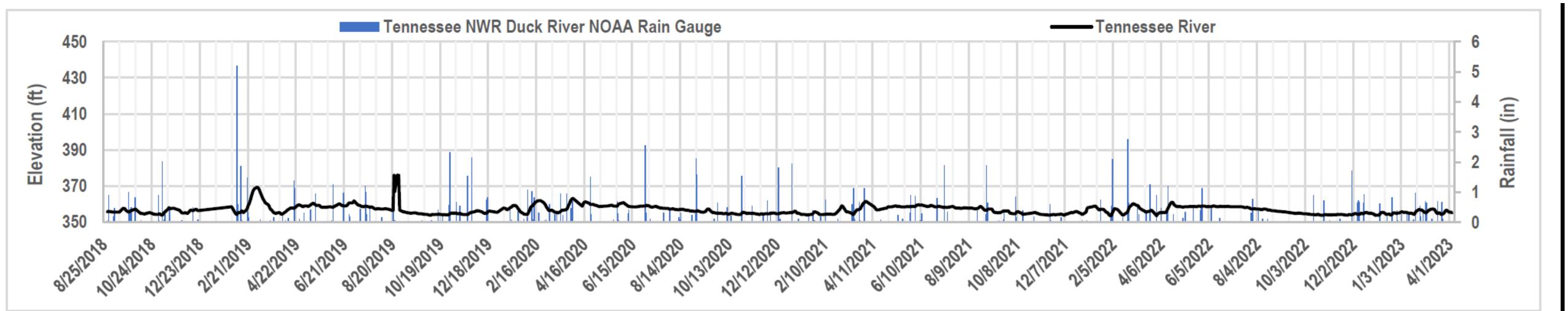
Manually Gauged Instrument Hydrographs -South Rail Loop Area 4

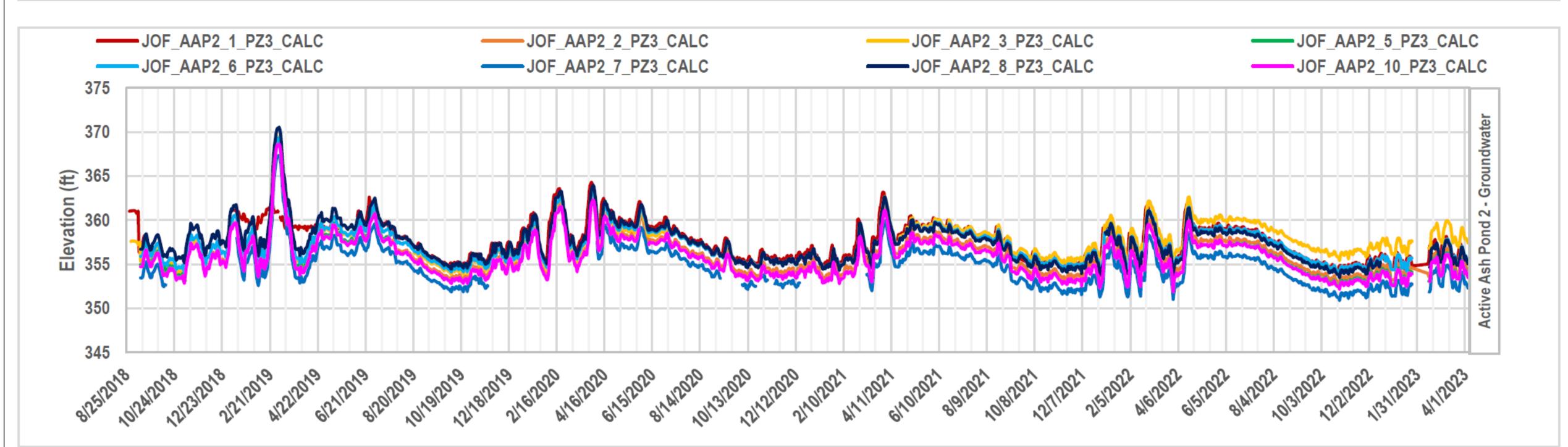
Client/Project

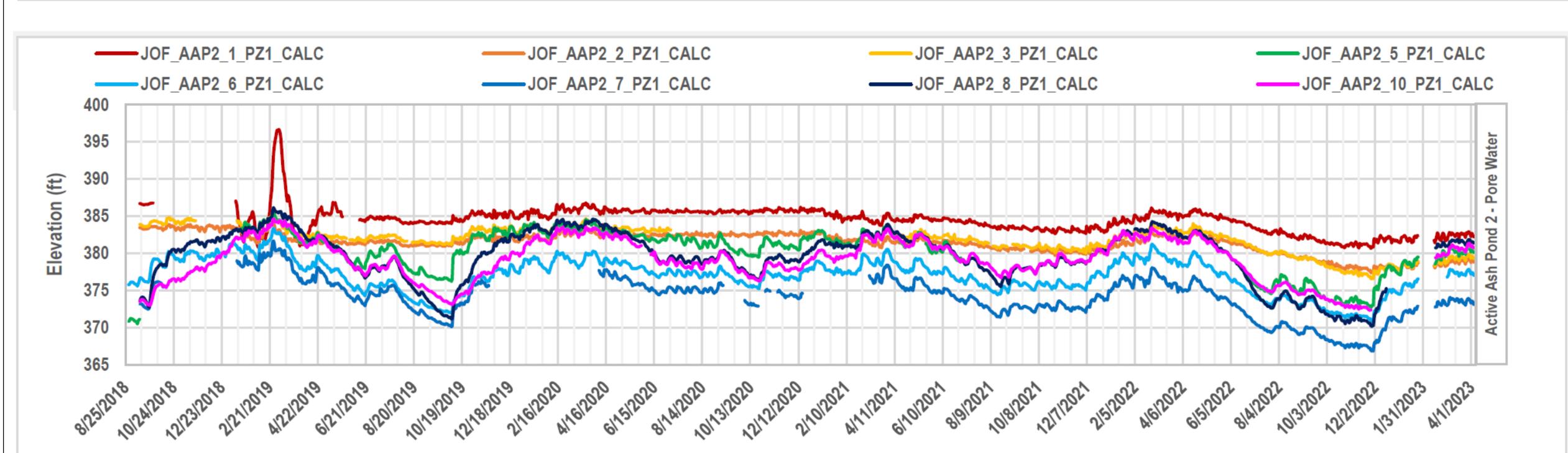

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location

New Johnsonville, Tennessee


175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27

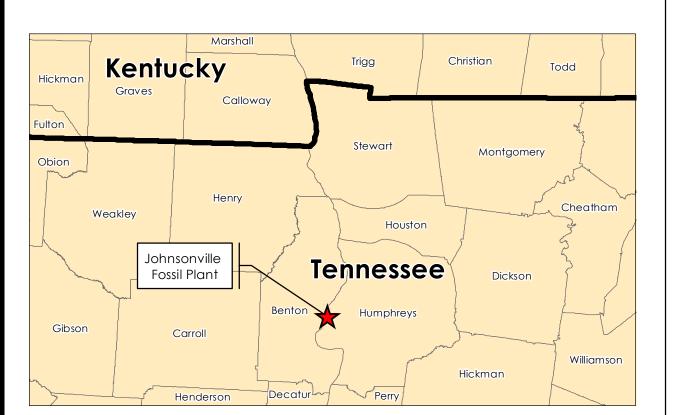

Legend



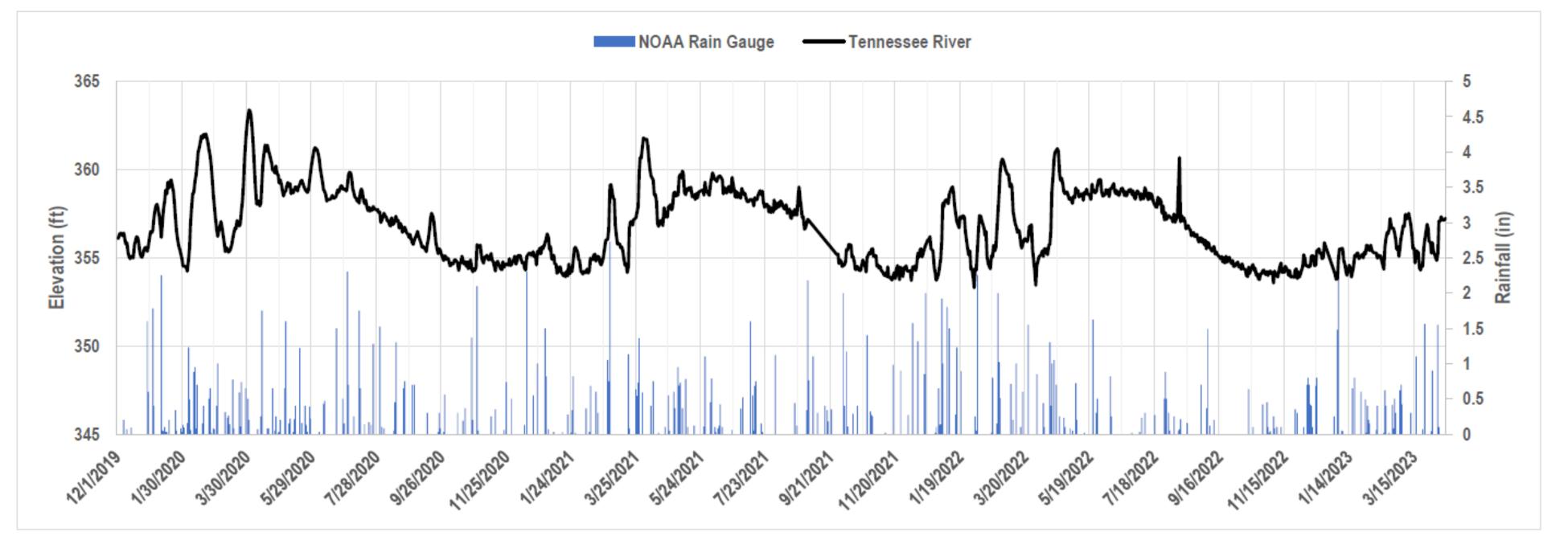
H.1-18a

Automated Instrument Hydrographs -Active Ash Pond 2

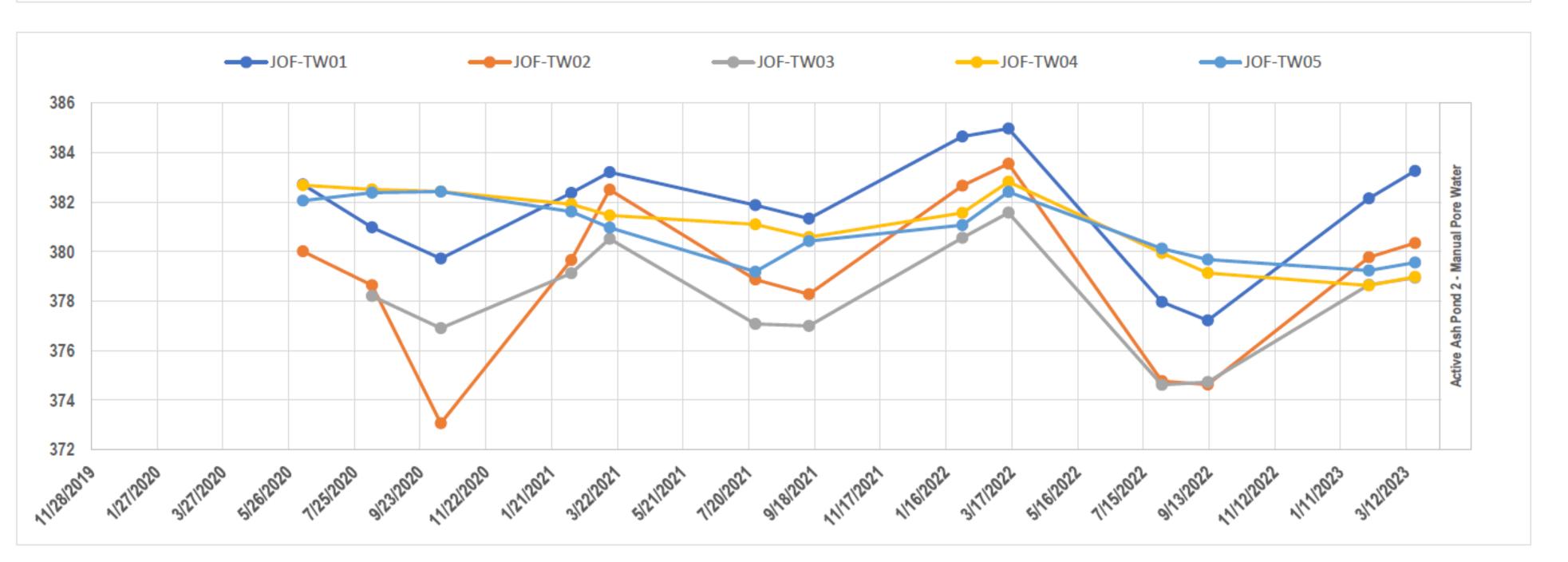
Client/Project


Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location


New Johnsonville, Tennessee

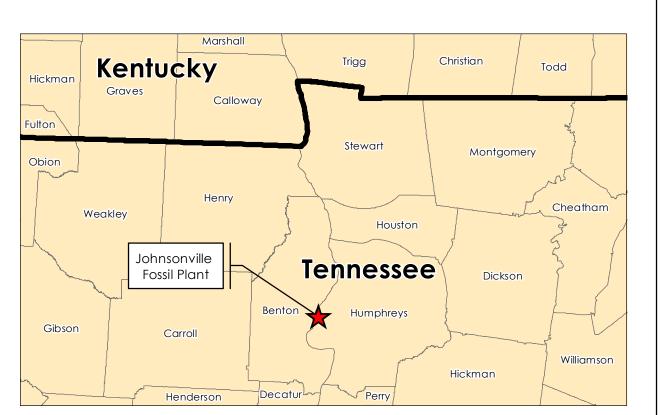
175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27


Legend

H.1-18b

Manually Gauged Instrument Hydrographs -Active Ash Pond 2

Client/Project


Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location

New Johnsonville, Tennessee

175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27

Legend

H.1-19

DuPont Road Dredge Cell Select Piezometer Locations

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29 New Johnsonville, Tennessee

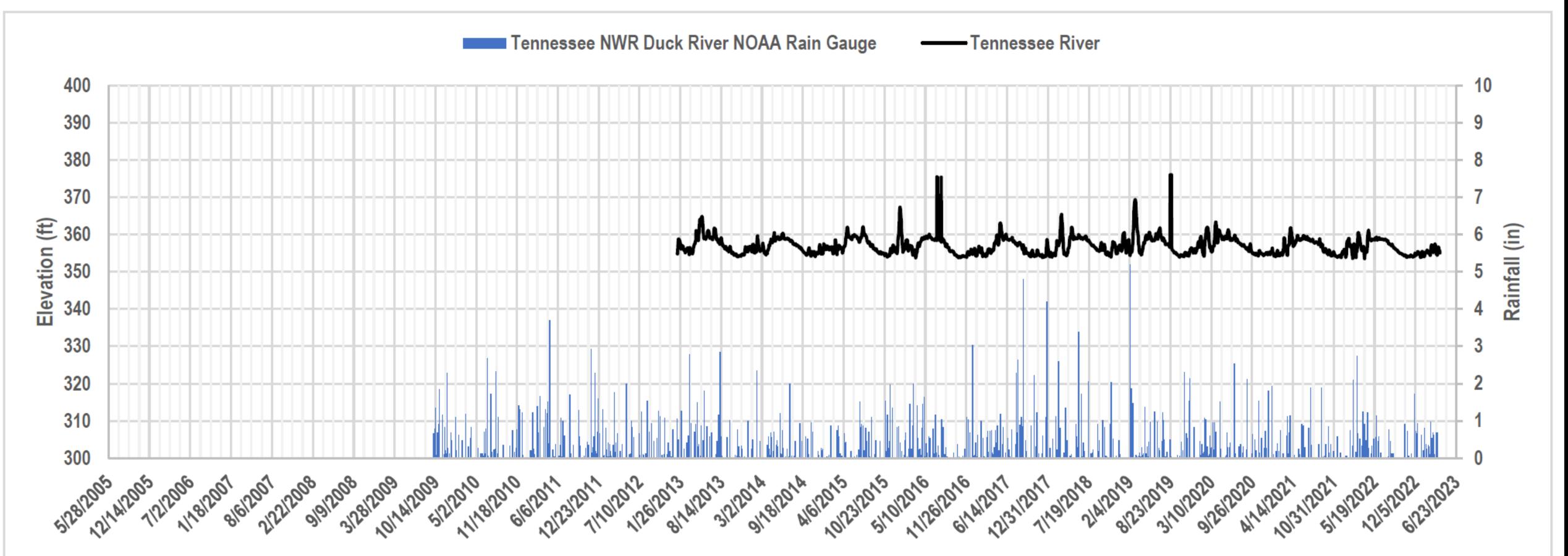
1:1,200 (At original document size of 22x34)

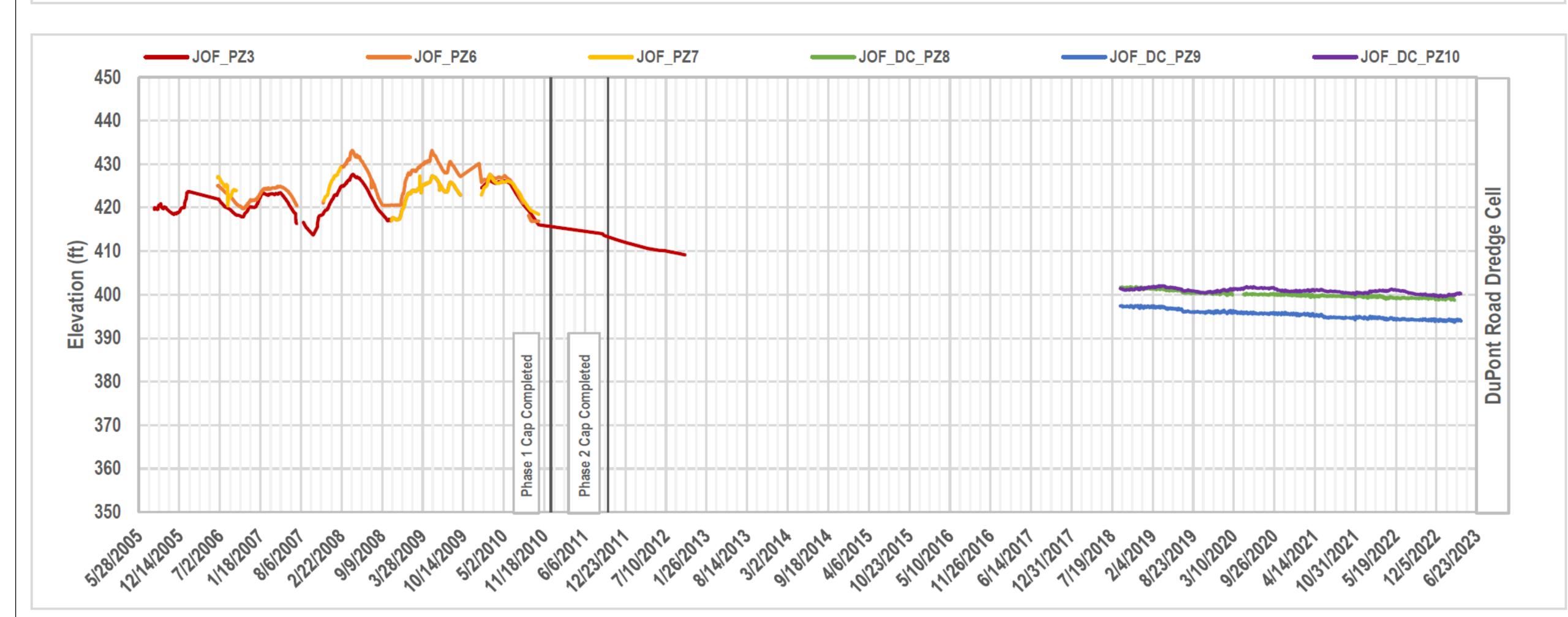
Legend


JOF_DDG_PZ8 Piezometer

PZ=3 Abandoned Piezometer

CCR Management Unit Area (Approximate)


CCR: Coal combustion residuals


- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (2017)
 Piezometers PZ-3, PZ-6, and PZ-7 were abandoned in December 2012.

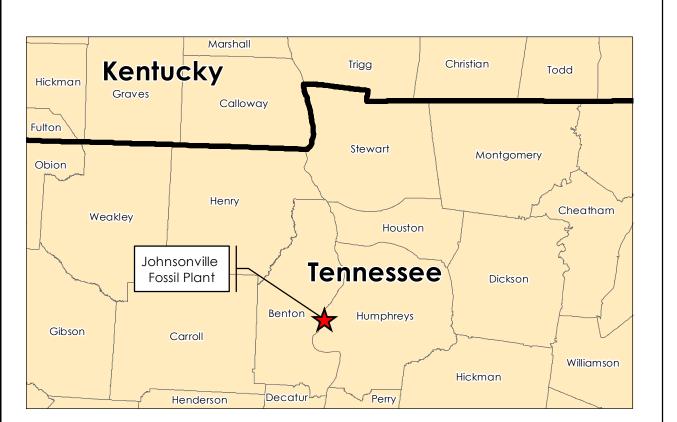
H.1-20

Title

Phreatic Surface Graph DuPont Road Dredge Cell Before and After Capping

Client/Project

Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order


Project Location

New Johnsonville, Tennessee

175568286 Prepared by MP on 2022-07-27 Technical Review by MD on 2022-07-27

Legend

ft - feet

Dye Trace Study Borings and Sampling Locations

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by KC on 2024-01-29 New Johnsonville, Tennessee

1:4,800 (At original document size of 22x34)

Legend

- CCR Well Monitoring Location
- Boring Location to Collect Samples for Bench Study
- Surface Water Upgradient Monitoring Location
- Dye Injection Boring Location
- Surface Water Monitoring Location
- Monitoring Well
- Existing Piezometer Open Standpipe

2017 Imagery Boundary

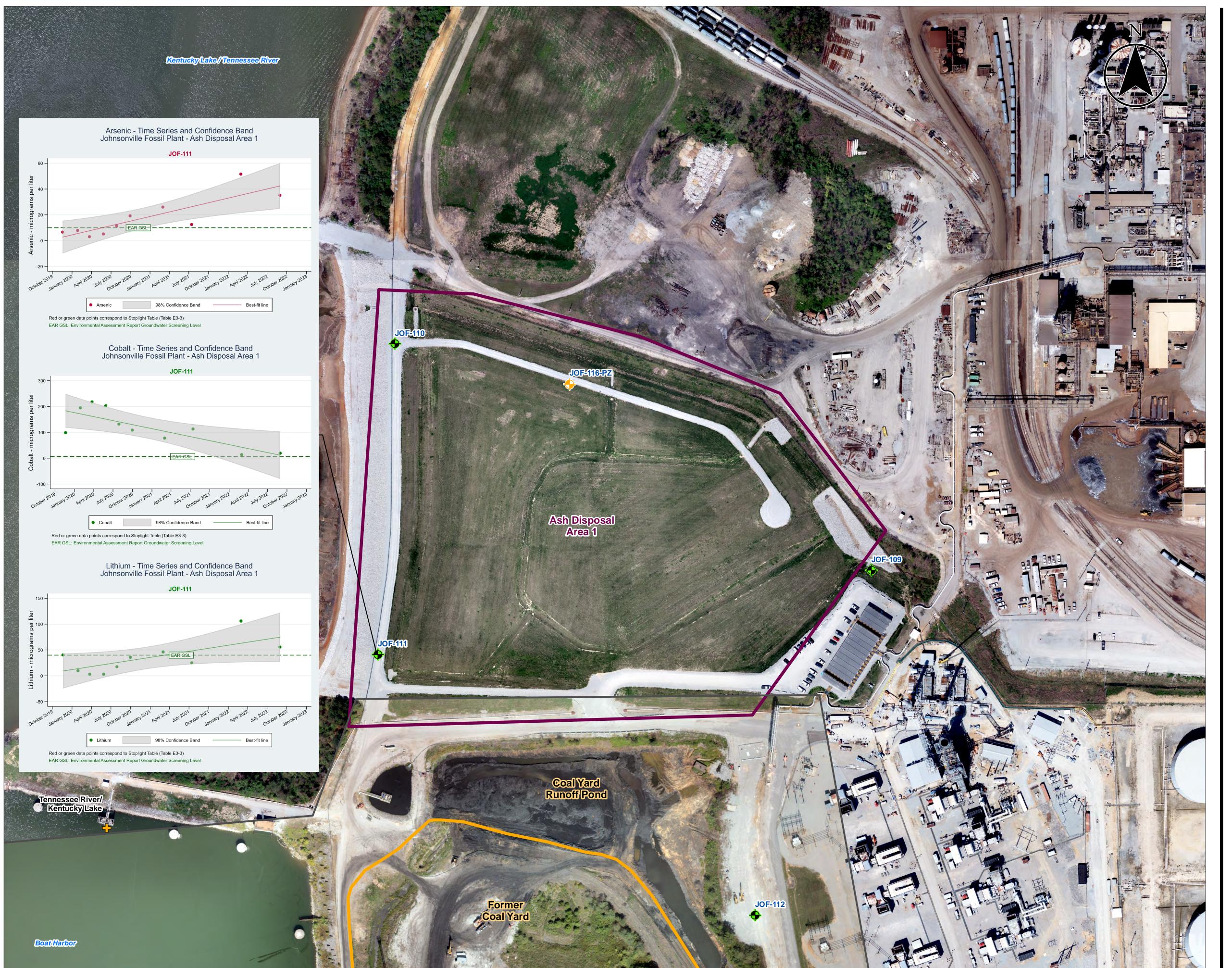
2018 Imagery Boundary

CCR Management Unit Area (Approximate)

Former Coal Yard (Approximate)

Former Stilling Pond (Approximate)

TVA Property Boundary


CCR = Coal Combustion Residuals

Injected Dyes: IP-1 and IP-2 Sulpho Rhodamine-B IP-3, IP-4, and IP-5 fluorescein

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) and Esri World Imagery

Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule Appendix IV and TDEC Appendix I Constituents - Ash Disposal Area 1

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

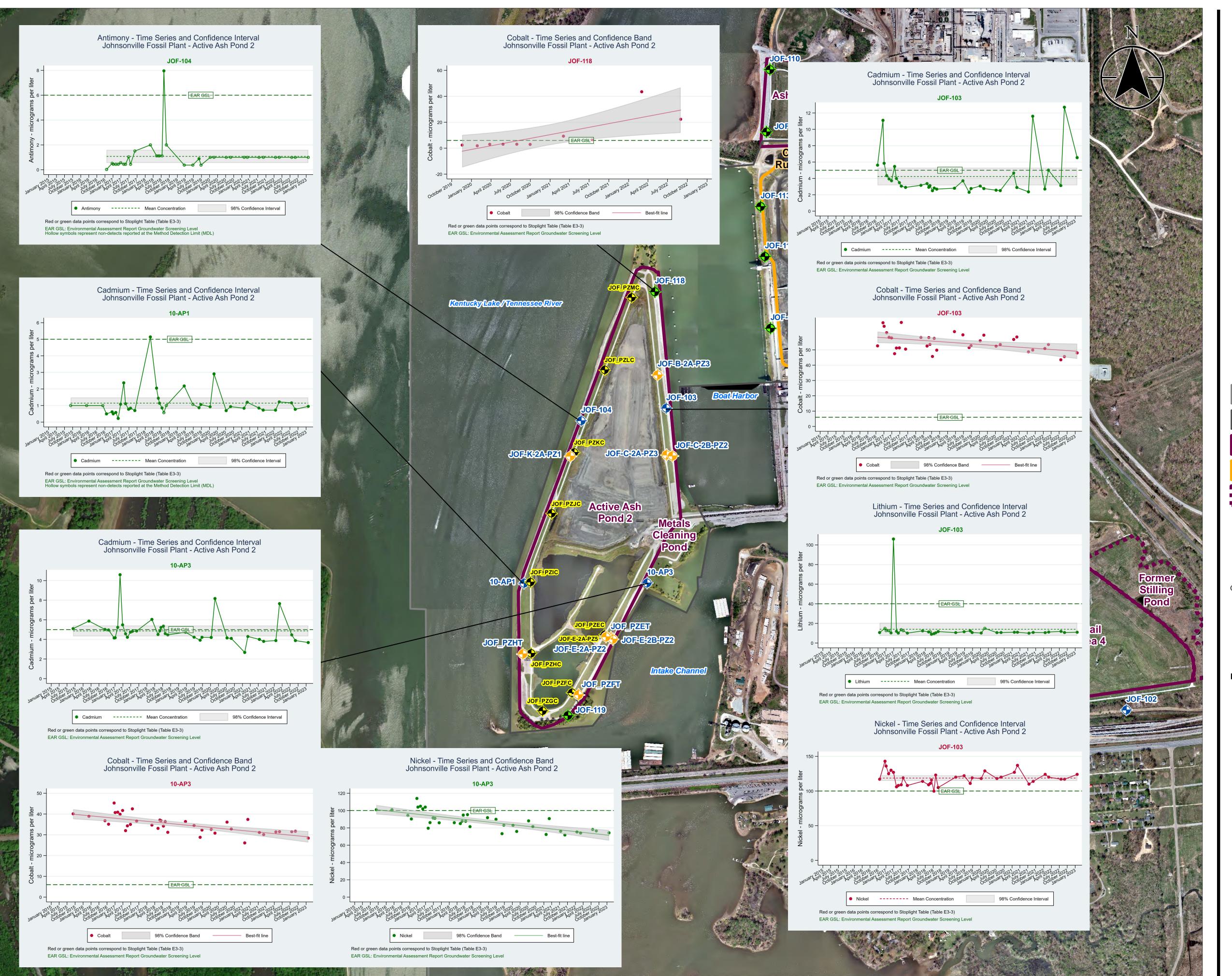
Project Location 175568286 Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29 New Johnsonville, Tennessee

1:1,200 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Piezometer
- Tennessee River/Kentucky Lake Gauging Station
- 2017 Imagery Boundary
- 2018 Imagery Boundary
 - CCR Management Unit Area (Approximate)
- Former Coal Yard (Approximate)

CCR: Coal combustion residuals


Notes

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018)

Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule Appendix IV and TDEC Appendix I Constituents - Active Ash Pond 2

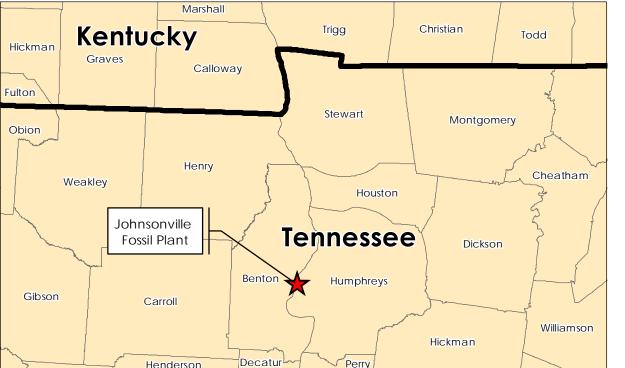
Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 New Johnsonville, Tennessee Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29

> 1,500 1,000 1:6,000 (At original document size of 22x34)

Legend

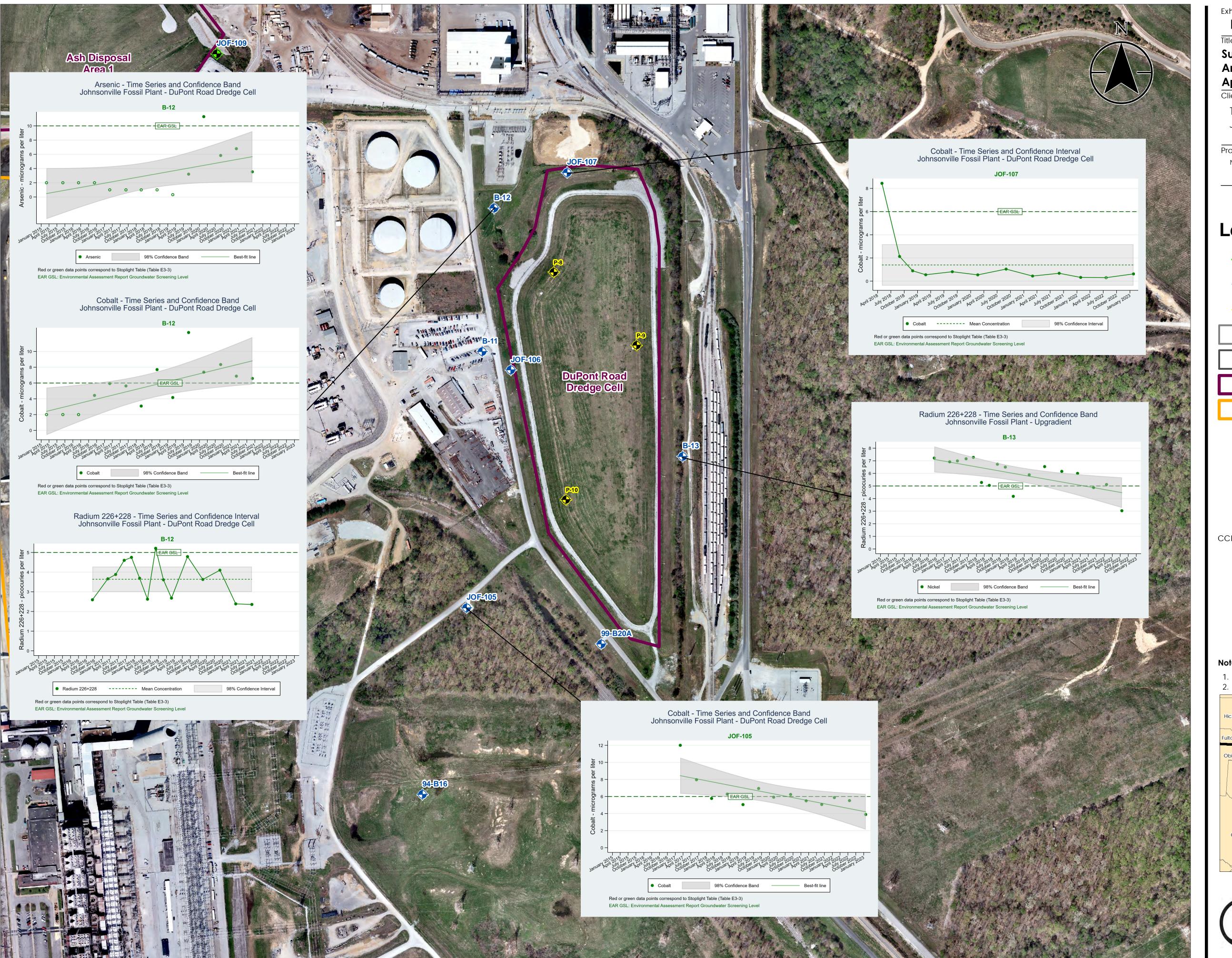

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Tennessee River/Kentucky Lake Gauging Station
- 2017 Imagery Boundary
 - 2018 Imagery Boundary
 - CCR Management Unit Area (Approximate)
- Former Coal Yard (Approximate)

Former Stilling Pond (Approximate)

CCR: Coal combustion residuals

Notes

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) and Esri World Imagery



Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule Appendix IV and TDEC Appendix I Constituents - DuPont Road Dredge Cell

Client/Project

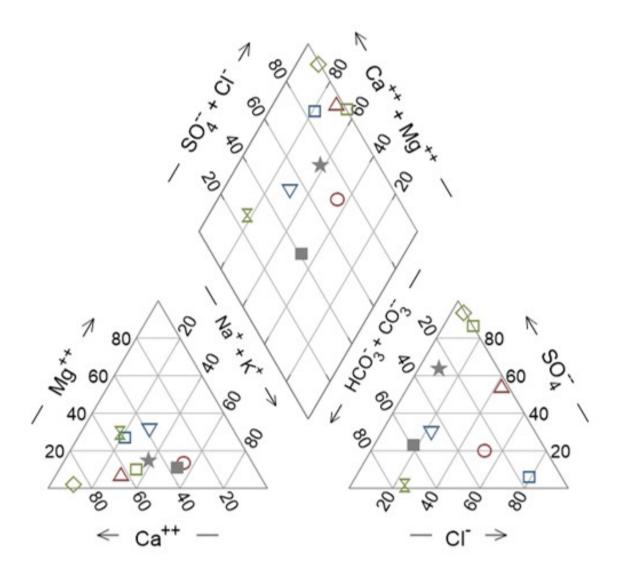
Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 New Johnsonville, Tennessee Prepared by DMB on 2024-01-29 Technical Review by MD on 2024-01-29

1:2,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Pore Water Piezometer in CCR Material
- 2017 Imagery Boundary
- 2018 Imagery Boundary
- CCR Management Unit Area (Approximate)
- Former Coal Yard (Approximate)


CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018)

August 2020

% meq/kg

☐ JOF-109 ○ JOF-110 △ JOF-111 ▽ JOF-112 ◇ JOF-113 ☐ JOF-114 ※ JOF-117 ★ JOF-118 ■ JOF-119 Exhibit No.

H.1-26

Piper Diagram - August 2020

Client/Project

175568286

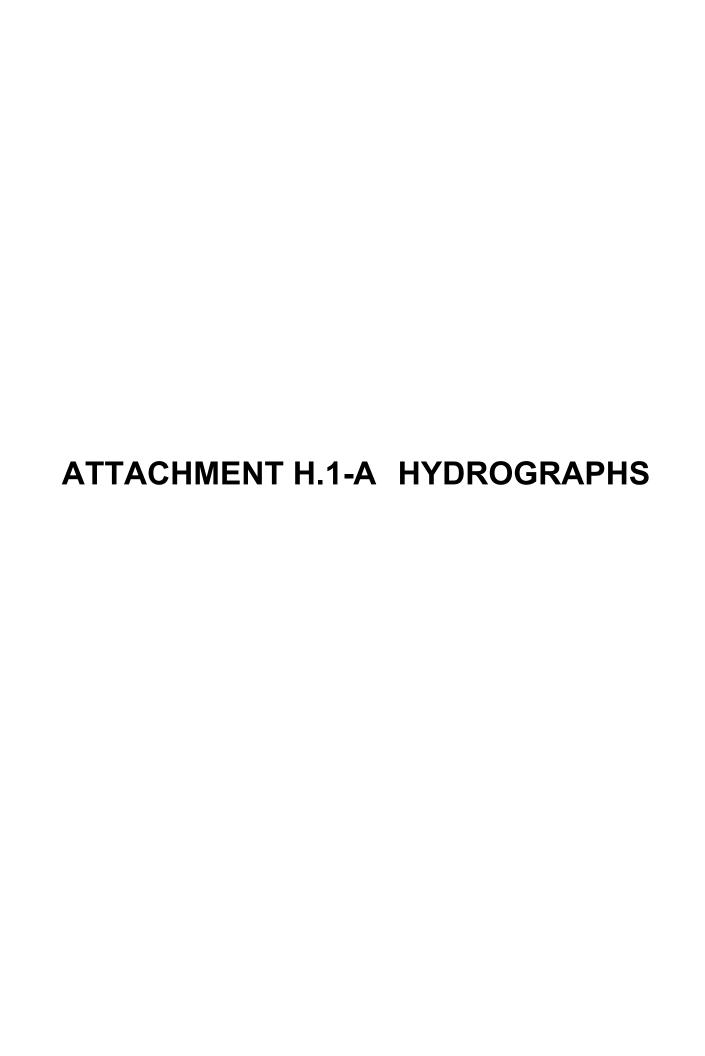
Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

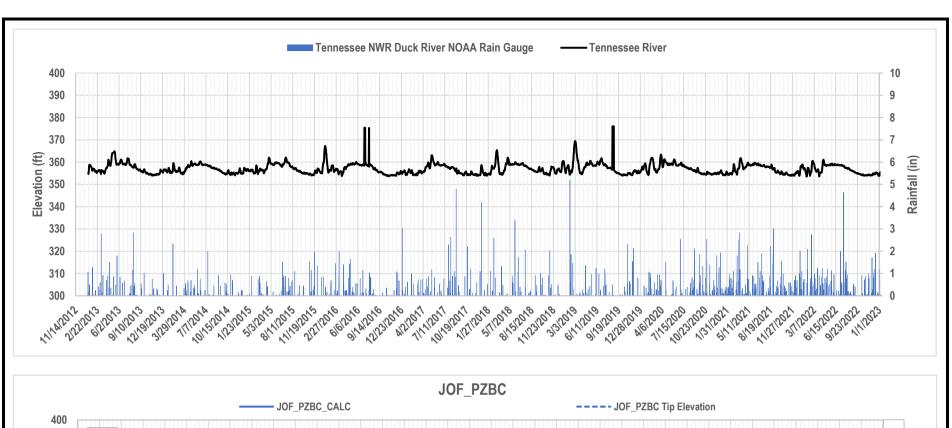
Clinton, Tennessee

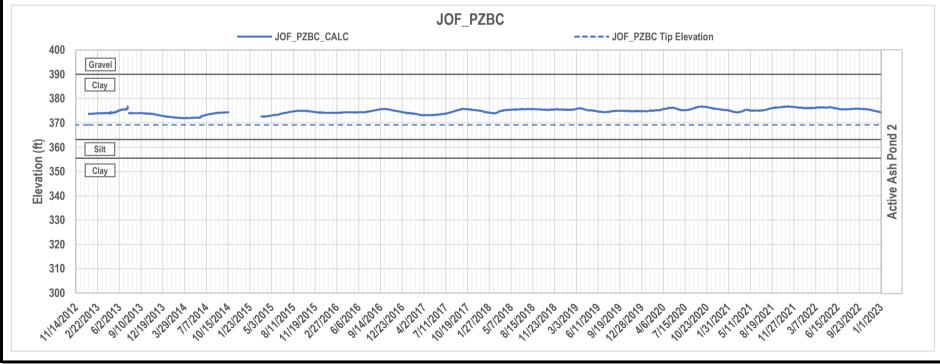
Prepared by DMB on 2024-01-29 TR by BL on 2024-01-29

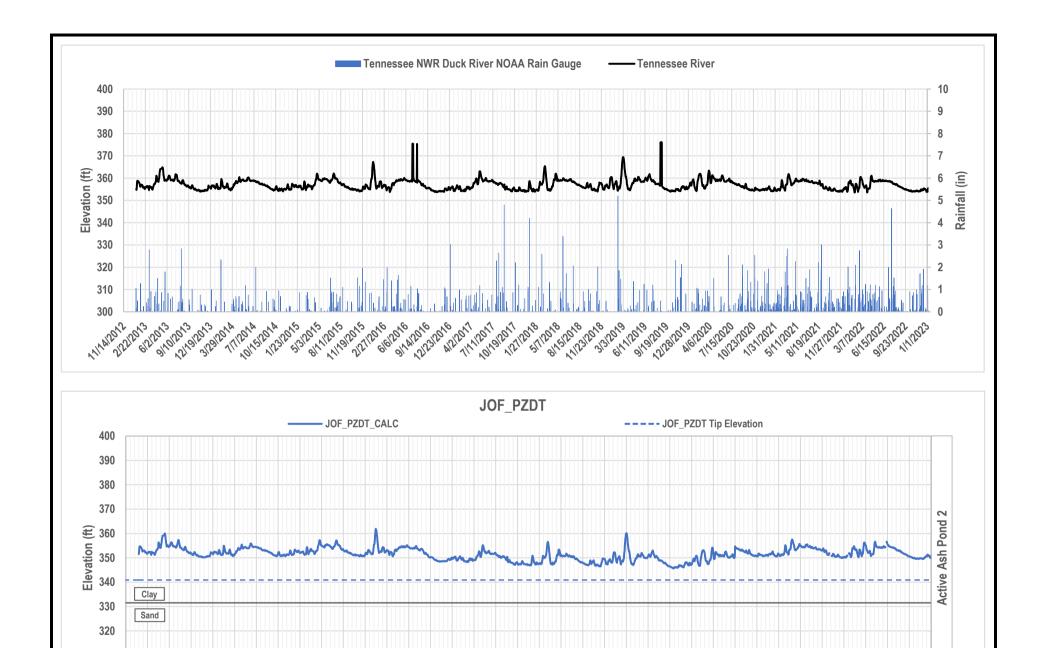
New Johnsonville, Tennessee

<u>Legend</u>


Note


- 1. % meq/kg Percent milliequivalent per kilogram
- 2. Ca++ Calcium
- 3. Cl⁻ Chloride
- 4. CO₃ Carbonate
- 5. HCO₃ Bicarbonate
- 6. K+ Potassium
- 7. Mg++ Magnesium
- 8. Na+ Sodium
- 9. SO₄ Sulfate





11/23/2018

3/3/2019 61/1/2019 9/19/2019 12/28/2019 1012312020

1312021 511/2021 81912021 11/27/2021 3/1/2022

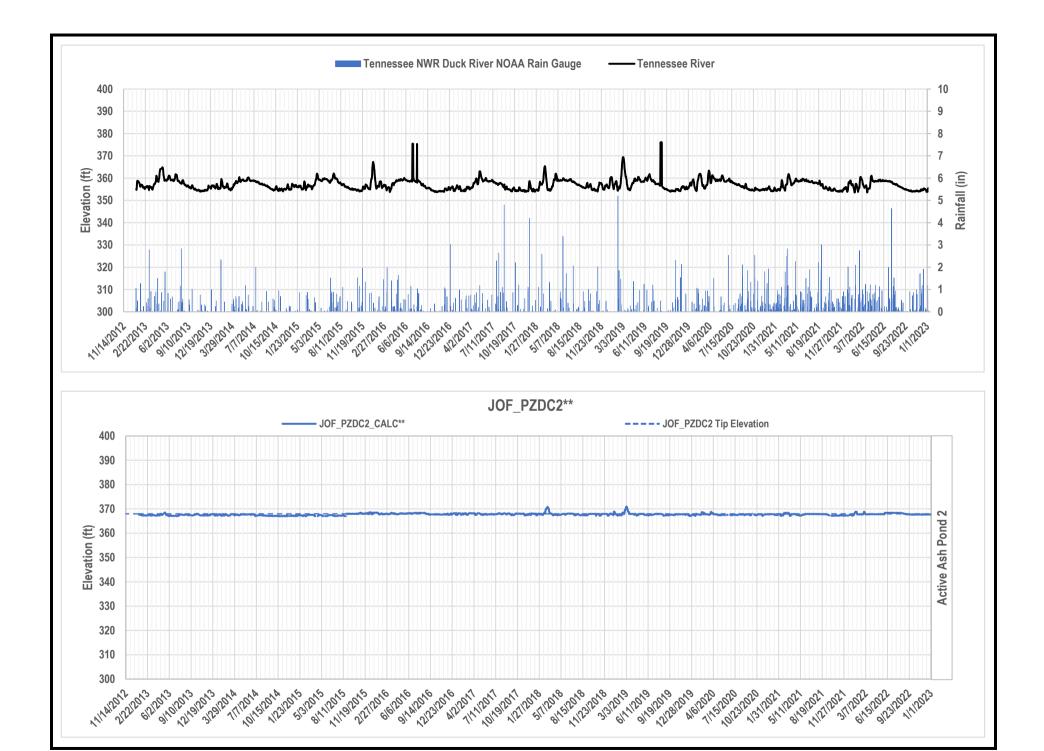
462020 11/5/2020 6115/2022

71712017 10192017 1121/2018 5/1/2018 8/15/2018

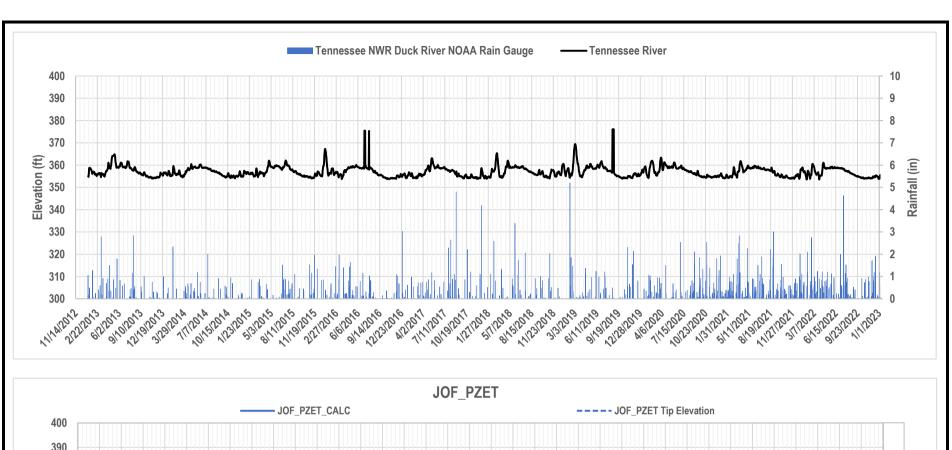
422017

310

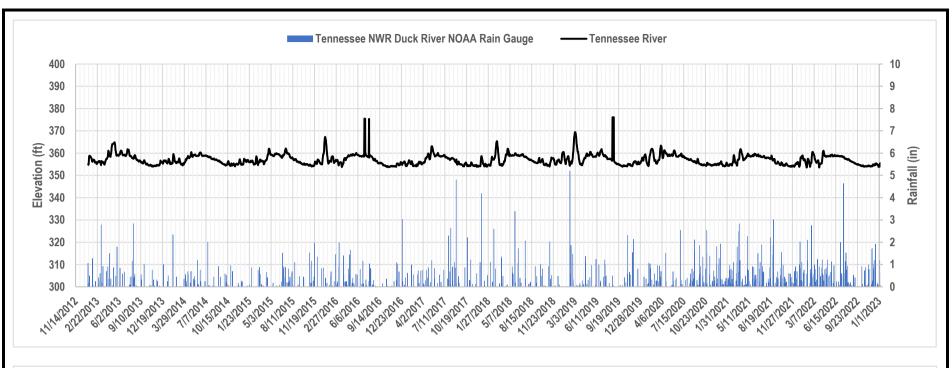
300

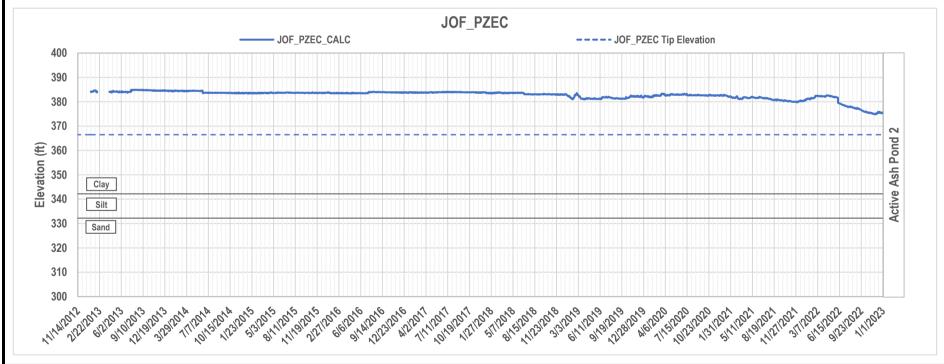

9/19/21/3/19/2013

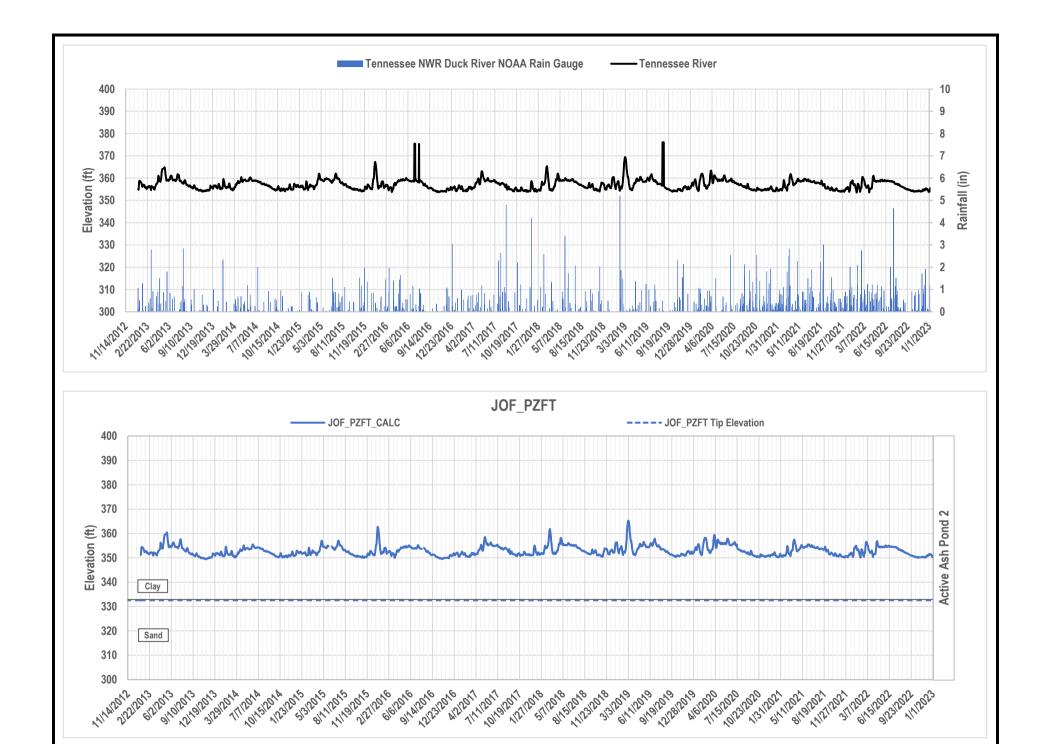
312912014 71712014 10/15/2014 123/2015 5/3/2015 81/1/2015

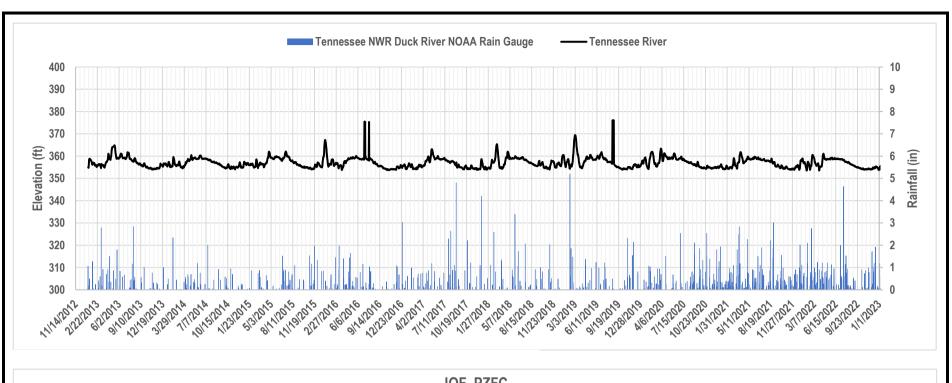

6/2/2013

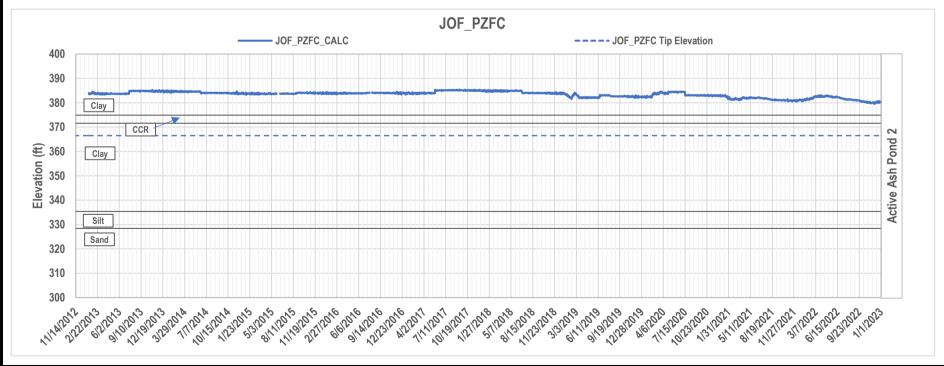
11/9/2015

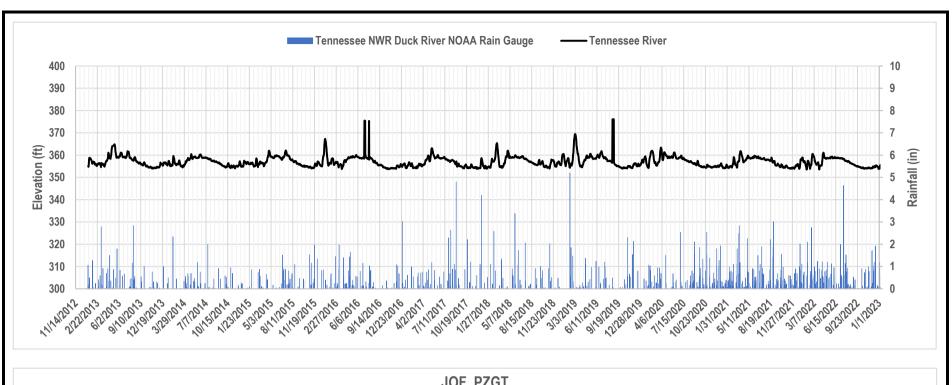

212112016 6/6/2016 9/14/2016 1223/2016

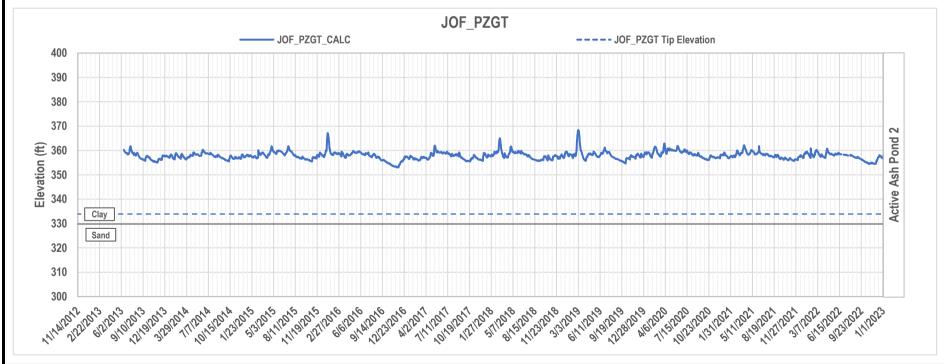


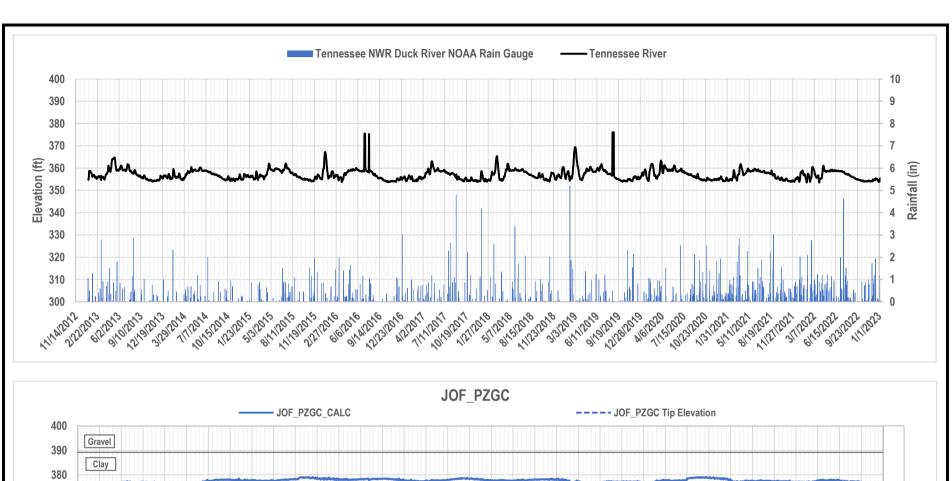

^{**} Soil horizon is unavailable for this instrument. Where possible, a nearby boring log has been substituted.

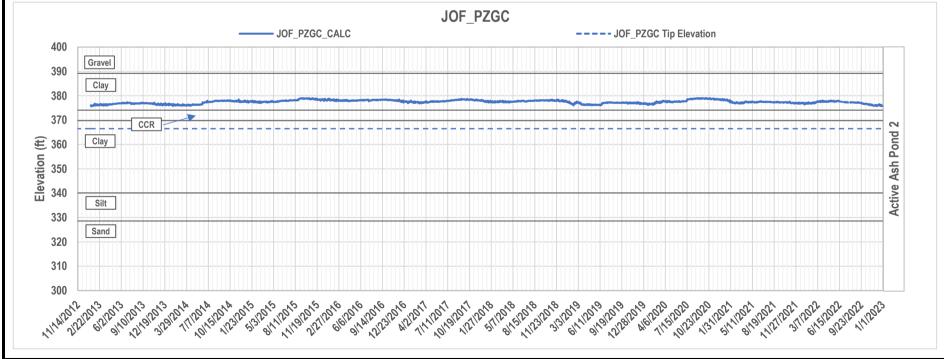


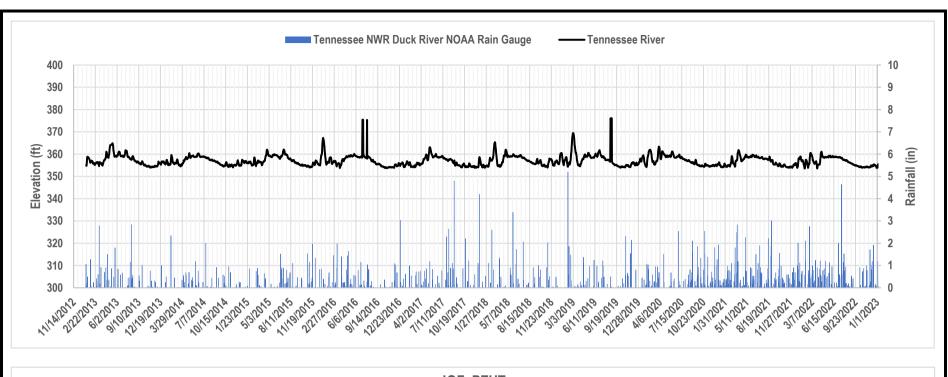


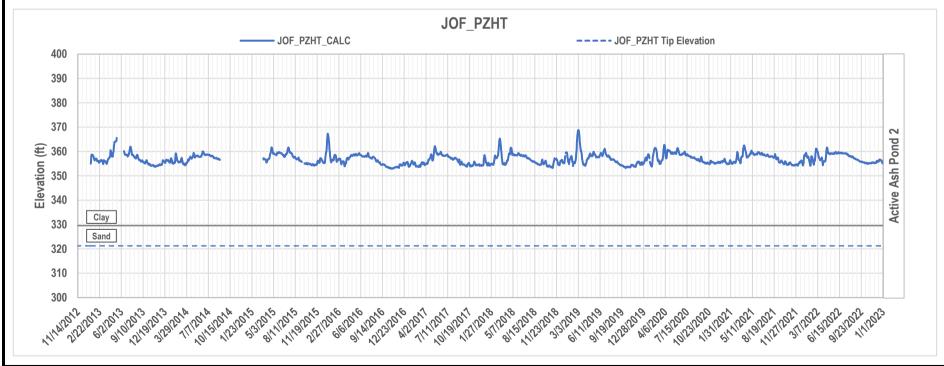


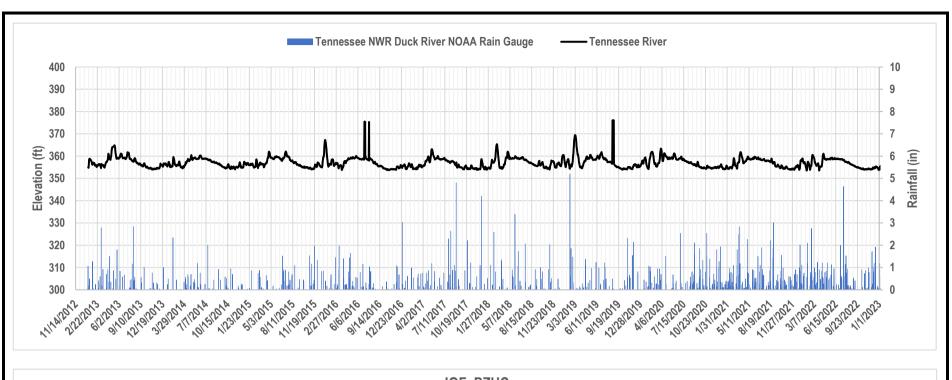


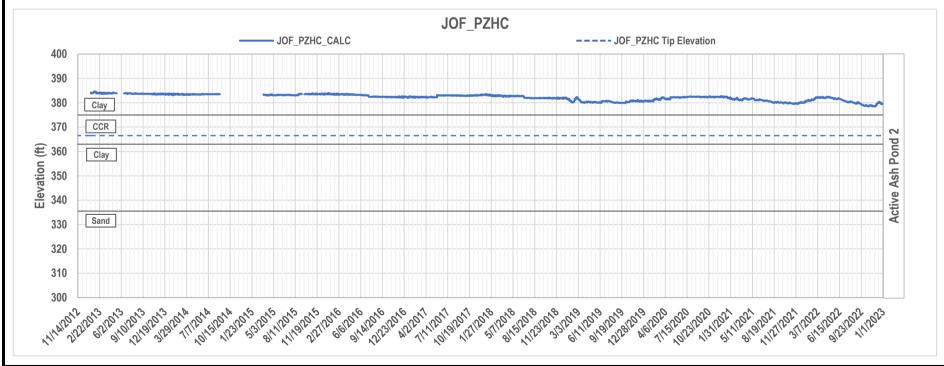

^{**} Soil horizon is unavailable for this instrument. Where possible, a nearby boring log has been substituted.

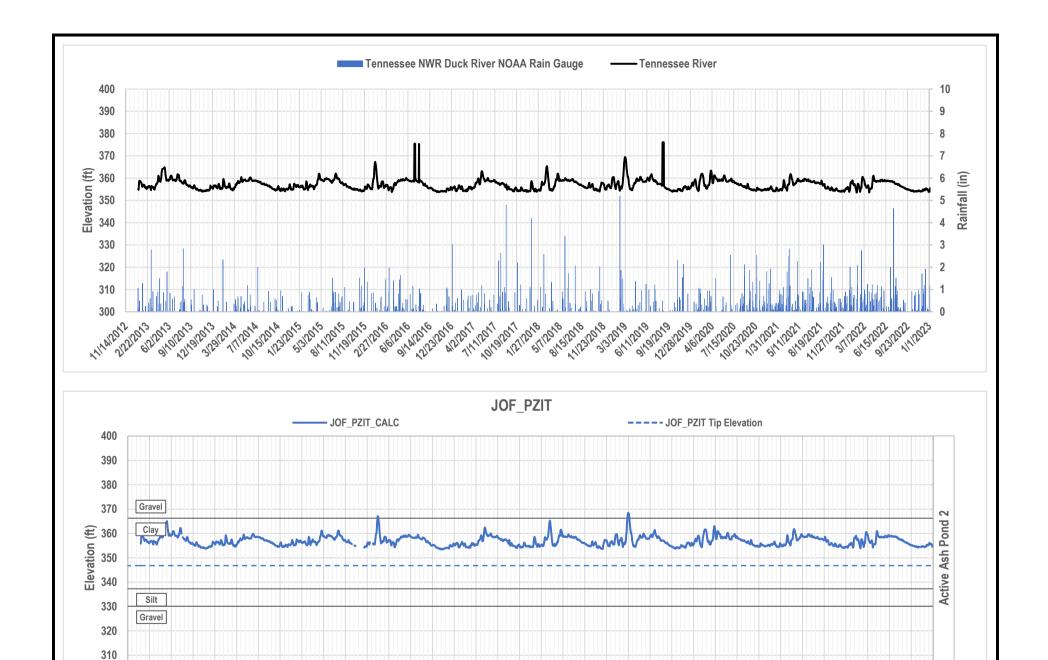












11/23/2018

3/3/2019 611/2019 919/2019 12/28/2019 1012312020

1312021 51/1/2021 819/2021 11/27/2021 3/1/2022 611512022

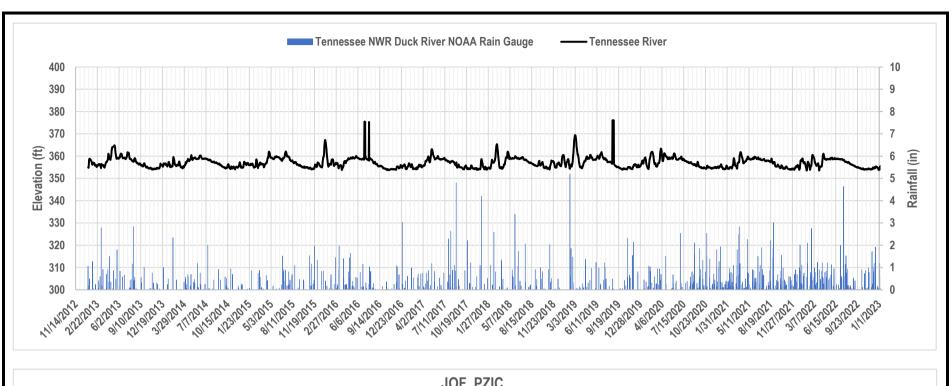
462020 11/5/2020

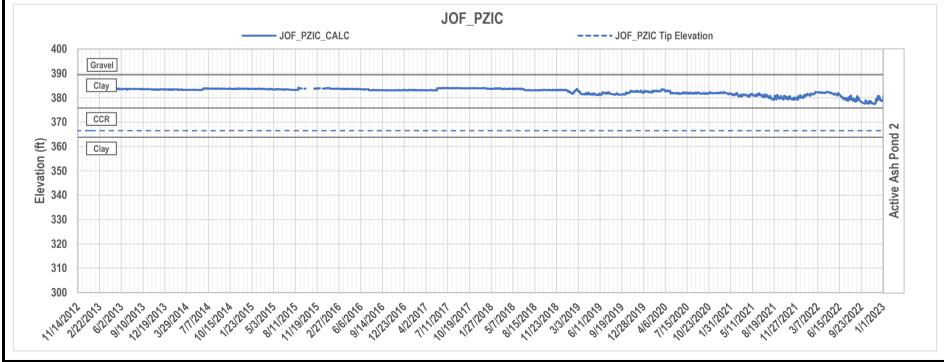
71712017

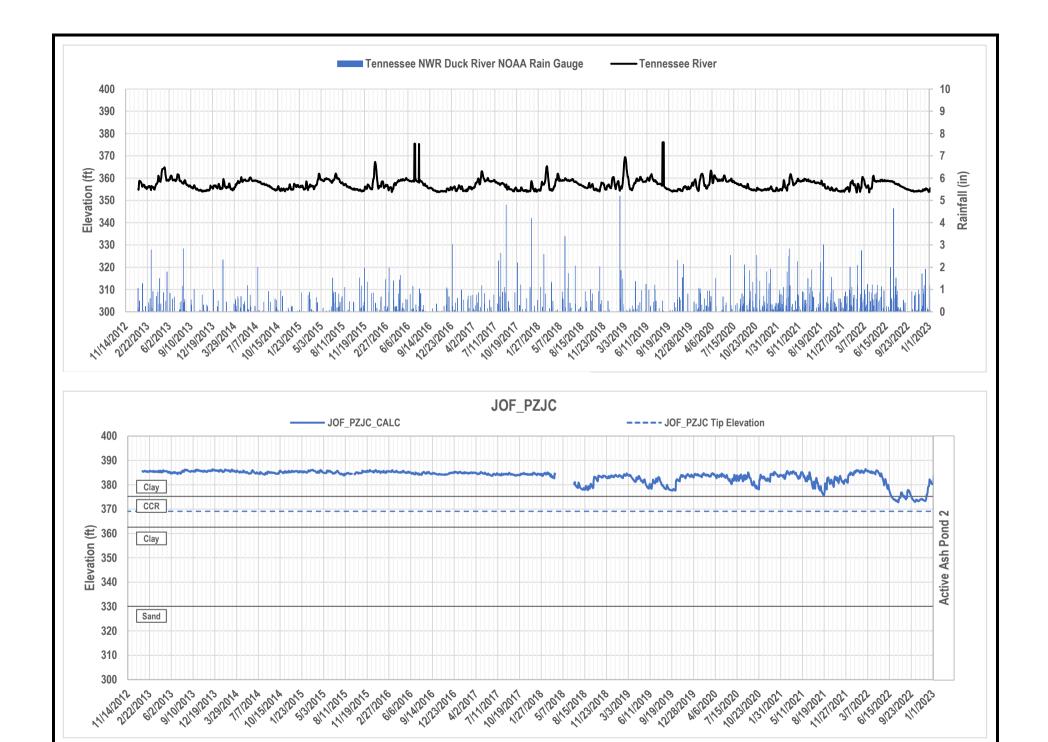
10192017

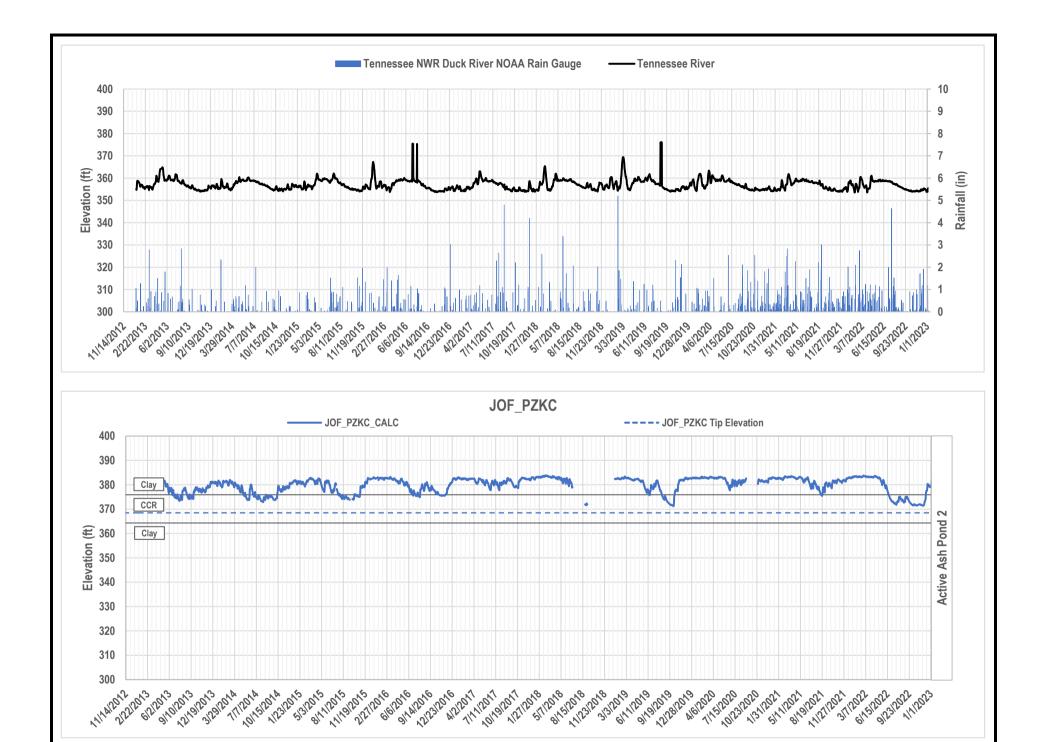
422017

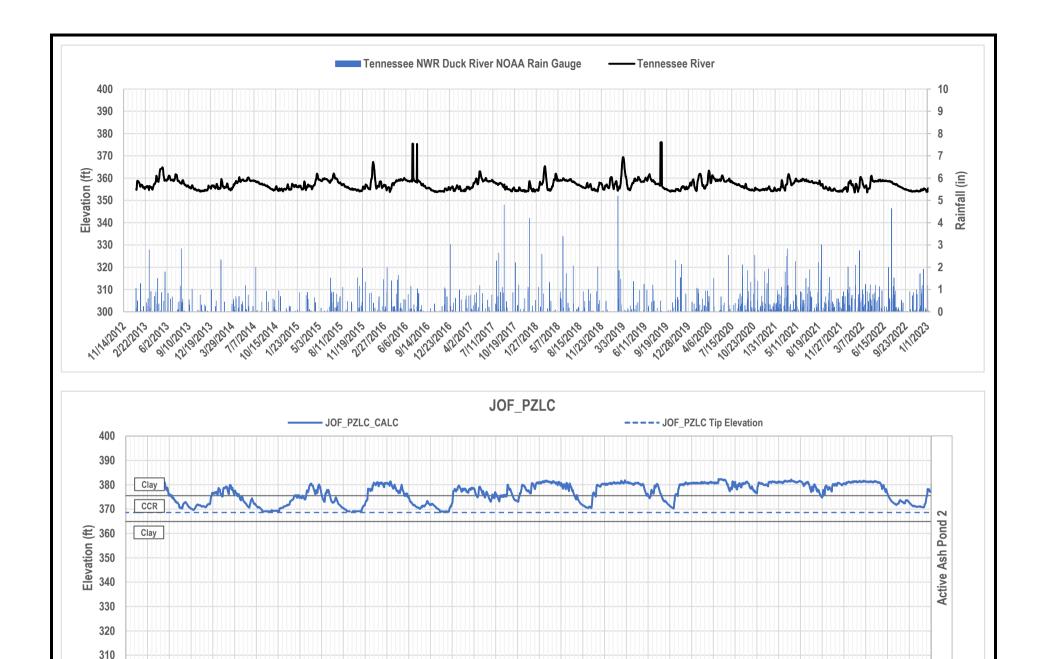
1121/2018 5/1/2018 8/15/2018


9/19/29/39/29/3


312912014 71712014 10/15/2014 123/2015 5/3/2015 811/2015


11/9/2015


2121/2016 6/6/2016 9/14/2016 123/21/6


300

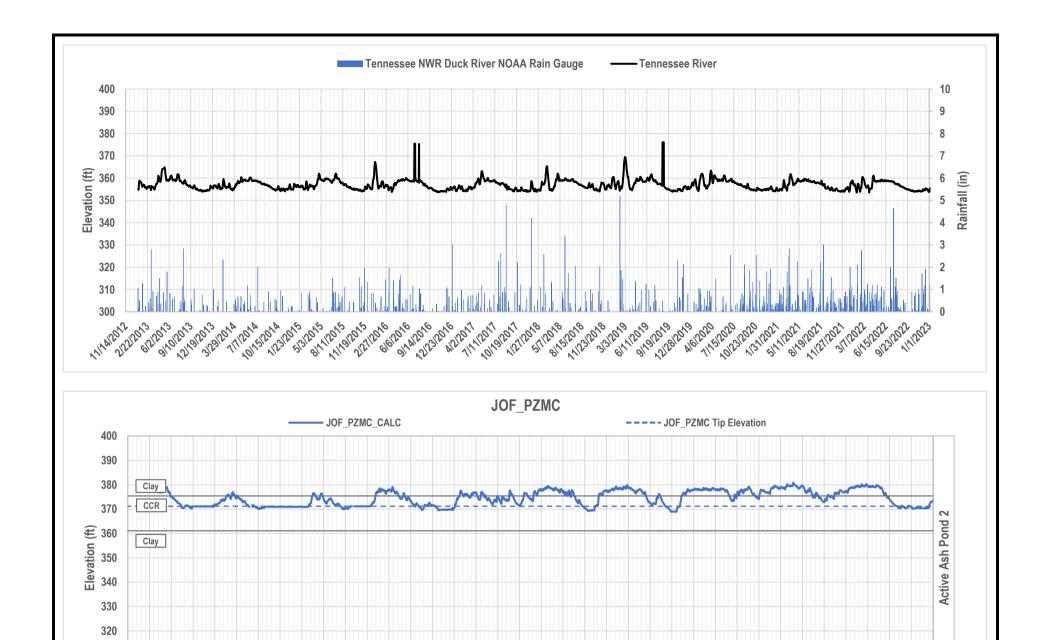
1123/2018

3/3/2019 611/2019 9/19/2019 12/28/2019 1012312020

1312021 51/1/2021 8/19/2021 11/27/2021 3/1/2022

46/2020 11/5/2020 6115/2022

9/19/29/39/29/3


312912014 71712014 10/15/2014 123/2015 5/3/2015 811/2015

6/2/2013

11/9/2015

212112016 6/6/2016 9/14/2016 1223/2016 422017 71712017 10192017 1121/2018 5/1/2018 8/15/2018

300

11/5/2020 1012312020

1312021 511/2021 8192021

46/2020

11272021

6115/2022

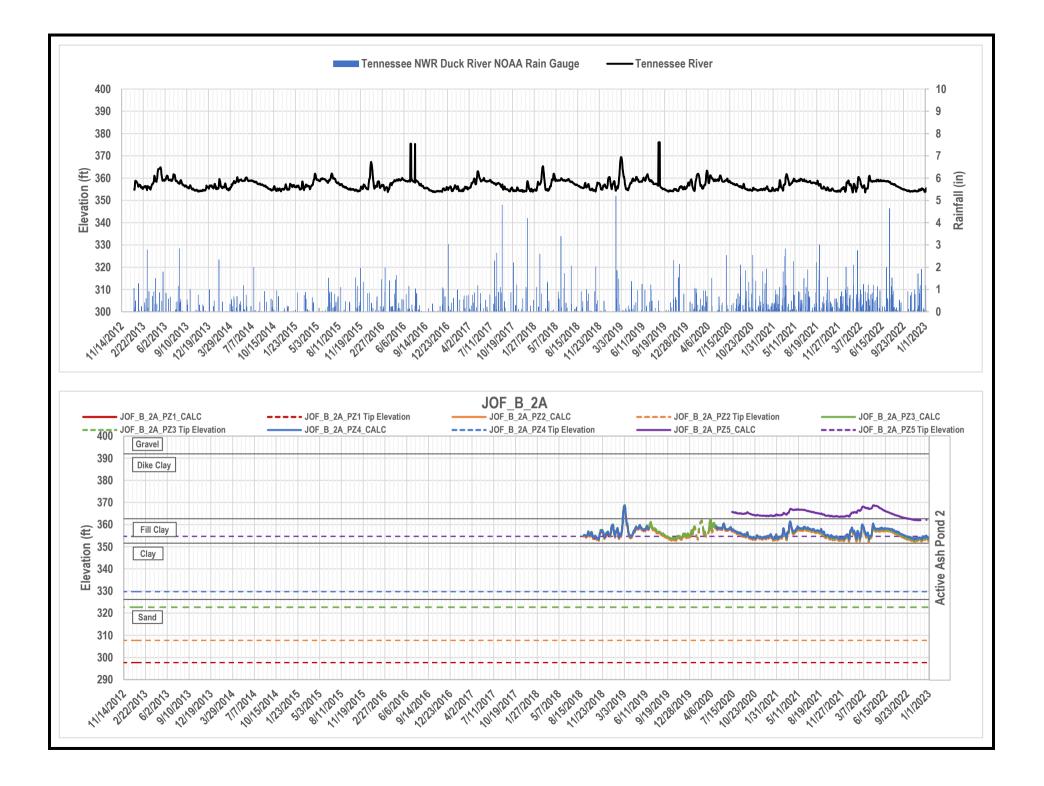
3/1/2022

310

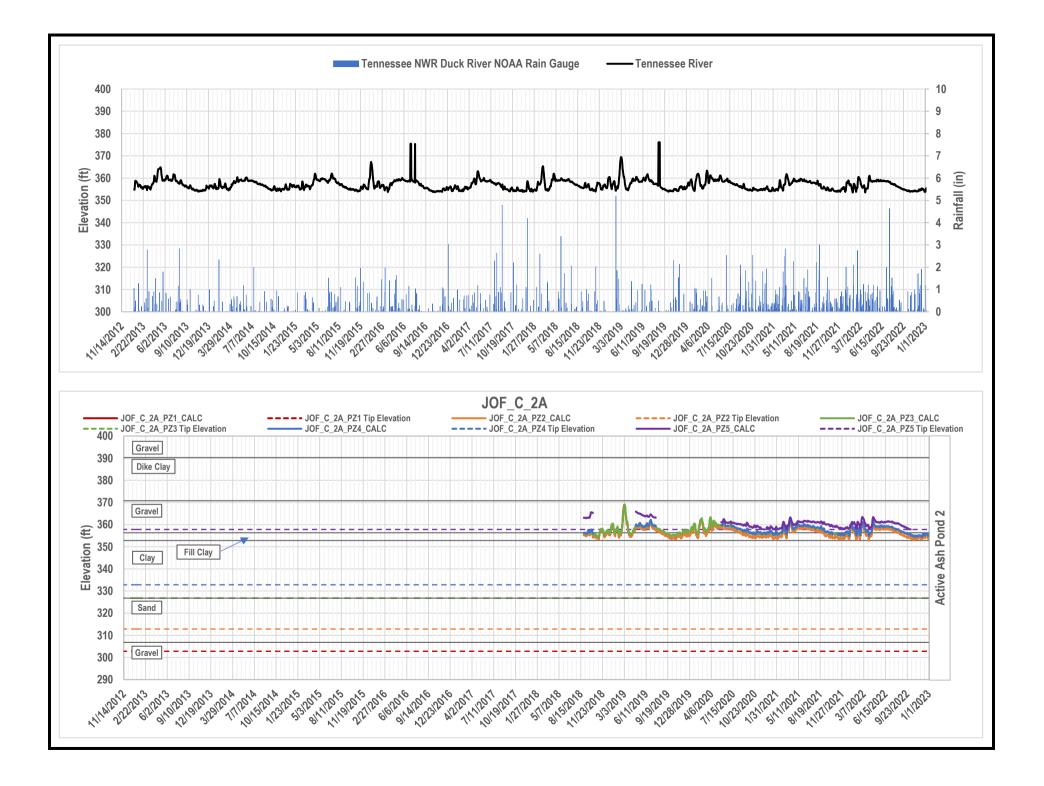
300

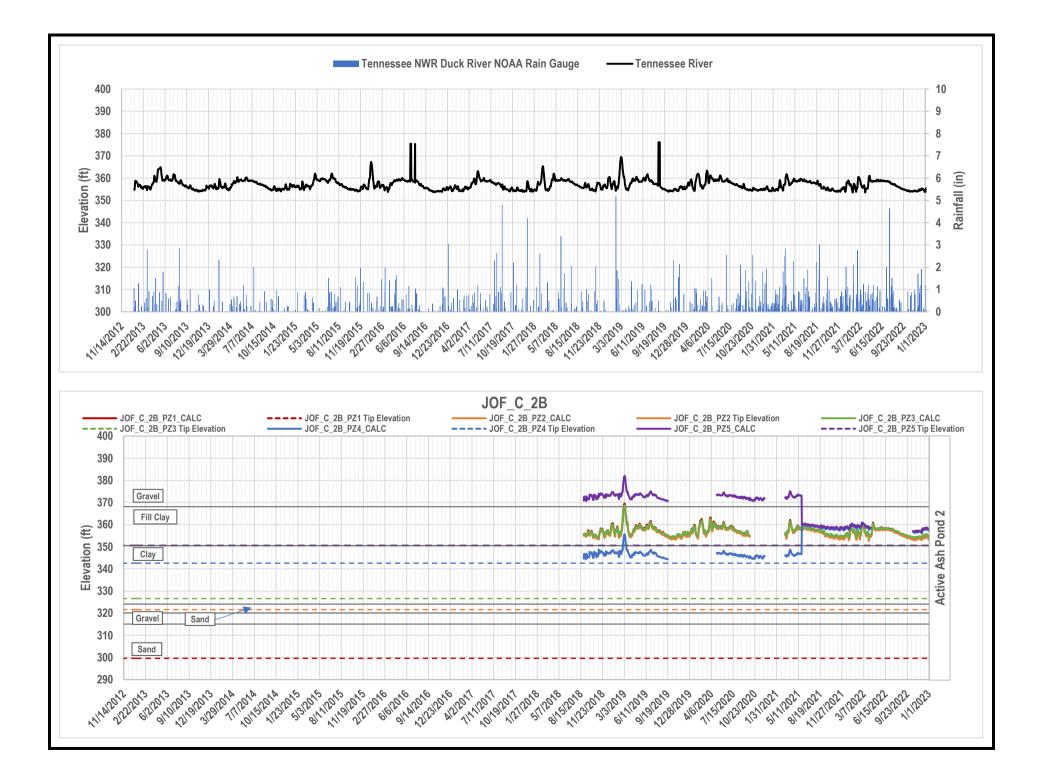
9/19/29/39/29/3

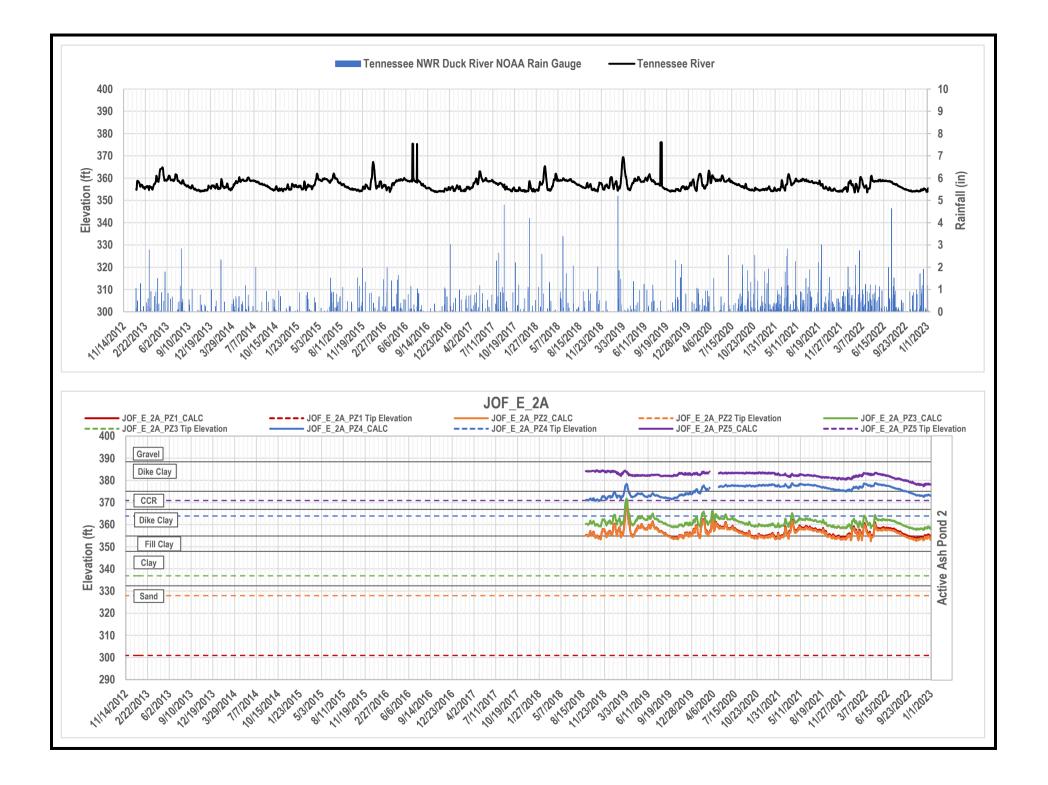
312912014 71712014 10/15/2014 123/2015 5/3/2015 811/2015

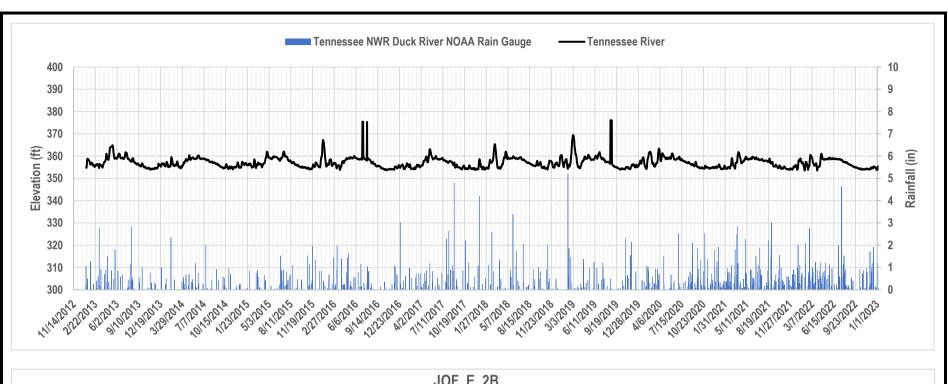

6/2/2013

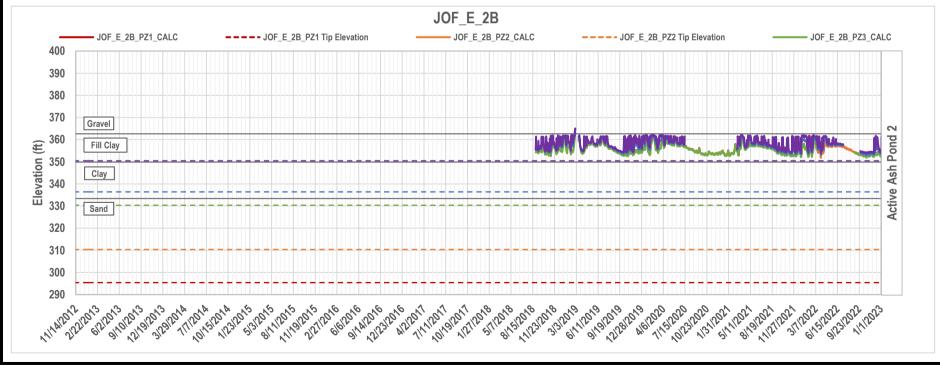

11/9/2015

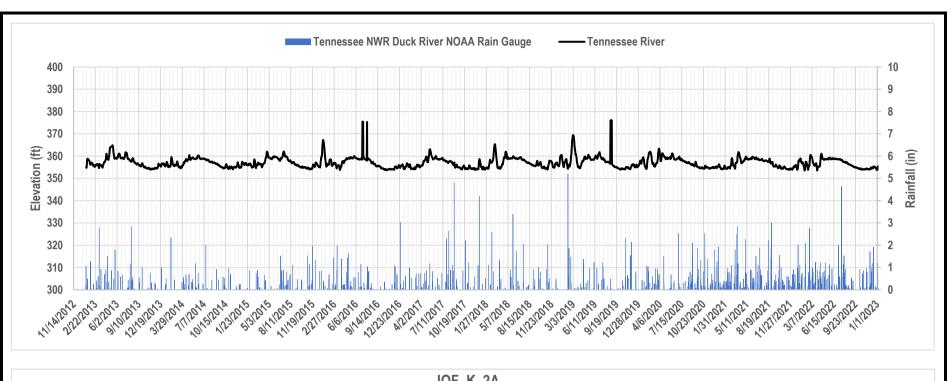

2/27/2016


6/6/2016

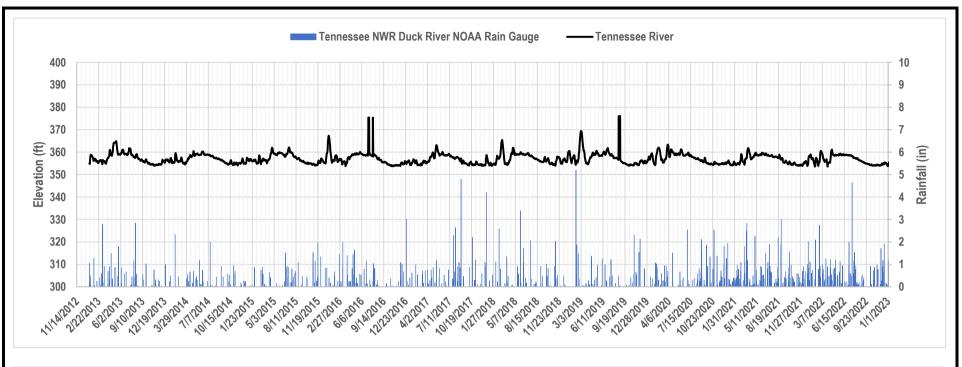

9/14/2016 123/21/6 422017 71712017 10192017 1121/2018 5/1/2018 811512018 1123/2018 3/3/2019 611/2019 9/19/2019 12/28/2019

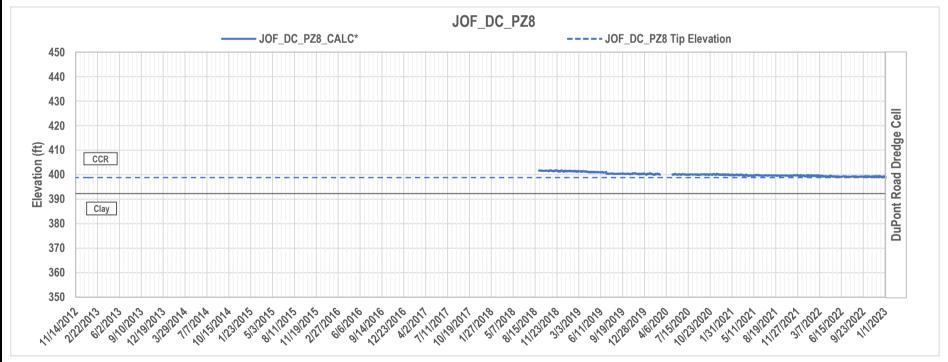


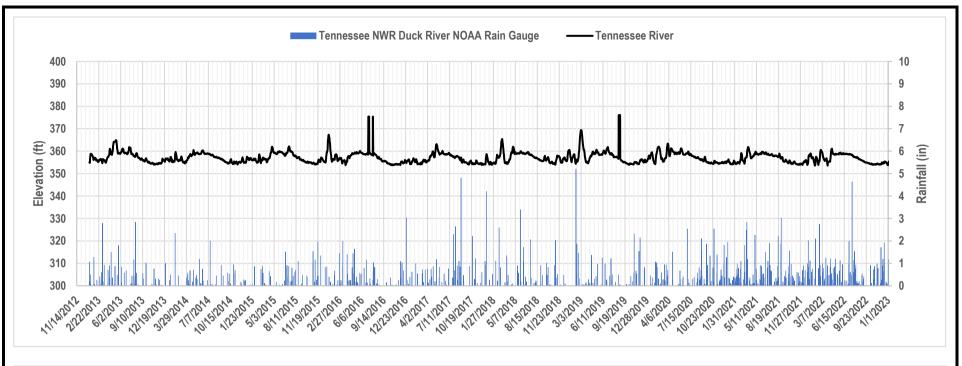


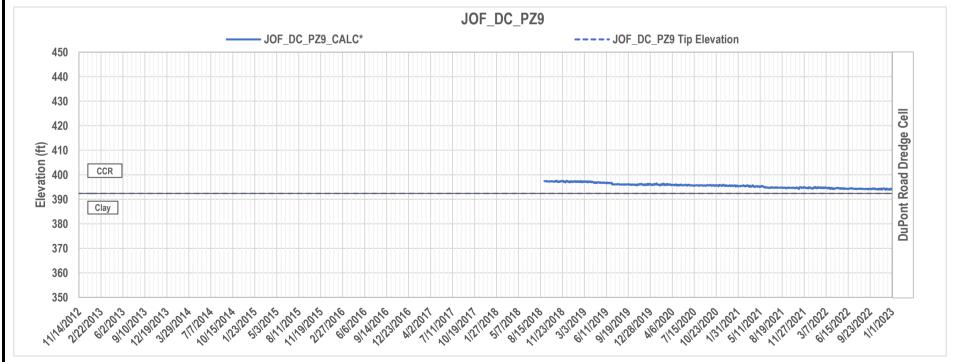


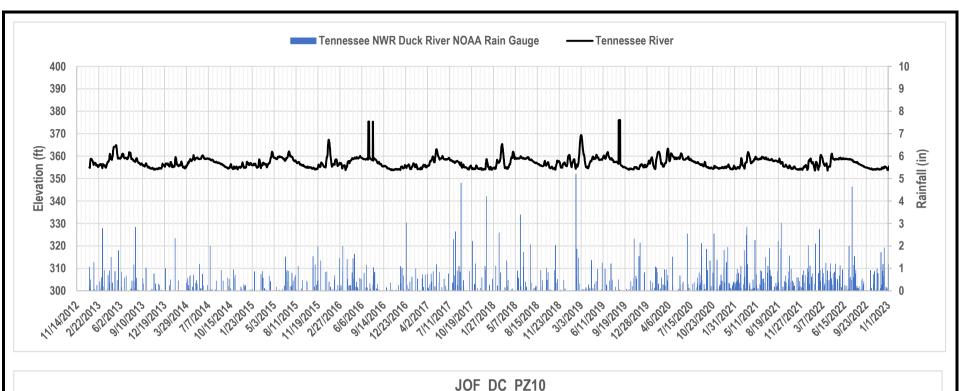


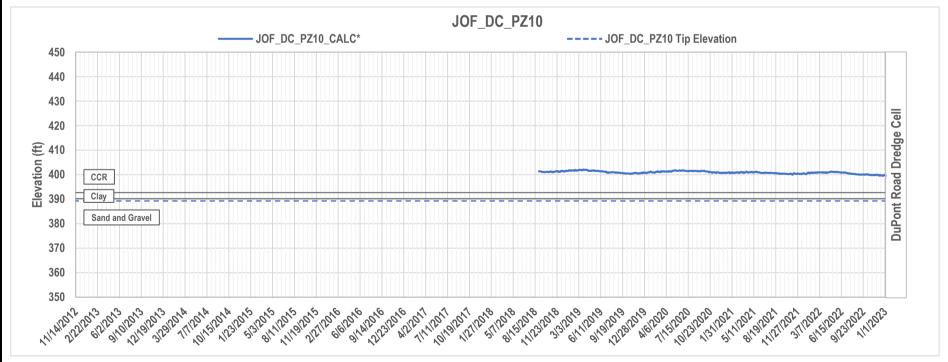


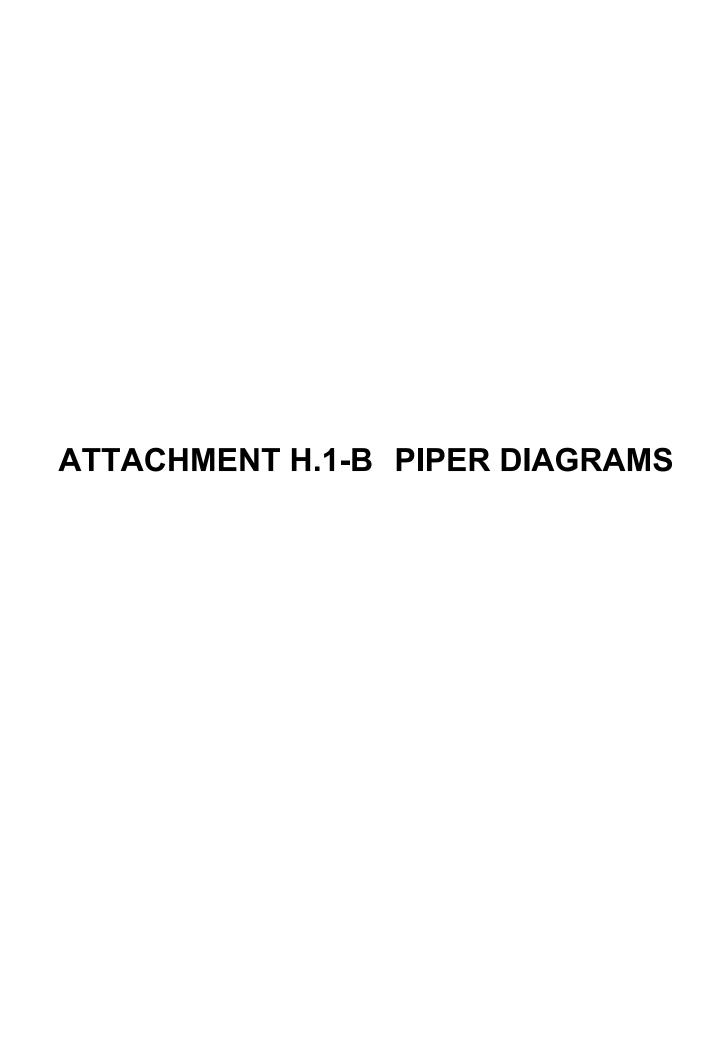




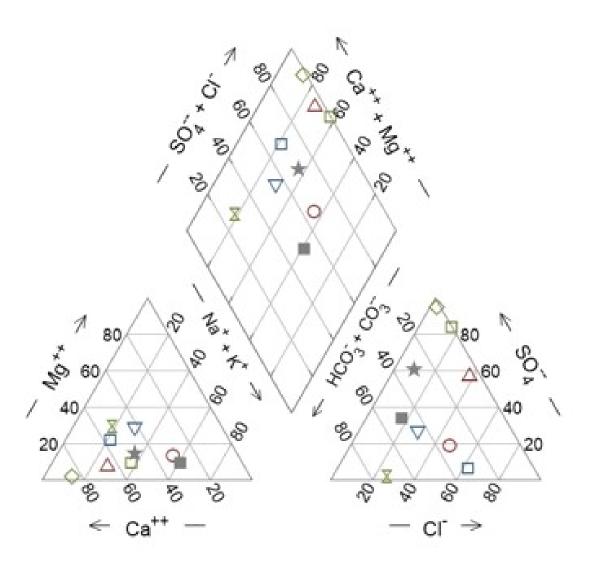





^{*} Tip elevation is unavailable for this instrument



^{*} Tip elevation is unavailable for this instrument



^{*} Tip elevation is unavailable for this instrument

December 2019

% meq/kg

☐ JOF-109
○ JOF-110
△ JOF-111
▽ JOF-112
○ JOF-113
□ JOF-114
※ JOF-117
★ JOF-118
■ JOF-119

Exhibit No.

H.1-Aa

Title

Piper Diagram - December 2019

Client/Project

175568286

Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order

Clinton, Tennessee

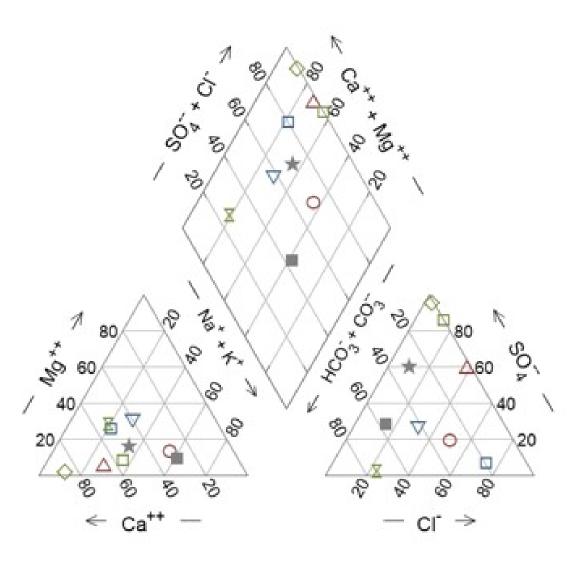
Prepared by DMB on 2022-10-18 TR by BL on 2022-10-18

New Johnsonville, Tennessee

<u>Legend</u>

Note

- 1. % meq/kg Percent milliequivalent per kilogram
- 2. Ca++ Calcium
- 3. Cl- Chloride
- 4. CO₃ Carbonate
- 5. HCO₃ Bicarbonate
- 6. K+ Potassium
- 7. Mg++ Magnesium
- 8. Na+ Sodium
- 9. SO₄ Sulfate



2\gis\mxd\EAR\H.1-Aa_PiperDiagramDec2019.mxd Revise

February 2020

% meq/kg

□ JOF-109 O JOF-110 △ JOF-111 ▽ JOF-112 ○ JOF-113 □ JOF-114 X JOF-117 ★ JOF-118 ■ JOF-119

H.1-Ab

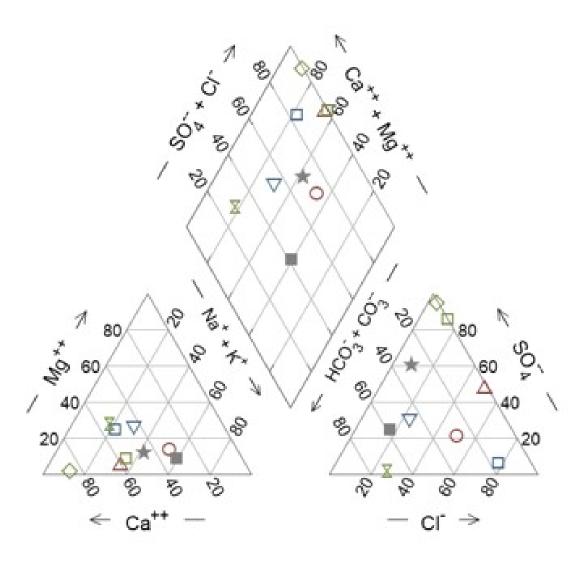
Piper Diagram - February 2020

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Prepared by DMB on 2022-10-18 TR by BL on 2022-10-18

New Johnsonville, Tennessee

<u>Legend</u>


- 1. % meq/kg Percent milliequivalent per kilogram
- 2. Ca++ Calcium
- 3. Cl- Chloride
- 4. CO₃ Carbonate
- 5. HCO₃ Bicarbonate
- 6. K+ Potassium
- 7. Mg++ Magnesium
- 8. Na+ Sodium
- 9. SO₄ Sulfate

June 2020

% meq/kg

☐ JOF-109 ○ JOF-110 △ JOF-111 ▽ JOF-112 ○ JOF-113 ☐ JOF-114 ※ JOF-117 ★ JOF-118 ■ JOF-119 Exhibit No.

H.1-Ac

Piper Diagram - June 2020

Client/Project

175568286

Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order

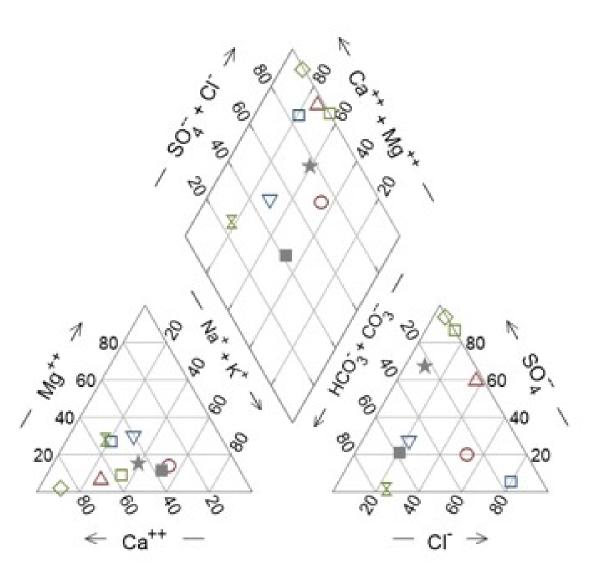
Clinton, Tennessee

Prepared by DMB on 2022-10-18 TR by BL on 2022-10-18

New Johnsonville, Tennessee

<u>Legend</u>

Note


- 1. % meq/kg Percent milliequivalent per kilogram
- 2. Ca++ Calcium
- 3. Cl- Chloride
- 4. CO₃ Carbonate
- **5.** HCO₃ Bicarbonate
- 6. K+ Potassium
- 7. Mg++ Magnesium
- 8. Na+ Sodium
- 9. SO₄ Sulfate

October 2020

% meq/kg

☐ JOF-109 ☐ JOF-110 △ JOF-111 ▽ JOF-112 ○ JOF-113 ☐ JOF-114 ※ JOF-117 ★ JOF-118 ■ JOF-119 Exhibit No.

H.1-Ad

Piper Diagram - October 2020

Client/Project

175568286

Tennessee Valley Authority
Johnsonville Fossil (JOF) Plant TDEC Order

Clinton, Tennessee

Prepared by DMB on 2022-10-18 TR by BL on 2022-10-18

New Johnsonville, Tennessee

Legend

Note

- 1. % meq/kg Percent milliequivalent per kilogram
- 2. Ca++ Calcium
- 3. Cl- Chloride
- 4. CO₃ Carbonate
- 5. HCO₃ Bicarbonate
- 6. K+ Potassium
- 7. Mg++ Magnesium
- 8. Na+ Sodium
- 9. SO₄ Sulfate

EIP\175568286_JOF_Phase2\gis\mxd\EAR\H.1-Ad_PiperDiagramOct2020.mxd Revised:

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

APPENDIX H.2 HYDROGEOLOGY INVESTIGATION SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Hydrogeological Investigation Sampling and Analysis Report

TDEC Commissioner's Order Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

August 20, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	March 19, 2021
1	Addresses May 17, 2021 TDEC Review Comments and Issued for TDEC	May 21, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Hydrogeological Investigation Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staff

Reviewed by ___

James M. Kerr, Jr., Senior Principal Geologist

Approved by

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

ABBREVIATIONS					
1.0	INTRODUCTION				
2.0	OBJEC	TIVE AND SCOPE	2		
3.0	FIELD A	ACTIVITIES	2		
3.1		LOCATIONS			
J. I	3.1.1	Background Locations			
	3.1.1	Coal Combustion Residuals Unit Locations			
3.2	_	MENTATION			
J.Z	3.2.1	Field Forms	_		
	3.2.1	Photographs			
3.3		NG AND SAMPLING			
0.0	3.3.1	Drilling			
	3.3.2	Soil Sampling			
3.4		ORING WELL AND PIEZOMETER INSTALLATION			
0.4	3.4.1	Well and Piezometer Installation			
	3.4.2	Well Development			
	3.4.3	Hydraulic Conductivity (Slug) Testing			
	3.4.4	Pump Installation			
	3.4.5	Well and Piezometer Surveys			
3.5	INVEST	TIGATION DERIVED WASTE			
3.6		TIONS			
0.0	3.6.1	Variations in Scope			
	3.6.2	Variations in Procedures			
4.0	SUMMA	\RY	18		
5.0	RFFFR	ENCES	19		
•					
LIST	OF TABL	ES			
Table	1. Summ	ary of Boring and Monitoring Well/Piezometer Locations	5		

LIST OF APPENDICES

APPENDIX A – EXHIBITS

Exhibit A.1 – Site Map and Monitoring Well/Piezometer Locations

APPENDIX B - TABLES

- Table B.1 Summary of Monitoring Well and Piezometer Construction Specifications
- Table B.2 Summary of Well Development Data
- Table B.3 Summary of Hydraulic Conductivity Testing Results

Table B.4 – Summary of Pump Installation Details

Table B.5 – Summary of Monitoring Well and Piezometer Survey Data

APPENDIX C - SUBSURFACE LOGS AND WELL/PIEZOMETER INSTALLATION DETAILS

Attachment C.1 – Subsurface Logs

Attachment C.2 – Well and Piezometer Installation Details

APPENDIX D – PHOTOGRAPHS OF SOIL BORINGS AND MONITORING WELLS/PIEZOMETER

Attachment D.1 – Photographic Log of Soil Lithology

Attachment D.2 – Photograph Log of Monitoring Wells/Piezometer

APPENDIX E - SLUG TEST RESULTS

Abbreviations

ASTM American Society for Testing and Materials

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule

0400-11-01-.04

CFR Code of Federal Regulations

COC Chain-of-Custody

DPT Direct-Push Technology

EAR Environmental Assessment Report
EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.
FSP Field Sampling Personnel
ft bgs Feet Below Ground Surface

GPS Global Positioning System

HGI Hydrogeological Investigation

HSA Hollow-Stem Auger

IDW Investigation Derived Waste

JOF Plant Johnsonville Fossil Plant

PG Professional Geologist

PPE Personal Protective Equipment

PVC Polyvinyl Chloride

QAPP Quality Assurance Project Plan
SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

VWP Vibrating Wire Piezometer

i

Introduction August 20, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR), on behalf of the Tennessee Valley Authority (TVA), to document activities related to a hydrogeological investigation (HGI) at TVA's Johnsonville Fossil (JOF) Plant located in New Johnsonville, Tennessee.

The purpose of the HGI was to install permanent monitoring wells and one piezometer to evaluate hydrogeological conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to summarize activities completed to meet the objectives of the HGI Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the HGI represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The evaluation of the results from this HGI will consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs and will be presented in the Environmental Assessment Report (EAR).

The HGI activities were performed in conjunction with the background soil investigation at the JOF Plant and in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order:

- Hydrogeological Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Background Soil SAP (Stantec 2018c)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The hydrogeological and background soil investigations were implemented in accordance with TVA- and TDEC-approved Programmatic- and Project-specific changes. Minor variations in scope and procedures from those outlined in the JOF Plant HGI SAP and Background Soil SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

HGI field work consisted of two primary activities – drilling and sampling, and permanent monitoring well and piezometer installation. Quality Assurance oversight of field data acquisition protocols, sampling practices, and data review were performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Objective and Scope August 20, 2021

2.0 OBJECTIVE AND SCOPE

The primary objective of the HGI conducted pursuant to the HGI SAP was to install permanent monitoring wells and one piezometer to evaluate hydrogeological conditions at the JOF Plant in response to the TDEC Order. The activities conducted during the HGI support data collection for the groundwater and background soil investigations at the JOF Plant, including groundwater level measurements, and groundwater and background soil sample collection for analysis of CCR-related constituents.

The approach for the HGI was to:

- Identify permanent downgradient monitoring well, background well, and piezometer locations targeting unconsolidated alluvial deposits at the JOF Plant
- Use direct-push technology (DPT), hollow-stem auger (HSA), and roto-sonic drilling techniques to
 collect soil samples at staked monitoring locations approved by TDEC and considered suitable for
 the rigs to safely drill
- Complete monitoring well and piezometer installation, well development, hydraulic conductivity (slug) testing, pump installation, and survey activities.

The scope of work of the HGI consisted of the following tasks:

- Confirming drilling locations for planned permanent downgradient monitoring well, background monitoring well, and piezometer locations using global positioning system (GPS) survey
- Drilling and logging soil borings for geotechnical and lithologic information
- Collecting soil samples for potential analysis of geotechnical parameters (if deemed warranted), and CCR-related constituents from the background monitoring well boring locations (as part of the Background Soil SAP)
- Installing permanent monitoring wells in the borings and constructing surface completions
- Installing a vibrating wire piezometer (VWP) in one of the borings
- Developing each permanent monitoring well and conducting slug tests to estimate hydraulic conductivity for evaluation of hydrogeologic conditions for the EAR
- Surveying each permanent monitoring well and piezometer.

Details on each activity are presented in the sections below. Groundwater level measurements and sampling are being conducted as part of six groundwater monitoring events being performed pursuant to the Groundwater Investigation SAP and reported in a series of Groundwater Investigation SARs for the JOF Plant. Soil sampling for CCR-related constituents was performed in accordance with the Background Soil SAP and reported in the JOF Plant Background Soil Investigation SAR.

Field Activities August 20, 2021

3.0 FIELD ACTIVITIES

HGI field activities were conducted between May 21, 2019 and April 23, 2020, and consisted of DPT, HSA, and roto-sonic drilling, monitoring well and piezometer installation, well development, slug tests, pump installation, and well/piezometer surveys. Prior to initiating field activities, TVA conducted environmental reviews, obtained permits, and performed utility clearances as necessary to complete the field work.

Stantec performed HGI field activities based on guidance and specifications listed in TVA's Environmental (ENV) Technical Instructions (TIs), the SAPs, and the QAPP prepared by EnvStds, except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, oversight of select field activities, field documentation, and centralized data management were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During the HGI, Stantec conducted the following field activities:

- Confirmed drilling locations for planned monitoring well, background monitoring well, and piezometer locations
- Drilled 16 soil borings in the vicinity of proposed well locations to pre-screen the soil characteristics in these areas prior to advancement of well borings
- Drilled 12 soil borings for installation of six permanent monitoring wells, three background monitoring wells, and one piezometer under the direction of a Stantec Professional Geologist (PG) licensed in the State of Tennessee
- Collected soil samples using a DPT dual tube, HSA split-spoon sampler, or roto-sonic core barrel
 to develop a continuous boring log/soil profile for each well boring, and for potential analysis of
 geotechnical parameters (if deemed warranted)
- Collected six soil samples and one field duplicate for analysis of CCR-related constituents from the screened interval depth range of three background monitoring well borings
- Installed permanent monitoring wells in nine of the borings
- Installed a VWP in one of the borings
- Developed each well and conducted slug tests in nine wells to estimate hydraulic conductivity.

Following monitoring well and piezometer installation, TVA constructed surface completions and surveyed each new permanent well and piezometer.

Field Activities August 20, 2021

3.1 WORK LOCATIONS

The HGI field activities were conducted at 28 soil boring locations for installation of nine monitoring wells and one piezometer at the JOF Plant under the HGI scope of work. As approved by TVA and TDEC, up to five DPT pre-screen soil borings were advanced within expanded zones in the vicinity of each proposed well location to evaluate soil characteristics in these areas prior to well drilling and installation. This approach was used to increase accessibility due to limited historical information in the areas of the proposed monitoring well and background well locations. A total of 16 pre-screen borings were completed as follows:

- Borings JOF-108 Offset A, JOF-108 Offset B, JOF-108 Offset C, and JOF-108 Offset D near proposed well JOF-108
- Boring JOF-109-Pre near proposed well JOF-109
- Borings JOF-110-Pre and JOF-110Alt1 near proposed well JOF-110
- Borings JOF-111-Pre, JOF-111 Offset A, JOF-111 Offset B, and JOF-111 Offset C near proposed well JOF-111
- Boring JOF-112-Pre near proposed well JOF-112
- Boring JOF-113 Offset A near proposed well JOF-113
- Borings JOF-114-Pre and JOF-114 Offset A near proposed well JOF-114
- Boring JOF-117 Offset A near proposed well JOF-117.

Due to the presence of CCR material encountered in the five borings for well JOF-108 and shallow refusal at three of these borings (JOF-108 Offset B, JOF-108 Offset C, and JOF-108 Offset D), well JOF-108 was not installed following approval by TDEC.

Due to the presence of CCR material encountered in the first pre-screen boring JOF-110-Pre for well JOF-110, the second pre-screen boring JOF-110Alt1 was drilled 119 feet northeast of the original proposed location within the expanded accessibility zone, as approved by TDEC. Due to CCR materials encountered in boring JOF-110Alt1, the final location of well JOF-110 was within 5 feet of the original proposed location.

Due to the presence of CCR material encountered in the four pre-screen borings for well JOF-111, the well was relocated to the southwest from the original proposed location following approval by TDEC.

Due to shallow refusal at pre-screen boring JOF-114 Offset A for well JOF-114, a second pre-screen boring (JOF-114-Pre) and subsequent well boring were relocated to the north of the original proposed well location following approval by TDEC.

Field Activities August 20, 2021

Based on the information collected from the pre-screen borings, the borings of the proposed monitoring well and background well locations were advanced using HSA or roto-sonic methods, as described in Section 3.3.1.

The HGI boring, monitoring well, and piezometer locations are shown on Exhibit A.1 in Appendix A and are described in Table 1 following Section 3.1.2. Tables B.1 through B.5 in Appendix B provide data and information obtained at the HGI boring, monitoring well, and piezometer locations as described in Section 3.4. The pre-screen boring locations are shown on Exhibit A.1 in Appendix A, and subsurface logs for these locations are provided in Attachment C.1 in Appendix C.

3.1.1 Background Locations

Soil samples were collected from within the anticipated depth range for the well screened interval at three soil boring/background monitoring well locations as described in Section 3.3.2.2 and the Background Soil SAP. Three background monitoring wells (JOF-109, JOF-112, and JOF-119) were installed in unconsolidated alluvial deposits to provide groundwater samples that have not been affected by the CCR units and to be representative of background conditions. A fourth proposed background monitoring well (JOF-120) was included as an 'alternate' location further south of JOF-119; however, well JOF-119 was deemed suitable as a background well and therefore, consistent with the JOF Plant HGI SAP, alternate well JOF-120 was not installed.

3.1.2 Coal Combustion Residuals Unit Locations

Six of seven proposed permanent monitoring wells, and one VWP, were installed near the CCR units to provide locations to evaluate groundwater flow and/or quality in these areas, as summarized in Table 1 below. Proposed monitoring well location JOF-108 could not be installed as part of the planned field activities as described in Sections 3.1 and 3.6.

Table 1. Summary of Boring and Monitoring Well/Piezometer Locations

Boring ID	Well/ Piezometer ID	Location	Rationale
JOF-108	NC	Proposed at south central boundary of the Ash Disposal Area 1	Proposed to collect groundwater data from a downgradient location between the Ash Disposal Area 1 and the Tennessee River. Well not installed because adjacent pre-screen borings encountered CCR and/or hit shallow refusal.
JOF-109	JOF-109	Eastern boundary of the Ash Disposal Area 1; in alluvial deposits	To collect groundwater data from a background location
JOF-110	JOF-110	Northwest corner of the Ash Disposal Area 1; in alluvial deposits	To collect groundwater data from a downgradient location between the Ash Disposal Area 1 and the Tennessee River.
JOF-111A	NC	Attempted at southwest corner of the Ash Disposal Area 1; in alluvial deposits	Monitoring well JOF-111 was initially installed in boring JOF-111A, but the well was subsequently abandoned and installed in boring JOF-111B; see additional details in Section 3.3.1.3.
JOF-111B	JOF-111	Southwest corner of the Ash Disposal Area 1; in alluvial deposits	To collect groundwater data from a downgradient location between the Ash Disposal Area 1 and the Tennessee River.

Field Activities August 20, 2021

Boring ID	Well/ Piezometer ID	Location	Rationale
JOF-112	JOF-112	Northeast of the Coal Yard; in alluvial deposits	To collect groundwater data from a background location
JOF-113	JOF-113	Northwest area of the Coal Yard; in alluvial deposits	To collect groundwater data from a downgradient location between the Coal Yard and the Tennessee River
JOF-114	JOF-114	Central west area of the Coal Yard; in alluvial deposits	To collect groundwater data from a downgradient location between the Coal Yard and the Tennessee River
JOF-116- PZ	JOF-116-PZ	Northern boundary of the Ash Disposal Area 1, between wells JOF-109 and JOF-110; in alluvial deposits	To allow for water level (i.e. pore water pressure) readings in the soils to improve subsurface characterization in the vicinity of the northern boundary of Ash Disposal Area 1
JOF-117	JOF-117	Southwest area of the Coal Yard; in alluvial deposits	To collect groundwater data from a downgradient location between the Coal Yard and the Tennessee River
JOF-118	JOF-118	North of the Active Ash Pond 2; in alluvial deposits	To collect groundwater data from a downgradient location between the Active Ash Pond 2 and the Tennessee River
JOF-119	JOF-119	Southeastern point of the Active Ash Pond 2; in alluvial deposits	To collect groundwater data from a background location

Notes:

ID Identification

NC Not completed as a monitoring well

3.2 DOCUMENTATION

Stantec maintained HGI field documentation in general accordance with ENV-TI-05.80.03, *Field Record Keeping*, the HGI SAP, and the QAPP. Field documentation for background soil sampling activities is described in the JOF Plant Background Soil Investigation SAR. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Field activities and data were primarily recorded on program-specific field forms. Additional information regarding HGI field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the HGI included:

- Daily Field Activity Log
- Subsurface Boring Log
- Chain-of-Custody (COC)
- Monitoring Well Installation Field Log
- Vibrating Wire Piezometer Installation Notes and Details
- Equipment Calibration Form

Field Activities August 20, 2021

- Groundwater Monitoring Well Abandonment Checklist
- Monitoring Well Abandonment Form
- Well Development Form
- Slug Test Data Form
- QED Well Wizard Dedicated Sampling Pump Installation Checklist
- Well Pump Calibration Form.

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were also documented on the *Daily Field Activity Log*.

3.2.1.2 Subsurface Boring Log

A Stantec PG licensed in the State of Tennessee prepared a Subsurface Boring Log for each boring. The log documented date boring location, drilling personnel, tooling/equipment used, depth to water, sample number, sample recovery, blow counts (for HSA borings), soil lithology, and other relevant observations. Soil color was logged per the appropriate Munsell Soil Color Chart (Munsell Color 2009). Information from these logs was used to construct the subsurface logs provided in Attachment C.1 in Appendix C.

3.2.1.3 Chain of Custody

Stantec FSP completed *COC* documentation for each geotechnical soil sample collected during the HGI. As described above, documentation of soil sample collection and analysis of CCR-related constituents for the background soil samples collected during the HGI are reported in the JOF Plant Background Soil Investigation SAR.

Information on the geotechnical sample *COC* included the sample ID, sample location, sample depth, type of sample, sampling date, and sample custody record. *COCs* were completed in general accordance with *ENV-TI-05.80.02:* Sample Labeling and Custody and reviewed by the laboratory manager.

3.2.1.4 Monitoring Well Installation Field Log

A Stantec PG licensed in the State of Tennessee prepared a *Monitoring Well Installation Field Log* for each monitoring well. The log documented the well location, well installation date(s), well installation materials, well depth, screened interval, depth interval for each backfill material, and surface completion details (protective casing, concrete pad, bollards, etc.). Information from these logs was used to construct the well installation details provided in Attachment C.2 in Appendix C.

Field Activities August 20, 2021

3.2.1.5 Vibrating Wire Piezometer Installation Notes and Details

Stantec FSP prepared a *Vibrating Wire Piezometer Installation Notes and Details* form for the piezometer. The log documented the VWP location, VWP installation date, VWP installation materials, calibration data, borehole depth, sensor depth, grout details, field zero measurements, and an office and field check of proper operation. Information from these logs was used to construct the piezometer installation details provided in Attachment C.2 in Appendix C.

3.2.1.6 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meters and turbidity meters and documented the results on an Equipment Calibration Form for well development activities. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria.

3.2.1.7 Groundwater Monitoring Well Abandonment Checklist

Stantec completed a *Groundwater Monitoring Well Abandonment Checklist* for the monitoring well being abandoned. The checklist documented the monitoring well location, well depth, depth to water, and general construction details.

3.2.1.8 Monitoring Well Abandonment Form

Stantec completed a *Monitoring Well Abandonment Form* for the monitoring well being abandoned. The form documented the well details, abandonment method, and materials and quantity used.

3.2.1.9 Well Development Form

Stantec FSP completed a *Well Development Form* for each monitoring well. The form documented well location, well development date(s), elapsed time since development started, depth to water, purge rate, cumulative purge volume, and water quality parameter measurements throughout and at completion of the development process.

3.2.1.10 Slug Test Data Form

Stantec FSP completed a *Slug Test Data Form* for the hydraulic conductivity tests performed at each monitoring well. The form primarily documented well location, slug test date(s), and initial and final water level measurements before and after each slug test attempt. The water level measurements during the tests were recorded by an automated pressure transducer and data recorder and subsequently downloaded.

Field Activities August 20, 2021

3.2.1.11 QED Well Wizard Dedicated Sampling Pump Installation Checklist

Stantec FSP installed a dedicated bladder pump system in each monitoring well to facilitate subsequent groundwater sampling events. A *QED Well Wizard Dedicated Sampling Pump Installation Checklist* was prepared for each monitoring well to document the well information, pump information, initial testing results, and any relevant comments.

3.2.1.12 Well Pump Calibration Form

Stantec FSP performed a calibration procedure on the dedicated pump in each monitoring well and recorded the results on a *Well Pump Calibration Form* as described herein (see Section 3.6.2). Each form documented the well location, date, time, depth to water, flow rate, flow volume, and water quality stabilization measurements during and at completion of the calibration.

3.2.2 Photographs

In addition to documentation of field activities described above, photographs were taken to document the field investigation. A photographic log of soil cores recovered from the borings and the surface completions of installed monitoring wells and piezometer are provided in Attachments D.1 and D.2, respectively, in Appendix D.

3.3 DRILLING AND SAMPLING

The following sections present drilling and soil sampling procedures used in the HGI. Additional information for drilling and sampling procedures at the background monitoring well locations are provided in the Background Soil Investigation SAR. Drilling and sampling activities were performed under the direction of a Stantec PG licensed in the State of Tennessee.

3.3.1 Drilling

The HGI borings were advanced using three drilling methods: DPT, HSA, and roto-sonic.

3.3.1.1 Direct Push Technology

Sixteen pre-screen soil borings were advanced in the vicinity of the proposed well locations. The borings were advanced by Geo Logic, Inc., a drilling company licensed in Tennessee, under Stantec oversight using DPT drilling techniques. The DPT rig was equipped with a dual tube soil sampling system and 60-inch-long polyvinyl chloride (PVC) liners. Soil samples were recovered in five-foot runs for lithologic description and photographic documentation. Completed boreholes were tremie-backfilled with a 30 percent (%) solids bentonite grout.

3.3.1.2 Hollow-Stem Auger

Seven monitoring well and one piezometer installation borings were advanced by Stantec drillers licensed in Tennessee using HSA drilling techniques following procedures provided in American Society for

Field Activities August 20, 2021

Testing and Materials (ASTM) D6151: Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling. HSA borings were generally advanced in five-foot runs using a 4.25-inch inside diameter auger to advance the pilot boring (resulting in approximately an eight-inch borehole diameter). Standard penetration test sampling was conducted continuously in accordance with ASTM D1586 Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils and consisted of dropping a 140-pound hammer from a height of 30 inches, to drive a standard size 2-inch diameter split-spoon sampler to a depth of 18-inches. Blow-counts were recorded for each six inches of penetration. Soil samples were recovered for lithologic description, photographic documentation, and sample collection.

Seven HSA borings (JOF-109, JOF-112, JOF-113, JOF-114, JOF-117, JOF-118, and JOF-119) were completed as planned and finished with the installation of a permanent monitoring well. After reaching the targeted depth, the augers were withdrawn, and the borehole was overdrilled using an 8.25-inch inside diameter auger (resulting in approximately a 13-inch borehole diameter). The HSA boring for the piezometer (JOF-116PZ) was finished with the installation of a VWP. After reaching the targeted depth, the augers were withdrawn, the VWP was installed, and the borehole was tremie-backfilled using a 30% solids bentonite grout.

Following removal, the augers were decontaminated using a high-pressure steam cleaner and potable water after use at each boring. Well installation procedures for the HSA boreholes completed as permanent wells are described in Section 3.4 below.

3.3.1.3 Roto-Sonic

Six pre-screen DPT borings for wells JOF-110 and JOF-111 encountered CCR material in the shallow soil layers. Three well borings (JOF-110, JOF-111A, and JOF-111B) were subsequently completed using roto-sonic techniques. With TVA and TDEC approval, the drilling methodology was changed at these boring locations to minimize the possible migration of CCR material downward in the boreholes. Stantec utilized the subcontractor M&W Drilling, who provided a driller licensed in Tennessee to operate a truckmounted roto-sonic drilling rig.

Borings were advanced in five and 10-foot runs using a four-inch diameter steel casing to recover soil for lithologic description, photographic documentation, and sample collection. Each run was then overdrilled using 6-inch and 10-inch diameter casings used in succession. Borings JOF-110, JOF-111A, and JOF-111B were advanced to a total depth of 30.0, 29.0 and 28.0 feet below ground surface (ft bgs), respectively. The casing was then withdrawn except for the 10-inch diameter casing, which was tremie-backfilled with 30% solids bentonite grout to surface grade, and then withdrawn. An 8.5-inch diameter flush-joint threaded PVC casing was inserted down through the grout column to the targeted depth, thereby isolating the CCR material from the interior of the PVC casing. The remainder of each borehole was completed by using 4-inch, 6-inch, and 8-inch diameter casings in succession inserted down the interior of the PVC casing to reach the targeted depth for bottom of borehole. The 4-inch and 6-inch diameter casings were withdrawn to facilitate subsequent installation of the monitoring well. The 8.5-inch diameter PVC casings were left in place and cut off just below surface grade. Steel casings were

Field Activities August 20, 2021

decontaminated using a high-pressure steam cleaner and potable water after use at each boring. Well installation procedures for the boreholes completed as permanent wells are described in Section 3.4 below.

During the completion of boring JOF-111A as a monitoring well, the 8.5-inch diameter outer PVC casing dropped to approximately 4.5 ft bgs. As a result, the well was abandoned as approved by TVA, and boring JOF-111B was advanced for installation of monitoring well JOF-111. To abandon the well, the four-inch diameter PVC well casing and 8.5-inch diameter outer PVC casing installed in boring JOF-111A were left in place and the boring was backfilled with a 30% solids bentonite grout. Prior to grouting, the bottom of the 4-inch PVC casing sump was broken through to allow for grout to fill-in any potential void beneath the casing. Well abandonment documentation was recorded on the *Groundwater Monitoring Well Abandonment Checklist* and *Monitoring Well Abandonment Form*.

3.3.2 Soil Sampling

During advancement of each boring, the Stantec PG prepared field subsurface logs using a mobile data collection platform. Inputs included a description of subsurface lithology, sample recovery, color using the Munsell Soil Color Chart, and other relevant parameters as required by the SAPs and TIs. Subsurface logs for the JOF Plant HGI are presented in Attachment C.1 in Appendix C.

Soil samples were collected from each boring to provide geotechnical and lithologic information for a continuous boring log/soil profile and for analysis, as described below.

3.3.2.1 Geotechnical Sampling

At HSA borings, following preparation of the subsurface logs, geotechnical soil samples were placed in laboratory-provided glass jars and labeled in general accordance with the SAP. FSP secured the caps on each bottle, and confirmed it was labeled legibly and externally clean before placing the sample container in a box for storage prior to transport to the laboratory. Geotechnical sample information was recorded on a *COC* as described above in Section 3.2.1.3. The samples were temporarily placed in a secure storage unit onsite under custody protocols until transport and submittal to the geotechnical laboratory.

Stantec personnel transported and submitted the geotechnical samples to the Stantec Geotechnical Laboratory in Lexington, Kentucky. No geotechnical samples were tested since they were not needed for additional lithologic and geotechnical information and they remain stored at the Stantec laboratory.

3.3.2.2 CCR Parameter Sampling

Soil samples were collected from background monitoring well boring locations for analysis of CCR-related constituents following procedures in the Background Soil SAP. Six soil samples and one field duplicate were collected from the screened interval depth range of the three background monitoring well borings and submitted for laboratory analysis:

Boring JOF-109 - two samples were collected (31.5 to 34.5 ft bgs and 36.0 to 39.0 ft bgs)

Field Activities August 20, 2021

- Boring JOF-112 two samples and one field duplicate sample were collected (19.5 to 24.0 ft bgs and 24.0 to 28.9 ft bgs)
- Boring JOF-119 two samples were collected (34.5 to 37.5 ft bgs and 39.0 to 42.0 ft bgs).

As specified in the JOF Plant Background Soil SAP, the soil samples collected from the background monitoring well borings were analyzed for CCR-related constituents listed in Appendices III and IV of Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with the TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents are referred to as "CCR Parameters."

Background soil sampling investigation activities, including sampling procedures, laboratory information, and analytical results are presented in the JOF Plant Background Soil Investigation SAR.

3.4 MONITORING WELL AND PIEZOMETER INSTALLATION

3.4.1 Well and Piezometer Installation

The monitoring wells and piezometer were installed in the borings by qualified drill crews working under the direction of a Stantec PG or PE and a licensed Tennessee driller. Well and piezometer installation was carried out in general accordance with ENV-TI-05.80.25, *Monitoring Well and Piezometer Installation and Development*. Well and piezometer construction details are documented on the Well/Piezometer Installation Details provided in Attachment C.2 in Appendix C.

The lowest portions of the borings were generally backfilled with 0.375-inch bentonite pellets, then topped with a layer of sand filter pack (20/40 mesh). The monitoring well was installed above the backfilled portion. Monitoring wells consisted of a four-inch diameter Schedule 40 PVC pre-packed well screen (0.010-inch slots) and riser. The screen and riser consisted of flush-joint, threaded PVC pipe. A screen length of 9.8 feet was selected based on the results of the boring log and the target stratum. A four-inch diameter Schedule 40 PVC bottom well plug measuring approximately 0.4 feet in length was threaded onto the bottom of the screen (for well JOF-109, the bottom well plug was approximately 1.2 feet in length). The PVC riser extended a minimum of 2.5 feet above the ground surface and was capped with a temporary plug or slip cap. The annular space was backfilled with a sand filter pack extending approximately two feet above and six inches below the screen. A bentonite pellet seal approximately two feet thick was placed on top of the sand filter pack. The sand filter pack and bentonite pellets were either placed by tremie method or poured slowly into the annular space of the drill tooling to prevent bridging.

After the bentonite pellet seal had sufficiently hydrated for a duration equal to or greater than the minimum recommended by the manufacturer (a minimum of four hours), the remaining annular space was backfilled with a 30% solids bentonite grout. The grout was placed by tremie method through one-

Field Activities August 20, 2021

inch diameter PVC pipe using pumps gauged to allow the installation crew to monitor pressures during the grouting process.

For the piezometer, one VWP was installed in the boring and grouted in-place. The piezometer was attached to a sacrificial one-inch diameter PVC pipe. The boring was then backfilled by tremie method described above using a 30% solids bentonite grout.

Subsequent monitoring well and piezometer surface completions consisted of an above-grade steel locking protective cover anchored to a concrete surface pad. The protective cover extended above the concrete pad and the annular space was filled with sand or pea gravel to about six inches below the top of PVC casing. Steel protective bollards were installed near each corner of the concrete pad and filled with concrete.

A summary of monitoring well and piezometer construction specifications is presented in Table B.1 in Appendix B. Full construction details are presented in the Well and Piezometer Installation Details provided in Attachment C.2 in Appendix C.

3.4.2 Well Development

Each new monitoring well was developed in accordance with ENV-TI-05.80.25, Monitoring Well and Piezometer Installation and Development by a combination of bailing, surging, and pumping after a minimum of 24 hours following well installation. First, a three-inch diameter PVC bailer was lowered and raised within the screened intervals to create a slight surging action to dislodge particles within the wells and sand filter packs. Then the bailer was used to remove turbid water from the well. Baseline readings of turbidity, pH, temperature, and specific conductance were measured using a calibrated YSI Pro Plus water quality meter and a calibrated Hach 2100Q turbidity meter. This process of alternately surging and bailing was repeated several times to decrease the water turbidity within the wells. Lastly, a submersible pump was employed to further develop the wells until stabilization criteria for turbidity (≤10 Nephelometric Turbidity Units (NTUs) prior to September 16, 2019 and ≤5 NTUs thereafter), pH (±0.1 Standard Unit), temperature (±10%), and specific conductance (±10%) were achieved. The target turbidity value was based on well development criteria specified in ENV-TI-05.80.25, Monitoring Well and Piezometer Installation and Development at the time of development. As approved by TDEC, the turbidity stabilization limits were revised to ≤5 NTUs, as specified above, to meet overall programmatic objectives for the hydrogeologic investigation at the JOF Plant. Well development details were recorded on the Well Development Form. A summary of initial and final water quality measurements is presented in Table B.2 in Appendix B.

3.4.3 Hydraulic Conductivity (Slug) Testing

After development, Stantec performed slug tests in the nine monitoring wells to estimate hydraulic conductivity. The slug tests were performed in accordance with ASTM D4044: Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers. A pressure transducer with a data recorder was used to collect water level information from the wells.

Field Activities August 20, 2021

Three rising-head and three falling-head slug tests were performed at each well, as shown on Table B.3 in Appendix B. Each well was tested by taking an initial measurement of the static water level followed by the insertion of the pressure transducer into the well. After the transducer had been installed, a falling-head slug test was conducted by introducing a solid slug (e.g., PVC pipe filled with sand) into the well to cause a nearly instantaneous rise in the water level. The water levels were then recorded at regular intervals until reaching near initial static levels. After the first test concluded, a rising-head slug test was conducted by removing the slug to cause a nearly instantaneous drop in the water level. Water levels were recorded until initial static water levels were reached again. The procedure of alternating a falling-head and a rising-head slug test was conducted three times at each well. The data were recorded electronically by the transducer and downloaded into a data collector. Raw data were checked in the field for discrepancies prior to demobilizing from the JOF Plant.

The field data were analyzed using AQTESOLV™ Version 4.50 Professional software to estimate the hydraulic conductivity of the saturated soils in the screened interval. Calculated hydraulic conductivities are summarized in Table B.3 in Appendix B, and the full software output package is provided in Appendix E. The following assumptions and methods were utilized for the calculations:

- The analysis was completed using the Bouwer-Rice method. The straight line solution was
 matched to the normalized plotted recovery data between 70 to 80% recovery (0.2 to 0.3 feet of
 the normalized head) plotted on a log-linear scale.
- Data collected during the tests conducted at wells JOF-118 and JOF-119 suggest that while the
 data exhibited an oscillatory (underdamped) response during the latter part of the test, the early
 time data (>80% recovered) was sufficient for the determination of hydraulic conductivity using
 the Bouwer-Rice method. An oscillatory response is commonly seen in slug test data of higher
 hydraulic conductivity formations.
- Wells JOF-109, JOF-113, JOF-114, JOF-118, and JOF-119 were assumed to be under confined
 aquifer conditions based on stratigraphic data noted on the boring logs and groundwater level
 measurements. The static water levels measured at these locations at the time of the slug testing
 were within clay intervals overlying the water-bearing units targeted for well installation;
 therefore, the clay intervals were considered to represent local confining characteristics for the
 purpose of the slug test analyses.

3.4.4 Pump Installation

A new, decontaminated, dedicated QED Environmental Systems, Inc. brand dedicated bladder pump was installed in each new monitoring well after well development was completed. The pump model installed in each well was either model P1101M (polypropylene construction) or model P1101HM (stainless steel construction) because the water column height was more than 10 feet. Each pump intake was placed at approximately the mid-point of the well screened interval or the mid-point of the saturated portion of the well screened interval for future groundwater sampling. Following pump installation, the pumps were calibrated in general accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Well pump placement depths, installation calculations, and calibration details were recorded on the *QED Well Wizard Dedicated*

Field Activities August 20, 2021

Sampling Pump Installation Checklist and the Well Pump Calibration Form. Pump installation information is provided in Table B.4 in Appendix B.

3.4.5 Well and Piezometer Surveys

After the surface completions for each monitoring well were installed, the top of the well casing and ground surface elevation were professionally surveyed using a survey-grade GPS for horizontal and vertical control. The surface completion for the piezometer was surveyed for ground surface elevation only. Measurements were calculated relative to the coordinate systems used by the JOF Plant. Well and piezometer survey information is provided in Table B.5 in Appendix B.

3.5 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during the HGI included:

- Soil cuttings
- Used calibration fluids
- Well development water
- Decontamination fluids
- Personal protective equipment (PPE)
- General trash.

IDW was handled in general accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.25, *Monitoring Well and Piezometer Installation and Development*; the HGI SAP; the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW were coordinated with the JOF Plant facility management. Soil cuttings, used calibration fluids, decontamination fluids, and well development water were managed as authorized by JOF Plant facility management and in accordance with the HGI SAP. Used disposable PPE (e.g., nitrile gloves) and general trash were placed in garbage bags and disposed of in a municipal waste dumpster onsite.

3.6 VARIATIONS

The proposed scope and procedures for the HGI were outlined in the SAP, QAPP, applicable TVA TIs, and ASTM standards, as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAPs are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for the HGI at the JOF Plant.

Field Activities August 20, 2021

3.6.1 Variations in Scope

Variations in scope are provided below.

- The location of boring JOF-108 was relocated four times within the expanded zone due to encountering CCR materials and/or shallow refusal at five borings. As a result, monitoring well JOF-108 was not installed. This change in scope was approved by TDEC.
- Due to the presence of CCR material encountered in pre-screen borings for wells JOF-110 and JOF-111, and shallow refusal at a pre-screen boring for well JOF-114, the wells were relocated near the original proposed well locations following approval by TDEC.
- Geotechnical samples were not collected at borings JOF-110, JOF-111A, and JOF-111B during
 drilling because a roto-sonic drill rig was used, and undisturbed geotechnical samples cannot be
 collected using this drilling method. This change in drilling method was approved by TDEC and
 information obtained using this drilling technique was adequate to meet the objectives of the
 HGI.
- As approved by TDEC, the turbidity stabilization limits were revised to meet overall programmatic objectives of the hydrogeologic investigation.

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

- Borings JOF-110, JOF-111A, and JOF-111B encountered CCR material in the shallow soils. As
 described in Section 3.3.1.3, the drilling method was modified, as approved by TVA and TDEC,
 to minimize CCR material migration deeper into the borehole. Borings JOF-110 and JOF-111B
 were completed with the installation of monitoring wells JOF-110 and JOF-111, respectively.
- The well installed at JOF-111A was abandoned because the outer PVC casing dropped during well installation, as described in Section 3.3.1.3. Well JOF-111 was installed at boring JOF-111B as a replacement.
- A Well Pump Calibration Form was not completed for wells JOF-118 and JOF-119. The wells
 were sampled the same day as installation of the dedicated pump (December 3, 2019);
 therefore, stabilization parameters were recorded on a Groundwater Sampling Form.
- During well development of well JOF-119, the July 18, 2019 afternoon calibration verification of the YSI and Hach 2100Q was completed the following morning due to a lightning stand-down.
 The calibration verifications were within acceptance criteria.
- During the installation of JOF-109, the pre-pack well screen available at the time of installation had threaded male connections at both ends, and the only available endcaps also had male connections. To accommodate well completion, a union was added to the male connections at

Field Activities August 20, 2021

the bottom of the well screen and the male end cap to complete the well string. This increased the end cap length at the bottom of the well from approximately 0.4 feet to approximately 1.2 feet.

Summary August 20, 2021

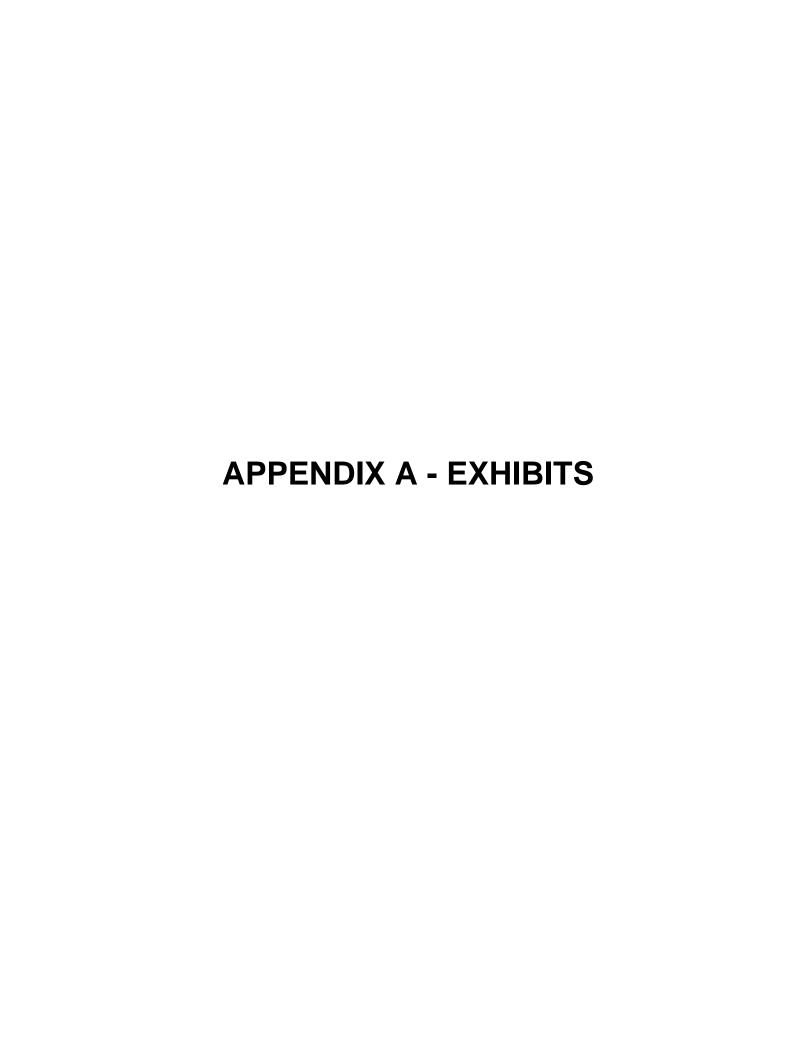
4.0 SUMMARY

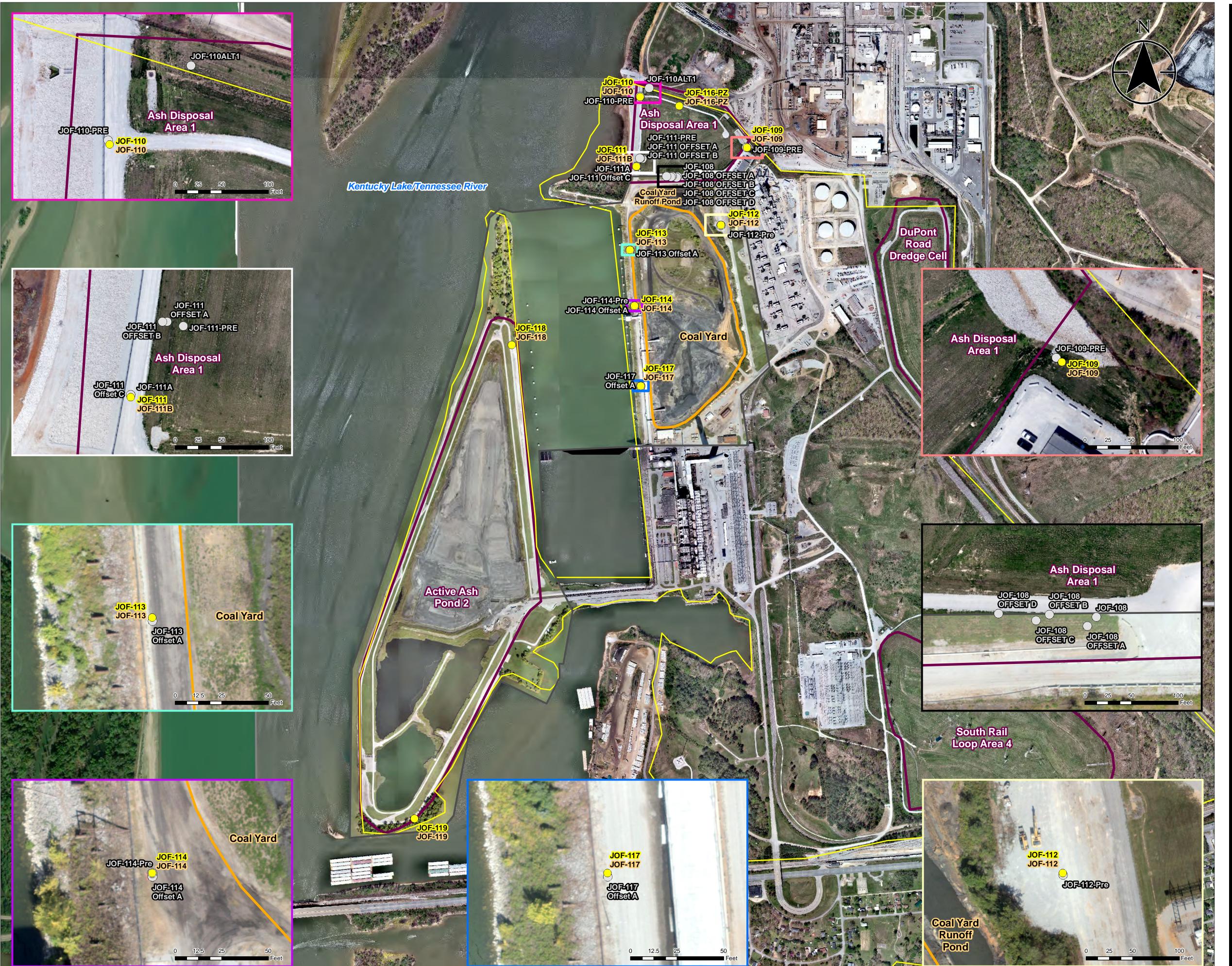
The data presented in this report are from the HGI at the JOF Plant. Nine permanent monitoring wells and one VWP were installed during the HGI to support data collection for the groundwater and background soil investigations at the JOF Plant, including groundwater level measurements, and groundwater and background soil sample collection for analysis of CCR Parameters. The scope of work for the HGI included:

- Drilled 16 pre-screen soil borings in the vicinities of proposed monitoring well locations
- Drilled 12 soil borings for installation of six permanent monitoring wells, three background monitoring wells, and one piezometer
- Collected soil samples to develop a continuous boring log/soil profile for each well boring
- Collected six soil samples and one field duplicate for analysis of CCR Parameters from the screened interval depth range of three background monitoring well borings
- Installed permanent monitoring wells in nine of the borings and constructed surface completions
- Installed a VWP in the piezometer boring
- Developed each new monitoring well
- Conducted slug testing in the nine new monitoring wells to estimate hydraulic conductivity
- Surveyed each new permanent well and piezometer.

A summary of boring, monitoring well, and piezometer locations is presented in Table 1. Monitoring well and piezometer construction specifications, well development, hydraulic testing results, pump installation details, and survey information are presented in Tables B.1 through B.5, respectively. Background soil sampling information and analytical results are reported in the Background Soil Investigation SAR, and groundwater level measurements and sampling analytical results are reported in a series of Groundwater Investigation SARs for the JOF Plant.

Stantec has completed an HGI at the JOF Plant in New Johnsonville, Tennessee, in accordance with the HGI SAP as documented herein. The data collected during the HGI are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. HGI drilling and well/piezometer installation data will be evaluated along with data collected under other TDEC Order SAPs, including but not limited to, the background soil investigation and the six sampling events of the groundwater investigation, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.




References August 20, 2021

5.0 REFERENCES

- American Society for Testing and Materials (ASTM). D6151: Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling.
- ASTM. D1586: Standard Test Method for Standard Penetration Test and Split-Barrel Sampling for Soils.
- ASTM. D4044: Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers.
- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.
- Munsell Color. 2009. Munsell Soil Color Book.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Hydrogeological Investigation Sampling and Analysis Plan*, Johnsonville Fossil Plant. Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.
- Stantec. 2018b. *Environmental Investigation Plan*, Johnsonville Fossil Plant. Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.
- Stantec. 2018c. *Background Soil Sampling and Analysis Plan*, Johnsonville Fossil Plant. Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.
- Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.
- TVA. ENV-TI-05.80.03, Field Record Keeping.
- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.25, Monitoring Well and Piezometer Installation and Development.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.

Site Map and Monitoring Well/ **Piezometer Locations**

Client/Project

Tennessee Valley Authority Johnsonville Fossil Plant (JOF) TDEC Order

Project Location 175568286 Prepared by MB on 2021-05-19 Technical Review by JS on 2021-05-19 New Johnsonville, Tennessee

> 1,350 1:5,400 (At original document size of 22x34)

Legend

Monitoring Well/Piezometer Location

Boring Name

Boring Name

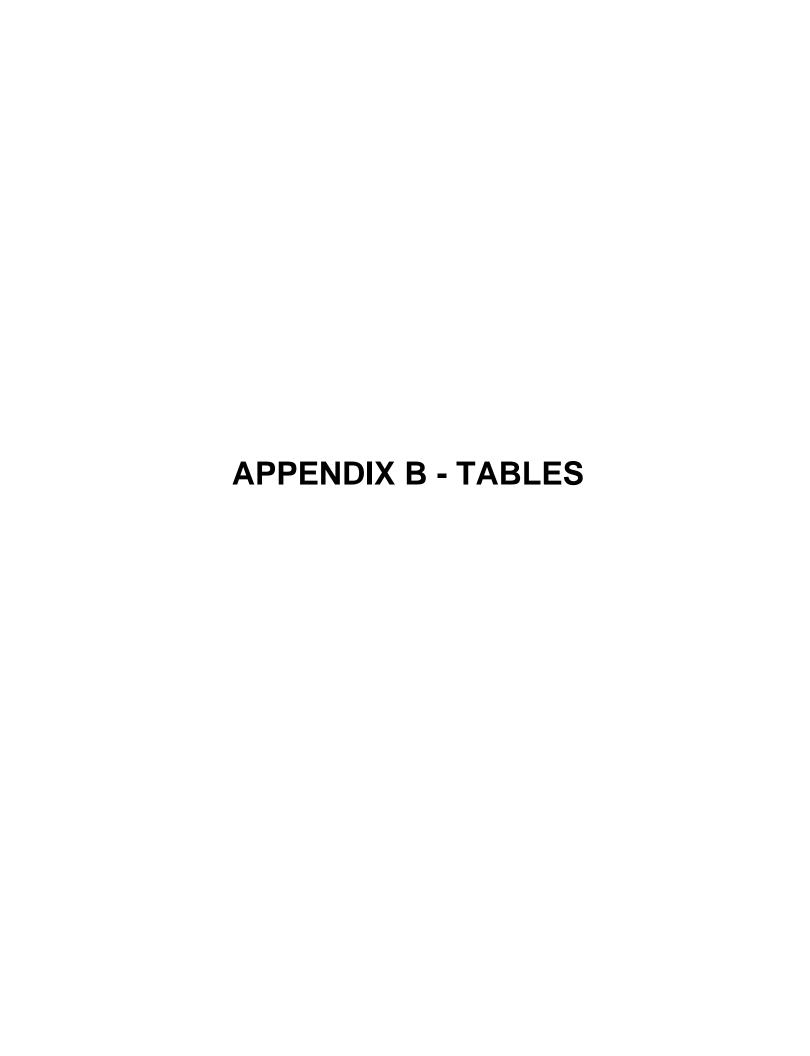
Drilled and Abandoned Borehole

2017 Imagery Boundary

2018 Imagery Boundary

TVA Property Boundary

CCR Unit Area (Approximate)


Coal Yard (Approximate)

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

Table B.1 - Summary of Monitoring Well and Piezometer Construction Specifications Johnsonville Fossil Plant May-September 2019

	Top of	f Casing		Piezometer			Bottom of We	II			Screene	d Interval		
Well/ Piezometer ID	Stickup	Elevation	GS Elevation	Sensor Depth	Sensor Elevation	Depth	Depth	Elevation	Depth Top	Depth Bottom	Depth Top	Depth Bottom	Elevation Top	Elevation Bottom
	ft ags	ft NGVD29	ft NGVD29	ft bgs	ft NGVD29	ft bgs	ft btoc	ft NGVD29	ft bgs	ft bgs	ft btoc	ft btoc	ft NGVD29	ft NGVD29
JOF-109	3.4	386.11	n/a	n/a	n/a	41.7	45.1	341.0	30.7	40.5	34.1	43.9	352.0	342.2
JOF-110	4.7	388.76	n/a	n/a	n/a	57.8	62.5	326.3	47.6	57.4	52.3	62.1	336.5	326.7
JOF-111	4.8	390.08	n/a	n/a	n/a	46.7	51.5	338.6	36.5	46.3	41.3	51.1	348.8	339.0
JOF-112	4.7	394.48	n/a	n/a	n/a	30.4	35.1	359.4	20.2	30.0	24.9	34.7	369.6	359.8
JOF-113	4.7	388.13	n/a	n/a	n/a	45.1	49.8	338.3	34.9	44.7	39.6	49.4	348.5	338.7
JOF-114	4.7	388.36	n/a	n/a	n/a	40.2	44.9	343.5	30.0	39.8	34.7	44.5	353.7	343.9
JOF-116-PZ	n/a	n/a	388.0	46.0	342.0	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
JOF-117	4.6	388.63	n/a	n/a	n/a	40.6	45.2	343.4	30.4	40.2	35.0	44.8	353.6	343.8
JOF-118	3.4	372.69	n/a	n/a	n/a	50.7	54.1	318.6	40.5	50.3	43.9	53.7	328.8	319.0
JOF-119	3.5	366.89	n/a	n/a	n/a	44.7	48.2	318.7	34.5	44.3	38.0	47.8	328.9	319.1

Notes:

ags above ground surface
bgs below ground surface
btoc below top of casing

ft feet

GS ground surface ID identification n/a not applicable

NGVD29 National Geodetic Vertical Datum of 1929

^{1.} Measurement data are from Well Installation and Piezometer Details (Appendix C.2).

^{2.} Wells/piezometer were surveyed on November 12-14, 2019.

Table B.2 - Summary of Well Development Data Johnsonville Fossil Plant July-November 2019

	pl	н	Turbi	idity	Specific Co	onductance	Tempe	erature
Well ID	Initial	Final	Initial	Final	Initial	Final	Initial	Final
			NTU	NTU	uS/cm	uS/cm	DEG C	DEG C
JOF-109	6.14	5.62	>1,000	3.84	262	189	21.3	18.2
JOF-110	6.84	5.91	>1,000	4.44	311	292	16.8	15.5
JOF-111	6.31	5.99	>1,000	2.98	1529	3500	16.6	18.2
JOF-112	7.01	5.97	>1,000	1.66	592	491	18.3	20.2
JOF-113	6.59	6.34	>1,000	4.72	2878	2561	16.5	16.3
JOF-114	6.11	5.21	>1,000	0.75	2097	3658	17.4	19.9
JOF-117	6.17	6.34	>1,000	4.16	1009	1012	17.1	19.1
JOF-118	5.52	5.43	>1,000	6.86	335	205	20.6	23.7
JOF-119	5.76	5.56	>1,000	6.52	154	191	18.8	20.0

Notes:

> result greater than
DEG C degrees Celsius
ID identification

NTU Nephelometric Turbidity Unit uS/cm microSiemens per centimeter

Table B.3 - Summary of Hydraulic Conductivity Testing Results Johnsonville Fossil Plant April 2020

	Saturated	Number	of Tests	- Average Hydraulic	Average Hydraulic		
Well ID	Thickness	Falling Head	Rising Head	Conductivity	Conductivity		
	ft			ft/day	cm/s		
JOF-109	32.7	3	3	2.799	9.87E-04		
JOF-110	44.8	3	3	0.07960	2.81E-05		
JOF-111	32.8	3	3	3.309	1.17E-03		
JOF-112	18.3	3	3	26.59	9.38E-03		
JOF-113	21.1	3	3	1.530	5.40E-04		
JOF-114	14.7	3	3	10.19	3.59E-03		
JOF-117	20.6	3	3	0.7067	2.49E-04		
JOF-118	10.9	3	3	217.7	7.68E-02		
JOF-119	13.4	3	3	152.9	5.39E-02		

Notes:

cm/s centimeters per second

ft feet

ID identification

Table B.4 - Summary of Pump Installation Details Johnsonville Fossil Plant November-December 2019

		Bottor	n of Well	Groundy	vater Level	Pump	Intake	
Well ID	Top of Casing Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Water Column Above Intake
	ft NGVD29	ft btoc	ft NGVD29	ft btoc	ft NGVD29	ft btoc	ft NGVD29	ft
JOF-109	386.11	45.1	341.0	6.48	379.63	39.0	347.1	32.5
JOF-110	388.76	62.5	326.3	18.45	370.31	57.0	331.8	38.6
JOF-111	390.08	51.5	338.6	22.72	367.36	46.0	344.1	23.3
JOF-112	394.48	35.1	359.4	23.14	371.34	29.5	365.0	6.4
JOF-113	388.13	49.8	338.3	31.32	356.81	43.5	344.6	12.2
JOF-114	388.36	44.9	343.5	31.46	356.90	39.5	348.9	8.0
JOF-117	388.63	45.2	343.4	29.21	359.42	40.5	348.1	11.3
JOF-118	372.69	54.1	318.6	16.18	356.51	48.5	324.2	32.3
JOF-119	366.89	48.2	318.7	10.62	356.27	42.5	324.4	31.9

Notes:

btoc below top of casing

ft feet

ID identification

NGVD29 National Geodetic Vertical Datum of 1929

^{1.} Wells were surveyed on November 12-14, 2019.

^{2.} Depth data are from *QED Well Wizard Dedicated Sampling Pump Installation Checklists* dated November 18-December 3, 2019. Depth to groundwater level was measured prior to pump insertion. Pump intake and water column above intake rounded to nearest 0.1 foot.

Table B.5 - Summary of Monitoring Well and Piezometer Survey Data Johnsonville Fossil Plant November 2019

Well/Piezometer ID	JOF Plant Local Northing	JOF Plant Local Easting	Latitude	Longitude	Ground Surface Elevation
	ft NAD27	ft NAD27	DMS NAD27	DMS NAD27	ft NGVD29
JOF-109	605,123.62	1,413,243.55	N36°02'17.00"	W87°59'04.84"	382.8
JOF-110	605,614.27	1,412,210.58	N36°02'21.64"	W87°59'17.54"	384.0
JOF-111	604,940.99	1,412,174.09	N36°02'14.98"	W87°59'17.81"	385.3
JOF-112	604,376.52	1,412,991.02	N36°02'09.56"	W87°59'07.73"	389.8
JOF-113	604,136.76	1,412,110.10	N36°02'07.01"	W87°59'18.39"	383.4
JOF-114	603,597.10	1,412,156.67	N36°02'01.69"	W87°59'17.69"	383.7
JOF-116-PZ	605,526.64	1,412,589.35	N36°02'20.85"	W87°59'12.90"	388.0
JOF-117	602,823.15	1,412,216.73	N36°01'54.04"	W87°59'16.77"	384.1
JOF-118	603,219.11	1,410,969.82	N36°01'57.71"	W87°59'32.05"	369.3
JOF-119	598,645.87	1,410,031.49	N36°01'12.30"	W87°59'42.33"	363.4

Notes:

DMS Degrees, Minutes, Seconds

ft feet

ID identification

NAD27 North American Datum of 1927

NGVD29 National Geodetic Vertical Datum of 1929

PZ piezometer

^{1.} Wells were surveyed on November 12-14, 2019. Coordinates are for the top of well casing, except ground surface elevation which is adjacent to the concrete well pad. Plant Local coordinates rounded to the nearest 0.01 feet. Latitude and Longitude rounded to the nearest 0.01 degree. Ground surface elevations rounded to the nearest 0.1 feet.

APPENDIX C – SUBSURFACE LOGS AND WELL/PIEZOMETER INSTALLATION DETAILS

ATTACHMENT C.1

Subsurface Logs

Subsurface Boring Legend

Lithology Graphics

Symbol	Lithology
	Fill
	Top Soil
03030303	Gravel
0 0 0 0 0 0 0	Well Graded Gravel (GW)
0 0 0 0	Poorly Graded Gravel (GP)
	Silty Gravel (GM)
	Silty, Clayey Gravel (GC-GM)
	Clayey Gravel (GC)
	Well Graded Gravel with Silt (GW-GM)
	Well Graded Gravel with Clay (GW-GC)
	Poorly Graded Gravel with Silt (GP-GM)
	Poorly Graded Gravel with Clay (GP-GC)
•••••	Well Graded Sand (SW)
• • • •	Poorly Graded Sand (SP)
	Silty Sand (SM)
	Silty, Clayey Sand (SC-SM)
	Clayey Sand (SC)
	Well Graded Sand with Silt (SW-SM)
	Well Graded Sand with Clay (SW-SC)
	Poorly Graded Sand with Silt (SP-SM)
	Poorly Graded Sand with Clay (SP-SC)
	Silt (ML)
	Silty Clay (CL-ML)
	Lean Clay (CL)
	Organic Silt (OL)
	Elastic Silt (MH)
	Fat Clay (CH)
/////	Organic Clay (OH)
	Shale
× × × × × × × × × × × × × × × × × × ×	Siltstone
	Coal
	Limestone
	Sandstone

Other Graphics

Symbol	Description
	Denotes environmental analytical sample interval
	Denotes SS sample interval
	Denotes ST sample interval
	Denotes DP sample interval
	Denotes RS sample interval
	Denotes RC sample interval
$\bar{\Delta}$	First water level reading
Ā	Second water level reading

Common Abbreviations

Abbreviation	Definition
DP	Direct Push
HA	Hand Auger
HSA	Hollow Stem Auger
N/A	Not Applicable
NR	Not Recorded
RC	Rock Core
RQD	Rock Quality Designation
RS	Rotary Sonic
SS	Split Spoon
ST	Shelby Tube
WH	Weight of Hammer
WR	Weight of Rod

General Notes

The boring logs include sample numbering used during drilling. For assigned Environmental Analytical Sample ID numbers, see relevant Environmental Chain-of- Custody forms from the drilling date range listed on each log.

For pH readings and additional field data, see applicable field documentation (e.g., Soil pH Data Form) from the drilling date range listed on each log.

	U - · · · •	Daniel I	ıb ,	1/4			<u> </u>			. IOE	108				
		Borehole						antec Borinç							
	lient				Valley Authority			•			93 N; 1,412,570				
	-	Number						urface Eleva	tior	-					
	-		JOF					ate Started	_	8/6/19	Comple			9	
	-	Location			hnsonville, Hum			epth to Wate	_		Date/Ti				
					_ =-99	C. Burton		epth to Wate	_		Date/Ti	me	N/A		
	_				gic (Subcontract			Drill Rig Type and ID Geoprobe 6610DT iize) Macro Core 2.0" OD with 60" PVC sample liners							
			-		Tools (Type		· —	nacio Cole 2.0	OL	J WILLI OU F	VC Sample iiile	15			
		•			l Size) N/A	ariu Size)	11//				Overdril	l De	nth	N/A	
		_			'A	Weight	N/A	Drop N	I/A		Efficiency		νρατ <u> </u>		
		le Azimu				_ ***					Vertical)	_			
		ed By		Carey				proved By							
		Lithology		T				Overburden:	5	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dep	th Ft ³	Elevation	Graphi	С	Description			Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %	
- O	0.0	390.6		Т	op of Hole			<u> </u>							
- 0	0.7	389.9		Т	opsoil							$ \rangle \rangle$		_	
- 1				L	EAN CLAY, ML,	7.5YR 5/6 (str	rong browr	n) to 7.5YR				$ \rangle \rangle$		-	
•					/1 (gray), mediu	n to high plast	ticity, moist	i, mixed				$ \rangle \rangle$)		
- 2				w	vith CCR, [FILL]					DP01	0.0 - 5.0	0.0-	4.1	N/A	
- 3										D. 01	0.0 0.0	5.0		-	
												((
- 4												1 ((_	
- 5	E 2	385.3										12	↓	_	
	5.3	303.3		ll s	SILTY LEAN CLA	Y WITH SANI	D CL-ML	2 5Y 5/2				1 11			
- 6				(9	grayish brown) to	10YR 4/1 (da	ark gray), lo	ow						-	
- 7					lasticity, moist, v	-	ind coal fra	gments,				$ \rangle \rangle$		_	
,	7.8	382.8		"	nixed with CCR,	[FILL]				DP02	5.0 - 10.0	5.0 - 10	5.0	N/A	
- 8		002.0		s	SILTY SAND WIT	H GRAVEL, S	SM, 10YR 3	3/1 (very				0.0		-	
- 9			$\ \cdot\ $	1 1	ark gray), non-pl	_	anics and	coal							
- 9				T tr	ragments, [CCR]							((
- 10	10.0	380.6	<u> [</u>	<u> </u>	la Dafrical /							⊥ <i>W</i>			
					lo Refusal / Bottom of Hole at	10.0 Ft.									
														-	
														-	
														-	
														_	
			Bori	ng JOI	F-108 was backf	illed with grout	t on 8/6/20	19.							
			1. ⊏	= Fnv	rironmental Sam	nle Custody /tv	wo Snlit Sn	oons may be r	eau	ired to obto	in sufficient cor	nnle	١	_	
			G	= Ged	otechnical Samp	le Custody		-				iihie	,	-	
					enote Split Spoor are reported in fe				eote	echnical Sa	mples				
				•	•	Ŭ								_	

	l: 4 F) - n - h - l -	ID N/A		Otanta a Da		N. IOF.	108 Offse	+ A	\	
l		Borehole									Diametria
	lient	NI		ssee Valley Authority	_		-	25 N; 1,412,561			
l	-	Number					ion 389.0 ft			-	
I	•		-	DEC Order	Date Starte		8/6/19	Comple)
I	•	Location		w Johnsonville, Humphreys Co., TN	Depth to W						
	•	or <u>C. B</u>		Logger C. Burton	Depth to W			Date/Ti	me	N/A	
	-			o Logic (Subcontractor)			and ID Geop	rope 66 10D I			
			-	Sampling Tools (Type and Size	·	2.0	ОБ				
		_	-	ling Tools (Type and Size) <u> </u>	^			Overdrill		nth N	N/A
		-		•	Drop	N/	A	Gverann Efficiency		ν/Α	
		le Azimu		N/A		-		Vertical)			
ı		ed By			Approved I		•				
				•				Danth Ft3		D [4	Diama/DCI
D-11	th Ft ³	Lithology	Cranhia	5	Overburd	-	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Бер		Elevation 389.0	Grapnic	Description Top of Hole	Rock Co	e:	RQD %	Run Ft	П	Rec. Ft	Rec. %
- 0	0.0	369.0		Overburden					1 1)		
- 1	0.9	388.1		Overburden					18		
l '				SANDY LEAN CLAY WITH GRAVEL					1 (($\langle $	
- 2	2.1	386.9		(yellowish red) to 5YR 4/1 (dark gray)					0	(_
				FAT CLAY WITH GRAVEL, CH, 7.5Y brown) to 2.5Y 5/1 (gray), moist, with			DP01	0.0 - 5.0	0 - 5.0	4.3	N/A
- 3				brown) to 2.31 3/1 (gray), moist, with	coai iraginents				1		_
- 4	3.9	385.1		CANDY FAT CLAY WITH CDAYEL	OLL 0.5V.0.5/4				$ \rangle \rangle$		_
				SANDY FAT CLAY WITH GRAVEL, (black) to 10YR 5/8 (yellowish brown)))		
- 5	5.2	383.8		plasticity, moist		\nearrow					_
- 6				POORLY GRADED SAND WITH SIL							_
				10YR 3/1 (very dark gray) to 7.5YR 2 medium to coarse, non-plastic, [CCR					18		
- 7				medium to coarse, non-plastic, [CON	1		DD00	F 0 40 0	5.0-		- NI/A
- 8							DP02	5.0 - 10.0	10.0	3.3	N/A _
									1 ((
- 9									1 1/		-
10	10.0	379.0									_
"				No Refusal /							
				Bottom of Hole at 10.0 Ft.							-
											_
											_
											_
				Environmental Sample Custody (two Sp	olit Spoons may	be re	quired to obtai	n sufficient san	nple))	
			2: a,b,	Geotechnical Sample Custody c denote Split Spoon divided between E		d Ge	otechnical Sar	mples			_
			3: Dep	oths are reported in feet below ground su	urface						-

	Client E	Borehole	IDN/A	1	Stantec Boring	g N	o. <mark>JOF</mark>	-108 Offse	t B	}	
	Client		Tennes	ssee Valley Authority	Boring Location	on	604,847.6	67 N; 1,412,520	.66	E NAD27	Plant Local
F	roject	Number	175568	3286	Surface Eleva	tior	391.0 ft	Elevatio	n D	atum_n	IGVD29
F	roject	Name	JOF TE	DEC Order	Date Started	_	8/7/19	Comple	ted	8/7/19)
F	roject	Locatio	n Ne	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	N/A	Date/Tii	me	N/A	
	•	or C. B		Logger C. Burton	Depth to Wate	_		Date/Tii	me	N/A	
				o Logic (Subcontractor)	Drill Rig Type			probe 6610DT			
			_	Sampling Tools (Type and Size)		" OE)				
		_	-	ling Tools (Type and Size) N/A					_		
				and Size) N/A	D N	1/4		Overdrill		. –	I/A
		er Hamm	• •	N/A Weight N/A	Drop N			Efficiency	r N//	N/A ^	
		le Azimu	ıtn K. Ca		Borehole Inclin		ion (trom P. Dunne	vertical)	IN//	٠	
	Keview	ed By	N. Ca	ney	Approved By						
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	391.0		Top of Hole					1		
	0.0	391.0		\Topsoil	/				(((
- 1	1.1	389.9		GRAVELLY LEAN CLAY, CL, 7.5YR 4	` '				1 100		-
- 2				brown), low to medium plasticity, mois					1_1//		_
				FAT CLAY SOME GRAVEL, CH, 7.5Y brown), medium to high plasticity	R 4/6 (strong		DP01	0.0 - 5.0	0.0 - 5.	4.8	N/A
- 3				,,							-
- 4	3.8	387.2	0 0 5								_
ľ				POORLY GRADED GRAVEL WITH C 2.5Y 4/1 (dark gray), moist to wet, [FIL							
- 5									1 88		_
- 6											_
- 0									(((
- 7									5.0		_
							DP02	5.0 - 10.0)- 10.0	4.3	N/A
- 8									1))/		_
- 9)))		-
)))		
- 10									1 100		_
- 11)))		-
- 12	12.4	378.6					DP03	10.0 - 15.0	10.0	3.2	N/A
- 13				FAT CLAY, CH, 2.5Y 5/3 (light olive br	rown) to 2.5Y		DF03	10.0 - 15.0	. 15.0	3.2	IN/A –
				4/2 (dark grayish brown), moist, [FILL]					(((
- 14									1 (((_
– 15	15.0	275.7							1 111		_
	15.3	375.7		SANDY POORLY GRADED GRAVEL	WITH CLAY						
- 16	16.1	374.9		GP, 5Y 2.5/1 (black), wet, [CCR]							-
- 17				SANDY SILT WITH CLAY, ML, 5Y 2.5							_
''				to low plasticity, moist to wet, [FILL], [0	CCR]		DP04	15.0 - 20.0	5.0 - 2	5.0	N/A
40									1811		

Page: 2 of 2

Client	Borehole	ID N/A	1	Stantec E	oring	No. JOF	-108 Offset	t B		
Client	<u></u>	Tennes	see Valley Authority	Boring Lo	cation	604,847.6	67 N; 1,412,520.	66 E N	NAD27	Plant Local
Projed	ct Number	175568	2286	Surface E	levati	on <u>391.0 ft</u>	Elevatio	n Dat	tum <u>r</u>	NGVD29
	Lithology			Overbui	den:	Sample ^{1,2}	Depth Ft ³	R	ec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock C	ore:	RQD %	Run Ft	R	ec. Ft	Rec. %
- 18 - 19 - 20 - 21			SANDY SILT WITH CLAY, ML, 5Y 2.5 to low plasticity, moist to wet, [FILL], (Continued)	٠,	n					-
- 21 - 22 - 23 - 24	6 368.4		SANDY POORLY GRADED GRAVEL GP-GM, 5Y 2.5/1 (black), moist to wet	,	R]	DP05	20.0 - 25.0	20.0 - 25.0	5.0	N/A
- 25 - 26 - 27 - 28 - 29	3 363.7		FAT CLAY WITH GRAVEL, CH, 7.5YF moist, Macro core liner crushed in made		,	DP06	25.0 - 29.9	25.0 - 29.9	2.3	N/A
29.9	9 361.1		Bedrock Refusal / Bottom of Hole at 29.9 Ft.							

^{1:} E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody
2: a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples

^{3:} Depths are reported in feet below ground surface

(Client E	Borehole	ID N/A	\	Stantec Borin	ng N	lo. JOF	-108 Offse	t C	;	
(Client		Tennes	ssee Valley Authority	Boring Locati	on	604,841.	52 N; 1,412,506	6.20	E NAD27	Plant Local
F	Project	Number	175568	286	Surface Eleva	atio	n <u>389.5</u> ft	Elevatio	on C	atum_ı	NGVD29
F	Project	Name	JOF TO	DEC Order	Date Started	_	8/22/19	Comple	ted	8/22/1	9
F	Project	Location	n Nev	w Johnsonville, Humphreys Co., TN	Depth to Water 14.0 ft Date/Time 8/22/19 16:00						
	•	or C. B			Depth to Wat	er_	N/A	Date/Ti	me	N/A	
	-			o Logic (Subcontractor)	Drill Rig Type						
			-	Sampling Tools (Type and Size)		0" OI	D with 60" F	VC sample line	rs		
		_		ling Tools (Type and Size) N/A	•				_		
		_		and Size) N/A		N1/A		Overdrill			N/A
			• •	N/A Weight N/A			ian /frans	Efficiency	N/	N/A ^	
		le Azimu			Borehole Incl Approved By		ion (Trom C. Millhollir	· —	IN/	4	
ı		ed By _	IX. Ca	iey	Approved by						
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
De	oth Ft ³	Elevation	Graphic	Description	Rock Core:	-	RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	389.5 389.1		Top of Hole					+		
	0.4	389.1		Topsoil		1			((
- 1				SILTY LEAN CLAY, CL, 10YR 7/4 (ver to 10YR 8/8 (yellow), low plasticity, ha					1 ((_
- 2				[FILL]	ru, moist,						_
							DP01	0.0 - 5.0	0.0 - 5.	4.5	N/A
- 3	3.3	386.2	444			4					_
- 4				LEAN CLAY WITH SILT, CL, 7.5YR 5/	, -						_
ľ				brown), medium to high plasticity, very [FILL]	nard, moist,				((
- 5									1 14		_
6									((
- 6									((_
- 7									5.0		_
_							DP02	5.0 - 10.0	0-10.0	4.2	N/A
- 8											_
- 9)))		-
	10.0	379.5									
- 10	10.0	379.5	•••••	SILTY SAND WITH GRAVEL, SP, 10\	 YR 2/1 (black)	1			1 100		_
- 11				with 10YR 6/6 (brownish yellow), fine t							_
				loose, moist, [CCR]					((
- 12									10.0		_
12							DP03	10.0 - 15.0) - 15.0	4.2	N/A
- 13									1 1/1		
- 14	Ψ))		-
- 15			 -:-:							1	_
- 16	16.1	373.4	• • • • •								_
				SILTY SAND LITTLE GRAVEL, SP, 10	0YR 3/1 (very						
- 17				dark gray), [CCR]			DD04	450 000	15.0		- NI/A
40							DP04	15.0 - 20.0	- 20.0	1.9	N/A

Page: 2 of 2

Client I	Borehole I	ID N/A	1	Stantec Boring	g N	o. JOF -	-108 Offset	<u>C</u>	
Client		Tennes	see Valley Authority	Boring Location 604,841.52 N; 1,412,506.20 E NAD27 Plant					
Project	t Number _.	175568:	286	Surface Elevation 389.5 ft Elevation Date					NGVD29
	Lithology			Overburden:	٤	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19 - 20 <u>20.1</u> - 21 - 22	369.4		SILTY SAND LITTLE GRAVEL, SP, 10 dark gray), [CCR] (Continued) SANDY SILT LITTLE GRAVEL, ML, 10 dark gray) to 2.5Y 3/1 (very dark gray), plasticity, very soft, wet, [CCR]	OYR 3/1 (very		DP05	20.0 - 24.5		- - - N/A
- 23 - 24 24.5	365.0								
			Bedrock Refusal / Bottom of Hole at 24.5 Ft.						_

Boring JOF-108 Offset C backfilled with grout on 8/22/2019

- 1: E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody
 2: a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples
- 3: Depths are reported in feet below ground surface

	Client F	Borehole	ID N/A	\ \	Stantec Bor	ina	No JOF -	-108 Offse	t D)		
	Client	301011010		see Valley Authority	Boring Loca			71 N; 1,412,465			Plant Local	
		Number		<u> </u>	Surface Ele			Elevatio				
	•	Name		-	Date Starte		-	Comple		-		
	-	Location		w Johnsonville, Humphreys Co., TN	Depth to Water N/A Date/Time N/A						···	
	•			Logger C. Burton								
	-			D Logic (Subcontractor)								
	_			Sampling Tools (Type and Size)	• .				rs			
F	Rock D	rilling and	d Sampl	ling Tools (Type and Size) N/A	\							
(Overdr	ill Tooling	(Type a	and Size) N/A				Overdrill	De	pth _	N/A	
5	Sample	er Hamme		N/A Weight N/A	Drop	N/A	Α	Efficiency	I	V/A		
ı		le Azimu			Borehole In		•	· —	N/	A		
F	Reviewed By K. Carey Approved By C. Millhollin											
		Lithology			Overburde	n:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core	e:	RQD %	Run Ft		Rec. Ft	Rec. %	
- O	0.0	390.8		Top of Hole								
	0.6	390.2		Topsoil		4			1 ((
⊢ 1				LEAN CLAY WITH SILT, CL, 7.5YR 6	`				1 10			
- 2	2.6	388.2		yellow) to 10YR 6/4 (light yellowish bro plasticity, very hard, moist, [FILL]	own), nign		DP01	0.0 - 5.0	0.0-	3.4	N/A	
- 3				CLAYEY GRAVEL WITH SAND, GP-0	GC 7 5YR 4/4			0.0 - 0.0	5.0	0.4	-	
- 4				(brown) to 7.5YR 5/6 (strong brown), r							_	
				plasticity, moist, sand is very fine to m	edium, [FILL]							
- 5									1 🕅			
- 6	6.2	384.6							$ \rangle \rangle$		-	
- 7	7.3	383.5		FAT CLAY WITH GRAVEL, CH, 7.5YI brown) to 7.5YR 4/3 (brown), high plas					5.0		-	
- 8				moist, [FILL]		/	DP02	5.0 - 10.0	- 10.0	2.7	N/A _	
				POORLY GRADED GRAVEL WITH S								
- 9				10YR 4/4 (dark yellowish brown) to 10 dark gray), fine, loose, moist, [CCR])YR 3/1 (very				((_	
- 10				dain gray), iiio, ioose, most, [oort]					1 🕅		_	
- 11									10		-	
- 12							DP03	10.0 - 13.5	.0 - 13.	3.5	N/A _	
– 13			8 8 8 8 8 8						5		_	
	13.5	377.3		De dre de Defend /					1 10			
				Bedrock Refusal / Bottom of Hole at 13.5 Ft.							_	
											_	
											_	
											_	
			Boring	JOF-108 Offset D was backfilled with gr	out on 8/22/2019)					_	
			-	·							-	
				Environmental Sample Custody (two Spl Geotechnical Sample Custody	lit Spoons may b	e re	quired to obtai	in sufficient san	nple))	_	
			2: a,b,	c denote Split Spoon divided between Er		l Ge	otechnical Sar	mples			-	
			3: Dep	ths are reported in feet below ground sur	rtace							

								100				
		Borehole	ID N/A	1	Stantec Boring		o. JOF	-109				
	lient			see Valley Authority	Boring Location			62 N; 1,413,243				
	•	Number			Surface Eleva	tior	-	Elevatio		-	-	
	-			DEC Order	Date Started 6/19/19 Completed 6/20/19							
	•	Locatio		w Johnsonville, Humphreys Co., TN	Depth to Water N/A Date/Time N/A							
	•	or C.B		Logger C. Burton	Depth to Water <u>N/A</u> Date/Time <u>N/A</u> Drill Rig Type and ID CME 55T#1, #709							
	•			ntec Consulting Services Inc.	• • • •			551#1, #709				
			-	Sampling Tools (Type and Size ling Tools (Type and Size) N//		55 V	wo liners					
		_	•	and Size)8-1/4" HSA overdrill of b				Overdrill	l De	enth 4	41.0 ft	
				Automatic Weight 140		0"		Efficiency		ν/Α Ν/Α		
	•	le Azimu	• •	N/A	Borehole Incli		ion (from	•	_			
		ed By		rey	Approved By		L. Tucker					
					Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Don	th Ft ³	Lithology Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %	
		382.8	Grapriic	Description Top of Hole	Nock Core.		NQD /0	Null I		Nec. 11	1\c. /0	
- 0	0.0	382.7/	777	Topsoil							_	
- 1				SILTY LEAN CLAY WITH SAND, CL,	2 5Y 8/3 (nale		SS01G	0.0 - 1.5	0.0 - 1.5	0.9	5-7-7	
	1.5	381.3		→ brown) to 2.5Y 8/2 (pale brown), non	***							
- 2				medium firm, moist, [FILL]			SS02G	1.5 - 3.0	1.5 - 3.0	0.1	6-7-7	
- 3				SILTY LEAN CLAY WITH GRAVEL, (-				5.0		_	
Ü				(dark grayish brown) to 10YR 5/2 (grallow plasticity, firm, [FILL]	iyish brown),		SS03G	3.0 - 4.5	3.0	0.5	3-2-2	
- 4	4.5	378.3		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3303G	3.0 - 4.5	3.0 - 4.5	0.5	3-2-2	
- 5		0.00		CLAYEY SILT, CL-ML, 7.5YR 4/2 (bro	own), low				4.		_	
Ü				plasticity, very soft to very hard, moist	t, [FILL]		SS04G	4.5 - 6.0	1.5 - 6.0	0.3	1-WH-WH	
- 6											-	
- 7							SS05G	6.0 - 7.5	6.0 - 7.5	0.3	WH-WH-1	
	7.7	375.1					SS06aG	7.5 - 7.7				
- 8				SILTY LEAN CLAY WITH GRAVEL, (SS06bG	7.7 - 9.0	7.5 - 9	0.9	1-4-12	
- 9	9.0	373.8		(strong brown) to 10YR 5/1 (gray), no	n-plastic, hard,		220020	7.11 0.10	9.0		-	
				POORLY GRADED GRAVEL WITH (CLAY GC		SS07G	9.0 - 10.2	9.0 - 10.	1.0	21-40-50/2"	
- 10				10YR 5/8 (yellowish brown) to 10YR					0.2		_	
- 11				non-plastic, very dense			SS08G	10.5 - 11.2	10.5	0.7	46-50/2" _	
•									-11.2			
- 12									12.		-	
- 13							SS09G	12.0 - 13.1	0 - 13.	0.7	29-21-50/1"	
13			A P P P									
- 14							SS10G	13.5 - 14.4	3.5 - 1	0.9	40-50/5" -	
- 15			of play						14.4		_	
13							SS11G	15.0 - 15.4	15.0-	0.4	50/5"	
- 16									15.4		-	
- 17							SS12G	16.5 - 16.9	16.5	0.4	50/5"	
17			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						- 16.9			
40												

Page: 2 of 3

Clie	ent Borehole	e ID N/A		Stantec Borin	g N	lo. JOF	-109			
Clie	ent	Tennes	see Valley Authority	Boring Location 605,123.62 N; 1,413,243.55 E NAD27 Plant Local						
Pro	oject Numbe	r_175568	286	Surface Elevation 382.8 ft Elevation Datum NG						NGVD29
	Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth	Ft ³ Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18 - 19			POORLY GRADED GRAVEL WITH C 10YR 5/8 (yellowish brown) to 10YR 7, non-plastic, very dense (Continued)			SS13G	18.0 - 19.5	18.0 - 19.5	1.3	40-47-48
- 20			p. 201.05 (SS14G	19.5 - 21.0	19.5 - 21.0	1.3	41-31-30
- 21 - 22						SS15G	21.0 - 22.5	21.0 - 22.5	0.6	42-32-34
- 23						SS16G	22.5 - 24.0	22.5 - 24.0	0.6	14-29-49
- 24 - 25						SS17G	24.0 - 25.2	24.0 - 25.2	0.8	48-42-50/2" —
- 26	27.0 355.8					SS18G	25.5 - 27.0	25.5 - 27.0	1.5	47-43-25
- 27 - 2	2.10 000.0		POORLY GRADED GRAVEL WITH C SAND, GP-GC, 10YR 5/6 (yellowish bi 8/1 (white), very dense, moist			SS19G	27.0 - 28.5	27.0 - 28.5	1.4	18-17-19 _
- 29						SS20G	28.5 - 30.0	28.5 - 30.0	0.7	17-17-13
- 30 - 31						SS21G	30.0 - 31.5	30.0 - 31.5	1.1	14-23-35
- 32 - 33					31.5/34.5-	SS22E	31.5 - 33.0	31.5 - 33.0	0.8	12-12-20
- 34					20190620	SS23E	33.0 - 34.5	33.0 - 34.5	0.9	16-44-38
- 35 - 36						SS24G	34.5 - 36.0	34.5 - 36.0	1.1	14-16-30
- 37					36.0/39.0-2	SS25E	36.0 - 37.5	36.0 - 37.5	1.0	25-16-10
- 38 - 39					0190620	SS26E	37.5 - 39.0	37.5 - 39.0	0.4	30-24-16 -
- 40						SS27G	39.0 - 40.5	39.0 - 40.5	1.3	14-17-20 _
- 41 <u>-</u>	41.1 341.7					SS28aG SS28bG	40.5 - 41.1 41.1 - 42.0	40.5 - 42.0	1.1	15-14-7 -

Page: 3 of 3

Client E	Borehole	ID N/A	A	Stantec Boring No. JOF-109							
Client		Tennes	ssee Valley Authority	Boring Location 605,123.62 N; 1,413,243.55 E NAD27 Plant Loc							
Project	Number	175568	3286 S	Surface Elevation 382.8 ft Elevation Datum NO							
ı	_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI			
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %			
- 43 - 44 <u>44.0</u> - 45 - 46 46.5	338.8		SANDY LEAN CLAY WITH GRAVEL, CL (dark yellowish brown) to 10YR 6/3 (pale to medium plasticity, very soft to very har (Continued) FAT CLAY, CH, 10R 5/3 (weak red), med plasticity, very hard, moist, iron oxide sta 5G 5/2 metallic appearance on 10R 5/3	brown), low rd, moist	SS29G SS30aG SS30bG SS31G	6 43.5 - 44.0 6 44.0 - 45.0	1.0	22-13-17 _ 13-9-11 _ 9-11-15 _			

No Refusal / Bottom of Hole at 46.5 Ft.

^{1:} E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody

^{2:} a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples 3: Depths are reported in feet below ground surface

C	lient E	Borehole	ID N/A	Α	Stantec Boring	g N	lo. JOF-	-109-Pre			
C	lient		Tennes	ssee Valley Authority	Boring Location	on	605,128.2	24 N; 1,413,237	.64 [E NAD27	Plant Local
Pı	oject	Number	175568	3286	Surface Eleva	tio	n <u>381.5</u> ft	Elevation	n D	oatum_r	NGVD29
Pı	oject	Name	JOF TE	DEC Order	Date Started	_	5/21/19	Comple	ted	5/21/	19
Pı	oject	Location	n Ne	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	16.0 ft	Date/Tii	me	5/21/	19
	•	or D. M		Logger D. Mihalek	Depth to Wate	er _	N/A	Date/Tii	me	N/A	
	_			o Logic (Subcontractor)	Drill Rig Type						
			-	I Sampling Tools (Type and Size)	DT37 Dual Tube	e So	oil Sampling	System with 60)" P\	/C Liners	<u> </u>
		_		ling Tools (Type and Size) N/A							
		_		and Size) N/A				Overdrill			N/A
			• •	GH70 Direct Push Weight N/A	Drop <u>N</u>			Efficiency		N/A	
		le Azimu		N/A	Borehole Inclin		•	· —	N/A	Α	
R	eview	ed By _	K. Ca	rey	Approved By		C. Millhollin				
	l	Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept	h Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
_ 0	0.0	381.5		Top of Hole					Ц.		
				CLAYEY SILT, ML, 10YR 4/4 (dark ye	llowish brown),				1 (((
- 1				medium plasticity, soft, moist, [FILL]					1 111		_
- 2											_
_							DP01	0.0 - 5.0	0.0 - 5	2.1	N/A
- 3									0		-
- 4									(((_
- 5	5.0	376.5							₩		_
				FAT CLAY, CH, 5Y 3/1 (very dark gray plasticity, very soft, moist, [FILL]	y), high				(((
- 6				plasticity, very sert, melot, [i 122]					1 (((_
- 7											_
							DP02	5.0 - 10.0	.0-10	NR	N/A
- 8									Ö		-
- 9											_
									{((
- 10	10.0	371.5		FAT CLAV CH EV 2/4 (von dork gray	y) high				1 ##		_
				FAT CLAY, CH, 5Y 3/1 (very dark gray plasticity, very soft, wet	y), nign				(((
- 11									(((_
- 12	40.5	0000							a ((_
-	12.5	369.0		SANDY CLAY, CL, 10YR 5/6 (yellowis	sh brown) low	.	DP03	10.0 - 15.0	.0 - 15.	3.5	N/A
- 13				to medium plasticity, firm, moist, chert					0		_
- 14				(coarse) embedded throughout)))		_
	15.0	266 5									
- 15	15.0	366.5	///	SANDY CLAY, CL, 10YR 5/6 (yellowis	sh brown). low					1	_
- 16	7			plasticity, stiff, wet							_
- 17									15.0		-
							DP04	15.0 - 20.0) - 20.0	NR	N/A

Page: 2 of 2

Client E	Borehole ID	O N/A		Stantec Boring	g N	lo. JOF-	109-Pre		
Client		Tenness	see Valley Authority	Boring Location			4 N; 1,413,237.6	4 E NAD27	Plant Local
Project	Number _	1755682	286	Surface Elevation 381			Elevation	NGVD29	
	Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation G	Graphic	Description	Rock Core:		RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19 - 20.0	361.5		SANDY CLAY, CL, 10YR 5/6 (yellow plasticity, stiff, wet (Continued)	ish brown), low					
-20			Bedrock Refusal / Bottom of Hole at 20.0 Ft.						
		G = 0 2: a,b,c	Environmental Sample Custody (two Spi Geotechnical Sample Custody c denote Split Spoon divided between Er ths are reported in feet below ground su	nvironmental and G				e)	- -
									-
									_
									•

		Borehole	ID N/A		Stantec Boring		o. JOF	-110				
	lient			see Valley Authority	Boring Location			27 N; 1,412,210				
	-	Number			Surface Eleva	tior		Elevatio		-		
	-	Name			Date Started 9/10/19 Completed 9/13/19						19	
	•	Location		w Johnsonville, Humphreys Co., TN	Depth to Water N/A Date/Time N/A							
	•	or S. St		Logger S. Stanley	Depth to Water N/A Date/Time N/A Drill Rig Type and ID Geoprobe 8150LS							
	•			W Drilling (Subcontractor) Sampling Tools (Type and Size)			J ID Geor	JODE 0 130L3				
			-	ling Tools (Type and Size) N/A								
		•		and Size) 4" x 10" Sonic				Overdrill	De	pth 5	57.5 ft	
		_		N/A Weight N/A	Drop _N	I/A		Efficiency		 N/A		
Е	oreho	le Azimu	th	N/A	Borehole Inclin	nati	on (from	Vertical)	N/	A		
F	Review	ed By	K. Ca	rey	Approved By		P. Dunne					
	I	Lithology			Overburden:	S	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %	
- 0	0.0	384.0	0.70.70.70	Top of Hole								
Ü	1.0	383.0		Crushed stone, [FILL]								
- 1	1.0	363.0	0202020	FAT CLAY SOME SILT, CH, 7.5YR 5/	6 (strong						=	
- 2				brown), low to medium plasticity, firm,							-	
	2.8	381.2										
- 3				CLAYEY SILTY SAND LITTLE GRAV	EL, CL, 7.5YR						-	
- 4	4.4	379.6		4/3 (brown), non-plastic, dry, [FILL]							-	
- 5				CLAYEY SILT, ML, 7.5YR 2.5/1 (black	κ), non-plastic,		RS01	0.0 - 10.0	0.0 - 10.1	8.5	N/A -	
3				dry, [CCR]			11001	0.0 - 10.0	10.0	0.5	IN/A	
- 6											-	
- 7											-	
- 8											-	
- 9											-	
- 10	10.0	374.0							Ш		_	
10				CLAYEY SILTY SAND LITTLE GRAV								
- 11				5/6 (strong brown), non-plastic, dry, [C	,CRJ						-	
- 12											-	
	13.0	371.0										
- 13		0		SANDY POORLY GRADED SAND W	ITH SILT						-	
- 14				LITTLE SILT, SP, 7.5YR 4/2 (brown),	moist, [CCR]						-	
- 15							RS02	10.0 - 20.0	10.0-	9.3	N/A -	
10							NOUZ	10.0 - 20.0	.0 - 20.0	9.5	IN/A —	
- 16	16.4	367.6									-	
- 17				SANDY POORLY GRADED SAND W							=	
				LITTLE SILT, SP, 7.5YR 2.5/1 (black),	, moist, [CCR]							
- 18											-	
40			• • • • •						Ш			

С	lient E	Borehole	ID N/A	·	Stantec Boring	g N	lo. JOF -	-110			
С	lient		Tennes	see Valley Authority	Boring Location			27 N; 1,412,210.	58	E NAD27	Plant Local
P	roject	Number	175568	286	Surface Eleva	atio	n <u>384.0 ft</u>	Elevation	n E	Datum <u>r</u>	NGVD29
		Lithology			Overburden:	;	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	_	RQD %	Run Ft		Rec. Ft	Rec. %
- 19									П		-
- 20	20.0	364.0		SILTY SILT, ML, 7.5YR 2.5/1 (black),	wet, [CCR]	-			Н		_
- 21											-
- 22											-
- 23											=
- 24 - 25							RS03	20.0 - 30.0	20.0 - 30.0	7.5	N/A —
- 26							11000	20.0 00.0	30.0	7.0	-
- 27	27.6	356.4									_
- 28	21.0	330.4		FAT CLAY TRACE SILT, CH, 2.5Y 4/	3 (olive brown),						-
- 29				medium plasticity, firm to hard, moist							-
- 30	30.0	354.0		No Recovery					Н		_
- 31			$\setminus \ / $,							-
- 32			$ \setminus / $								-
- 33			$ \setminus / $								-
- 34 - 35			$ \ \ \ $				RS04	30.0 - 40.0	30.0 - 40.0	0.0	N/A —
- 36			$ \ \ \ \ \ $				K304	30.0 - 40.0	. 40.0	0.0	IN/A —
- 37			$ \ / \ $								-
- 38			/								_
- 39											-
- 40	40.0	344.0		No Recovery							-
- 41			$ \setminus / $	INO INECOVELY							-
- 42											-
- 43			$ / \setminus $								-
- 44											_

Page: 3 of 3

С	lient E	Borehole	ID N/A		Sta	antec Borin	g N	lo. JOF	-110			
c	lient		Tennes	see Valley Authority		ring Locatio			27 N; 1,412,21	0.58	E NAD27	7 Plant Local
P	roject	Number	175568	286	Su	rface Eleva	tio	n <u>384.0 ft</u>	Elevati	on [Datum_	NGVD29
		Lithology				Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 45				No Recovery (Continued)				RS05	40.0 - 50.0	40.0 - 50.0	0.0	N/A -
- 46 - 47			$ \cdot $									-
- 48			$ \bigwedge $									-
- 49	50.0	334.0										-
- 50 - 51	50.0	334.0		LEAN CLAY LITTLE GRAVEL, CL, 7. brown), low to medium plasticity, soft		, -						-
- 52	52.5	331.5						RS06	50.0 - 55.0	50.0 - 55	5.0	N/A
- 53	53.8	330.2		LEAN CLAY LITTLE GRAVEL, CL, 7. gray), low to medium plasticity, soft to					00.0	55.0		-
- 54 - 55	55.0	329.0		LEAN CLAY TRACE SAND, CL, 7.5Y brown), non to low plasticity, firm to h								_
- 56	56.5	327.5		CLAYEY POORLY GRADED SAND \ LITTLE GRAVEL, SP-SC, 7.5YR 4/1 non-plastic, very soft to soft, wet								-
- 57 - 58				LEAN CLAY TRACE SAND, CL, 7.5Y non-plastic, firm, moist	'R 5/4	l (brown),		RS07	55.0 - 60.0	55.0 - 60.0	5.0	N/A
- 59												-
60	60.0	324.0		No Refusal / Bottom of Hole at 60.0 Ft.								
												-
												-
			Monito	ring well installed in boring. Refer to JOI	F-110	Well Installati	on	Detail for we	ell construction	infor	mation.	- -
			G =	Environmental Sample Custody (two Sp Geotechnical Sample Custody		-				mple)	-
			2: a,b, 3: Dep	c denote Split Spoon divided between E ths are reported in feet below ground su	nviror ırface	nmental and G	eot	echnical Sa	mples			-
												-

Crushed stone, [FILL] 2		\!'		ID N/A		0, , ,		IOE	110Al+1			
Project Number			Borehole								E NA DOZ	
Project Name			NI			_						
Project Location		•					tion	-				•
Inispector		-										
Drilling Contractor		-				•						19 09:44
Overburden Drilling and Sampling Tools (Type and Size)		•				•				me	N/A	
Na		_			•	• • •				rs		
Overdrill Tooling (Type and Size)				•	,							
Sampler Hammer Type			-		· · · · · · · · · · · · · · · · · · ·				Overdrill	De	epth !	N/A
Borehole Azimuth Reviewed By K. Carey Approved By C. Millholin			_		-	Drop N	I/A					
Depth Ft Elevation Description Description Rock Core: ROD % Run Ft Rec. Ft Blows/PSI					NI/A	Borehole Incli	natio	on (from	Vertical)	N/	A	
Depth Ft Elevation Graphic Description Rock Core: RQD % Run Ft Rec. Ft Rec. %	F	Review	ed By	K. Ca	rey	Approved By		C. Millhollin	1			
Depth Ft Elevation Graphic Description Rock Core: RQD % Run Ft Rec. Ft Rec. %			Litholoav			Overburden:	s	ample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
0 0 0 378.3 Top of Hole Crushed stone, [FILL] 2 2.2 376.1 SILTY POORLY GRADED SAND WITH GRAVEL, SP. 10YR 3/2 (very dark gray/sh brown) to 7.5YR 2.5/1 (black), coarse, loose, moist, [CCR] DP01 0.0 - 5.0 S 3.3 N/A 3.3 N/A DP02 5.0 - 10.0 S 3.3 N/A DP02 5.0 - 10.0 S 3.3 N/A 11.7 366.6 G GRAVELLY POORLY GRADED SAND WITH SILT WITH CLAY. SP. 2.5Y 6/4 (light olive brown) to 2.5Y 2.5/1 (black), medium to coarse, wet, [CCR] DP03 10.0 - 15.0 S 3.3 N/A SILTY POORLY GRADED SAND WITH GRAVEL, SP. fine to coarse, loose, wet, [CCR] DP04 15.0 - 20.0 S 4.2 N/A 4.2 N/A	Der		I	Graphic	Description							
Crushed stone, [FILL] Crushed stone, [FILL] Crushed stone, [FILL] SILTY POORLY GRADED SAND WITH GRAVEL, SP, 10YR 3/2 (very dark grayish brown) to 7.5YR 2.5/1 (black), coarse, loose, moist, [CCR] DP01 0.0 - 5.0 3.3 N/A N/A DP02 5.0 - 10.0 SILTY POORLY GRADED SAND WITH SILT WITH CLAY, SP, 2.5Y 5/4 (light clive brown) to 2.5Y 2.5/1 (black), medium to coarse, wet, [CCR] DP03 10.0 - 15.0 SILTY POORLY GRADED SAND WITH GRAVEL, SP, fine to coarse, loose, wet, [CCR] DP04 15.0 - 20.0 4.2 N/A DP04 15.0 - 20.0 4.2 N/A					'	1 1 2 2 1 2 2 1 2 1						
2 2.2 376.1 SILTY POORLY GRADED SAND WITH GRAVEL, SP, 10YR 3/2 (very dark grayish brown) to 7.5YR 2.5/1 (black), coarse, loose, moist, [CCR] DP01 0.0 - 5.0	- 0	0.0		0303030	•					1))		_
SILTY POORLY GRADED SAND WITH GRAVEL, SP. 10YR 3/2 (very dark grayish brown) to 7.5YR 2.5/1 (black), coarse, loose, moist, [CCR] DP01 0.0 - 5.0	- 1									$ \rangle $		-
SILTY POORLY GRADED SAND WITH GRAVEL, SP, 10YR 3/2 (very dark grayish brown) to 7.5YR 2.5/1 (black), coarse, loose, moist, [CCR] DP01 0.0 - 5.0	- 2	2.2	376.1									-
- 4	•				SILTY POORLY GRADED SAND WIT	H GRAVEL,		DP01	0.0 - 5.0	.0 - 5.0	3.3	N/A
DP02 5.0 - 10.0	- 3			· : · : ·		•				((-
- 6	- 4				2.5/1 (black), coarse, loose, moist, [CC	,K]				1 ((-
- 6	- 5			· · · · ·						1 1/4	4	_
DP02 5.0 - 10.0 5										1 ((
DP02 5.0 - 10.0	- 6			-:-: <u>-</u>						1 ()		-
- 8	- 7								- 0 400	5.0		-
- 9	- 8							DP02	5.0 - 10.0	- 10.0	3.3	N/A
- 10											\ <u> </u>	
11.7 366.6 GRAVELLY POORLY GRADED SAND WITH SILT WITH CLAY, SP, 2.5Y 5/4 (light olive brown) to 2.5Y 2.5/1 (black), medium to coarse, wet, [CCR] 15.8 362.5 SILTY POORLY GRADED SAND WITH GRAVEL, SP, fine to coarse, loose, wet, [CCR] DP03 10.0 - 15.0 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	- 9											-
11.7 366.6	- 10									1 (_
11.7 366.6	- 11											-
13 WITH CLAY, SP, 2.5Y 5/4 (light olive brown) to 2.5Y 2.5/1 (black), medium to coarse, wet, [CCR] 15.8 362.5		11.7	366.6							1 ((
- 13	- 12							DP03	10 0 - 15 0	10.0-	33	N/A
- 14	- 13 <u>`</u>	arraycolorgical						2. 00	10.0	15.0		-
15.8 362.5 SILTY POORLY GRADED SAND WITH GRAVEL, SP, fine to coarse, loose, wet, [CCR] DP04 15.0 - 20.0 SILTY POORLY GRADED SAND WITH GRAVEL, SP, fine to coarse, loose, wet, [CCR]	- 14				,	•				$ \rangle \rangle$)	-
15.8 362.5 SILTY POORLY GRADED SAND WITH GRAVEL, SP, fine to coarse, loose, wet, [CCR] DP04 15.0 - 20.0 SILTY POORLY GRADED SAND WITH GRAVEL, SP, fine to coarse, loose, wet, [CCR]										$ \rangle $		
- 16	- 15	15.0	262.5								1	_
- 17	- 16	13.0	302.3		SILTY POORI Y GRADED SAND WIT	H GRAVFI						-
- 18 - 18 - 19 - 20 -	- 17											-
- 19 - 20				·				DP04	15.0 - 20.0	5.0 - 20	4.2	N/A
	- 18			····).0		-
	- 19			- : · : ·								-
	_ 20										<u> </u>	_
	20	20.7	357.6							$ \rangle \rangle$		

Clier	t Borehol	e ID N/	A	Stantec Boring	No. JOF	-110Alt1		
Clier	nt	Tenne	ssee Valley Authority	Boring Locatio		83 N; 1,412,298.1	9 E NAD27	Plant Local
Proje	ect Numbe	er <u>17556</u>	8286	Surface Eleva	tion 378.3 ft	Elevation	Datum_I	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth F	t ³ Elevatio	n Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 21								_
- 22			CLAYEY SILT WITH SAND, ML, 5Y and 10YR 3/1 (very dark gray), low p			20.0		_
- 23			very soft, wet, [CCR] (Continued)		DP05	20.0 - 25.0	4.8	N/A -
- 24								-
- 25							₩	_
26 26							((()	-
- 27	.7 351.6		CLAYEY SILT WITH SAND, ML, 2.5\ gray), low plasticity, wet, [CCR]	Y 4/1 (dark		29.0		_
- 28			SILTY LEAN CLAY WITH SAND, CL brown) to 2.5Y 5/3 (light olive brown)		DP06	25.0 - 30.0	4.5	N/A _
- 29			plasticity, hard to firm, moist to wet, s	and lenses				_
- 30								_
- 31								_
- 32 - 33					DP07	30.0 - 35.0	4.0	N/A
- 34								_
- 35	.6 343.7		SILTY LEAN CLAY WITH SAND, CL	,))) }	_
- 36			grayish brown) to 10YR 3/3 (dark bro to low plasticity, moist to wet, with ler					_
- 37			gravel, [FILL]		DP08	35.0 - 40.0	3.4	N/A
- 38 38	.3 340.0					40.0		-
- 39	0 000 0		POORLY GRADED GRAVEL WITH SAND, GP-GM, 5Y 2.5/1 (black), nor					_
40 40	.0 338.3	<u> " </u>	medium dense, wet, [FILL]				V(()	
			No Refusal / Bottom of Hole at 40.0 Ft.					-
								_
								_
		Borin	g JOF-110Alt1 was backfilled with grout o	on 8/22/2019				_
			-					_
		G :	 Environmental Sample Custody (two Sp Geotechnical Sample Custody denote Split Spoon divided between E 				le)	-
		3: De	pths are reported in feet below ground su	urface	ootooriiiloai Oal	шүшэ		_
								_

	N: 4 F) l l -	ID N/A		Otanta - Dania	NIOI	F_110_Dro		
		Borehole			Stantec Boring			0 5 114 507	
	Client	N		ssee Valley Authority	Boring Location	-	9.11 N; 1,412,209.2		
	-	Number			Surface Eleva	•		-	
	•	Name			Date Started				
	•	Location		w Johnsonville, Humphreys Co., TN	Depth to Water				19 11:57
	•	or D. M		Logger <u>D. Mihalek</u> o Logic (Subcontractor)	Depth to Wate Drill Rig Type		Date/Tim	e N/A	
	_			Sampling Tools (Type and Size)	0 7.			PVC Liners	
			•	ling Tools (Type and Size) N/A		c con campii	ng Cystem with 60	I VO LINCIS	<u>'</u>
		•	•	and Size) N/A			Overdrill [)enth	 N/A
		_		GH70 Direct Push Weight N/A	Drop N	I/A	Efficiency	N/A	
		le Azimu		N/A	Borehole Incli		•	N/A	
		ed By	K. Ca	rey	Approved By	•	· —		
		Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dei	oth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
Del	0.0	383.9	Grapino	Top of Hole	Nock Core.	T QD 70	Ruitt	1100.11	1100. 70
- 0	0.5	383.4	111111	SILTY SAND, SM, 5Y 2.5/1 (black), ve	rv fine. loose.			b)))	
- 1				moist, [CCR]	/				_
				Geofabric penetrated at 0.5'				((()	
- 2				SILT, ML, 7.5YR 4/3 (brown), low plast	ticity, dry			(((_
- 3				No recovery from 2.0' to 5.0'		DP01	0.0 - 5.0	2.0	N/A _
3								<i>\\\</i>	
- 4									-
- 5	5.0	378.9						 	
- 5				POORLY GRADED SAND, SP, 5Y 2.5	i/1 (black), fine,			$\overline{\mathbb{M}}$	_
- 6				loose, moist, [CCR])))]	-
				1-in lens of CCR at 6.0'					
- 7						DP02	5.0 - 10.0	3.5	N/A
- 8							0.0 10.0	(()	-
				No recovery from 8.3' to 10'				<u> </u>	
- 9								K((I	-
- 10	10.0	373.9						W I	_
	<u></u>			POORLY GRADED SAND, SP, 5Y 2.5 loose, wet, [CCR]	i/1 (black), fine,			K((
- 11·	¥			loose, wet, [CCR]				<i>\\\</i>	_
- 12									_
						DP03	10.0 - 15.0	5.0	N/A
- 13							80	[]	-
- 14									_
17			-:-: <u> </u>					((()	
- 15								 	_
_ 10								<u> </u>	
- 16								<u> </u>	_
- 17							वि	<u> </u>	-
						DP04	15.0 - 20.0	5.0	N/A

Clie	lient Borehole ID N/A lient Tennessee Valley Authority					oring I	No. JOF	-110-Pre			
Clie	ent		Tennes	see Valley Authority	Boring Lo			11 N; 1,412,209.	20 E	NAD27	Plant Local
Pro	ject	Number	175568	286	Surface E	levatio	on <u>383.9</u> ft	Elevatio	n Da	atum_ N	NGVD29
	L	ithology			Overbur	den:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth	Ft ³	Elevation	Graphic	Description	Rock C	ore:	RQD %	Run Ft		Rec. Ft	Rec. %
- 18				POORLY GRADED SAND, SP, 5Y 2.5	5/1 (black), fir	ie,			$\overline{\mathbb{M}}$		-
- 19				loose, wet, [CCR] (Continued)))) (((-
- 20									₩		_
- 21									$\langle \rangle \rangle$		-
- 22							DP05	20.0 - 25.0	20.0 - 2	NR	– N/A
- 23									5.0		-
- 24											-
- 25											_
- 26											-
- 27							DP06	25.0 - 30.0	25.0 - 30.0	NR	N/A
- 28 - 29											
- 30											
- 31 3	31.0	352.9									-
- 32				FAT CLAY, CH, 10YR 4/4 (dark yellow high plasticity, stiff, moist, [FILL]	wish brown),				30.0		-
- 33							DP07	30.0 - 35.0) - 35.0	5.0	N/A -
- 34											-
35 3	35.0	348.9		No Refusal /					W		-
				Bottom of Hole at 35.0 Ft.							-
											-
											-
											-
			G =	Environmental Sample Custody (two Spl Geotechnical Sample Custody					ple)		
			2: a,b,	c denote Split Spoon divided between Er ths are reported in feet below ground su	nvironmental a	and Geo	technical Sa	mples			_

	l: 4 F) l l -	ID N//		Ctauta - Davin	. No. IOF	_111 Offso	+ Λ	\	
l		Borehole			Stantec Boring					
	lient	—		see Valley Authority	Boring Location	-				
l	-	Number			Surface Eleva				-	
	,			DEC Order	Date Started	-	Comple			9
	•	Location		w Johnsonville, Humphreys Co., TN	Depth to Wate					
	•	or C. Bu		Logger C. Burton	Depth to Wate		Date/Tii	me	N/A	
	_			o Logic (Subcontractor)	Drill Rig Type					
			-	Sampling Tools (Type and Size		OD with 60" F	VC sample line	rs		
		_	-	ling Tools (Type and Size) N/A	4		0	D-	4l. N	N/A
		_		and Size) N/A Weight N/A	Duan N	1/^	Overdrill		:ptn <u>'</u> √A	N/A
				N/A Weight N/A	2.56 _		Efficiency			
		le Azimu	uı K. Ca		Borehole Inclin	•	·	111/7		
	eview	ed By _	N. Ca	iey	Approved By	C. WIIIITOIIII	<u> </u>			
		Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	381.1		Top of Hole				1		_
	0.3	380.8		Topsoil				1 ((
- 1	1.2	379.9		FAT CLAY WITH GRAVEL, CH, 10YF	` -			1 1/1		-
- 2	2.2	378.9		yellowish brown), medium to high plas	sticity, moist,))		
_	2.2	370.9		FAT CLAY, CH, 10YR 6/8 (brownish y	vollow) to 10VP	DP01	0.0 - 5.0	0.0 - 5	3.2	N/A
- 3				8/1 (white), high plasticity, moist, [FILI	'''			5.0		_
١. ا			·	POORLY GRADED SAND WITH GRA	AVEL. SP.			((
- 4				10YR 3/4 (dark yellowish brown) to 2.				((_
- 5				(black), moist, [CCR]				1 14	4	_
	0.4	075.0						((
- 6	6.1	375.0	• • • •	GRAVELLY POORLY GRADED SAN	D WITH SILT			1 1/1		-
- 7			· · · · · · · · · · · · · · · · · · ·	SP, 5Y 2.5/1 (black), moist, [CCR]	D WITH SILI,					_
				, , , -		DP02	5.0 - 10.0	5.0-16	3.2	N/A
- 8								0.0		_
- 9										
- 9								((
10	10.0	371.1	••••					1 1//		
				No Refusal / Bottom of Hole at 10.0 Ft.						
				Bottom of Field at 10.0 Ft.						_
										_
										-
										_
										_
				Environmental Sample Custody (two Sp Geotechnical Sample Custody	lit Spoons may be re	equired to obta	in sufficient sam	nple))	
1			2: a,b,	c denote Split Spoon divided between Er		eotechnical Sa	mples			_
			3: Dep	oths are reported in feet below ground su	пасе					-

1.3 381.1 LEAN CLAY WITH SILT, CL, 2.5Y 8/1 (white) to 107K 6/4 (light yellowish brown), low to medium plasticity, moist, [FILL] DP01 0.0 - 5.0 0.0 -		lier-t F	Danal I :	ın	N1/A	<u> </u>	Ctanta - Davis	·	ı. IOF	-111 Offe	+ F	2	
Project Number			orenoie			_							Diant Local
Project Name			Number				_						
Project Location		-						ıuO	-			-	-
Depth to Water		-						- >r					
Drilling Contractor		-		_	IVC		•	_					711.30
Noverburden Drilling and Sampling Tools (Type and Size)		•			Ge		•	_			IIIC		
Na		-									rs		
Overdrill Tooling (Type and Size) N/A				-						- '			
Sampler Hammer Type			•		•	· · · · · · · · · · · · · · · · · · ·				Overdrill	De	epth !	N/A
Reviewed By K. Carey Approved By C. Millhollin			-			•	Drop N	I/A		Efficiency		 N/A	
Depth Ft	В	oreho	le Azimu	th _		N/A	Borehole Incli	na	tion (from	Vertical)	N/	A	
Description Rock Core RQD % Run Ft Rec. Ft Rec. %	R	eview	ed By	K.	Ca	rey	Approved By		C. Millhollir	1			
Description Rock Core RQD % Run Ft Rec. Ft Rec. %		ı	Lithology				Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Top of Hole Topsoil Top of Hole Top of Hole Topsoil Top of Hole Top solid Top sol	Dep		I	Graph	nic	Description	Rock Core:					Rec. Ft	Rec. %
1.3 381.9 Topsoil LEAN CLAY WITH SILT, CL, 2.5Y 8/1 (white) to 10/YR 6/4 (light yellowish brown), low to medium plasticity, moist, [FILL] LEAN CLAY, CL, 10YR 6/6 (brownish yellow) to 2.5Y /7/1 (light gray), medium plasticity, moist, [FILL] GRAVELLY POORLY GRADED SAND WITH SILT, SP, 10YR 4/4 (dark yellowish brown) to 2.5YR 3/2 (dusky red), moist, with coal, [CCR] SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 Silty With Sand, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty With Sand, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty With Sand, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty With Sand, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 Silty POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04			382.4			<u>'</u>	<u> </u>						
DP01	- U		381.9		郹	Topsoil							_
DP01	- 1	1.3	381.1	1//	4	LEAN CLAY WITH SILT, CL, 2.5Y 8/1	(white) to)		-
2.9 379.5 LEAN CLAY, CL, 10YR 6/6 (brownish yellow) to 2.5Y /7/1 (light gray), medium plasticity, moist, [FILL] GRAVELLY POORLY GRADED SAND WITH SILT, SP, 10YR 4/4 (dark yellowish brown) to 2.5YR 3/2 (dusky red), moist, with coal, [CCR] SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP03 10.0 - 15.0 SILTY WITH SAND, ML, 7.5YR 4/1 (dark gray), mon-plastic, moist to wet, [CCR] DP04 15.0 - 20.0 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR]	- 2					1	medium /				0		-
77/ (light gray), medium plasticity, moist, [FILL] GRAVELLY POORLY GRADED SAND WITH SILT, SP, 10YR 4/4 (dark yellowish brown) to 2.5YR 3/2 (dusky red), moist, with coal, [CCR] 6.8 375.6 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray)), moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 SILT WITH SAND, ML, 7.5YR 4/1 (dark gray), non-plastic, moist to wet, [CCR] SILTY POORLY GRADED GRAVEL WITH SAND, CP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0 A.9 4.9 N/A	•	2.9	379.5			•			DP01	0.0 - 5.0	0 - 5.0	4.1	N/A
GRAVELLY POORLY GRADED SAND WITH SILT, SP, 10YR 4/4 (dark yellowish brown) to 2.5YR 3/2 (dusky red), moist, with coal, [CCR] 6.8 375.6 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 5.0 - 10.0 5.0 - 10.0 5.0 - 10.0 5.0 - 10.0 5.0 - 10.0 5.0 - 10.0 5.0 - 10.0 6.8 3.7 N/A DP03 10.0 - 15.0 6.8 SILTY WITH SAND, ML, 7.5YR 4/1 (dark gray), non-plastic, moist to wet, [CCR] DP04 15.0 - 20.0 6.8 A.9 N/A DP04 15.0 - 20.0 6.8 A.9 N/A	- 3				$ \cdot $,					((•
SP, 10YR 4/4 (dark yellowish brown) to 2.5YR 3/2 (dusky red), moist, with coal, [CCR] SP, 10YR 4/4 (dark yellowish brown) to 2.5YR 3/2 (dusky red), moist, with coal, [CCR] SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 5.0 - 10.	- 4				•:		<u> </u>				1 ((-
(dusky red), moist, with coal, [CCR] 6.8 375.6	- 5				$ \cdot $						1 14		_
6.8 375.6 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray). moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					• :						1 11		
SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP02 5.0 - 10.0 DP02 5.0 - 10.0 DP02 5.0 - 10.0 DP02 3.7 N/A 3.7 N/A 10.0 - 15.0 DP03 10.0 - 15.0 DP04 15.0 - 20.0 SILTY POORLY GRADED GRAVEL WITH SAND, ML, 7.5YR 4/1 (dark gray), non-plastic, moist to wet, [CCR] DP04 15.0 - 20.0 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR]	- 6	6.8	375.6		\cdot						1 1		-
GP-GM, 2.5Y 3/1 (very dark gray) to 5Y 3/1 (very dark gray), moist to wet, with coal fragments, [CCR] DP03	- 7	0.0	070.0	0 0	Ŧ	SILTY POORLY GRADED GRAVEL W	/ITH SAND,				5.0		
dark gray), moist to wet, with coal fragments, [CCR] DP03 10.0 - 15.0	- 8				┇				DP02	5.0 - 10.0	- 10.0	3.7	N/A
- 10				8 8	•	dark gray), moist to wet, with coal fragr	nents, [CCR]						
DP03 10.0 - 15.0	- 9				🕻						(((•
DP03 10.0 - 15.0	- 10			8 8	•						1 14		-
DP03 10.0 - 15.0	– 11 –			8 8	🕻						((
DP03 10.0 - 15.0	-	 		8 8	┇						1 (((
- 13	- 12				 				DP03	10.0 - 15.0	10.0-	25	N/A
- 15	- 13			8 8	#				D1 00	10.0 10.0	15.0	2.0	
- 15	- 14			8 8 9)		-
15.6 366.8 Solution 16 SILT WITH SAND, ML, 7.5YR 4/1 (dark gray), non-plastic, moist to wet, [CCR] 17 17.3 365.1 SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] 18 OP-GM, 10YR 2/1 (black), [CCR]				8 8	┇ ┇ │)))	
SILT WITH SAND, ML, 7.5YR 4/1 (dark gray), non-plastic, moist to wet, [CCR] SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR] DP04 15.0 - 20.0	- 15	15.6	366.8									 	_
17.3 365.1	- 16		-	∏∏Ť	П	SILT WITH SAND, ML, 7.5YR 4/1 (dark	k gray),						-
SILTY POORLY GRADED GRAVEL WITH SAND, GP-GM, 10YR 2/1 (black), [CCR]	- 17	17.2	265 4			non-plastic, moist to wet, [CCR]							
- 18 GP-GM, 10YR 2/1 (black), [CCR]		17.3	305.1		•	SILTY POORLY GRADED GRAVEL W	/ITH SAND		DP04	15.0 - 20.0	5.0 - 20	4.9	N/A
	- 18						THE OFFICE,				0.0		-
	- 19			8 8	‡						1 11		-
	_ 20	20.2	362.2										_
	20	25.2		\parallel	\parallel								

Client Borehole ID N/A		Sta	ıntec Borinឲ	g N	o. JOF-	111 Offse	t B	}	
Client Tenness	see Valley Authority	Bor	ring Locatio	on	605,021.8	36 N; 1,412,207	7.96	E NAD27	Plant Local
Project Number 1755682	286	Sur	rface Eleva	tior	382.4 ft	Elevatio	on D	atum <u>ı</u>	NGVD29
Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³ Elevation Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 21 - 22 - 23 23.5 358.9	SILT WITH SAND, ML, 2.5Y 3/1 (very to low plasticity, moist to wet, [CCR]	-			DP05	20.0 - 25.0	20.0 - 25.0	5.0	_ N/A _
- 24 - 25 - 26 26.4 356.0	SILTY LEAN CLAY WITH GRAVEL, (brown) to 2.5Y 2.5/1 (black), low to r plasticity, moist								_
- 27 - 28 28.4 354.0	SANDY POORLY GRADED GRAVEI WITH CLAY, GP-GM, 2.5Y 4/3 (olive				DP06	25.0 - 30.0	25.0 - 30.0	5.0	N/A _
- 29 - 30 30.1 352.3	POORLY GRADED GRAVEL WITH S 10YR 4/2 (dark grayish brown) to 10 dark gray), non-plastic, moist to wet	YR 3/1	(very						_
- 31 - 32	SILTY FAT CLAY WITH SAND, CH, (yellowish brown) to 5Y 7/1 (light gray high plasticity, moist				DP07	30.0 - 35.0	30.0 - 3	3.7	_ _ N/A
- 33 - 34 - 35 - 36 - 37 37.3 345.1							5.0 35		- - - -
- 38 - 39 39.2 343.2	CLAYEY POORLY GRADED GRAVE GP-GC, 10YR 4/4 (dark yellowish browet				DP08	35.0 - 40.0	5.0 - 40.0	5.0	N/A _
40.0 342.4	SILTY LEAN CLAY WITH SAND, CL, (brownish yellow) to 10YR 7/1 (light g								_
	No Refusal / Bottom of Hole at 40.0 Ft.								_
									- -
G = 2: a,b,c	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground su	nviron	-				nple)		- - -

	Client E	Borehole	ID N/A	<u> </u>	Stantec Boring	g No	o. JOF -	-111 Offse	t C	;	
	Client		Tennes	see Valley Authority	Boring Location	on	604,942.3	32 N; 1,412,173	3.07	E NAD27	Plant Local
F	Project	Number	175568	286	Surface Eleva	tion	385.3 ft	Elevatio	on C	atum_n	NGVD29
F	roject	Name	JOF TO	DEC Order	Date Started		8/22/19	Comple	ted	8/22/1	9
F	Project	Location	n Nev	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	13.7 ft	Date/Ti	me	8/22/1	9 13:25
	•	or C. B			Depth to Wate	er _	N/A	Date/Ti	me	N/A	
	_				Drill Rig Type						
	Overbu	ırden Dril	ling and	Sampling Tools (Type and Size)_	Macro Core 2.0	" OD	with 60" P	VC sample line	rs		
		-		ling Tools (Type and Size) <u>N/A</u>							
		_		and Size) N/A				Overdrill			N/A
	•		• •	GH70 Direct Push Weight N/A	Drop <u>N</u>			Efficiency		N/A	
		le Azimu			Borehole Incli		•	· —	N/	4	
ı	Review	ed By _	K. Ca	rey	Approved By		C. Millhollin	1			
	l	Lithology			Overburden:	S	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	385.3	റക്കുറക്ക	Top of Hole							
	0.5	384.8		Crushed stone					1 ((
- 1				SILTY FAT CLAY, CH, 10YR 6/3 (pale b					1 111		-
- 2				10YR 7/1 (light gray), medium to high pl hard, moist, [FILL]	asticity, very))		_
_				nara, moiot, [r izz]			DP01	0.0 - 5.0	0.0 - 5	3.7	N/A
- 3	3.1	382.2							0		-
				POORLY GRADED SAND WITH SILT \ GRAVEL, SP, 10YR 3/2 (very dark gray					((
- 4				10YR 2/1 (black), non-plastic, loose, mo					((_
- 5			· · · · · · · · · · · · · · · · · · ·	graded, [CCR]					1 14	-	_
									((
- 6			- : · : · :						1 ((_
- 7									(J)		_
							DP02	5.0 - 10.0	.0 - 10	4.0	N/A
- 8									Ö		-
- 9											_
									((
- 10									1 #		_
									((
- 11	11.4	373.9							((_
- 12				GRAVELLY POORLY GRADED SAND GP-GC, 2.5Y 4/2 (dark grayish brown) t	· · · · · · · · · · · · · · · · · · ·				13		-
				(brown), medium to coarse, loose, wet,			DP03	10.0 - 15.0	.0 - 15	2.6	N/A
- 13 ,				,	-				Ö		-
- - 14	¥										_
- 15									#		_
- 16											_
10									((_
- 17									15.0		_
40							DP04	15.0 - 20.0) - 20.0	4.5	N/A

Clid	ent F	Borehole ID	N/A		Sta	ntec Borino	ı N	o JOF	-111 Offse	et C	<u> </u>	
l	ent	_				ing Locatio			32 N; 1,412,173			Plant Local
		Number 175				face Eleva			Elevation			
						Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth		Lithology Elevation Grap	hic	Description	\vdash	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
Бери	111	Lievation Grap	1110	Description		TOCK COIE.		TQD 70	Ruiiit	П	INGC. I L	1160. 70
- 18 - 19				GRAVELLY POORLY GRADED SAND GP-GC, 2.5Y 4/2 (dark grayish brown) (brown), medium to coarse, loose, wet,	to 10	YR 5/3						-
- 20		8 8 8 8 8		(Continued)								_
- 21		9 9										_
- 22		8 8						DP05	20.0 - 25.0	20.0 - 25.	4.7	N/A
- 23										0		=
- 24 -	24.5	360.8										_
- 25				SILTY LEAN CLAY, CL, 2.5Y 3/1 (very medium plasticity, firm, moist to wet	dark	gray),						_
- 26												_
- 27								DP06	25.0 - 30.0	25.0 - 30.	3.5	N/A
- 28										0		_
- 29 - 30												_
- 31												_
- 32								DP07	30.0 - 34.5	30.0	0.3	NI/A -
- 33								DP07	30.0 - 34.5	- 34.5	0.3	N/A _
- 34	34.5	350.8										_
				Bedrock Refusal / Bottom of Hole at 34.5 Ft.						,		_
												_
												_
												_
												_
		1.	E = !	Environmental Sample Custody (two Split	Sno	ons mav he re	eani	ired to obta	in sufficient san	nple))	_
			G =	Geotechnical Sample Custody c denote Split Spoon divided between Env		-				,,		
		3:	Dept	ths are reported in feet below ground surfa	ace				t			_

	Client E	Borehole	ID N/A		Stantec Boring	g N	o. JOF	-111A			
	Client		Tennes	see Valley Authority	Boring Location	on	604,942.	32 N; 1,412,173	.07	E NAD27	Plant Local
	-	Number			Surface Eleva	tior	385.3 ft	Elevatio	n E)atum_ı	NGVD29
	-	Name		•	Date Started	_	9/11/19	Comple			9
	•	Locatio		v Johnsonville, Humphreys Co., TN	Depth to Water			Date/Tir			
	•	or S. S		Logger S. Stanley	Depth to Wate	_		Date/Tir	ne	N/A	
	•			W Drilling (Subcontractor)	Drill Rig Type		d ID Geor	orobe 8150LS			
			_	Sampling Tools (Type and Size) ing Tools (Type and Size) N/A		IIC					
		_	•	and Size) 8" Rotosonic	•			Overdrill	De	enth 1	N/A
				N/A Weight N/A	Drop N	I/A		Efficiency		N/A	
		le Azimu		N/A	Borehole Incli		ion (from	•	N/	A	
F	Review	ed By	K. Car	rey	Approved By		P. Dunne				
		Lithology			Overburden:	5	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	385.3		Top of Hole							
- 0	0.8	384.5	0303030	Crushed stone							
- 1	0.0	000		LEAN CLAY LITTLE SILT, CL, 7.5YR	5/6 (strong						-
- 2				brown), low to medium plasticity, very	hard, moist,						_
				[FILL]							
- 3											-
- 4											_
_	4.8	380.5					D004	0.0.40.0	0.0		> 1/4
- 5				LEAN CLAY LITTLE SILT, CL, 7.5YR			RS01	0.0 - 10.0	. 10.0	9.6	N/A —
- 6				non to low plasticity, firm, moist, [FILL]							
- 7											_
•											
- 8	8.2	377.1		LEAN OLAVILITIE OUT OL 7 EVD	4/4 (1						-
- 9				LEAN CLAY LITTLE SILT, CL, 7.5YR non to low plasticity, firm, moist, [FILL]							-
40											
- 10											
- 11											-
- 12	40.4	070.0									-
	12.4	372.9	KAA	SILT, ML, 7.5YR 2.5/1 (black), wet, [C	CRI						
- 13	13.5	371.8		OILT, MIL, 7.0TTV 2.3/T (DIAGN), Wet, [O	Ortj						-
- 14				POORLY GRADED SAND LITTLE SIL	_T, SP, 7.5YR						_
45				2.5/1 (black), loose, moist, [CCR]			D000	40.0.00.0	10.0		N1/A
– 15							RS02	10.0 - 20.0	- 20.0	8.6	N/A —
- 16											_
- 17											_
- 18											-
40			····								

С	lient E	Borehole	ID N/A		Star	ntec Borinç	g N	o. JOF-	·111A			
С	lient		Tennes	see Valley Authority		ng Locatio			32 N; 1,412,17	3.07	E NAD27	7 Plant Local
Pı	roject	Number	175568	286	Surf	face Eleva	tior	385.3 ft	Elevat	on	Datum_	NGVD29
		ithology			C	Overburden:	5	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept	h Ft ³	Elevation	Graphic	Description	ı	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 19				POORLY GRADED SAND LITTLE SI								_
- 20				2.5/1 (black), loose, moist, [CCR] (C	Continue	ed)						_
- 21	22.0	363.3										_
- 22	22.0	303.3		POORLY GRADED SAND LITTLE SI 2.5/1 (black), wet, [CCR]	ILT, SP	, 7.5YR						_
- 23 - 24										2		_
- 25	24.7	360.6		FAT CLAY TRACE SILT, CL, 7.5YR 5	5/4 (bro	own),		RS03	20.0 - 29.0	0.0 - 29.0	9.0	N/A —
- 26				medium plasticity, firm to hard, moist	•	,						_
- 27												_
- 28												_
- 29	29.0	356.3		Able to push outer 8.5" PVC casing to	o 30' du	ıring						_
- 30	30.0	355.3		installation							П	_
- 31			$ \setminus / $	No recovery								_
- 32			$ \bigvee $					RS04	30.0 - 35.0	30.0 - 35.	0.0	N/A
- 33			$ / \rangle $							5.0		=
- 34	35.0	350.3										_
- 35 - 36	00.0	300.0		POORLY GRADED SAND WITH SIL GRAVEL, SP-SM, 7.5YR 5/6 (strong)								
- 36 - 37				coarse, low to medium plasticity, loos						6		
- 38	37.6	347.7		LEAN CLAY LITTLE SILT, CL, 7.5YR	R 5/6 (st	trong		RS05	35.0 - 40.0	5.0 - 40.0	5.0	N/A
- 39				brown), low to medium plasticity, soft,								_
- 40 ·	40.0	345.3		DOODLY ODADED ODAYEL WITH	01.437.1	2D 00						_
- 41				POORLY GRADED GRAVEL WITH (7.5YR 4/1 (dark gray), fine to coarse, plasticity, very loose, wet								_
- 42				pidationly, very 100se, wet								_
- 43												_
- 44												_

Page: 3 of 3

С	lient E	Borehole	ID N/A		St	tantec Borin	g N	o. JOF	-111A			
С	lient		Tennes	see Valley Authority		oring Locatio			32 N; 1,412,173	3.07	E NAD27	Plant Local
Р	roject	Number	175568	286	Sı	urface Eleva	tio	1 385.3 ft	Elevatio	on E	Datum_ I	NGVD29
		Lithology				Overburden:	;	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft	11	Rec. Ft	Rec. %
- 45	46.0	339.3						RS06	40.0 - 50.0	40.0 - 50.0	5.0	N/A —
- 46 - 47	40.0	339.3		LEAN CLAY LITTLE GRAVEL, CL, 7. brown), low to medium plasticity, firm,		, -						_
- 48												-
- 49												-
- 50	50.0	335.3		LEAN CLAY, CL, 7.5YR 6/6 (reddish	vollo	ww) low to					1	-
- 51				medium plasticity, firm, moist	yello	, iow to						-
- 52												_
- 53 - 54												_
- 54 - 55								RS07	50.0 - 60.0	50.0 - 60	10.0	N/A —
- 56									00.0	60.0	.0.0	-
- 57												-
- 58												-
- 59	60.0	325.3										_
- 60	00.0	323.3	<u>/ / / .</u>	No Refusal / Bottom of Hole at 60.0 Ft.						1 111		
												_
												_
												_
				abandoned after surface casing droppe nt boring JOF-111B.	d 4' (during well com	ple	tion. Monito	ring Well JOF-1	11 i	nstalled	_
			1: E = G =	Environmental Sample Custody (two Sp Geotechnical Sample Custody	olit Sp	ooons may be r	equ	ired to obta	in sufficient san	nple))	_
			2: a,b,	c denote Split Spoon divided between Ei ths are reported in feet below ground su	nviro ırface	onmental and G e	eote	echnical Sa	mples			_
												-
												-

C	Client E	Borehole	ID N/A	1	Stantec Boring	g N	o. JOF	-111B			
	Client		Tennes	see Valley Authority	Boring Locatio	n	604,940.	99 N; 1,412,174	.09	E NAD27	Plant Local
F	Project	Number	175568	286	Surface Elevat	tior	385.3 ft	Elevatio	n E)atum_ı	NGVD29
F	Project	Name		DEC Order	Date Started	_	9/18/19	Comple	ted	9/19/1	9
F	Project	Locatio	n Nev	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	N/A	Date/Tir	ne	N/A	
	•	or S.S		Logger S. Stanley	Depth to Wate	_		Date/Tir	ne	N/A	
	•			W Drilling (Subcontractor)	Drill Rig Type			probe 8150LS			
			_	Sampling Tools (Type and Size)		ic C	asing				
		_		ling Tools (Type and Size) N/A	<u>.</u>			0		41- /	16 F ft
				and Size) 8" Rotosonic Casing N/A Weight N/A	Drop N	Ι/Δ		Overdrill Efficiency		eptn <u>4</u> N/A	16.5 ft
	•	н паппп le Azimu	• •	N/A Weight N/A	Borehole Inclir		on (from	•	N/		
		ed By	K. Ca		Approved By		P. Dunne	vertical)	14//		
								D 11 E/3	_	5 5	
_		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³	_	Rec. Ft	Blows/PSI
Del	oth Ft ³	Elevation 385.3	Grapnic	Description Top of Hole	Rock Core:		RQD %	Run Ft	П	Rec. Ft	Rec. %
- 0	0.0	363.3	858588	Crushed stone					Н		_
- 1				eraemed eteme							_
	1.5	383.8									
- 2	2.0	383.3		LEAN CLAY LITTLE SAND, CL, 7.5Yf non-plastic, dry, crumbly	₹ 4/3 (brown),						-
- 3				LEAN CLAY LITTLE SAND, CL, 7.5Y	/ R 4/1 (dark						_
	3.5	381.8	1///	gray), non-plastic, soft, dry, crumbly	(4) I (ddilk						
- 4				LEAN CLAY LITTLE SAND, CL, 7.5Y	R 4/3 (brown),						-
- 5				non-plastic, soft, dry, crumbly			RS01	0.0 - 10.0	0.0-	5.0	N/A —
							11001	0.0 10.0	10.0		14/73
- 6											-
- 7											_
- 8											-
- 9											_
	10.0	275.2									
- 10	10.0	375.3		POORLY GRADED SAND WITH SILT							_
- 11			11+1+1+1	2.5/1 (black), loose, wet, [CCR]	,,						_
- 12											-
– 13			$ \downarrow $								_
			$ I \downarrow I \downarrow$								
- 14											-
– 15							RS02	10.0 - 20.0	10.0 -	8.0	N/A —
									20.0		•
- 16			$\ \downarrow \downarrow$								-
- 17											_

Clier	nt Borehole	ID N/A	Λ	Stantec Boring	g N	o. JOF-	111B			
Clier	nt	Tennes	see Valley Authority	Boring Location			99 N; 1,412,174	.09	E NAD27	Plant Local
Proje	ect Numbe	r <u>175568</u>	286	Surface Eleva	atior	1 <u>385.3 ft</u>	Elevatio	n [Datum <u>r</u>	NGVD29
	Lithology			Overburden:	5	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth F	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18		111111	POORLY GRADED SAND WITH SIL	T CM 7 EVD						_
- 19			2.5/1 (black), loose, wet, [CCR] (Cor							_
- 20								_		_
- 21										_
- 22 - 23										
- 24										-
- 25 25	5.5 359.8					RS03	20.0 - 30.0	20.0 - 30.0	8.0	N/A —
- 26	7.0		SILT LITTLE SAND, MH, 7.5YR 2.5/1 [CCR]	(black), wet,						=
- 27	7.0 358.3		LEAN CLAY TRACE SILT, CL, 7.5YR	R 5/4 (brown),						_
- 28			low to medium plasticity, firm to hard,							_
- 29 <u>29</u>	9.3 356.0	0 0 9								_
- 30 30	0.0 355.3		POORLY GRADED GRAVEL WITH C SILT, GP-GC, 7.5YR 5/1 (gray), low to plasticity, soft, moist					_		_
- 31			CLAYEY ORGANIC SILT SOME GRA 7.5YR 3/1 (very dark gray), low to me							_
32	2.4 352.9		wet, moderate organic odor			RS04	30.0 - 35.0	30.0 - 3	5.0	N/A
- 33			CLAYEY ORGANIC SILT, OL, 7.5YR low to medium plasticity, wet, modera					5.0		_
- 34										_
- 35	5.0 350.3		CLAYEY ORGANIC SILT LITTLE SA					_		_
- 36			5/4 (brown) and 7.5YR 7/1 (light gray) medium plasticity, soft, wet), low to						=
- 37 - 38						RS05	35.0 - 40.0	35.0 - 40.0	3.8	N/A
- 39										-
39	9.5 345.8 0.0 345.3		POORLY GRADED GRAVEL WITH (CLAYLITTLE						
- 40 - 41	3.3.3		SAND, GP-GC, 7.5YR 4/4 (brown), lo plasticity, soft, wet							-
- 42										=

Page: 3 of 3

Client E	Borehole ID		Stantec Boring	No. JOF-	-111B		
Client		essee Valley Authority	Boring Locatio		99 N; 1,412,174.09	E NAD27	Plant Local
		68286	Surface Eleva		Elevation		
	_ithology		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation Graph	c Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50	335.3	POORLY GRADED GRAVEL WITH SAND, GP-GC, 7.5YR 4/4 (brown) a (light gray), low to medium plasticity, (Continued) No Refusal / Bottom of Hole at 50.0 Ft.	CLAY LITTLE nd 7.5YR 7/1	RS06	40.0 - 50.0	5.0	N/A —
	deta 1: E G	itoring well JOF-111 installed in boring or ils. = Environmental Sample Custody (two S = Geotechnical Sample Custody b,c denote Split Spoon divided between lepths are reported in feet below ground s	plit Spoons may be re	equired to obta	in sufficient sample		

C	Client E	Borehole	IDN/	Α	Stantec Boring	g N	o. JOF	-111-Pre			
C	Client		Tenne	ssee Valley Authority	Boring Location	on	605,017.	14 N; 1,412,230	.40	E NAD27	Plant Local
F	roject	Number	17556	8286	Surface Eleva	tior	382.3 ft	Elevatio	n C	atum_n	NGVD29
F	roject	Name	JOF T	DEC Order	Date Started	_	8/7/19	Comple	ted	8/7/19)
	•	Locatio		w Johnsonville, Humphreys Co., TN	Depth to Wate			Date/Ti		8/7/19	13:40
	•	tor C. B		Logger C. Burton	Depth to Wate			Date/Ti	me	N/A	
	-			eo Logic (Subcontractor)	Drill Rig Type						
			•	d Sampling Tools (Type and Size)		" OE	D with 60" P	VC sample line	rs		
		-		oling Tools (Type and Size) N/A				0		41. N	1/A
				and Size) N/A GH70 Direct Push Weight N/A	Dran A	Ι/Λ		Overdrill			N/A
	•	er Hamm ole Azimu		N/A			ion (from	Efficiency	N/	N/A Δ	
		ne Azımu ∕ed By			Borehole Incli Approved By		P. Dunne	vertical)	11//	٦	
ľ	COICW	red by _	11. 00	The state of the s							
		Lithology		-	Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	oth Ft ³	Elevation	Graphic	'	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	382.3		Top of Hole					110	1	_
	0.8	381.5		Topsoil					 ((
- 1				LEAN CLAY SOME GRAVEL, CL, 10Y					1 ((_
- 2				(yellowish brown), medium to high plas	sticity, moist,						_
	2.7	379.6		[]			DP01	0.0 - 5.0	0.0 - 5.	3.9	N/A
- 3				FAT CLAY WITH GRAVEL, CH, 2.5Y	, ,						_
- 4				grayish brown) to 10YR 5/6 (yellowish medium to high plasticity, moist, with c							_
,				and organics, [CCR]					((
- 5									1 #		_
- 6	6.0	376.3							((
- 6			0 0 0	SANDY POORLY GRADED GRAVEL,	GP, 2.5Y 3/3				((_
- 7			0 0 0	(dark olive brown) to N 4/ (dark gray), i					5.		-
			0 0 0	moist, stratified, coal fragments, [FILL]			DP02	5.0 - 10.0	0-10.0	3.3	N/A
- 8			0 0 0								_
- 9			0 0 0						())		-
			0 0 0								
- 10			0 0 0						1 1		_
- 11 <u>-</u>	\downarrow		0 0 0								_
	Ī		0 0 0						(((
- 12									10.0		-
12							DP03	10.0 - 15.0) - 15.0	3.5	N/A
– 13	13.3	369.0		FAT CLAY SOME CRAYEL CHIEV 2	E/1 (block)				1 1/1		
- 14				FAT CLAY SOME GRAVEL, CH, 5Y 2 medium to high plasticity, moist, [CCR]))		-
									())		
- 15	15.3	367.0								1	_
- 16				SANDY SILT SOME GRAVEL, ML, 5Y wet, [CCR]	2.5/1 (black),						-
				wo., [OOK]							
- 17							DD0:	450 000	15.0		-
_40							DP04	15.0 - 20.0	- 20.0	2.5	N/A

Page: 2 of 2

Client Borehole		Sta	antec Boring	g N	10. JOF-	111-Pre			
Client	Tenness	see Valley Authority	Во	ring Locatio	n	605,017.1	4 N; 1,412,230.40) E NAD27	Plant Local
Project Number	1755682	286	Su	rface Elevat	tio	n <u>382.3 ft</u>	Elevation	Datum_r	NGVD29
Lithology				Overburden:		Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³ Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19 - 20 20.0 362.3		SANDY SILT SOME GRAVEL, ML, 5' wet, [CCR] (Continued)	Y 2.5/	1 (black),					_
20 20.0 302.3		No Refusal / Bottom of Hole at 20.0 Ft.					·		_
									_
									-
									-
									_
	G =	Environmental Sample Custody (two Sp Geotechnical Sample Custody		-				e)	
	2: a,b,c	denote Split Spoon divided between Enths are reported in feet below ground su	nviron ırface	mental and Ge	eot	echnical Sar	nples		
	0. 200	a , opo							_
									-
									-
									-
									-
									_
									_
									-
									-
									-
									_
									_

8/7/20

С	lient E	Borehole	ID N/A	4	Stantec Boring	g N	lo. JOF	-112			
С	lient		Tennes	ssee Valley Authority	Boring Location	on	604,376.	52 N; 1,412,991	.02	E NAD27	Plant Local
Р	roject	Number	175568	3286	Surface Eleva	tior	1 389.8 ft	Elevation	on E	atum_ı	NGVD29
Р	roject	Name	JOF TE	DEC Order	Date Started	_	8/27/19	Comple	eted	8/27/	19
Р	roject	Locatio	n Ne	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	N/A	Date/Ti	me	N/A	
	•	or S.S		Logger S. Stanley	Depth to Wate	_		Date/Ti	me	N/A	
	_			intec Consulting Services Inc.	Drill Rig Type		· · · · · · · · · · · · · · · · · · ·				
			-	Sampling Tools (Type and Size	· ————————————————————————————————————	SS v	w/o liners, 3	" Shelby Tubes			
		-		ling Tools (Type and Size) N/A				O		41	20.0 #
				and Size) 8-1/4" HSA overdrill of be Automatic Weight 140		O"		Overdrill		·ρτη <u>·</u> N/A	30.9 ft
	•	н паппп le Azimu	٠.	Automatic Weight 140 N/A	Borehole Incli		ion (from	Efficiency	_		
		ed By			Approved By		L. Tucker	vertical)	1 4//	•	
. '								5 4 53		I	
_		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation 389.8	Graphic	Description Top of Hole	Rock Core:		RQD %	Run Ft	П	Rec. Ft	Rec. %
- 0	0.0	389.3	00000000	Crushed stone							_
- 1	0.0	000.0		SANDY LEAN CLAY LITTLE GRAVE	I CL 75VP		SS01G	0.0 - 1.5	0.0 - 1.	1.2	28-14-9
ľ				5/8 (strong brown), low to medium pla					151		
- 2				hard, dry, [FILL]			SS02G	1.5 - 3.0	1.5-	0.4	8-7 - 6
- 3				Rock in SS02 from 1.5' to 3.0'					3.0		_
	4.0	005.0					SS03G	3.0 - 4.5	3.0	1.0	7-3-4
- 4	4.0	385.8 385.3		SANDY LEAN CLAY LITTLE GRAVE	L CL 7 5YR		3303G	3.0 - 4.5	4.5	1.0	7-3-4
- 5				5/2 (brown), low to medium plasticity,	/				4.5		_
				SANDY LEAN CLAY LITTLE GRAVE			SS04G	4.5 - 6.0	5-6.0	1.2	4-2-3
- 6				5/8 (strong brown), low to medium pla moist	sticity, firm,						-
- 7	7.2	382.6		moist			SS05G	6.0 - 7.5	.0 - 7.5	1.2	3-3-2
	7.5	382.3		CLAYEY SILT TRACE SAND, CL-ML						-	
- 8				(strong brown), low to medium plastic	ity, firm, moist		SS06G	7.5 - 9.0	7.5 - 9.	1.4	WH-1-WH
- 9	9.2	380.6		SANDY LEAN CLAY LITTLE GRAVE 4/6 (red), low to medium plasticity, vel					0		_
							SS07G	9.0 - 10.5	9.0-	1.0	WH-WH-WH
- 10				SANDY LEAN CLAY LITTLE GRAVE 4/6 (red), low plasticity, very soft, wet			555.5	0.0	10.5		
- 11							00000	105 100	10.5		
							SS08G	10.5 - 12.0	- 12.0	1.2	WH-WH-2
- 12	12.5	377.3					SS09aG	12.0 - 12.5	12		_
- 13			8 8 8 8 8 8	POORLY GRADED GRAVEL WITH S			SS09bG	12.5 - 13.5	0-13.	1.5	10-19-35
			0 0 0	4/6 (strong brown), non-plastic, very h limestone rock fragments	nard, wet,				5	1	
- 14				imesione rook magments			SS10G	13.5 - 15.0	3.5 - 1:	1.5	18-26-42
- 15			0 0 0						5.0		_
			0 0 0				SS11G	15.0 - 16.5	15.0 -	1.5	11-20-20
- 16			0 0 0						16.5		
- 17			0 0 0 0 0 0				SS12G	16 5 40 0	16.5		12-14-14
40			0 0 0				33126	16.5 - 18.0	18.0	1.3	12-14-14

С	lient E	orehole	ID N/A	\	Sta	antec Borin	g N	o. JOF	-112			
 c	lient	ent Tennessee Valley Authority oject Number 175568286				ring Location	on	604,376.	52 N; 1,412,991	.02	E NAD27	' Plant Local
P	roject	Number	175568	286	Su	rface Eleva	atior	389.8 ft	Elevatio	n E	atum_	NGVD29
	L	ithology				Overburden:	5	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18				POORLY GRADED GRAVEL WITH S 4/6 (strong brown), non-plastic, very h				SS13G	18.0 - 19.5	18.0 - 19.	1.0	- 9-5-8
− 19				limestone rock fragments (Continued		wet,		33.03	10.0 10.0	19.5		_
- 20							10	SS14E	19.5 - 21.0	9.5 - 21.0	1.3	10-10-15
- 21 - 22							9.5/24.0-20190	SS15E	21.0 - 22.5	21.0 - 22.5	1.1	16-14-11 _
- 23							828	SS16E	22.5 - 24.0	22.5 - 24.0	1.5	9-7-5
- 24 - 25								SS17E	24.0 - 25.5	24.0 - 25.	0.9	- 12-16-43
- 26							24.0/28.9-2	SS18E	25.5 - 26.9	5 25.5 - 26.9	1.4	27-37-50/5"
- 27	26.9 27.0	362.9	8 8 8	Auger without sampling			0190828	SS19E	27.0 - 27.3	27.0	0.3	50/4"
- 28	27.3′ 28.5 28.9	362.5 361.3 360.9		POORLY GRADED GRAVEL WITH S		1	-	SS20E	28.5 - 28.9	- 27.3	0.4	- 50/5"
- 29				limestone rock fragments		//		00202	20.0 20.0	28.5 - 28.9	0.1	-
- 30	30.0	359.8 358.9	8 8 8 8 8 8 8 8 8	Auger without sampling POORLY GRADED GRAVEL WITH S 4/3 (brown), non-plastic, very hard, we		- 11	-	SS21G	30.0 - 30.9	30.0 - 30.	0.9	40-50/5"
				rock fragments						9		
				Auger without sampling	T	OD 7 5VD						_
				POORLY GRADED GRAVEL WITH S 4/3 (brown), non-plastic, very hard, we rock fragments		1						_
				Refusal / Bottom of Hole at 30.9 Ft.								-
				nent monitoring well JOF-112 installed ir ation log for details.	n this	boring followi	ng o	ver-drilling.	See JOF-112 r	noni	toring we	- -
				Environmental Sample Custody (two Spl Geotechnical Sample Custody	lit Spo	oons may be i	requ	ired to obta	in sufficient san	nple))	-
			2: a,b,	c denote Split Spoon divided between Er ths are reported in feet below ground sur	nviror rface	nmental and G	Seote	echnical Sa	mples			-
												-
												-
												-
												-

	Client E	Borehole	ID N/A		Stantec Boring	g N	o. JOF	-112-Pre			
	Client		Tennes	see Valley Authority	Boring Location	on	604,373.4	46 N; 1,412,990).25	E NAD27	Plant Local
F	Project	Number	175568	286	Surface Eleva	tio	389.2 ft	Elevation	on E	oatum_n	NGVD29
F	Project	Name	JOF TD	DEC Order	Date Started	_	8/6/19	Comple	ted	8/6/19)
	•	Location		w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	9.0 ft	Date/Ti	me	8/6/19	13:05
	-			Logger C. Burton	Depth to Wate	_			me	N/A	
	-			o Logic (Subcontractor)	Drill Rig Type			orobe 6610DT			
			_	Sampling Tools (Type and Size)		" OI)				
		_	-	ling Tools (Type and Size) N/A				0	D-	4l- N	1/^
		_		and Size) N/A	Dron N	Ι/Λ		Overdrill		:ptn <u>'</u> √A	N/A
	•	er ⊓amm le Azimu	• •	GH70 Direct Push Weight N/A N/A	Borehole Inclin		_	Efficiency	N/.		
		red By			Approved By		P. Dunne	vertical)	14//		
'			11. 04								
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
De	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	389.2	<u>ලු දුරු අ</u>	Top of Hole					1		_
	0.6	388.6		Crushed stone					((
- 1				GRAVELLY LEAN CLAY, CL, 7.5YR 5 brown) to 10YR 6/1 (gray), [FILL]	/6 (strong				((_
- 2				510W11/10 1011(0,1 (gray), [1 122]							_
							DP01	0.0 - 5.0).0 - 5.0	2.8	N/A
- 3											-
- 4))		_
- 5									1 8		_
- 6	5.9	383.3									_
				LEAN CLAY WITH GRAVEL, CL, 2.5Y 7.5YR 5/6 (strong brown), low to media	` '				((
- 7				moist, [FILL]	an plasticity,		5500	5 0 400	5.0		-
- 8							DP02	5.0 - 10.0	10.0	1.6	N/A _
									1 ((
- 9 ·	¥)		-
- 10	10.0	379.2))		_
- 10				GRAVELLY LEAN CLAY, CL, 7.5YR 5	/6 (strong				1 1		
- 11				brown)))		-
40							DD02	100 110	10.0		NI/A
- 12							DP03	10.0 - 14.0	- 14.0	3.0	N/A -
- 13									((-
	13.8	375.4							((
- 14				GRAVELLY POORLY GRADED SAND					1 🕅		-
- 15				7.5YR 5/4 (brown) to 5YR 4/6 (yellowis medium to coarse	sn red),						_
	15.8	373.4									
- 16				CLAYEY SAND WITH GRAVEL, SP-S	C, 7.5YR 6/6		DD04	440 400	14.0		- NI/A
– 17			::\/ <i> </i>	(reddish yellow)			DP04	14.0 - 19.0	- 19.0	2.8	N/A _
			:: //								
40		I	1 • 1/ /				1		1 1)))	

Page: 2 of 2

Client	lient Borehole ID N/A lient Tennessee Valley Authority			Stantec Boring	g N	o. JOF	-112-Pre			
Client	t	Tennes	see Valley Authority	Boring Location	on	604,373.4	46 N; 1,412,990.	25 I	E NAD27	Plant Local
Proje	ct Number	175568	286	Surface Eleva	tior	389.2 ft	Elevatio	n D	atum <u>r</u>	NGVD29
	Lithology			Overburden:	5	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18			CLAYEY SAND WITH GRAVEL, SP- (reddish yellow) (Continued) FAT CLAY WITH GRAVEL, CH, 5Y 7 moist			DP05	19.0 - 24.0 24.0 - 25.2	19.0 - 24.0 24.0 - 25.2	3.2	- N/A - N/A -
			Bedrock Refusal /							

Bottom of Hole at 25.2 Ft.

As-drilled boring location not surveyed. Horizontal coordinates based on proposed boring location. Vertical coordinates based on 2017 LIDAR surfaces.

E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample)
 G = Geotechnical Sample Custody
 2: a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples
 3: Depths are reported in feet below ground surface

С	lient E	Borehole	ID N/A		Stantec Boring	g N	o. JOF	-113			
С	lient		Tennes	see Valley Authority	Boring Location	on	604,136.	76 N; 1,412,110).10	E NAD27	Plant Local
P	roject	Number	175568	286	Surface Eleva	tior	383.4 ft	Elevation	on E	atum_r	NGVD29
P	roject	Name	JOF TO	EC Order	Date Started	_	8/30/19	Comple	eted	9/3/19)
	•	Location		v Johnsonville, Humphreys Co., TN	Depth to Wate			Date/Ti			9 10:09
	•	or S. St		Logger S. Stanley	Depth to Wate			Date/Ti	me	9/3/19	0 10:09
	_			ntec Consulting Services Inc.	Drill Rig Type						
			•	Sampling Tools (Type and Size) N/A		SS v	v/o liners, 3	" Shelby Tubes			
		•	•	ing Tools (Type and Size) <u> N/A</u> and Size) <u> 8-1/4"</u> HSA overdrill of bo				Overdril	l De	nth 4	
				Automatic Weight 140 l		0"		Efficiency		V/A	
	•	le Azimu	• •	N/A	Borehole Incli		ion (from	•	N/		
		ed By	K. Ca	rey	Approved By		P. Dunne				
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Deni	th Ft ³	Elevation	Granhic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
	0.0	383.4	Grapriic	Top of Hole	TOOK GOIC.	Т	TOD 70	Ruiiit	П	1100.11	1100. 70
- 0	0.0		0303030	Overburden - general description of pr	eviously						
- 1	1.0	382.4		air-excavated material:	,						-
				Gravel mixed with clay, [FILL]							
- 2				Fat Clay mixed with gravel, moist, [FIL	.L]						-
- 3											-
				Hole backfilled with coarse sand to 6.0 completion of air-excavation.)' bgs after						
- 4				completion of all-excavation.							-
- 5											_
	6.0	377.4									
- 6	0.0	0		SILTY FAT CLAY, CH, 7.5YR 5/6 (stro	ong brown),				6.1		_
- 7				medium plasticity, very soft, moist			SS01G	6.0 - 7.5) - 7.5	0.4	3-2-3
- 8							SS02G	7.5 - 9.0	.5 - 9.0	0.2	5-2-2
- 9	0.5	373.9									-
40	9.5	373.9		SILTY LEAN CLAY, CL, 7.5YR 5/6 (st	rong brown)		SS03G	9.0 - 10.5	9.0 - 10	1.2	2-2-3
- 10				low to medium plasticity, firm, moist	, ,).5		_
- 11							SS04G	10.5 - 12.0	10.5 -	1.5	2-2-4
40							00040	10.5 - 12.0	12.0	1.5	2-2-4
- 12									12.0		
- 13	<u></u>						SS05G	12.0 - 13.5) - 13.5	1.5	1-2-3
									13		
- 14							SS06G	13.5 - 15.0	.5 - 15.	1.5	2-3-3
- 15	15.0	368.4							0		_
_ 46				SILTY LEAN CLAY, CL, 7.5YR 5/6 (st low to medium plasticity, firm, wet	rong prown),		SS07G	15.0 - 16.5	5.0 - 1	0.9	3-2-2
- 16				• • •					6.5		_
- 17							SS08G	16.5 - 18.0	16.5-	1.2	3-2-3
40							22300		18.0		0 = 0

С	lient E	Borehole	ID N/A		Stantec Boring	_{g No.} JOF-	113		
c	lient		Tennes	see Valley Authority	Boring Location		76 N; 1,412,110.	10 E NAD27	Plant Local
P	roject	Number	175568	286	Surface Eleva	tion 383.4 ft	Elevation	n Datum_ ı	NGVD29
		Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19				SILTY LEAN CLAY, CL, 7.5YR 5/6 (st low to medium plasticity, firm, wet <i>(C</i>		SS09G	18.0 - 19.5	1.2	3-2-3 _
- 20	20.0	363.4		SILTY LEAN CLAY LITTLE GRAVEL, (red), low plasticity, firm, wet	CL, 2.5YR 4/6	SS10G	19.5 - 21.0	1.5	3-3-4
- 21 - 22	22.5	360.9				SS11G	21.0 - 22.5	1.5	3-3-2
- 23	24.0	359.4		SILTY LEAN CLAY LITTLE GRAVEL, (brown), low plasticity, firm, wet	CL, 7.5YR 5/4	SS12G	22.5 - 24.0	1.5	1-2-3
- 24 - 25				CLAYEY SILT LITTLE GRAVEL, ML, (brown), non-plastic, very soft, wet, wa		SS13G	24.0 - 25.5	1.5	3-3-3
- 26						SS14G	25.5 - 27.0	1.5	WH-WH-1
- 27 - 28	27.5 28.2	355.9 355.2		CLAYEY SILT LITTLE SAND, ML, 7.5 \[\text{brown}, non-plastic, very soft, wet, wa		SS15G	27.0 - 28.5	1.5	7-18-23 <u> </u>
- 29 - 20 -	_30.0	353.4		SANDY SILTY GRAVEL, GC, 7.5YR 4 to coarse, loose, wet, with chert		SS16G	28.5 - 30.0	1.5	24-30-30
- 30 <u>7</u> - 31				SANDY SILTY GRAVEL, GC, 7.5YR strown), fine to coarse, loose, wet, with	, -	SS17G	30.0 - 31.5	1.4	20-13-25
- 32 - 33						SS18G	31.5 - 33.0	1.2	19-14-23 _
- 34						SS19G	33.0 - 34.5	1.5	20-15-25
- 35 - 36						SS20G	34.5 - 36.0	1.3	23-14-17
- 37						SS21G	36.0 - 37.5	1.2	30-30-30
- 38 - 39						SS22G	37.5 - 39.0	1.3	18-22-35 _
- 40	40.2	343.2				SS23G	39.0 - 40.1	1.0	50-35-50/1"
- 41	41.5	341.9		CLAYEY GRAVEL WITH SILT, GP-G (brown) to 2.5YR 8/1 (white), fine to moist, poorly graded		SS24G	40.5 - 40.9	0.4	50/5" _
- 42									

SUBSURFACE LOG

Page: 3 of 3

Cli	ent E	Borehole	ID N/A	4	Sta	antec Borino	g N	o. JOF	-113			
Cli	ent		Tennes	ssee Valley Authority	Bo	ring Locatio	n	604,136.	76 N; 1,412,110.	.10 E	E NAD27	Plant Local
Pro	oject	Number	175568	3286	Su	rface Eleva	tio	383.4 ft	Elevatio	n D	atum_ı	NGVD29
	I	_ithology				Overburden:	(Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth	r Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 43 - 44	44.7	338.7		CLAYEY GRAVEL WITH SILT, GP-GC (white) to 2.5Y 7/4 (pale brown), fine to moist (Continued)	•			SS25G SS26G	42.0 - 43.5	42.0 - 43.5 43.5 - 44.7	1.3	15-30-37 _ 23-22-50/2" [—]
				N. B. C. I.								

No Refusal / Bottom of Hole at 44.7 Ft.

Permanent monitoring well JOF-113 installed in this boring following over-drilling. See JOF-113 monitoring well installation log for details.

- 1: E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody
- 2: a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples
- 3: Depths are reported in feet below ground surface

С	lient E	Borehole	ID N/A	\	Stantec Boring	g N	o. JOF	-113 Offse	t A	١	
С	lient		Tennes	see Valley Authority	Boring Location	on	604,133.	73 N; 1,412,109	.26	E NAD27	Plant Local
Р	roject	Number	175568	286	Surface Eleva	tior	382.8 ft	Elevatio	on E	oatum_n	NGVD29
Р	roject	Name	JOF TD	DEC Order	Date Started	_	8/21/19	Comple	ted	8/21/1	19
	-	Locatio		w Johnsonville, Humphreys Co., TN	Depth to Wate	er _		Date/Ti		8/22/1	9 06:50
	•	or C. B		Logger _C. Burton	Depth to Wate	_			me	N/A	
	_			D Logic (Subcontractor)	Drill Rig Type						
			_	Sampling Tools (Type and Size)		" OL) with 60" P	VC liners			
		_		ling Tools (Type and Size) N/A				Overdrill		nth N	N/A
				and Size) <u>N/A</u> GH70 Direct Push Weight N/A	Drop N	Ι/Δ		Overdrill Efficiency		ιριτι <u>'</u> Ν/Α	N/A
	•	le Azimu	• •	N/A	Borehole Incli			•	N/.		
		ed By			Approved By		C. Millhollin	· —	,		
		Lithology	I		Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft	П	Rec. Ft	Rec. %
- 0	0.0	382.8	<u> </u>	Top of Hole Overburden - general description of pr	enviously.	+					_
- 1	1.0	381.8	0000000	air-excavated material to 6.0' bgs: Gra	•						_
ı.				clay, moist, [FILL]	/						
- 2				FAT CLAY WITH GRAVEL, moist, [FIL	_L]						_
- 3											_
3											
- 4				Hole backfilled with coarse sand to 6.0)' has after						-
- 5				completion of air excavation.	bys alter						_
3											
- 6	6.0	376.8		FAT CLAY WITH GRAVEL, CH, 7.5YF	P. F./A. (brown) to				$ \rangle \rangle$		-
- 7				10YR 5/4 (yellowish brown), high plast							_
,				[FILL]			DP01	5.0 - 10.0	5.0 - 10	1.9	N/A
- 8									0.0		-
- 9											_
3									((
- 10									1 #		_
- 11											_
									((
- 12									10.0		_
- 13 \	7						DP02	10.0 - 15.0) - 15.0	3.2	N/A _
10 7	-										
- 14											-
- 15	15.0	367.8]	_
10				FAT CLAY, CH, 10YR 5/6 (yellowish b	·						
- 16	16.0	260.0		4/4 (brown), high plasticity, moist, [FIL	LJ						-
- 17	16.6 17.2	366.2 365.6		FAT CLAY, CH, 10YR 5/8 (yellowish b	prown) to 7.5YR						_
''	2	300.0	111	7/1 (light gray), high plasticity, hard to			DP03	15.0 - 20.0	5.0 - 20	1.9	N/A
40		1				[1211	d l	

						105	444			
	Borehole	ID N/A	<u> </u>	Stantec Boring			114			
Client		Tennes	see Valley Authority	Boring Location			IO N; 1,412,156			
Projec	t Number	175568	286	Surface Eleva	tio	383.7 ft	Elevatio	n E	atum_	NGVD29
Projec	t Name		PEC Order	Date Started	_		Comple			19
,	t Location		v Johnsonville, Humphreys Co., TN	Depth to Wate	_		Date/Ti			19 15:28
			Logger C. Burton		_			me	9/12/	19 07:12
			ntec Consulting Services Inc.	• • • •						
		•	Sampling Tools (Type and Size	•	SS v	v/o liners, 3	" Shelby Tubes			
	_		ling Tools (Type and Size) N/				0	_	41.	40.F.#
			and Size) 8-1/4" HSA overdrill of b		-O"		Overdrill		. –	40.5 ft
	er Hamm ole Azimu	• •	Automatic Weight 140 N/A			-	Efficiency	N/.	N/A ^	
	ved By			Borehole Incli Approved By		P. Dunne	vertical)	IN/.	٦	
		IX. Oal			_					
	Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
0.0	383.7	0303030	Top of Hole					\perp		
1.0	382.7		Overburden - description of previousl material:	y air-excavated _						
'			Gravel mixed with clay, moist, [FILL]							
- 2			Fat Clay, with gravel, moist, [FILL]	<u>.</u>						=
- 3										-
- 4			Hole backfilled with coarse sand to 6. completion of air-excavation. Litholog	-						
			from air knifing cuttings.	y dotominou						
- 5										_
6.0	377.7							Н	-	_
- 7			FAT CLAY WITH SAND, CH, 10YR 5 brown), [FILL]	6/4 (yellowish		SS01G	6.0 - 7.5	6.0 - 7.	0.3	WH-WH-1
7.5	376.2							5		
- 8			FAT CLAY, CH, 7.5YR 6/4 (light brow 7/1 (light gray), medium to high plasti			SS02G	7.5 - 9.0	7.5 - 9.	1.5	2-2-5
- 9			firm, moist, [FILL]	ony, 10.y 001110				0		-
- ¹⁰ 10.3	373.4					SS03aG	9.0 - 10.3	0.0 - 10.5	1.2	3-2-5
10.0			LEAN CLAY, CL, medium to high pla	sticity, firm.		SS03bG	10.3 - 10.5	1		
- 11 <u>11.2</u>	372.5		moist, [FILL]			SS04aG SS04bG	10.5 - 11.2 11.2 - 12.0	10.5 - 12	1.3	3-3-3
- 12			FAT CLAY WITH GRAVEL, CH, 7.5Y	R 5/2 (brown) to		33040G	11.2 - 12.0	12.0 13	-	-
- 13 .a.=			10YR 4/4 (dark yellowish brown), me	-		SS05G	12.0 - 13.5	12.0 - 13.5	0.9	1-2-2
13.5	370.2		plasticity, firm, moist, with coal fragmo					3.5		
- 14			FAT CLAY WITH GRAVEL, CH, 7.5Y with 7.5YR 7/1 (light gray), medium to			SS06G	13.5 - 15.0	3.5 - 16	1.0	1-1-1
- 15 <u>15.0</u>	368.7		very soft, moist, [FILL]	mgn placetory,				15.0 1		_
– 16			FAT CLAY, CH, 10YR 5/6 (yellowish	brown) with		SS07	15.0 - 16.5	15.0 - 16.5	1.3	1-3-4
			7.5YR 7/1 (light gray), medium to high	n plasticity, very						
- 17			soft to firm, moist to wet, [FILL]			SS08	16.5 - 18.0	6.5 - 18.0	1.1	WH-1-1
- 18 <u>\tag{\tag{\tag{2}}}</u>										=
- 19						SS09	18.0 - 19.5	18.0 - 19.5	1.3	WH-WH-WH_
								9.5		
- 20						SS10G	19.5 - 21.0	9.5 - 2	1.3	WH-WH-WH
								0		

Page: 2 of 2

Client Borehole ID N/A Stantec Boring No. JOF-114

Client Tennessee Valley Authority Boring Location 603,597.10 N; 1,412,156.67 E NAD27 Plant Local

Project Number 175568286 Surface Elevation 383.7 ft Elevation Datum NGVD29

		Lithology			Overburden:	San	nple ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RC	QD %	Run Ft		Rec. Ft	Rec. %
21	21.4	362.3		FAT CLAY WITH GRAVEL, CH, 10YR 5/3			S11aG S11bG	21.0 - 21.4 21.4 - 22.5	21.0 - 22.5	0.9	WH-1-2
23 <u>1</u>	7			plasticity, very soft to firm, moist, [FILL]	S	S	SS12G	22.5 - 24.0	22.5 - 24.0	0.4	1-1-1
25	25.5	358.2				S	SS13G	24.0 - 25.5	24.0 - 25.5	0.3	1-WH-1
26 27				SANDY CLAYEY GRAVEL, GP-GC, 7.5Y (strong brown) to 10YR 7/1 (light gray), ve medium, very dense, moist to wet		S	SS14G	25.5 - 27.0	25.5 - 27.0	1.5	2-4-4
28	28.5	355.2				S	SS15G	27.0 - 28.5	27.0 - 28.5	1.2	18-34-32
29				SANDY CLAYEY GRAVEL, GP-GC, 10YF (yellowish brown) to 10YR 7/6 (yellow), fin		S	SS16G	28.5 - 30.0	28.5 - 30.0	1.0	10-18-18
30 31				medium, very dense, wet		S	SS17G	30.0 - 31.5	30.0 - 31.5	1.3	22-24-21
32						S	SS18G	31.5 - 33.0	31.5 - 33.0	1.1	2-20-25
33 34						S	SS19G	33.0 - 34.5	33.0 - 34.5	1.1	18-28-25
35						S	8S20G	34.5 - 36.0	34.5 - 36.0	1.2	19-20-20
36 37						S	SS21G	36.0 - 37.5	36.0 - 37.5	1.2	20-23-18
38						S	SS22G	37.5 - 39.0	37.5 - 39.0	1.2	15-16-23
39 40	40.5	343.2				S	SS23G	39.0 - 40.5	39.0 - 40	1.2	28-25-25

No Refusal / Bottom of Hole at 40.5 Ft.

Permanent monitoring well JOF-114 installed in this boring following over-drilling. See JOF-114 monitoring well installation log for details.

Stantec Consulting Services Inc.

^{1:} E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody

^{2:} a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples

^{3:} Depths are reported in feet below ground surface

С	lient E	Borehole	ID N/A		Stantec Borin	a N	o. JOF-	-114 Offse	t A	1	
	lient			see Valley Authority	Boring Location			O3 N; 1,412,155			Plant Local
		Number		 -	Surface Eleva						
	•	Name			Date Started		8/21/19	— Comple			
	-	Location		w Johnsonville, Humphreys Co., TN	Depth to Wate	_				N/A	
	•	or C. Bı		Logger C. Burton	Depth to Wate			Date/Ti		N/A	
	•			o Logic (Subcontractor)	Drill Rig Type	_					
	-			Sampling Tools (Type and Size)							
R	ock D	rilling an	d Samp	ling Tools (Type and Size)N/A							
С	verdr	ill Tooling	(Type	and Size) <u>N/A</u>				Overdrill	De	pth _	N/A
S	ample	er Hamme	er Type	GH70 Direct Push Weight N/A	Drop _	N/A		Efficiency	1	N/A	
В	oreho	le Azimu	th	N/A	Borehole Incli	nat	ion (from	Vertical)	N/A	4	
R	eview	ed By _	K. Ca	rey	Approved By		P. Dunne				
		Lithology			Overburden:	,	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	383.1	റരവരവരവ	Top of Hole							
	1.0	382.1		Overburden, previously air-knifed to 6. Gravel mixed with clay	0'.						
- 1	-										_
- 2				FAT CLAY WITH GRAVEL, CH, high p (as interpreted from spoils generated or							-
- 3				knifing)	J						_
- 4											-
- 5											_
	6.0	377.1		Air-knife boring backfill (coarse sand) f	rom 5.0' to 6.0'				1 (((
- 6	0.0	0		FAT CLAY WITH GRAVEL, CH, 7.5YF	R 5/6 (strong	1			1 1/1		_
- 7				brown) to 5YR 7/1 (light gray), high pla	sticity, moist,				5.0		-
– 8				[FILL]			DP01	5.0 - 10.0	-10.0	3.9	N/A _
- 9											-
- 10									[((_
l	10.6	372.5				-	5500	400 400	10.0		
- 11 - 12	12.0	371.1		FAT CLAY WITH GRAVEL, CH, 10YR with 10YR 5/1 (gray), medium to high project, with coal fragments, [FILL]			DP02	10.0 - 12.0	- 12.0	1.2	N/A -
				Bedrock Refusal / Bottom of Hole at 12.0 Ft.							-
											-
											_
											_
											_
				Environmental Sample Custody (two Spli Geotechnical Sample Custody	t Spoons may be i	requ	ired to obta	in sufficient san	nple)		_
			2: a,b,	c denote Split Spoon divided between En		eote	echnical Sai	mples			_
			3: Dep	oths are reported in feet below ground sur	race						

					IOF	444 Duo			-
	Borehole ID _.		Stantec Boring						
Client		ennessee Valley Authority	Boring Location						
	t Number 17		Surface Eleva		-				
,	-	OF TDEC Order	Date Started	_	8/21/19	Comple			19
	t Location		Depth to Wate			Date/Tir		N/A	
	tor C. Burton		Depth to Wate	_		Date/Tii	me	N/A	
	-	Geo Logic (Subcontractor)	Drill Rig Type						
	_	and Sampling Tools (Type and Size ampling Tools (Type and Size)		OL	J WILLI GO P	vc sample line	18		
	•	ype and Size)				Overdrill	De	nth N	
		ype GH70 Direct Push Weight N/A	Drop N	I/A		Efficiency		√A	
	ole Azimuth	N/A	Borehole Incli		ion (from	•	N/A		
	-	K. Carey	Approved By		•	·			
			Overburden:	_	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Lithology Elevation Gra	phia Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
	383.7	phic Description Top of Hole	Rock Core.		RQD %	Kull Ft		Rec. Ft	Nec. 70
0.0	000.7	3030 3030 3030 Overburden, previously air-knifed ma	terial Gravel						
1.0	382.7	mixed with clay							_
		FAT CLAY WITH GRAVEL, CH, high	plasticity, [FILL]						
- 2									-
- 3									_
- 4		Hole backfilled with coarse sand to 6.	0' has after						-
- 5		completion of air-excavation.	.o bgs altel						
							1 111		
6.0	377.7	FAT CLAY SOME GRAVEL, CH, 10\	/P F/9 (vollowish						-
- 7		brown) to 2.5Y 8/1 (white), high plast)))		
['					DP01	5.0 - 10.0	5.0 - 1	4.1	N/A
- 8							0.0		-
_ 9 9.1	374.6						((
_ g		FAT CLAY WITH GRAVEL, CH, 10Y	R 5/4 (yellowish				(((
- 10		brown) to 10YR 5/6 (yellowish brown), high plasticity,				1 #		_
_ 11		moist, with coal fragments, [FILL]					((
- 11 							(((_
- 12							10.		-
40					DP02	10.0 - 15.0	0 - 15.0	2.4	N/A
- 13 									_
- 14)))		_
45)))		
- 15 									
- 16									-
17									
- 17					DP03	15.0 - 20.0	15.0 - 2	4.0	N/A
18.0	365.7						lö ((1	

Client E	Borehole ID N/A		Stantec Boring	No. JOF-	-114-Pre		
Client	Tenness	see Valley Authority	Boring Locatio		10 N; 1,412,156.67	E NAD27	Plant Local
Project	Number1755682	286	Surface Elevat	tion <u>383.7 ft</u>	Elevation	Datum_ ı	NGVD29
	Lithology		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19 - 20		FAT CLAY WITH GRAVEL, CH, 2.5Y yellowish brown) to 10YR 5/4 (yellowis plasticity, hard, moist, [FILL]					<u>-</u> -
- 21							_
- 22				DP04	20.0 - 25.0	2.1	– N/A
- 23					5.0		_
- 24							-
- 25 - 26					25.		_
- 27 27.5	356.2			DP05	25.0 - 27.5	2.5	N/A
		Bedrock Refusal / Bottom of Hole at 27.5 Ft.					- - -
	Boring	JOF-114-Pre was backfilled with grout o	n 8/21/2019.				_
	G = 2: a,b,o	Environmental Sample Custody (two Spl Geotechnical Sample Custody c denote Split Spoon divided between Er ths are reported in feet below ground sur	nvironmental and Ge			e)	-
							=
							_
							=
							-
							_
							_

	Niont E	Borehole	ID N/A	1	Stantec Boring	a N	ı. JOF	.116-P <i>7</i>			
	Client	ooreriole		ssee Valley Authority	Boring Location			64 N; 1,412,589	35	E NAD27	Plant Local
		Number		<u> </u>	Surface Eleva						
	-			DEC Order	Date Started	itiOi	7/30/19	Comple		-	
	-	Locatio		w Johnsonville, Humphreys Co., TN	Depth to Wate	- er	N/A	Comple Date/Ti		N/A	
	-	or C. B			Depth to Wate	_		Date/Ti Date/Ti		N/A	
	•			antec Consulting Services Inc.	Drill Rig Type	_					
	_			I Sampling Tools (Type and Size	0 7.				;		_
			_	ling Tools (Type and Size) NG							
(Overdri	II Tooling	g (Type	and Size) N/A				Overdril	l De	pth _	N/A
5	Sample	r Hamm	er Type	Automatic Weight 140	lb Drop 3	0"		Efficiency	!	N/A	
E	Boreho	le Azimu	ıth	N/A	Borehole Inclin	nat	ion (from	Vertical) _	N/	A	
F	Review	ed By	K. Ca	rey	Approved By	_	P. Dunne				
	l	_ithology			Overburden:	;	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
De	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	388.0		Top of Hole							_
- 0	0.8	387.2		Topsoil					0.0		
- 1	0.0	307.2		LEAN CLAY, CL, 7.5YR 7/1 (light gra	v) to 7.5YR 6/8		SS01G	0.0 - 1.5	0.0 - 1.5	1.3	5-4-4
				(reddish yellow), medium to high plas							
- 2				very hard, [FILL]			SS02G	1.5 - 3.0	1.5 - 3.0	1.4	5-3-5
- 3	3.3	384.7					SS03aG	3.0 - 3.3			-
				GRAVELLY FAT CLAY, CH, 7.5YR 4	/1 (dark gray) to		SS03bG	3.3 - 4.1	3.0 - 4.5	1.5	7-7-12
- 4				7.5YR 5/6 (strong brown), medium to	high plasticity,		SS03cG	4.1 - 4.5	4.5		-
- 5		200.0		firm to very hard, [FILL], [CCR]			SS04aG	4.5 - 5.4	4.5		
	5.4	382.6		GRAVELLY , CH, 7.5YR 4/6 (strong b	prown) to 10YR		SS04bG	5.4 - 6.0	4.5 - 6.0	1.4	8-5-6
- 6				4/2 (dark grayish brown), medium to h					6		-
- 7				firm, [FILL], [CCR]			SS05G	6.0 - 7.5	6.0 - 7.5	0.9	3-2-6
	7.5	380.5		000V511V011TV0AND 00 0M 5							
- 8				GRAVELLY SILTY SAND, SP-SM, 5\ gray), very dense, [FILL], [CCR]	r 4/1 (dark		SS06G	7.5 - 9.0	7.5 - 9	1.3	8-8-7
- 9	9.0	379.0		37, 3 71 371 3					0		-
				SANDY SILT SOME CLAY, SP-SM, 1	` •		SS07G	9.0 - 10.5	9.0 - 10.5	1.3	5-5-4
- 10				dark gray), very dense, moist, [FILL],	[CCR]		33076	9.0 - 10.5	10.5	1.3	J-J-4 _
- 11									10.5		_
•							SS08G	10.5 - 12.0	0.5 - 12.0	1.5	5-5-8
- 12			$ \cdot \cdot $						=	1	-
- 13							SS09G	12.0 - 13.5	2.0 - 13	1.0	9-3-3
13			-:- <u> </u>						3.5		
- 14			:•:				SS10G	13.5 - 15.0	13.5 - 15.	1.4	3-4-5
- 15	15.0	373.0	<u> -:- </u>						15.0		_
10				SANDY SILT SOME CLAY, SP-SM, 1	·		00440	450 405	15.0		4.00
- 16			ŀ∷⊪¦ℍ	brown), non-plastic, wet, [FILL], [CCR	[]		SS11G	15.0 - 16.5	5.0 - 16.5	1.5	4-2-3
_ 17									16.		
- 17			-:- 				SS12G	16.5 - 18.0	6.5 - 18.0	1.5	1-1-2
40	18.0	370.0	• • • •						0		

Clien	t Borehole	ID N/A	\	Stantec Borir	ng N	lo. JOF	-116-PZ			
Clien	t	Tennes	see Valley Authority	Boring Locat	on	605,526.0	64 N; 1,412,589	9.35	E NAD27	' Plant Local
Proje	ct Number	175568	286	Surface Elev	atio	n <u>388.0 ft</u>	Elevation	on E	Datum_	NGVD29
	Lithology			Overburden		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft	³ Elevation	Graphic	Description	Rock Core:	<u> </u>	RQD %	Run Ft		Rec. Ft	Rec. %
- 18		 • • 	OLANEN OUT MUTH CAMP OF ON	10)/D 0/4 / 1 1						_
- 19			CLAYEY SILT WITH SAND, SP-SM, 1 yellowish brown), very dense, wet, no [CCR]			SS13G	18.0 - 19.5	18.0 - 19.5	1.5	1-1-2
- 20						SS14	19.5 - 21.0	19.5 - 21	1.5	1-1-10
- 21						SS15	21.0 - 22.5	.0 21.0-	1.4	- 1-4-4
- 22						3313	21.0 - 22.5	22.5 22	1.4	1 -4-4 _
- 23 - 24						SS16	22.5 - 24.0	2.5 - 24.0	1.5	1-1-2
- 25						SS17G	24.0 - 25.5	24.0 - 25.5	1.3	1-WH-WH_
- 26 27 27.	0 361.0					SS18G	25.5 - 27.0	25.5 - 27.0	0.8	WR-WR-WR
- 27 - 28 28			GRAVELLY FAT CLAY WITH SILT, G 5/6 (yellowish brown) to 10YR 5/1 (gra			SS19aG	27.0 - 28.3	27.0 - 28.5	1.5	WR-WR-WR_
			GRAVELLY LEAN CLAY, GP-GC, 5Y	6/4 (pale		SS19bG	28.3 - 28.5	5 28		
- 29 - 30	0 358.0		olive), very dense			SS20G	28.5 - 30.0	.5 - 30.0	1.5	5-8-4
- 31			LEAN CLAY WITH SILT, CL, 10YR 4/ yellowish brown) with 10YR 5/6 (yellow high plasticity, firm			SS21G	30.0 - 31.5	30.0 - 31.5	1.5	3-6-9
- 32						SS22G	31.5 - 33.0	31.5 - 33.0	1.5	4-5-7
- 33						SS23G	33.0 - 34.5	33.0-3	1.5	4-5-6
- 34 - 35	5 353.5		FAT CLAY, CH, 10YR 5/6 (yellowish b		-			4.5 34.5		_
- 36			6/1 (gray), medium to high plasticity, fi	rm to very hard		SS24G	34.5 - 36.0	5-36.0	1.5	2-3-4 _
- 37						SS25G	36.0 - 37.5	36.0 - 37.5	1.5	4-5-11
- 38						SS26G	37.5 - 39.0	37.5 - 39.0	1.5	3-4-8
- 39						SS27G	39.0 - 40.5	39.0 -	1.5	6-8-8
- 40							20.0 10.0	40.5 40		_
- 41 - 42						SS28G	40.5 - 42.0).5 - 42.0	1.1	6-5-8 -

Page: 3 of 3

Client Boreho	ole ID N/A		Stantec Boring	_{g No.} JOF-	116-PZ		
Client _	Tennes	see Valley Authority	Boring Location	n <u>605,526.6</u>	64 N; 1,412,589.3	35 E NAD27	Plant Local
Project Numb	er 175568	286	Surface Eleva	tion 388.0 ft	Elevatior	n Datum <u>r</u>	NGVD29
Litholog	у		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
Depth Ft ³ Elevat	on Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
43		FAT CLAY, CH, 10YR 5/6 (yellowish 6/1 (gray), medium to high plasticity, (Continued) GRAVELLY, GP-GC, 7.5YR 5/6 (strong 10YR 5/4 (yellowish brown), very der CLAYEY GRAVEL WITH SAND, GP-(dark yellowish brown) to 7.5YR 4/6 (very dense, moist	ong brown) to nse, moist	SS29G SS30aG SS30bG SS31aG SS31bG SS32G SS32G SS33G SS34G SS34G SS35G	42.0 - 43.5 43.5 - 43.8 43.8 - 45.0 45.0 - 45.6 45.6 - 46.5 46.5 - 48.0 48.0 - 49.5 49.5 - 51.0 51.0 - 52.5 52.5 - 54.0 54.0 - 54.9	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	5-8-14 17-17-15 10-12-13 6-8-10 6-10-11 6-11-9 5-10-12 5-11-14 6-50/5"
55 55.6 332.	4			SS38G	55.5 - 55.6	0.1	50/1"
	G = 2: a,b,	Refusal / Bottom of Hole at 55.6 Ft. Top of Rock = 55.6 Ft. Top of Rock Elevation = 332.4 Ft. Environmental Sample Custody (two Sp. Geotechnical Sample Custody codenote Split Spoon divided between Eths are reported in feet below ground st.	nvironmental and G		n sufficient samp	s ss a	

Page: 1 of 3

Client Borehole ID N/A	St	tantec Boring	No. JOF	-117			
Client Tennessee Valley Aut	thority Bo	oring Location	n <u>602,823.</u>	15 N; 1,412,216	.73 E	E NAD27	Plant Local
Project Number _ 175568286	Sı	urface Elevat	ion <u>384.1 ft</u>	Elevatio	n D	atum_r	NGVD29
Project NameJOF TDEC Order	_	ate Started	9/12/19	Comple	ted	9/12/1	19
-		epth to Wateı		Date/Tii		9/13/1	19 07:18
Inspector C. Burton Logge		epth to Wate			me	N/A	
Drilling Contractor Stantec Consultin		rill Rig Type a					
Overburden Drilling and Sampling T		1-1/4" HSA, 2" S	S w/o liners, 3	Shelby Tubes			
Rock Drilling and Sampling Tools (T Overdrill Tooling (Type and Size) _	. , , , , , , , , , , , , , , , , , , ,	1		Overdrill	De	nth 4	40.7 ft
Sampler Hammer Type Automatic)"	Gveranii Efficiency		Рит <u>—</u> V/A	
Borehole Azimuth N/A		orehole Inclin		•	N/A		
Reviewed By K. Carey		oproved By	•	,			
Lithology		Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³ Elevation Graphic Descrip	otion	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %
0.0 384.1 Top of Ho							
0 0808080	n - general description of previo	ously					
1 1.0 383.1 38388 air-excavate	ed material: nixed with clay, moist, [FILL]						-
EAT CLAY!	WITH GRAVEL, CH, moist, [FI	/					
PAT CLAY	WITH GRAVEL, CH, MOISI, [FI	ILLJ					_
- 3							-
	lled with coarse sand to 6.0' bg of air-excavation.	ıs after					
- 4	oi aii-excavatioii.						-
- 5							_
6 6.0 378.1 SANDY FA:	T CLAY WITH GRAVEL, CH, 7	7 5VR 5/6					-
	wn) to 10YR 8/1 (white), mediu		SS01G	6.0 - 7.5	6.0 - 7.	0.9	1-2-3
plasticity, ve	ery soft to firm, moist, [FILL]				5		
- 8			SS02G	7.5 - 9.0	7.5 -	0.3	2-1-1
			00020	7.0 - 3.0	9.0	0.5	2-1-1
9					9.0		_
- 10			SS03G	9.0 - 10.5	- 10.5	0.2	WH-1-1
- 11			SS04G	10.5 - 12.0	0.5 - 12	0.5	3-4-4
12 12.0 372.1					2.0		-
	SOME GRAVEL, CH, 10YR 5/3 10YR 8/1 (white), medium to h	1,5	SS05G	12.0 - 13.5	12.0-	1.0	4-3-3
	ery soft to firm, moist, with roots		00000	12.0 - 10.0	13.5	1.0	4-0-0
pieces of w	ood, [FILL]				13.5		_
			SS06G	13.5 - 15.0	5 - 15.0	1.0	2-2-4
- 15							_
- 16			SS07G	15.0 - 16.5	5.0 - 16	1.3	2-1-2
					.5		
47							

Page: 2 of 3

Client	Borehole	ID N/A		Sta	ntec Borinç	g N	o. JOF-	-117			
Client		Tennes	see Valley Authority		ing Locatio			15 N; 1,412,216	3.73	E NAD27	Plant Local
Projec	t Number	175568	286	Sur	face Eleva	tio	384.1 ft	Elevatio	on E	Datum_ ı	NGVD29
	Lithology			(Overburden:	;	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 17			FAT CLAY SOME GRAVEL, CH, 10YF brown) and 10YR 8/1 (white), medium				SS08G	16.5 - 18.0	16.5 - 18.0	1.2	WH-WH-3
- 18 - 19			plasticity, very soft to firm, moist, with pieces of wood, [FILL] (Continued)				SS09G	18.0 - 19.5	18.0 - 19.5	1.0	1-4-3
- 20							SS10G	19.5 - 21.0	19.5 - 21.0	0.5	4-3-3
- 21 - 22							SS11G	21.0 - 22.5	21.0 - 22.5	1.0	1-1-1 _
- 23							SS12	22.5 - 24.0	22.5 - 24.0	0.0	WH-WH-1
- 24 - 25							SS13G	24.0 - 25.5	24.0 - 25.5	0.5	3-1-2
- 26 27 27.0	357.1						SS14G	25.5 - 27.0	25.5 - 27.0	0.5	WH-WH-2
- 27 - 28			FAT CLAY SOME SAND, CH, 10YR 5 brown), medium to high plasticity, very hard, moist to wet, [FILL]				SS15G	27.0 - 28.5	27.0 - 28.5	1.5	WH-WH-1
- 29							SS16G	28.5 - 30.0	28.5 - 30.0	0.5	WH-WH-1
- 30 <u>₩</u> - 31							SS17G	30.0 - 31.5	30.0 - 31.5	0.4	1-5-6
- 32 - 33							SS18G	31.5 - 33.0	31.5 - 33.0	1.0	1-1-2 _
- 34							SS19	33.0 - 34.5	33.0 - 34.5	0.0	WH-1-1
- 35 36.0	348.1						SS20G	34.5 - 36.0	34.5 - 36.0	1.2	WH-1-1
- 36 - 37			GRAVELLY LEAN CLAY WITH SILT, (yellowish brown) to 2.5Y 4/3 (olive broplasticity, very soft to firm, moist to we	own),	medium		SS21G	36.0 - 37.5	36.0 - 37.5	0.6	WH-1-1 _
- 38	245 4		and shale fragments, [FILL]				SS22G	37.5 - 39.0	37.5 - 39.0	0.4	WH-1-1
- 39 <u>39.0</u>	345.1										_

Page: 3 of 3

Client E	Borehole I	ID N/A		Stantec Borin	g No. JOF	-117		
Client			see Valley Authority	Boring Location		15 N; 1,412,216.73	E NAD27	Plant Local
Project	Number	1755682	286	Surface Eleva	ition 384.1 ft	Elevation I	Datum_ı	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 40 40.5	343.6	///	GRAVELLY FAT CLAY, CH, 2.5Y 4/3 medium to high plasticity, firm, moist, (Continued)		SS23G	39.0 - 40.5	0.9	WH-1-2
			No Refusal / Bottom of Hole at 40.5 Ft.					-
		Permai installa	nent monitoring well JOF-117 installed i tion log for details.	in this boring followi	ng overdilling. \$	See JOF-117 monito	oring well	_
		G = 0 2: a,b,c	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground su	nvironmental and G	·	·	;)	
								-
								-

Page: 1 of 3

С	lient E	Borehole	ID N/A	<u> </u>	Stantec Boring	g N	o. JOF	-117 Offs	et A	<u> </u>	
C	lient		Tennes	see Valley Authority	Boring Location	on	602,820.0	03 N; 1,412,21	5.82	E NAD27	Plant Local
Р	roject	Number	175568	286	Surface Eleva	tior	383.2 ft	Elevati	on [Datum_n	NGVD29
Р	roject	Name	JOF TE	DEC Order	Date Started	_	8/21/19	Comple	eted	8/21/1	19
	-	Location		w Johnsonville, Humphreys Co., TN	Depth to Water	er _	22.5 ft	Date/T		8/21/1	19 09:13
	•	or C. Bu			Depth to Wate	_		Date/T	ime	N/A	
	_			o Logic (Subcontractor)	Drill Rig Type						
			-	Sampling Tools (Type and Size)	Macro Core 2.0'	" 0[) with 60" P	VC sample line	ers		
		•	•	ling Tools (Type and Size) N/A				0		41. 1	
		_		and Size) N/A GH70 Direct Push Weight N/A	Drop N	1/^		Overdri			V/A
		le Azimu		GH70 Direct Push Weight N/A	Borehole Incli		ion (from	Efficiency	_	N/A Δ	
		ed By	K. Ca		Approved By		C. Millhollir	· -	14//		
,			11. 04								
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft	$\neg \neg$	Rec. Ft	Rec. %
- 0	0.0	383.2		Top of Hole					+		_
				Waste, air-knife excavation to 6.0'. No l recovery.	oggable						
- 1											_
- 2				Overburden - general description of pre air-excavated material: GRAVEL mixed							_
				moist, [FILL]	with clay,						
- 3											_
- 4											-
				Hole backfilled with coarse sand to 6.0' completion of air-excavation.	bgs after						
- 5				completion of all-excavation.							_
- 6	6.0	377.2									-
				GRAVELLY FAT CLAY WITH GRAVEL 4/6 (strong brown) to 10YR 5/2 (grayish							
- 7				medium to high plasticity, moist, with co			DP01	5.0 - 10.0	5.0-	2.3	N/A
- 8				fragments, [FILL]			DFUT	3.0 - 10.0	10.0	2.3	IN/A –
				Operator used smaller diameter sample reducing recovery	er to 15.0,				((
- 9				· ·					(/		-
– 10										4	_
									(/		
- 11									1 1/1		-
- 12											-
							DP02	10.0 - 15.0	0.0 - 15	0.8	N/A
- 13									5.0		-
- 14											_
'-									((
- 15				Switched to standard diameter sampler	at 15 0'						_
- 16				Samonou to standard diameter sampler	ut 10.0				((_
10	16.8	366.4									
- 17	. 5.0	555.1							15.0	(-
40							DP03	15.0 - 20.0) - 20.0	3.9	N/A

Page: 2 of 3

Clier	t Borehole	ID N/A		Stantec Boring	g No.	JOF-	-117 Offse	t A	\	
Clier	nt	Tenness	see Valley Authority	Boring Location	on <u>e</u>	602,820.0	03 N; 1,412,215	5.82	E NAD27	Plant Local
Proje	ect Number	1755682	286	Surface Eleva	tion 3	883.2 ft	Elevatio	on E	Datum_ <u>r</u>	NGVD29
	Lithology			Overburden:	Sar	nple ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth F	t ³ Elevation	Graphic	Description	Rock Core:	RO	QD %	Run Ft		Rec. Ft	Rec. %
- 18 - 19 - 20			FAT CLAY WITH GRAVEL, CH, 7.5Y brown) to 10YR 5/1 (gray), high plasti iron oxide staining, [FILL] (Continued	city, firm, moist,						-
- 21 21	.4 361.8									-
- 22 <u>√</u> 22			FAT CLAY WITH GRAVEL, CH, 10Yf brown) to 10YR 5/1 (gray), [FILL]	R 5/8 (yellowish		DD04	20.0. 25.0	20.0	4.2	- N/A
- 23			GRAVELLY FAT CLAY, CH, 10YR 5/brown), high plasticity, moist, [FILL]	4 (yellowish		DP04	20.0 - 25.0	- 25.0	4.3	N/A -
- 24										-
- 25										_
- 26 - 27	.9 356.3							2		-
- 28			FAT CLAY WITH GRAVEL, CH, 10YF brown) to 2.5Y 7/1 (light gray), high p moist, with organics - wood fragments	lasticity, soft,		DP05	25.0 - 30.0	5.0 - 30.0	3.1	N/A -
- 29			, ,							-
- 30										_
- 31										-
- 32						DP06	30.0 - 35.0	30.0 - 35.0	2.3	N/A
- 33 - 34										_
- 35										_
- 36	.7 347.5		CLAYEY POORLY GRADED GRAVE							-
- 37			10YR 6/4 (light yellowish brown) to 7. brown), moist, [FILL]	5YR 5/6 (strong		DP07	35.0 - 40.0	35.0 -	1.4	– N/A
- 38						DI 01	30.0 - 40.0	40.0	1.4	-
- 39										-
- 40 <u>40</u> - 41	.2 343.0		FAT CLAY, CH, 2.5Y 5/3 (light olive b 5/4 (yellowish brown), high plasticity,							-
- 42								$\perp \parallel$	/	_

Page: 3 of 3

Client I	Borehole ID	N/A		Stantec Boring	g No	JOF-	117 Offset	Α		
Client	т	enness	see Valley Authority	Boring Location)3 N; 1,412,215.8		NAD27	Plant Local
Project	Number 1	755682	286	Surface Eleva	ition	383.2 ft	Elevation	Da	tum <u>r</u>	NGVD29
	Lithology			Overburden:	S	ample ^{1,2}	Depth Ft ³	R	ec. Ft	Blows/PSI
Depth Ft ³	Elevation Gra	aphic	Description	Rock Core:	F	RQD %	Run Ft	R	ec. Ft	Rec. %
- 43 - 44 44.6	338.6		FAT CLAY, CH, 2.5Y 5/3 (light olive b 5/4 (yellowish brown), high plasticity, (Continued)			DP08	40.0 - 45.0	400 450	3.0	N/A _ _
45.0	338.2	11	FAT CLAY, CH, 5YR 5/6 (yellowish re					Ш		
			\7/1 (light gray), high plasticity, firm, m	oist, [FILL]						
			No Refusal / Bottom of Hole at 45.0 Ft.							_
										-
										_
	1	Boring	JOF-117 Offset A was backfilled with gr	rout on 8/21/2019.						-
		1: E = E	Environmental Sample Custody (two Sp	lit Spoons may be r	equir	ed to obtai	in sufficient samp	ole)		
	;	G = 0 2: a,b,c	Geotechnical Sample Custody denote Split Spoon divided between E	nvironmental and G	eote	chnical Sar	mples			_
	;	3: Dept	hs are reported in feet below ground su	rface			•			_
										_
										_
										_
										-
										-
										_
										_
										-
										=
										_
										_

Page: 1 of 3

	N: 4 F	N l l .	ID N//		Ot and a Davin		IOE	110			
	Client E	Borehole			Stantec Boring						Diant Local
		Number		ssee Valley Authority	Boring Location			11 N; 1,410,969			
	•	Number			Surface Eleva	ILIO	-	Elevatio		-	
	-			DEC Order w Johnsonville, Humphreys Co., TN	Date Started	_	6/27/19 7.8 ft	Comple			9 09:10
	-	Location or C. B			Depth to Wate	_		Date/Til Date/Til		N/A	9 09.10
	•			Logger _C. Burton Intec Consulting Services Inc.	Deptil to wate	_			IIIE		
	_			Sampling Tools (Type and Size	.						
			-	ling Tools (Type and Size) N/A	-		.,,, .				
		•	•	and Size) 8-1/4" HSA overdrill of bo	oring			Overdrill	De	pth 5	51.0 ft
				Automatic Weight 140		80"		— Efficiency		\/A	
	•	le Azimu	• •	N/A	Borehole Incli		ion (from	Vertical)	N/	A	
F	Review	ed By	K. Ca	rey	Approved By		P. Dunne				
	ı	_ithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
De	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
	0.0	369.3		Top of Hole							
- 0			0303030	Blind-drilled through gravel to 2.8', [FI	LL]						_
- 1											-
			565656 565656 565656								
- 2		000 5									-
- 3	2.8	366.5		POORLY GRADED GRAVEL WITH C	LAV GP				Н		-
				10YR 4/4 (dark yellowish brown), very			SS01G	3.0 - 4.5	3.0 - 4.5	0.2	4-2-4
- 4	4.5	364.8	0 0 0					0.00	4.5		
- 5				SILTY LEAN CLAY, CL, 10YR 5/4 (ye	llowish brown)				4.5		
				to 2.5Y 5/1 (gray), low plasticity, firm			SS02G	4.5 - 6.0	.5-6.0	0.7	2-2-2
- 6									6		-
- 7							SS03G	6.0 - 7.5	.0 - 7.5	1.5	3-7-5
	\downarrow									-	
- 8	1						SS04G	7.5 - 9.0	7.5 - 9	1.1	2-2-2
- 9									.0		-
							SS05G	9.0 - 10.5	9.0-	1.5	2-1-2
- 10							33030	9.0 - 10.5	.0 - 10.5	1.5	2-1-2 _
- 11									10.5		-
							SS06G	10.5 - 12.0	5 - 12.0	1.5	1-1-2
- 12									=	1	-
- 13							SS07G	12.0 - 13.5	2.0 - 13	1.5	1-2-2
13									3.5		
- 14							SS08G	13.5 - 15.0	13.5 - 15.	1.3	1-1-2
- 15								15.0 10.0	15.0]	<u>-</u>
10	15.8	353.5					00000	450 405	15.0		440
- 16	10.0	200.0		SILTY LEAN CLAY, CL, 2.5Y 5/1 (gra	y), very soft to		SS09G	15.0 - 16.5	5.0 - 16.5	1.4	1-1-2
_ 17				very hard	•				16.	1	
- 17							SS10G	16.5 - 18.0	3.5 - 18.0	1.5	3-6-4
40			レノノ						10		

Page: 2 of 3

Client	Borehole ID N/A		tantec Boring	a No	JOF	.118			
Client						11 N; 1,410,969	92	E NAD27	Plant Local
	t Number 175568		urface Eleva	-					
			1 1			_			
	Lithology		Overburden:		mple ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Elevation Graphic	Description	Rock Core:	R	QD %	Run Ft	П	Rec. Ft	Rec. %
- 18 - 19		SILTY LEAN CLAY, CL, 2.5Y 5/1 (gray), very hard (Continued)	very soft to		SS11G	18.0 - 19.5	18.0 - 19.5	1.5	3-5-6 _
- 20					SS12G	19.5 - 21.0	19.5 - 21.0	1.4	5-8-8
- 21 - 22					SS13G	21.0 - 22.5	21.0 - 22.5	1.5	7-12-13
- 23					SS14G	22.5 - 24.0	22.5 - 24.0	1.5	6-9-13
- 24 - 25					SS15G	24.0 - 25.5	24.0 - 25.5	1.5	6-7-8
- 26					SS16G	25.5 - 27.0	25.5 - 27.0	0.9	2-3-6
- 27 - 28					SS17G	27.0 - 28.5	27.0 - 28.5	1.5	3-4-6
- 29					SS18G	28.5 - 30.0	5 28.5 - 30.0	1.5	3-3-4
- 30 - 31					SS19G	30.0 - 31.5	0 30.0-31	1.5	2-2-3
- 32					SS20G	31.5 - 33.0	.5 31.5 - 33	1.5	1-3-3
- 33 - 34					SS21G	33.0 - 34.5	.0 33.0 - 34.5	1.5	3-2-3
- 35					SS22G	34.5 - 36.0	4.5 34.5 - 36.0	1.5	3-3-3
- 36					SS23G	36.0 - 37.5	36	1.5	- WH-WH-3
- 37 - 38							0-37.5 37.5		- -
- 39					SS24G SS25aG	37.5 - 39.0 39.0 - 39.8	7.5 - 39.0 39	1.5	5 -3- 5 -
- 40 39.8	329.5	GRAVELLY POORLY GRADED SAND W	TH SILT		SS25aG SS25bG	39.0 - 39.8 39.8 - 40.5	39.0 - 40.5	1.5	3-22-17 _
- 41 - 42		GP-GM, 7.5YR 4/4 (brown), fine to medium dense			SS26G	40.5 - 42.0	5 40.5 - 42.0	1.3	6-11-12

Page: 3 of 3

Client Borehole ID N/A Stantec Boring No. JOF-118

Client Tennessee Valley Authority Boring Location 603,219.11 N; 1,410,969.82 E NAD27 Plant Local

Project Number 175568286 Surface Elevation 369.3 ft Elevation Datum NGVD29

	Lithol	logy			Overburden:	8	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth	r Ft ³ Elev	/ation	Graphic	Description	Rock Core:		RQD %	Run Ft	Rec. Ft	Rec. %
- 43				GRAVELLY POORLY GRADED SAND W. GP-GM, 7.5YR 4/4 (brown), fine to mediur dense (Continued)	,		SS27G	42.0 - 43.5 43.5	1.2	10-26-22 _
- 44 - 45							SS28G	43.5 - 45.0 ^{43.5} - 45.0	1.5	5-13-14
- 45 - 46							SS29G	45.0 - 46.5 45.0 - 46.5	1.4	7-7-22 _
- 47							SS30G	46.5 - 48.0 46.5	0.7	18-12-14
- 48 - 49							SS31G	48.0 - 49.5 48.0 - 49.5	1.1	7-8-16 _
- 50 - 51	51.0 31	18.3					SS32G	49.5 - 51.0 ^{49.5} - 51.0	0.9	10-10-11

No Refusal / Bottom of Hole at 51.0 Ft.

Permanent monitoring well JOF-118 installed in this boring after overdrilling. Refer to JOF-118 Well Installation Detail for further details.

^{1:} E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody

^{2:} a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples

^{3:} Depths are reported in feet below ground surface

Page: 1 of 3

	Client E	Borehole	ID N/A	4	Stantec E	Borina	No. JOF-	·119			
	Client			ssee Valley Authority	Boring Lo			37 N; 1,410,031	1.49	E NAD27	Plant Local
	Proiect	Number		<u> </u>	•		ion 363.4 ft	Elevation			
	-	Name			Date Star		7/9/19	Comple		-	
	-	Location		w Johnsonville, Humphreys Co., TN	Depth to			Oomple Date/Ti			19 15:38
	•	or C. B		Logger C. Burton	Depth to			Date/Ti			
	•	Contract		intec Consulting Services Inc.	•		and ID CME				
	•			Sampling Tools (Type and Size)	_	• .					
			-	ling Tools (Type and Size) N/A							
		-	•	and Size) 8-1/4" HSA overdrill of bo	oring			Overdrill	l De	epth '	45.0 ft
				Automatic Weight 140 I		p 30	"	Efficiency	I	N/A	
	Boreho	le Azimu	th	N/A	Borehole	Inclin	ation (from	Vertical) _	N/	Α	
	Review	ed By	J. Sni	der	Approved	Ву _	L. Tucker				
_		_ithology			Overbu	den:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
De	pth Ft ³	Elevation	Graphic	Description	Rock C	ore:	RQD %	Run Ft		Rec. Ft	Rec. %
	0.0	363.4		Top of Hole							
- 0			0303030	Crushed stone mixed with clay, [FILL]					0.		
- 1							SS01G	0.0 - 1.5	0.0 - 1.5	0.3	2-1-2
									-		
- 2							SS02G	1.5 - 3.0	1.5 - 3.0	0.5	3-3-3
- 3	3.0	360.4							0.		-
	\downarrow			FAT CLAY, CH, 10YR 4/3 (brown) with			SS03G	3.0 - 4.5	3.0	1.3	2-2-5
- 4				(gray), high plasticity, firm, iron oxide s	staining		33030	3.0 - 4.3	3.0 - 4.5	1.5	2-2-3
- 5									4.		_
J							SS04G	4.5 - 6.0	1.5 - 6.0	0.8	4-6-6
- 6										- 1	-
_							SS05G	6.0 - 7.5	6.0 - 7.5	1.1	3-2-4
- 7	7.5	355.9							.55		-
- 8				SILTY FAT CLAY, CH, 10YR 5/4 (yello		,	00000	7.5.00	7.5		-
	9.0	354.4		medium to high plasticity, very soft to	very hard		SS06G	7.5 - 9.0	5-9.0	1.4	2-2-2
- 9	0.0	001.1	///	SILTY FAT CLAY, CH, 10YR 5/3 (brown)	wn) to 2.5Y 6	/3			9.1		-
- 10				(light yellowish brown), high plasticity,			SS07G	9.0 - 10.5	9.0 - 10.5	1.3	1-1-1
										-	
- 11							SS08G	10.5 - 12.0	10.5 - 12.0	1.5	3-5-7
- 12									2.0		-
							00000	400 405	12.0	4.5	2.2.5
- 13							SS09G	12.0 - 13.5	2.0 - 13.5	1.5	3-3-5
- 14									13		_
14							SS10G	13.5 - 15.0	3.5 - 15.0	1.5	3-4-7
- 15									_		_
40							SS11G	15.0 - 16.5	15.0 - 16.5	1.5	4-4-5
- 16									6.5		-
- 17							SS12G	16.5 - 18.0	16.5-	1.3	2-3-6
	1	1				1	, , , , , , , , , , , , , , , , , , , ,		1-4		

Page: 2 of 3

С	lient E	Borehole	ID N/A		Stantec Borin	ıg N	lo. JOF-	-119			
c	lient		Tenness	see Valley Authority	Boring Location				.49	E NAD27	Plant Local
Pi	roject	Number	1755682	286	Surface Eleva	atio	n <u>363.4 ft</u>	Elevatio	n E	Datum_	NGVD29
	l	Lithology			Overburden:	;	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18 - 19	19.5	343.9		SILTY FAT CLAY, CH, 10YR 5/3 (bro (light yellowish brown), high plasticity. (Continued)			SS13G	18.0 - 19.5	18.0 - 19.5	1.5	5-6-10 _
- 20				FAT CLAY, CH, 7.5YR 4/6 (strong bro	own) with 10YR		SS14G	19.5 - 21.0	19.5 - 21.0	1.3	7-8-10
- 21 - 22							SS15G	21.0 - 22.5	21.0 - 22.5	1.5	7-7-9 _
- 23 - 24							SS16G	22.5 - 24.0	22.5 - 24.0	1.5	4-5-4
- 25	25.5	337.9					SS17G	24.0 - 25.5	24.0 - 25.5	1.3	5-4-6 _
- 26				SILTY FAT CLAY, CH, 10YR 4/1 (dar 7.5YR 5/6 (strong brown), high plastic			SS18G	25.5 - 27.0	25.5 - 27.0	1.5	4-2-3
- 27 - 28							SS19G	27.0 - 28.5	27.0 - 28.5	1.5	2-2-2
- 29 - 30							SS20G	28.5 - 30.0	28.5 - 30.0	1.5	WH-WH-2
- 31	31.3	332.1					SS21aG SS21bG	30.0 - 31.3 31.3 - 31.5	30.0 - 31.5	1.5	1-1-8
- 32				POORLY GRADED GRAVEL, GP, 7. brown) to 7.5YR 5/4 (brown), fine to dense, poorly graded			SS22G	31.5 - 33.0	31.5 - 33.0	1.5	9-15-31 -
- 33 - 34							SS23G	33.0 - 34.5	33.0 - 34.5	1.0	10-14-21 _
- 35						34.5/37.5	SS24E	34.5 - 36.0	34.5 - 36.0	1.4	18-23-26
- 36 - 37						-20190710	SS25E	36.0 - 37.5	36.0 - 37.5	1.3	13-19-31
- 38 - 39							SS26G	37.5 - 39.0	37.5 - 39.0	1.5	15-12-15
- 39 - 40						39.0/42.0-	SS27E	39.0 - 40.5	39.0 - 40.5	1.5	9-10-12
- 41 - 42						20190710	SS28E	40.5 - 42.0	40.5 - 42.0	1.3	11-18-19 _

Page: 3 of 3

Client E	Borehole	ID N/A	<u> </u>	tantec Borin	g No. JOF -	-119		
Client		Tennes	see Valley Authority B	oring Location	on <u>598,645.8</u>	37 N; 1,410,031.4	E NAD27	' Plant Local
Project	Number	175568	286 S	urface Eleva	ation 363.4 ft	Elevation	Datum_	NGVD29
I	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 43 - 44			POORLY GRADED GRAVEL, GP, 7.5YR brown) to 7.5YR 5/4 (brown), fine to coars dense, poorly graded (Continued)	, -	SS29G SS30G	42.0 - 43.5 43.5 - 45.0	1.5	14-11-15 _ 9-13-18
45.0	318.4	8 8 8 (No Refusal / Bottom of Hole at 45.0 Ft.			45.5 - 45.0		

Permanent monitoring well JOF-119 installed in this boring following over-drilling. See JOF-119 monitoring well installation log for details.

KING LOG 1/3300200 JOF THEY ONDER GTG THEY SUBSOINT DI 20130330.GDT 10/27/2

^{1:} E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample)

G = Geotechnical Sample Custody

G = Geotechnical Sample Custody
2: a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples

^{3:} Depths are reported in feet below ground surface

ATTACHMENT C.2

Well and Piezometer Installation Details

PIEZOMETER INSTALLATION DETAIL

WELL / PROBEHOLE / BOREHOLE NO:

INSTALLATION: STARTED: 8/20/19

PAGE 1 OF 1

JOF-116-PZ (Boring JOF-116-PZ)

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

DRILLING COMPANY: Stantec Consulting Services Inc.

DRILLING EQUIPMENT: CME 55T#1, #709

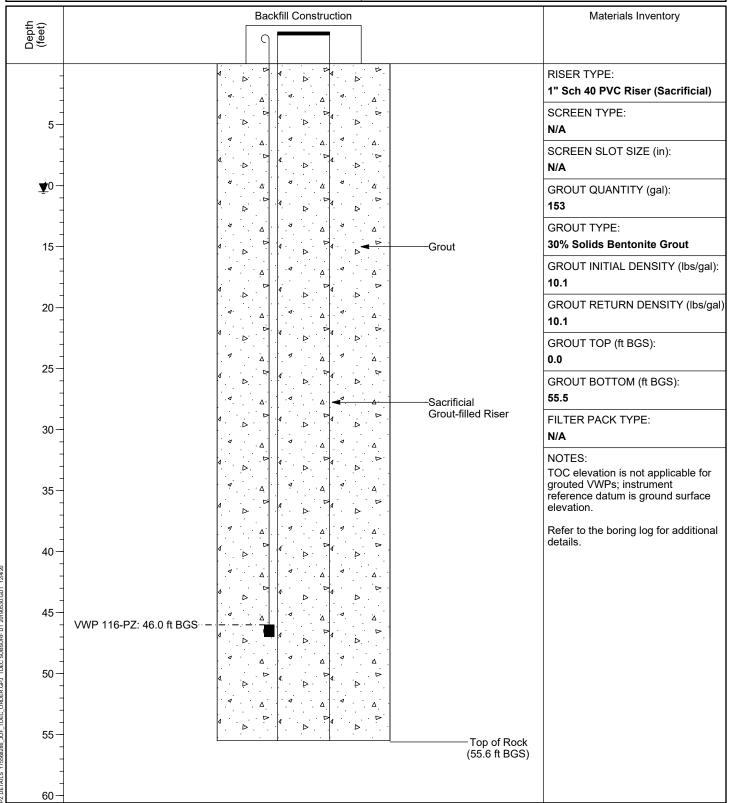
DRILLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

OBSERVED BY: M. Pritt REVIEWED BY: B. Halada APPROVED BY: P. Dunne

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

LOC. DESCRIPTION: Ash Disposal Area 1 LONGITUDE: -87° 59' 12.90" LATITUDE: 36° 2' 20.85"

LOCATION: 605,526.64 N; 1,412,589.35 E DATUM: NAD27 Plant Local


GROUND ELEV (ft): 388.0 **ELEVATION DATUM: NGVD29** TOC ELEV (ft): N/A

BOREHOLE DEPTH (ft): 55.6 DTW AT COMPLETION (ft, bgs): 10.5 RISER DEPTH (ft): 55.5

COMPLETED: 8/21/19

BOREHOLE DIA. (in): 9.0

RISER DIA. (in): 1.0

PROJECT: JOF TDEC Order

OBSERVED BY: C. Burton

PROJECT NUMBER: 175568286

DRILLING EQUIPMENT: CME 55T#1, #709

DRILLING COMPANY: Stantec Consulting Services Inc.

DRILLING METHOD: 8-1/4" HSA overdrill of boring

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners

WELL INSTALLATION DETAIL

WELL / PROBEHOLE / BOREHOLE NO:

JOF-109 (Boring JOF-109)

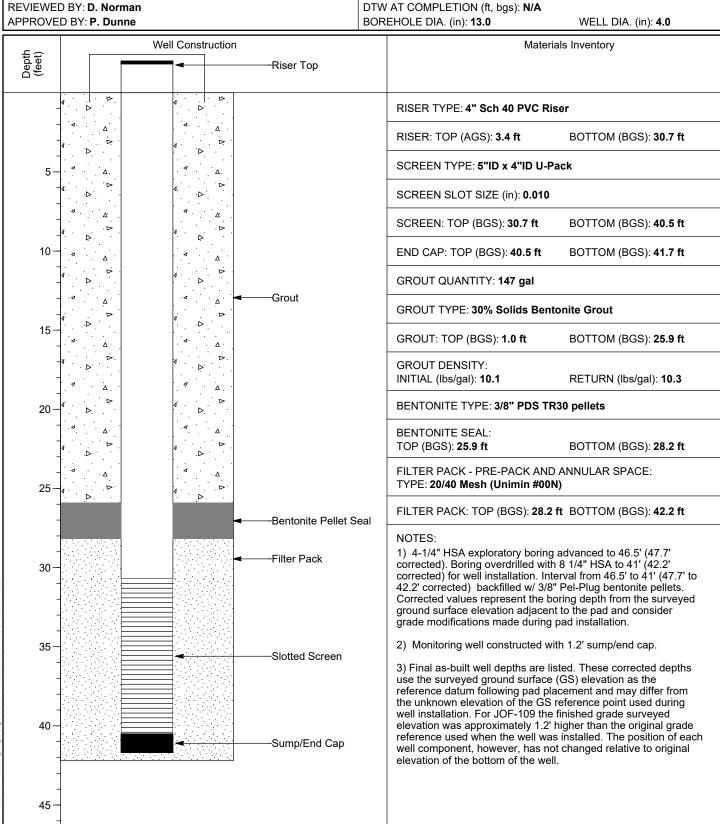
INSTALLATION: STARTED: 6/24/19

LOCATION: **605,123.62 N; 1,413,243.55 E** LOC. DESCRIP: **Ash Disposal Area 1**

LATITUDE: 36° 2' 17.00"

GROUND ELEV (ft): 382.8

ELEVATION DATUM: NGVD29


WELL DEPTH (ft, bgs): 41.7

DTW AT COMPLETION (ft, bgs): N/A

COMPLETED: 6/26/19
DATUM: NAD27 Plant Local

PAGE 1 OF 1

LONGITUDE: -87° 59' 4.84" TOC ELEV (ft): 386.11

WELL / PROBEHOLE / BOREHOLE NO:

JOF-110 (Boring JOF-110)

PROJECT: **JOF TDEC Order** PROJECT NUMBER: **175568286**

DRILLING COMPANY: M&W Drilling (Subcontractor)

DRILLING EQUIPMENT: Geoprobe 8150LS
DRILLING METHOD: 4" x 10" Sonic
SAMPLING METHOD: 4" X 6" Rotosonic

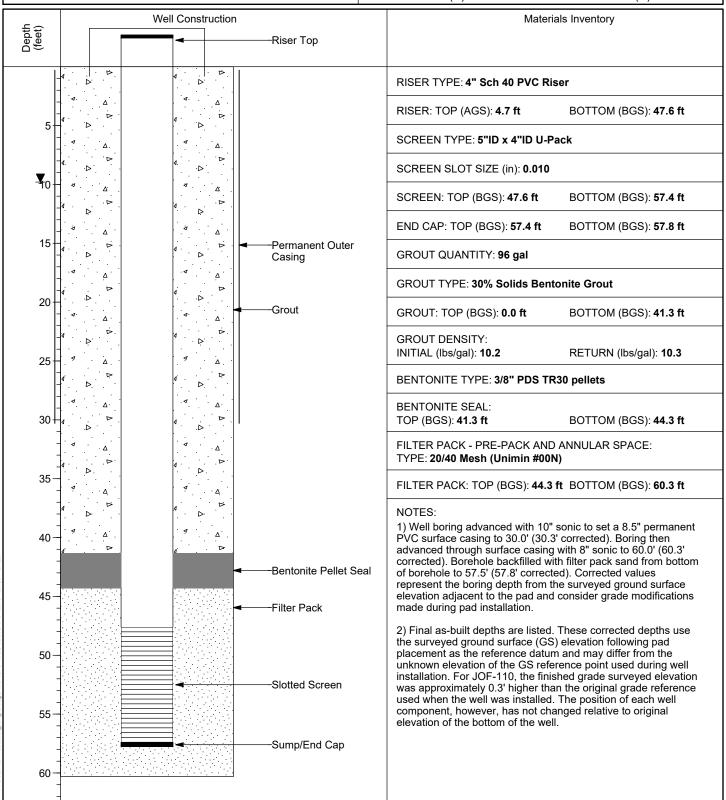
OBSERVED BY: **S. Stanley**REVIEWED BY: **J. Snider**APPROVED BY: **P. Dunne**

INSTALLATION: STARTED: 9/10/19 LOCATION: 605,614.27 N; 1,412,210.58 E LOC. DESCRIP: Ash Disposal Area 1

LATITUDE: 36° 2' 21.64"
GROUND ELEV (ft): 384.0
ELEVATION DATUM: NGVD29

WELL DEPTH (ft, bgs): **57.8**DTW AT COMPLETION (ft, bgs): **9.8**

BOREHOLE DIA. (in): 8.0


COMPLETED: 9/16/19
DATUM: NAD27 Plant Local

PAGE 1 OF 1

LONGITUDE: -87° 59' 17.54"

WELL DIA. (in): 4.0

TOC ELEV (ft): 388.76

WELL / PROBEHOLE / BOREHOLE NO:

PAGE 1 OF 1

JOF-111 (Boring JOF-111B)

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

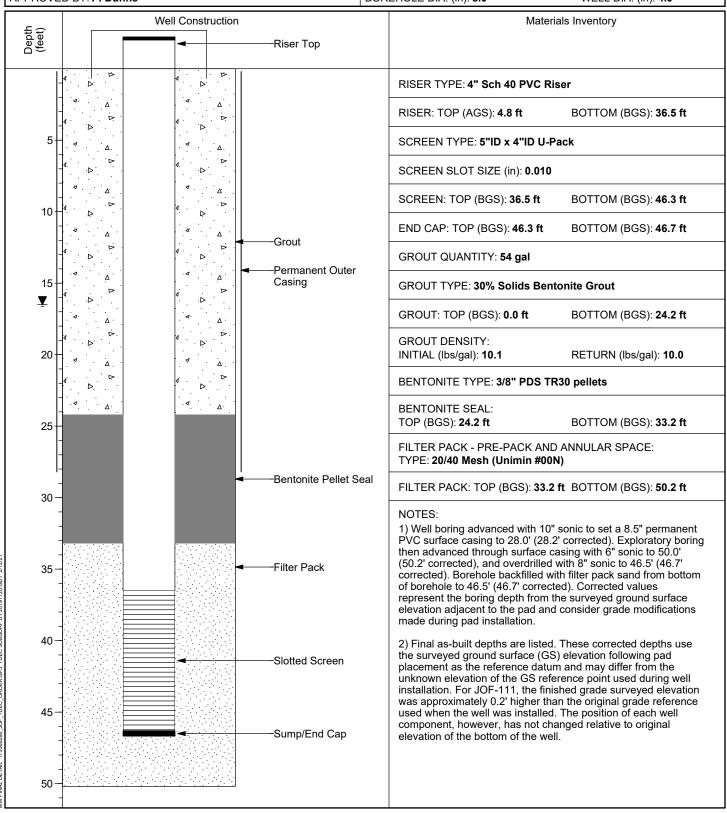
DRILLING COMPANY: M&W Drilling (Subcontractor)

DRILLING EQUIPMENT: Geoprobe 8150LS DRILLING METHOD: 4" x 10" Sonic

SAMPLING METHOD: 4" X 6" Rotosonic Casing

OBSERVED BY: D. Norman REVIEWED BY: J. Snider APPROVED BY: P. Dunne

INSTALLATION: STARTED: 9/18/19 LOCATION: 604,940.99 N; 1,412,174.09 E DATUM: NAD27 Plant Local


COMPLETED: 9/23/19

LOC. DESCRIP: Southwest of Ash Disposal Area 1

LATITUDE: 36° 2' 14.98" LONGITUDE: -87° 59' 17.81" GROUND ELEV (ft): 385.3 TOC ELEV (ft): 390.08 **ELEVATION DATUM: NGVD29**

WELL DEPTH (ft, bgs): 46.7 DTW AT COMPLETION (ft, bgs): 16.5

BOREHOLE DIA. (in): 8.0 WELL DIA. (in): 4.0

WELL / PROBEHOLE / BOREHOLE NO:

PAGE 1 OF 1 **JOF-112** (Boring JOF-112)

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

DRILLING COMPANY: Stantec Consulting Services Inc.

DRILLING EQUIPMENT: CME 1050, #952

DRILLING METHOD: 8-1/4" HSA overdrill of boring

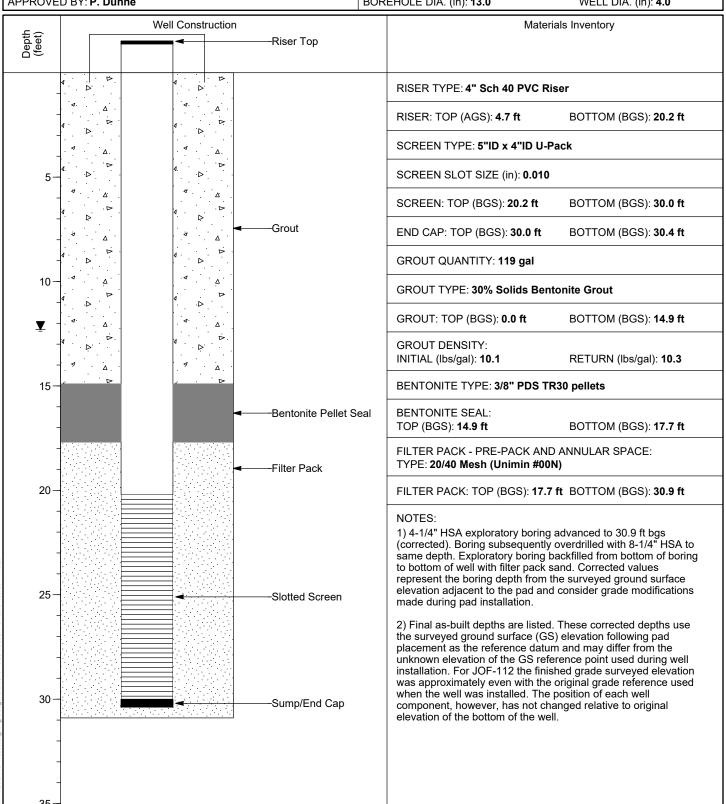
SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

OBSERVED BY: S. Stanley REVIEWED BY: D. Norman APPROVED BY: P. Dunne

INSTALLATION: STARTED: 8/27/19 LOCATION: 604,376.52 N; 1,412,991.02 E

LOC. DESCRIP: Coal Yard

LATITUDE: 36° 2' 9.56" GROUND ELEV (ft): 389.8 **ELEVATION DATUM: NGVD29** WELL DEPTH (ft, bgs): 30.4


DTW AT COMPLETION (ft, bgs): 12.3

BOREHOLE DIA. (in): 13.0

COMPLETED: 8/28/19 DATUM: NAD27 Plant Local

LONGITUDE: -87° 59' 7.73" TOC ELEV (ft): 394.48

WELL DIA. (in): 4.0

WELL / PROBEHOLE / BOREHOLE NO:

JOF-113 (Boring JOF-113)

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

DRILLING COMPANY: Stantec Consulting Services Inc.

DRILLING EQUIPMENT: CME 1050, #952

DRILLING METHOD: 8-1/4" HSA overdrill of boring

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

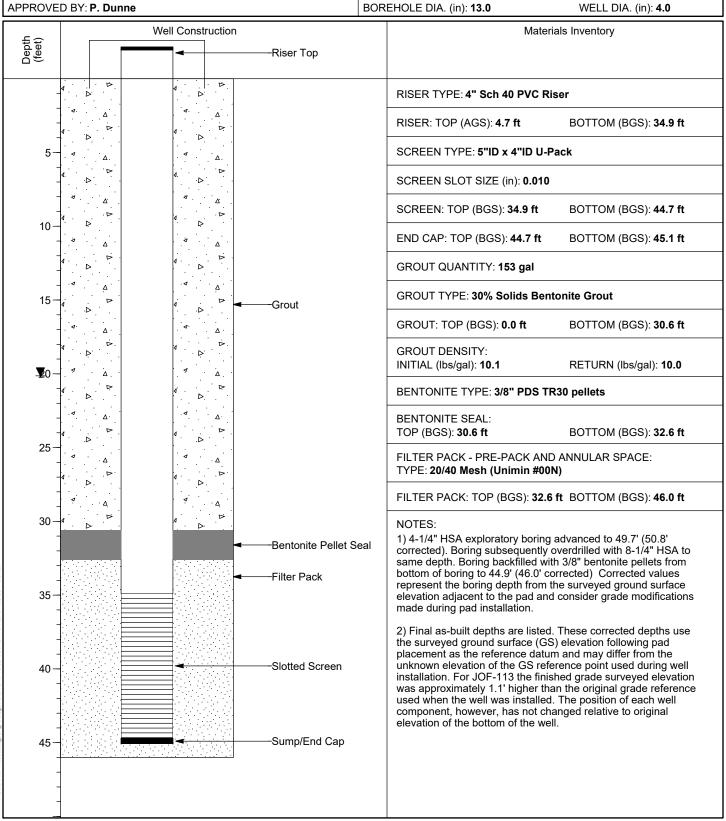
OBSERVED BY: C. Burton REVIEWED BY: D. Norman APPROVED BY: P. Dunne

INSTALLATION: STARTED: 9/4/19 LOCATION: 604,136.76 N; 1,412,110.10 E

LOC. DESCRIP: Coal Yard LATITUDE: 36° 2' 7.01" GROUND ELEV (ft): 383.4

ELEVATION DATUM: NGVD29 WELL DEPTH (ft, bgs): 45.1 DTW AT COMPLETION (ft, bgs): 20.1

BOREHOLE DIA. (in): 13.0


COMPLETED: 9/5/19

PAGE 1 OF 1

DATUM: NAD27 Plant Local

LONGITUDE: -87° 59' 18.39"

TOC ELEV (ft): 388.13

WELL / PROBEHOLE / BOREHOLE NO:

PAGE 1 OF 1 **JOF-114** (Boring JOF-114)

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

DRILLING COMPANY: Stantec Consulting Services Inc.

DRILLING EQUIPMENT: CME 85#2, #951

DRILLING METHOD: 8-1/4" HSA overdrill of boring

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

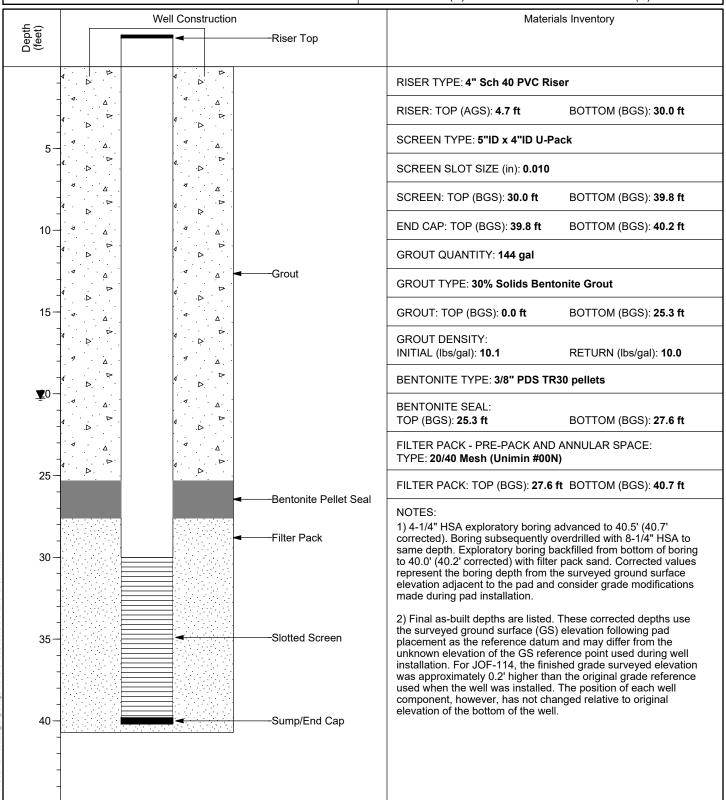
OBSERVED BY: C. Burton REVIEWED BY: J. Snider APPROVED BY: P. Dunne

INSTALLATION: STARTED: 9/11/19 LOCATION: 603,597.10 N; 1,412,156.67 E

LOC. DESCRIP: Coal Yard LATITUDE: 36° 2' 1.69"

ELEVATION DATUM: NGVD29 WELL DEPTH (ft, bgs): 40.2 DTW AT COMPLETION (ft, bgs): 20.3

GROUND ELEV (ft): 383.7


BOREHOLE DIA. (in): 13.0

COMPLETED: 9/12/19

DATUM: NAD27 Plant Local

LONGITUDE: -87° 59' 17.69" TOC ELEV (ft): 388.36

WELL DIA. (in): 4.0

WELL / PROBEHOLE / BOREHOLE NO:

PAGE 1 OF 1 **JOF-117** (Boring JOF-117)

COMPLETED: 9/17/19

TOC ELEV (ft): 388.63

DATUM: NAD27 Plant Local

LONGITUDE: -87° 59' 16.77"

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

DRILLING COMPANY: Stantec Consulting Services Inc.

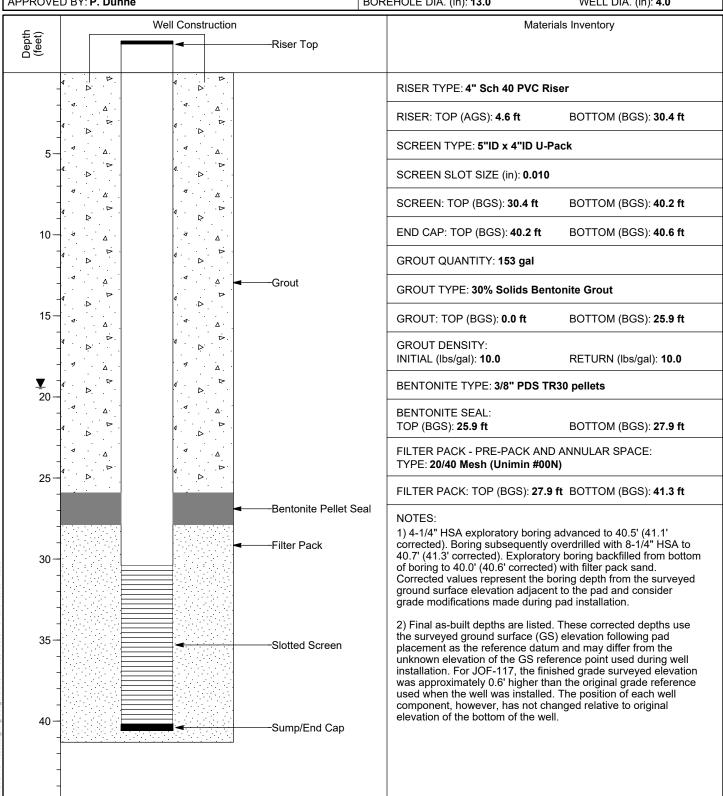
DRILLING EQUIPMENT: CME 85#2, #951

DRILLING METHOD: 8-1/4" HSA overdrill of boring

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

OBSERVED BY: C. Burton REVIEWED BY: J. Snider APPROVED BY: P. Dunne

45


INSTALLATION: STARTED: 9/16/19 LOCATION: 602,823.15 N; 1,412,216.73 E

LOC. DESCRIP: Coal Yard LATITUDE: 36° 1' 54.04" GROUND ELEV (ft): 384.1

ELEVATION DATUM: NGVD29 WELL DEPTH (ft, bgs): 40.6 DTW AT COMPLETION (ft, bgs): 19.4

BOREHOLE DIA. (in): 13.0

WELL DIA. (in): 4.0

50

PROJECT: JOF TDEC Order

PROJECT NUMBER: 175568286

DRILLING EQUIPMENT: CME 55T#1, #709

DRILLING COMPANY: Stantec Consulting Services Inc.

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

DRILLING METHOD: 8-1/4" HSA overdrill of boring

WELL INSTALLATION DETAIL

WELL / PROBEHOLE / BOREHOLE NO:

JOF-118 (Boring JOF-118)

INSTALLATION: STARTED: 7/2/19

LOCATION: 603,219.11 N; 1,410,969.82 E LOC. DESCRIP: Active Ash Pond 2

LATITUDE: 36° 1' 57.71"

GROUND ELEV (ft): 369.3

ELEVATION DATUM: NGVD29

WELL DEPTH (ft, bgs): 50.7

elevation of the bottom of the well.

COMPLETED: 7/2/19
DATUM: NAD27 Plant Local

PAGE 1 OF 1

LONGITUDE: -87° 59' 32.05" TOC ELEV (ft): 372.69

OBSERVED BY: C. Burton REVIEWED BY: J. Snider DTW AT COMPLETION (ft, bgs): N/A APPROVED BY: P. Dunne WELL DIA. (in): 4.0 BOREHOLE DIA. (in): 13.0 Well Construction Materials Inventory Depth (feet) -Riser Top RISER TYPE: 4" Sch 40 PVC Riser Δ Δ BOTTOM (BGS): 40.5 ft RISER: TOP (AGS): 3.4 ft 5 SCREEN TYPE: 5"ID x 4"ID U-Pack Δ. ۰۵ SCREEN SLOT SIZE (in): 0.010 SCREEN: TOP (BGS): 40.5 ft BOTTOM (BGS): 50.3 ft 10 END CAP: TOP (BGS): 50.3 ft BOTTOM (BGS): 50.7 ft Δ GROUT QUANTITY: 204 gal 15 Δ **GROUT TYPE: 30% Solids Bentonite Grout** -Grout GROUT: TOP (BGS): 1.0 ft BOTTOM (BGS): 35.6 ft Δ. 20 Ė **GROUT DENSITY:** INITIAL (lbs/gal): 10.1 RETURN (lbs/gal): 10.4 Δ BENTONITE TYPE: 3/8" PDS TR30 pellets 25 Δ BENTONITE SEAL: TOP (BGS): 35.6 ft BOTTOM (BGS): 38.0 ft FILTER PACK - PRE-PACK AND ANNULAR SPACE: TYPE: 20/40 Mesh (Unimin #00N) 30 FILTER PACK: TOP (BGS): 38.0 ft BOTTOM (BGS): 51.4 ft NOTES: 1) 4-1/4" HSA exploratory boring advanced to 51.0' (51.4' 35 corrected). Boring subsequently overdrilled with 8-1/4" HSA to same depth. Corrected values represent the boring depth from Bentonite Pellet Seal the surveyed ground surface elevation adjacent to the pad and consider grade modifications made during pad installation. Filter Pack 2) Final as-built depths are listed. These corrected depths use 40 the surveyed ground surface (GS) elevation following pad placement as the reference datum and may differ from the unknown elevation of the GS reference point used during well installation. For JOF-118, the finished grade surveyed elevation was approximately 0.4' higher than the original grade reference 45 used when the well was installed. The position of each well Slotted Screen component, however, has not changed relative to original

Sump/End Cap

WELL / PROBEHOLE / BOREHOLE NO:

JOF-119 (Boring JOF-119)

PROJECT: JOF TDEC Order **PROJECT NUMBER: 175568286**

DRILLING COMPANY: Stantec Consulting Services Inc.

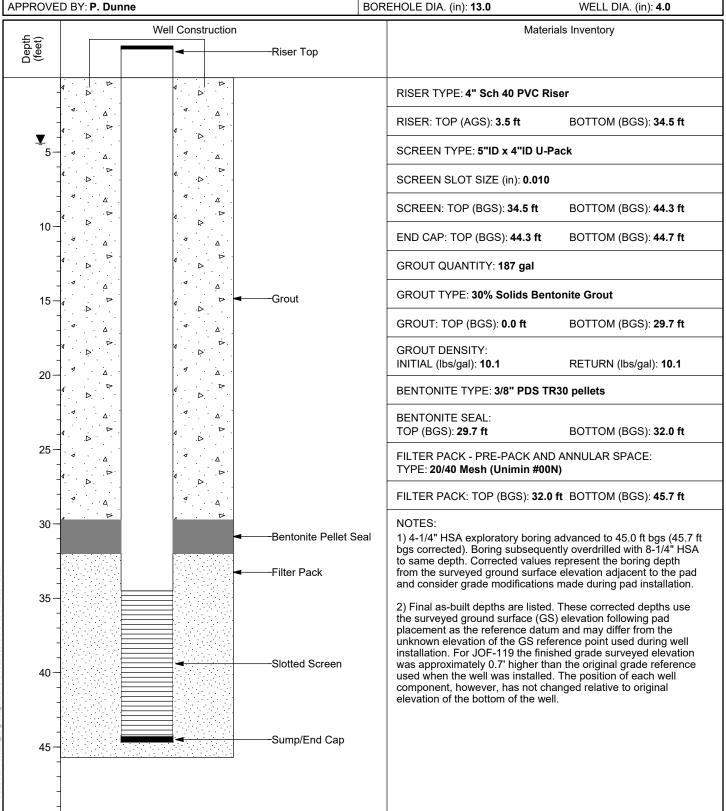
DRILLING EQUIPMENT: CME 55T#1, #709 DRILLING METHOD: 8-1/4" HSA overdrill of boring

SAMPLING METHOD: 4-1/4" HSA, 2" SS w/o liners, 3" Shelby Tubes

OBSERVED BY: C. Burton REVIEWED BY: D. Norman APPROVED BY: P. Dunne

INSTALLATION: STARTED: 7/10/19 LOCATION: 598,645.87 N; 1,410,031.49 E

LOC. DESCRIP: Active Ash Pond 2


LATITUDE: 36° 1' 12.30" GROUND ELEV (ft): 363.4 **ELEVATION DATUM: NGVD29** WELL DEPTH (ft, bgs): 44.7 DTW AT COMPLETION (ft, bgs): 4.4

COMPLETED: 7/11/19 DATUM: NAD27 Plant Local

PAGE 1 OF 1

LONGITUDE: -87° 59' 42.33" TOC ELEV (ft): 366.89

WELL DIA. (in): 4.0

APPENDIX D – PHOTOGRAPHS OF SOIL BORINGS AND MONITORING WELLS/PIEZOMETER

ATTACHMENT D.1

Photographic Log of Soil Lithology

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 1

Photo Location:

JOF-108

Photo Date:

8/6/2019

Comments:

First boring location interval (0.0-5.0 feet). The sample run should be shown on the white board as DP01.

Photograph ID: 2

Photo Location:

JOF-108

Photo Date:

8/6/2019

Comments:

First boring location interval (5.0-10.0 feet). Boring first encountered CCR at 0.7 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 3

Photo Location: JOF-108 Offset A

Photo Date: 8/6/2019

Comments:

Second boring location interval (0.0-5.0 feet). Offset 14 feet to the southwest of the first boring. The boring ID on the white board should be JOF-108 Offset A.

Photograph ID: 4

Photo Location: JOF-108 Offset A

Photo Date: 8/6/2019

Comments:

Second boring location interval (5.0-10.0 feet). Boring encountered CCR at 5.2-10.0 feet. The boring ID on the white board should be JOF-108 Offset A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 5

Photo Location: JOF-108 Offset B

Photo Date: 8/7/2019

Comments:

Third boring location interval (0.0-5.0 feet). Offset 43 feet to the northwest of the second boring.

Photograph ID: 6

Photo Location: JOF-108 Offset B

Photo Date: 8/7/2019

Comments:

Third boring location interval (5.0-10.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 7

Photo Location: JOF-108 Offset B

Photo Date: 8/7/2019

Comments:

Third boring location interval (10.0-15.0 feet).

Photograph ID: 8

Photo Location: JOF-108 Offset B

Photo Date: 8/7/2019

Comments:

Third boring location interval (15.0-20.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 9

Photo Location: JOF-108 Offset B

Photo Date: 8/7/2019

Comments:

Third boring location interval (20.0-25.0 feet).

Photograph ID: 10

Photo Location: JOF-108 Offset B

Photo Date: 8/7/2019

Comments:

Third boring location interval (25.0-29.9 feet). Boring first encountered CCR at 3.8 feet. Boring refusal at 29.9 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 11

Photo Location: JOF-108 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (0.0-5.0 feet). Offset 15 feet to the west of the third boring. The boring ID on the white board should be JOF-108 Offset C. The project and project number on the white board is TVA TDEC Order 175568286.

Photograph ID: 12

Photo Location: JOF-108 Offset C

Photo Date: 8/22/2019

Comments:

Photo of fourth boring location interval (5.0-10.0 feet) unavailable.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 13

Photo Location: JOF-108 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (10.0-15.0 feet). The boring ID on the white board should be JOF-108 Offset C.

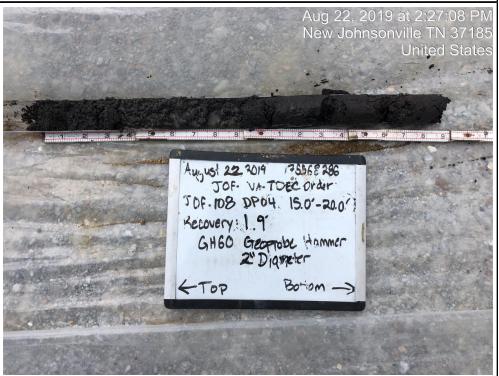

Photograph ID: 14

Photo Location: JOF-108 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (15.0-20.0 feet). The boring ID on the white board should be JOF-108 Offset C.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 15

Photo Location: JOF-108 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (20.0-24.5 feet). Boring first encountered CCR at 10.0 feet. Boring refusal at 24.5 feet. The boring ID on the white board should be JOF-108 Offset C.

Photograph ID: 16

Photo Location: JOF-108 Offset D

Photo Date: 8/22/2019

Comments:

Fifth boring location interval (0.0-5.0 feet). Offset 40 feet to the west of the fourth boring.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 17

Photo Location: JOF-108 Offset D

Photo Date: 8/22/2019

Comments:

Fifth boring location interval (5.0-10.0 feet).

Photograph ID: 18

Photo Location: JOF-108 Offset D

Photo Date: 8/22/2019

Comments:

Fifth boring location interval (10.0-13.5 feet). The sample run shown on the white board is DP03. The project and project number on the white board is TVA TDEC Order 175568286. Boring first encountered CCR at 7.3 feet. Boring refusal at 13.5 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

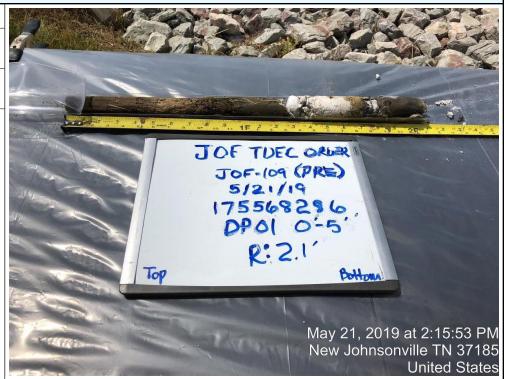

Photograph ID: 19

Photo Location: JOF-109-Pre

Photo Date: 5/21/2019

Comments:

First boring location interval (0.0-5.0 feet).

Photograph ID: 20

Photo Location:

JOF-109-Pre

Photo Date: 5/21/2019

Comments:

Photo of first boring location interval (5.0-10.0 feet) unavailable.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 21

Photo Location: JOF-109-Pre

Photo Date: 5/21/2019

Comments:

First boring location interval (10.0-15.0 feet).

Photograph ID: 22

Photo Location: JOF-109-Pre

Photo Date: 5/21/2019

Comments:

Photo of first boring location interval (15.0-20.0 feet) unavailable. Boring refusal at 20.0 feet.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 23

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (0.0-1.5 feet).
Offset 7 feet to the east of the first boring.

Photograph ID: 24

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (1.5-3.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 25

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (3.0-4.5 feet).

Photograph ID: 26

Photo Location:


JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (4.5-6.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 27

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (6.0-7.5 feet).

Photograph ID: 28

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (7.5-9.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 29

Photo Location:

JOF-109

Photo Date: 6/19/2019

Comments:

Second boring location interval (9.0-10.2 feet). The depth range on the white board should be 9.0-10.2.

Photograph ID: 30

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (10.5-11.2 feet). The recovery on the white board should be 0.7 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 31

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (12.0-13.1 feet). The recovery on the white board should be 0.7 feet.

Photograph ID: 32

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (13.5-14.4 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 33

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (15.0-15.4 feet).

Photograph ID: 34

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (16.5-16.9 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 35

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (18.0-19.5 feet).

Photograph ID: 36

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (19.5-21.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 37

Photo Location:

JOF-109

Photo Date: 6/19/2019

Comments:

Second boring location interval (21.0-22.5 feet).

Photograph ID: 38

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (22.5-24.0 feet). The recovery on the white board should be 0.6 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 39

Photo Location:

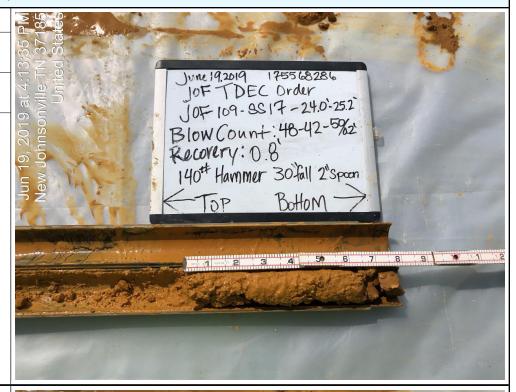

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (24.0-25.2 feet).

Photograph ID: 40

Photo Location:

JOF-109

Photo Date:

6/19/2019

Comments:

Second boring location interval (25.5-27.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 41

Photo Location:

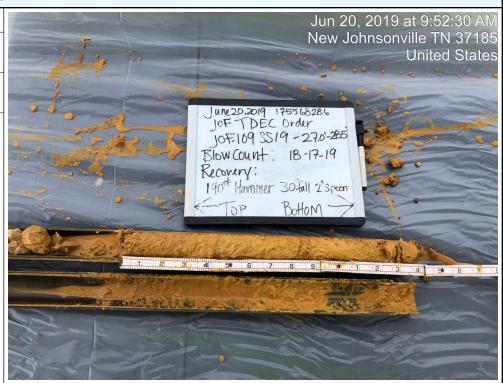

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (27.0-28.5 feet). The recovery on the white board should be 1.4 feet.

Photograph ID: 42

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (28.5-30.0 feet). The depth range on the white board should be 28.5-30.0 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 43

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (30.0-31.5 feet).

Photograph ID: 44

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (31.5-33.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 45

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (33.0-34.5 feet).

Photograph ID: 46

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (34.5-36.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 47

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (36.0-37.5 feet).

Photograph ID: 48

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (37.5-39.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 49

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (39.0-40.5 feet).

Photograph ID: 50

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (40.5-42.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 51

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (42.0-43.5 feet). The recovery on the white board should be 0.9 feet.

Photograph ID: 52

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (43.5-45.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 53

Photo Location:

JOF-109

Photo Date:

6/20/2019

Comments:

Second boring location interval (45.0-46.5 feet).

Photograph ID: 54

Photo Location:

JOF-110-Pre

Photo Date:

5/21/2019

Comments:

First boring location interval (0.0-5.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 55

Photo Location: JOF-110-Pre

Photo Date: 5/21/2019

Comments:

First boring location interval (5.0-10.0 feet). The direct push sample on the white board should be DP02.

Photograph ID: 56

Photo Location: JOF-110-Pre

Photo Date: 5/21/2019

Comments:

First boring location interval (10.0-15.0 feet). The direct push sample on the white board should be DP03.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 57

Photo Location: JOF-110-Pre

Photo Date: 5/21/2019

Comments:

First boring location interval (15.0-20.0 feet).

Photograph ID: 58

Photo Location: JOF-110-Pre

Photo Date: 5/21/2019

Comments:

Photo of first boring location interval (20.0-25.0 feet) unavailable.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 59

Photo Location: JOF-110-Pre

Photo Date: 5/21/2019

Comments:

Photo of first boring location interval (25.0-30.0 feet) unavailable.

No Photo Applicable

Photograph ID: 60

Photo Location: JOF-110-Pre

Photo Date: 5/21/2019

Comments:

First boring location interval (30.0-35.0 feet). Boring first encountered CCR at 0.0 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 61

Photo Location: JOF-110Alt1

Photo Date: 8/22/2019

Comments:

Second boring location interval (0.0-5.0 feet).
Offset 119 feet to the northeast of the first boring. The boring ID on the white board should be JOF-110Alt1.

Photograph ID: 62

Photo Location: JOF-110Alt1

Photo Date: 8/22/2019

Comments:

Second boring location interval (5.0-10.0 feet). The boring ID on the white board should be JOF-110Alt1.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 63

Photo Location:

JOF-110Alt1

Photo Date:

8/22/2019

Comments:

Second boring location interval (10.0-15.0 feet). The boring ID on the white board should be JOF-110Alt1.

Photograph ID: 64

Photo Location:

JOF-110Alt1

Photo Date:

8/22/2019

Comments:

Second boring location interval (15.0-20.0 feet). The boring ID on the white board should be JOF-110Alt1.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 65

Photo Location:

JOF-110Alt1

Photo Date:

8/22/2019

Comments:

Second boring location interval (20.0-25.0 feet). The boring ID on the white board should be JOF-110Alt1.

Photograph ID: 66

Photo Location:

JOF-110Alt1

Photo Date:

8/22/2019

Comments:

Second boring location interval (25.0-30.0 feet). The boring ID on the white board should be JOF-110Alt1. The depth interval shown on the white board is 25.0-30.0.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 67

Photo Location: JOF-110Alt1

Photo Date: 8/22/2019

Comments:

Second boring location interval (30.0-35.0 feet). The boring ID on the white board should be JOF-110Alt1.

Photograph ID: 68

Photo Location: JOF-110Alt1

Photo Date: 8/22/2019

Comments:

Second boring location interval (35.0-40.0 feet). Boring first encountered CCR at 2.2 feet. The boring ID on the white board should be JOF-110Alt1.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 69

Photo Location:

JOF-110

Photo Date: 9/10/2019

Comments:

Third boring location interval (0.0-10.0 feet). Offset 5 feet to the east of the first boring. The boring location shown on the white board is JOF-110.

Photograph ID: 70

Photo Location:

JOF-110

Photo Date:

9/10/2019

Comments:

Third boring location interval (10.0-20.0 feet). The boring location shown on the white board is JOF-110.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 71

Photo Location:


JOF-110

Photo Date:

9/10/2019

Comments:

Third boring location interval (20.0-30.0 feet). The boring location shown on the white board is JOF-110.

Photograph ID: 72

Photo Location:

JOF-110

Photo Date:

9/13/2019

Comments:

Third boring location interval (30.0-40.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 73

Photo Location:

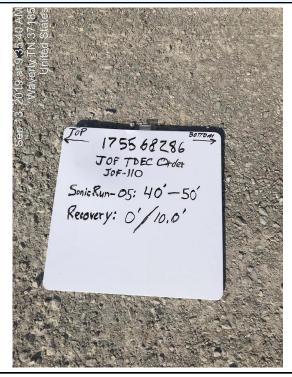

JOF-110

Photo Date:

9/13/2019

Comments:

Third boring location interval (40.0-50.0 feet).

Photograph ID: 74

Photo Location:

JOF-110

Photo Date:

9/13/2019

Comments:

Third boring location interval (50.0-55.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 75

Photo Location:

JOF-110

Photo Date:

9/13/2019

Comments:

Third boring location interval (55.0-60.0 feet). Boring first encountered CCR at 4.4 feet.

Photograph ID: 76

Photo Location:

JOF-111-Pre

Photo Date:

8/7/2019

Comments:

First boring location interval (0.0-5.0 feet). The boring ID on the white board should be JOF-111-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 77

Photo Location: JOF-111-Pre

Photo Date: 8/7/2019

Comments:

First boring location interval (5.0-10.0 feet). The boring ID on the white board should be JOF-111-Pre.

Photograph ID: 78

Photo Location: JOF-111-Pre

Photo Date: 8/7/2019

Comments:

First boring location interval (10.0-15.0 feet). The boring ID on the white board should be JOF-111-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 79

Photo Location: JOF-111-Pre

Photo Date: 8/8/2019

Comments:

First boring location interval (15.0-20.0 feet). Boring first encountered CCR at 2.7 feet. The boring ID on the white board should be JOF-111-Pre.

Photograph ID: 80

Photo Location: JOF-111 Offset A

Photo Date: 8/8/2019

Comments:

Second boring location interval (0.0-5.0 feet).
Offset 18 feet to the west of the first boring.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 81

Photo Location: JOF-111 Offset A

Photo Date: 8/8/2019

Comments:

Second boring location interval (5.0-10.0 feet). Boring first encountered CCR at 2.2 feet.

Photograph ID: 82

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (0.0-5.0 feet).
Offset 5 feet to the west of the second boring.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 83

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (5.0-10.0 feet).

Photograph ID: 84

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Photo of third boring location interval (10.0-15.0 feet) unavailable.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 85

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (15.0-20.0 feet).

Photograph ID: 86

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (20.0-25.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 87

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (25.0-30.0 feet).

Photograph ID: 88

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (30.0-35.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 89

Photo Location: JOF-111 Offset B

Photo Date: 8/8/2019

Comments:

Third boring location interval (35.0-40.0 feet). Boring first encountered CCR at 2.9 feet.

Photograph ID: 90

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (0.0-5.0 feet).
Offset 87 feet southwest of the third boring. The boring ID on the white board should be JOF-111 Offset C.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 91

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (5.0-10.0 feet). The boring ID on the white board should be JOF-111 Offset C.

Photograph ID: 92

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (10.0-15.0 feet). The boring ID on the white board should be JOF-111 Offset C.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 93

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (15.0-20.0 feet). The boring ID on the white board should be JOF-111 Offset C.

Photograph ID: 94

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (20.0-25.0 feet). The boring ID on the white board should be JOF-111 Offset C.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 95

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Fourth boring location interval (25.0-30.0 feet). The boring ID on the white board should be JOF-111 Offset C.

Photograph ID: 96

Photo Location: JOF-111 Offset C

Photo Date: 8/22/2019

Comments:

Photo of fourth boring location interval (30.0-34.5 feet) unavailable. Boring first encountered CCR at 3.1 feet. Boring refusal at 34.5 feet.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 97

Photo Location:

JOF-111A

Photo Date:

9/11/2019

Comments:

Fifth boring location interval (0.0-10.0 feet). Adjacent to the fourth boring location. The boring ID on the white board should be JOF-111A.

Photograph ID: 98

Photo Location:

JOF-111A

Photo Date:

9/11/2019

Comments:

Fifth boring location interval (10.0-20.0 feet). The boring ID on the white board should be JOF-111A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 99

Photo Location:

JOF-111A

Photo Date:

9/11/2019

Comments:

Fifth boring location interval (20.0-29.0 feet). The boring ID on the white board should be JOF-111A.

Photograph ID: 100

Photo Location:

JOF-111A

Photo Date:

9/17/2019

Comments:

Fifth boring location interval (30.0-35.0 feet). The boring ID on the white board should be JOF-111A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 101

Photo Location:

JOF-111A

Photo Date:

9/17/2019

Comments:

Fifth boring location interval (35.0-40.0 feet). The boring ID and recovery on the white board should be JOF-111A and 5.0 feet, respectively.

Photograph ID: 102

Photo Location:

JOF-111A

Photo Date:

9/17/2019

Comments:

Fifth boring location interval (40.0-50.0 feet). The boring ID on the white board should be JOF-111A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 103

Photo Location:

JOF-111A

Photo Date:

9/17/2019

Comments:

Fifth boring location interval (50.0-60.0 feet). Boring first encountered CCR at 12.4 feet. The boring ID on the white board should be JOF-111A.

Photograph ID: 104

Photo Location:

JOF-111B

Photo Date:

9/18/2019

Comments:

Sixth boring location interval (0.0-10.0 feet). Offset 10 feet south of the fifth boring location.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 105

Photo Location:

JOF-111B

Photo Date:

9/18/2019

Comments:

Sixth boring location interval (10.0-20.0 feet).

Photograph ID: 106

Photo Location:

JOF-111B

Photo Date:

9/18/2019

Comments:

Sixth boring location interval (20.0-30.0 feet). The boring ID on the white board should be JOF-111B.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 107

Photo Location:

JOF-111B

Photo Date:

9/18/2019

Comments:

Sixth boring location interval (30.0-35.0 feet).

Photograph ID: 108

Photo Location:

JOF-111B

Photo Date:

9/18/2019

Comments:

Sixth boring location interval (35.0-40.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 109

Photo Location:

JOF-111B

Photo Date: 9/18/2019

Comments:

Sixth boring location interval (40.0-50.0 feet). Boring first encountered CCR at 10.0 feet.

Photograph ID: 110

Photo Location:

JOF-112-Pre

Photo Date:

8/6/2019

Comments:

First boring location interval (0.0-5.0 feet). The boring ID on the white board should be JOF-112-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

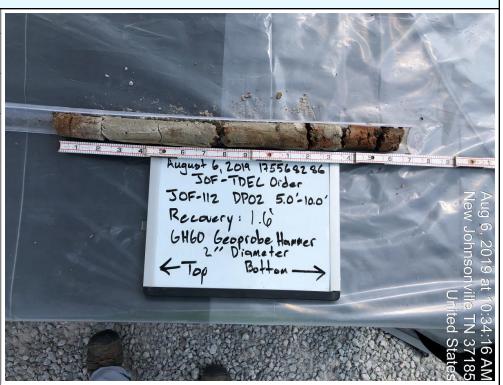

Photograph ID: 111

Photo Location: JOF-112-Pre

Photo Date: 8/6/2019

Comments:

First boring location interval (5.0-10.0 feet). The boring ID on the white board should be JOF-112-Pre.

Photograph ID: 112

Photo Location: JOF-112-Pre

Photo Date: 8/6/2019

Comments:

First boring location interval (10.0-14.0 feet). The boring ID on the white board should be JOF-112-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 113

Photo Location: JOF-112-Pre

Photo Date: 8/6/2019

Comments:

First boring location interval (14.0-19.0 feet). The boring ID on the white board should be JOF-112-Pre.

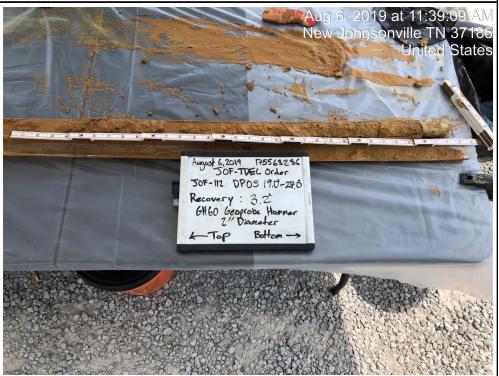

Photograph ID: 114

Photo Location: JOF-112-Pre

Photo Date: 8/6/2019

Comments:

First boring location interval (19.0-24.0 feet). The boring ID on the white board should be JOF-112-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

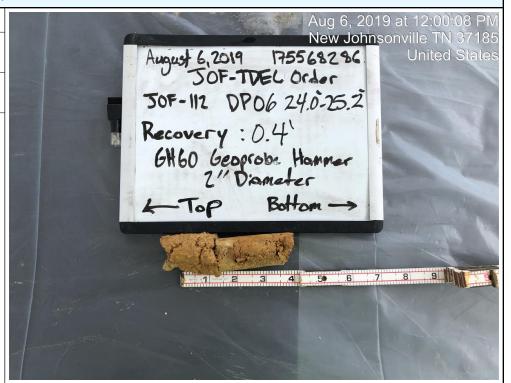

Photograph ID: 115

Photo Location: JOF-112-Pre

Photo Date: 8/6/2019

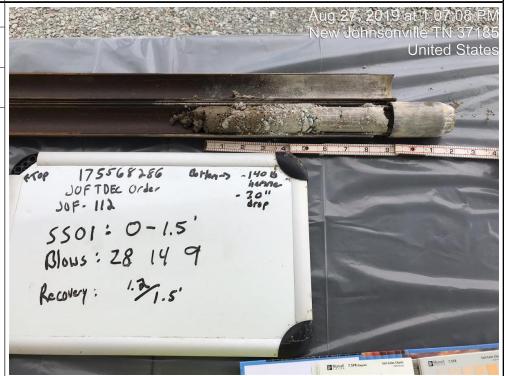
Comments:

First boring location interval (24.0-25.2 feet). The boring ID on the white board should be JOF-112-Pre.

Photograph ID: 116

Photo Location:

JOF-112


Photo Date:

8/27/2019

Comments:

Second boring location interval (0.0-1.5 feet).

Offset 3 feet to the north of the first boring.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 117

Photo Location:

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (1.5-3.0 feet). The recovery on the white board should be 0.4 feet.

Photograph ID: 118

Photo Location:

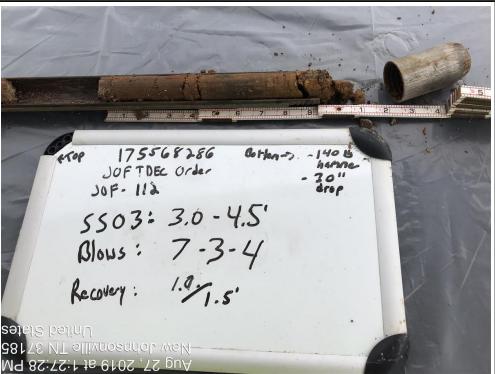

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (3.0-4.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 119

Photo Location:

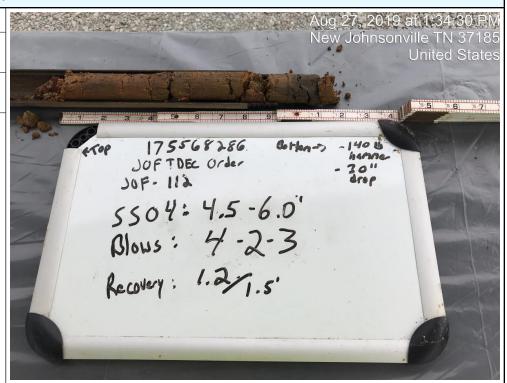

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (4.5-6.0 feet).

Photograph ID: 120

Photo Location:

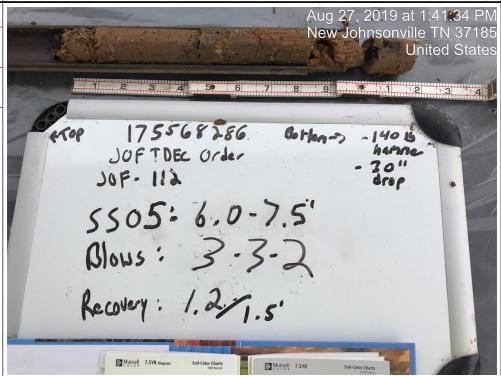

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (6.0-7.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 121

Photo Location:

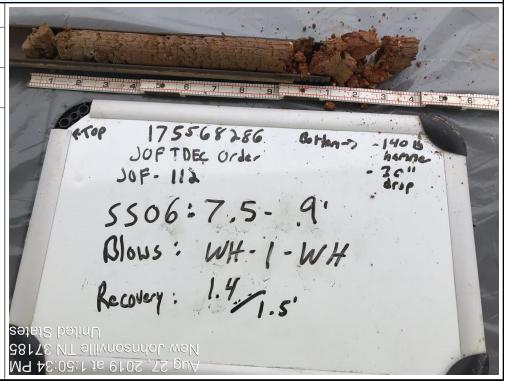

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (7.5-9.0 feet).

Photograph ID: 122

Photo Location:

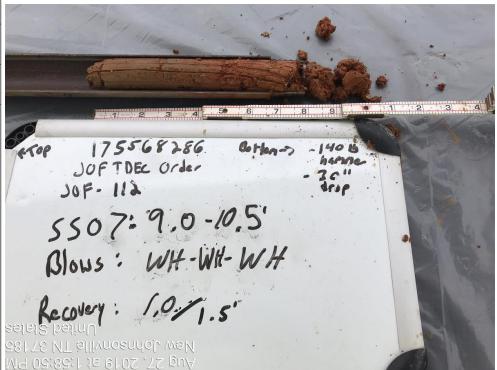

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (9.0-10.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 123

Photo Location:

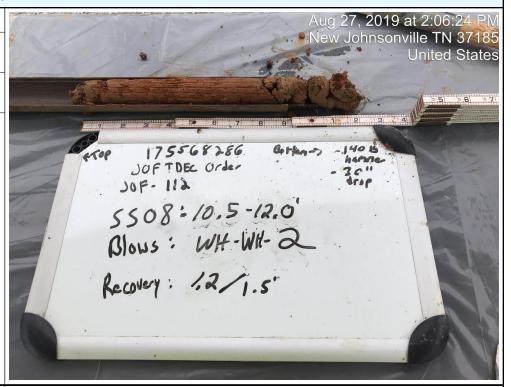

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (10.5-12.0 feet).

Photograph ID: 124

Photo Location:

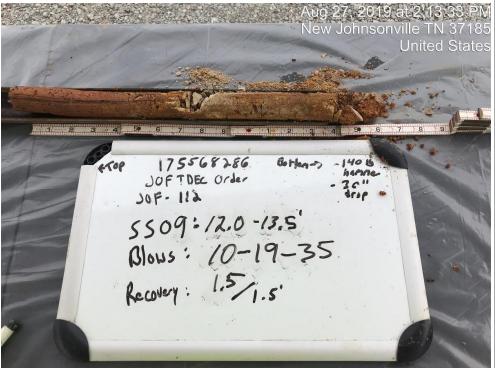

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (12.0-13.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 125

Photo Location:

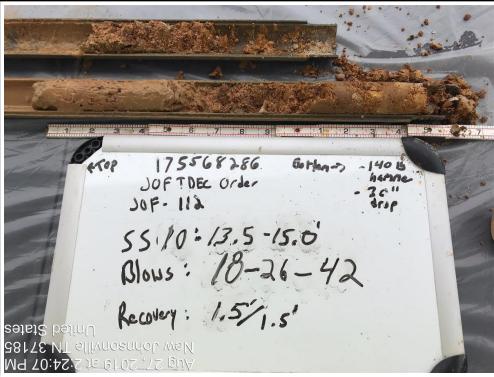

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (13.5-15.0 feet).

Photograph ID: 126

Photo Location:

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (15.0-16.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 127

Photo Location:

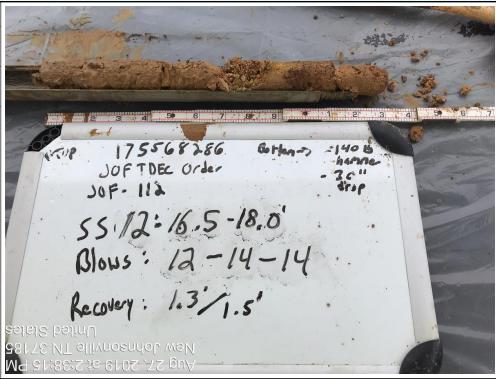

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (16.5-18.0 feet).

Photograph ID: 128

Photo Location:

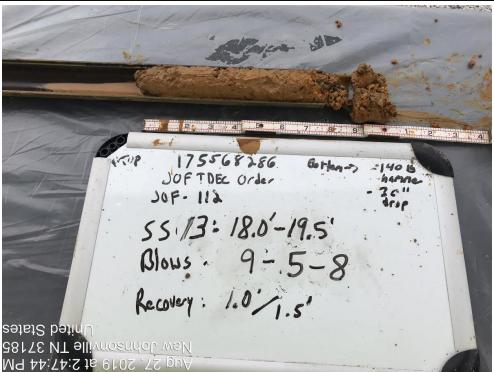

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (18.0-19.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 129

Photo Location:

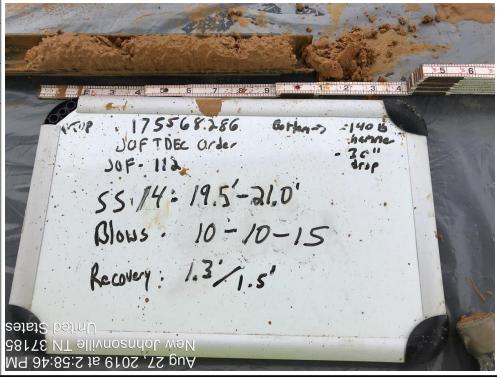

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (19.5-21.0 feet).

Photograph ID: 130

Photo Location:

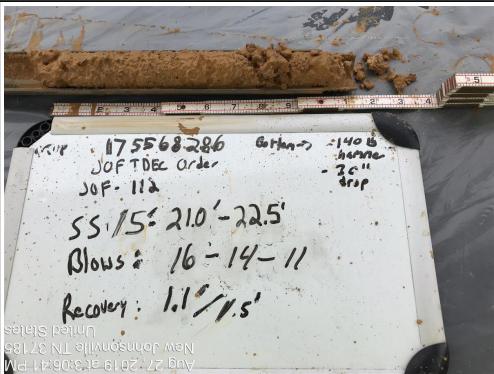

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (21.0-22.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 131

Photo Location:

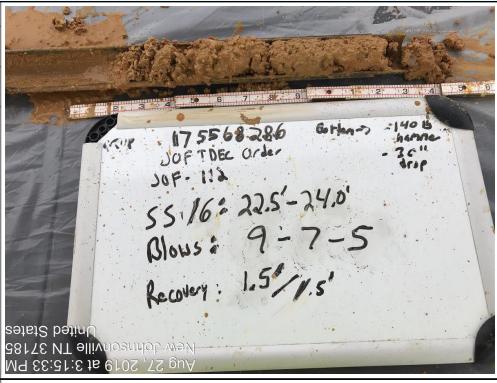

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (22.5-24.0 feet).

Photograph ID: 132

Photo Location:

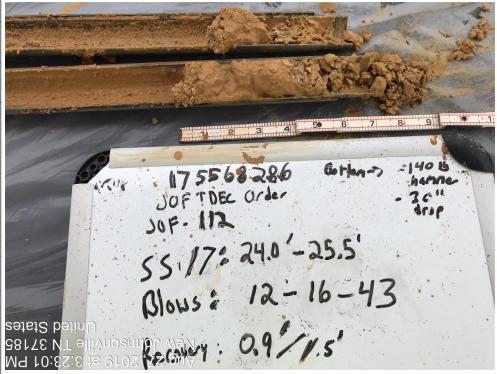

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (24.0-25.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 133

Photo Location:

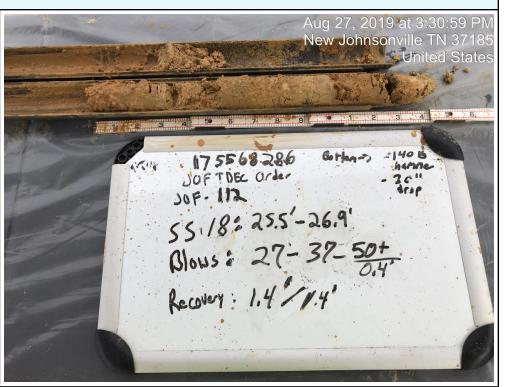

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (25.5-26.9 feet).

Photograph ID: 134

Photo Location:

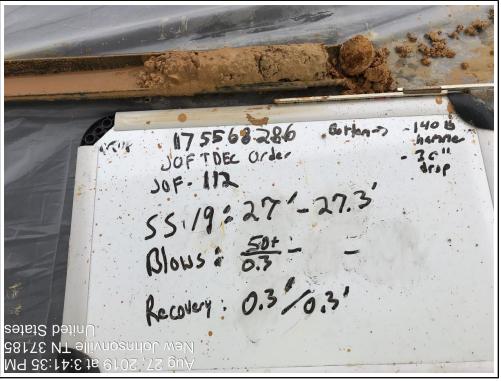

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (27.0-27.3 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 135

Photo Location:

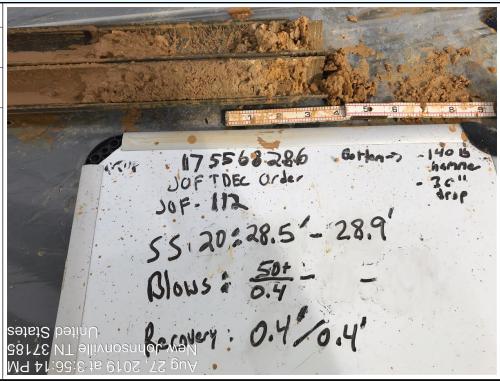

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (28.5-28.9 feet).

Photograph ID: 136

Photo Location:

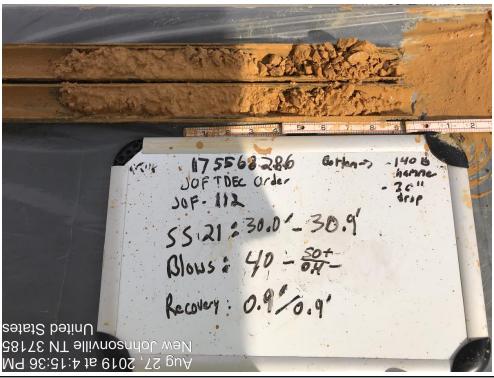

JOF-112

Photo Date:

8/27/2019

Comments:

Second boring location interval (30.0-30.9 feet). Boring refusal at 30.9 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

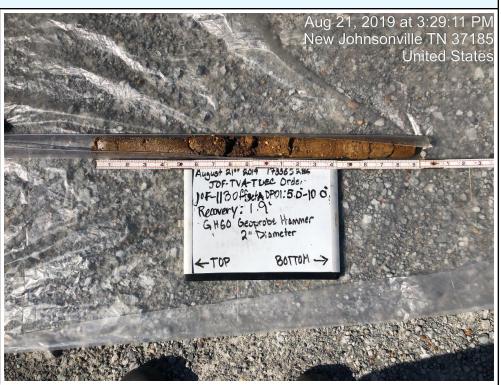

Photograph ID: 137

Photo Location: JOF-113 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (5.0-10.0 feet). The project number on the white board should be 175568286.

Photograph ID: 138

Photo Location: JOF-113 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (10.0-15.0 feet). The project number on the white board should be 175568286.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 139

Photo Location: JOF-113 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (15.0-20.0 feet). The project number on the white board should be 175568286.

Photograph ID: 140

Photo Location: JOF-113 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (20.0-25.0 feet). The project number on the white board should be 175568286.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 141

Photo Location: JOF-113 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (25.0-28.4 feet). Boring refusal at 28.4 feet. The project number on the white board should be 175568286.

Photograph ID: 142

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (6.0-7.5 feet).
Offset 3 feet to the north of the first boring.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 143

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (7.5-9.0 feet).

Photograph ID: 144

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (9.0-10.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 145

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (10.5-12.0 feet).

Photograph ID: 146

Photo Location:

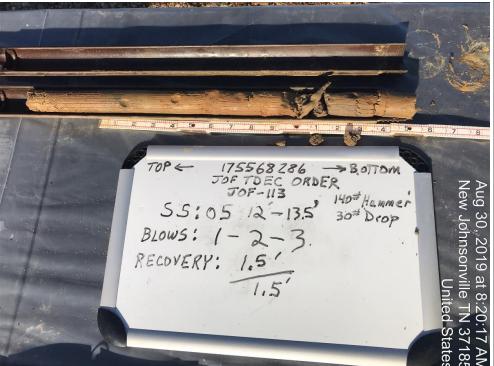

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (12.0-13.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 147

Photo Location:

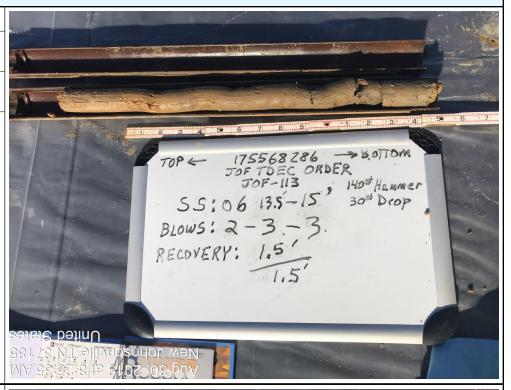

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (13.5-15.0 feet).

Photograph ID: 148

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (15.0-16.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 149

Photo Location:

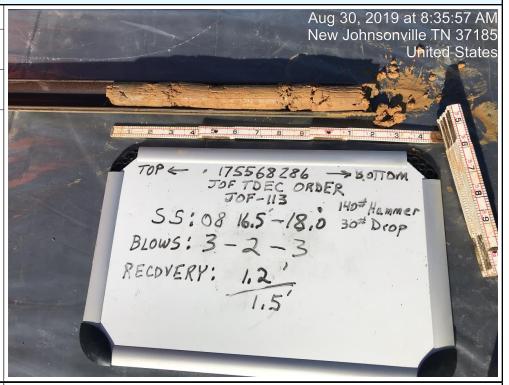

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (16.5-18.0 feet).

Photograph ID: 150

Photo Location:

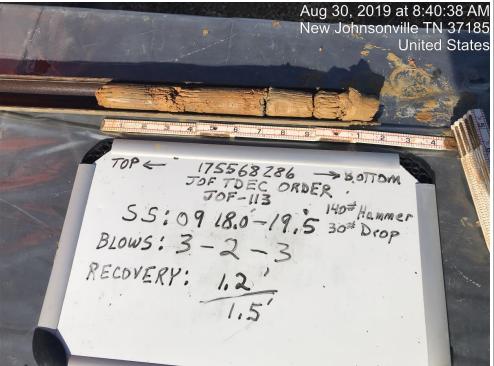

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (18.0-19.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 151

Photo Location:

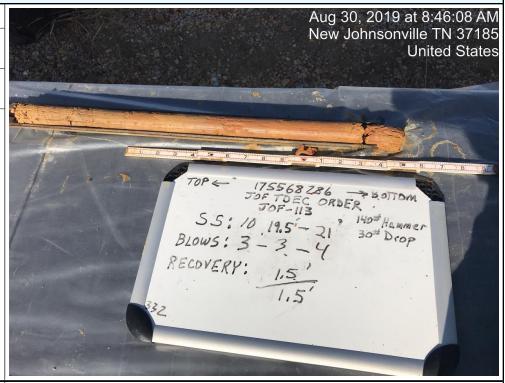

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (19.5-21.0 feet).

Photograph ID: 152

Photo Location:

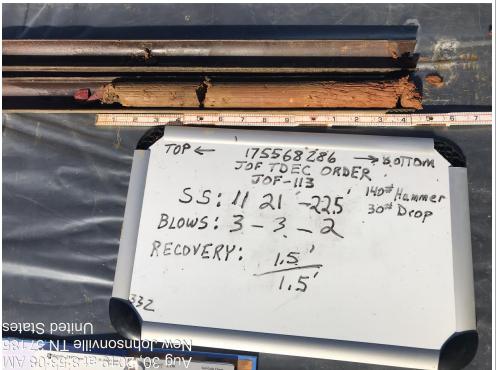

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (21.0-22.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 153

Photo Location:

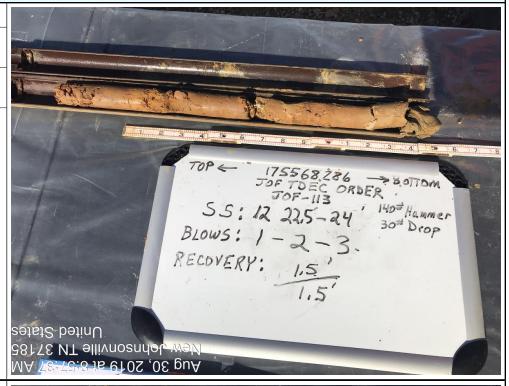

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (22.5-24.0 feet).

Photograph ID: 154

Photo Location:

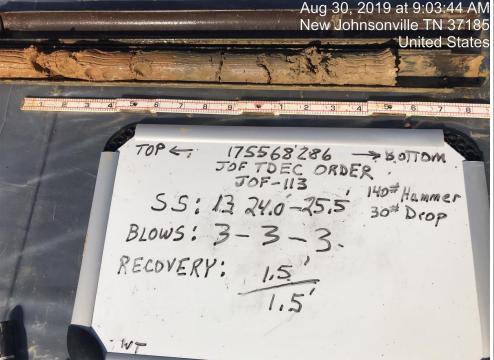

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (24.0-25.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 155

Photo Location:

JOF-113

Photo Date: 8/30/2019

Comments:

Photo of second boring location interval (25.5-27.0 feet) unavailable.

No Photo Applicable

Photograph ID: 156

Photo Location:

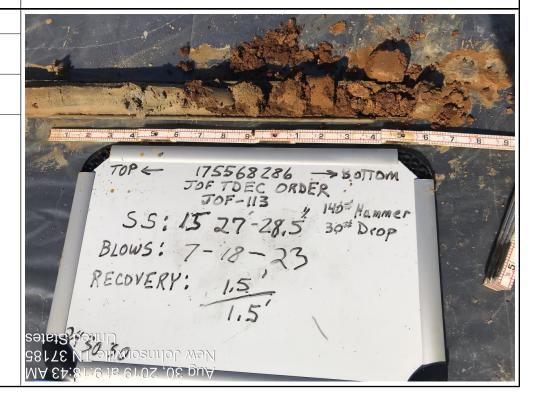

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (27.0-28.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 157

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (28.5-30.0 feet).

Photograph ID: 158

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (30.0-31.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 159

Photo Location:

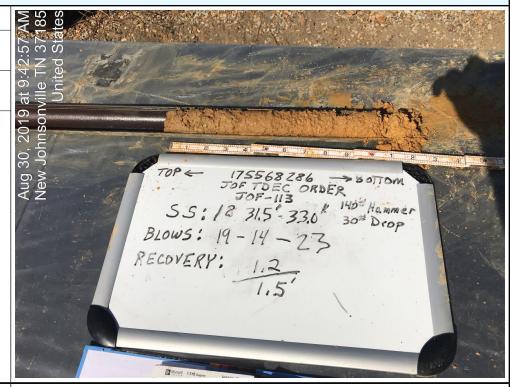

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (31.5-33.0 feet).

Photograph ID: 160

Photo Location:

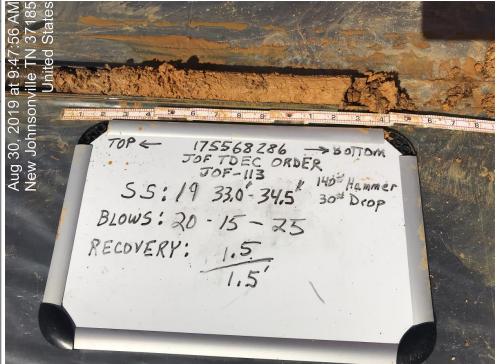

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (33.0-34.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 161

Photo Location:

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (34.5-36.0 feet).

Photograph ID: 162

Photo Location:

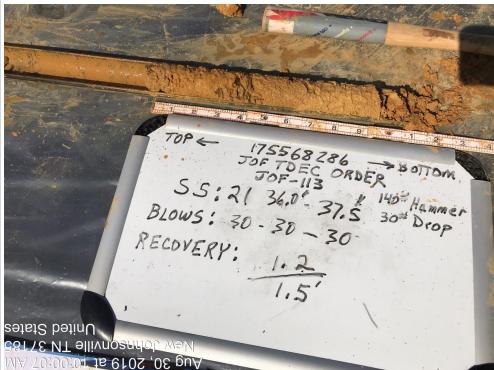

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (36.0-37.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 163

Photo Location:

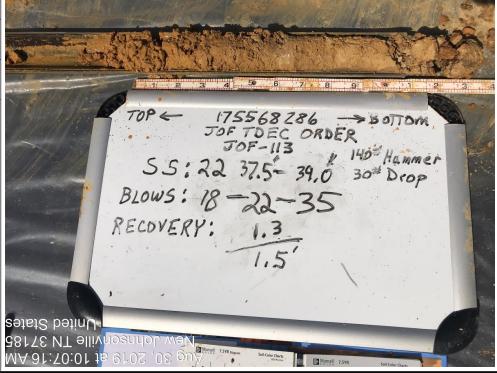

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (37.5-39.0 feet).

Photograph ID: 164

Photo Location:

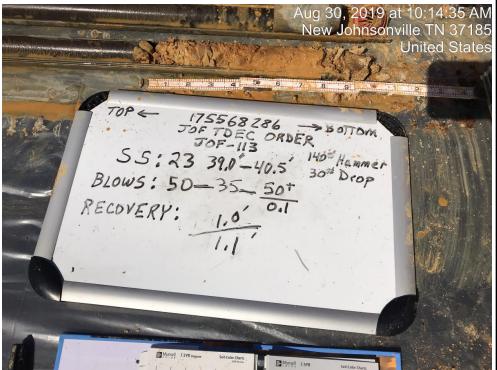

JOF-113

Photo Date:

8/30/2019

Comments:

Second boring location interval (39.0-40.1 feet). The depth range on the white board should be 39.0-40.1 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 165

Photo Location:

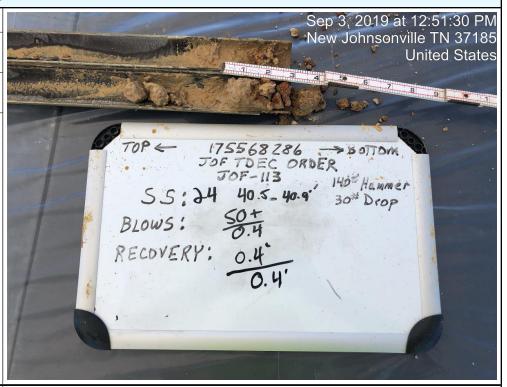

JOF-113

Photo Date:

9/3/2019

Comments:

Second boring location interval (40.5-40.9 feet).

Photograph ID: 166

Photo Location:

JOF-113

Photo Date:

9/3/2019

Comments:

Second boring location interval (42.0-43.5 feet). The depth range on the white board should be 42.0-43.5.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 167

Photo Location:


JOF-113

Photo Date:

9/3/2019

Comments:

Second boring location interval (43.5-44.7 feet).

Photograph ID: 168

Photo Location:

JOF-114 Offset A

Photo Date:

8/21/2019

Comments:

First boring location interval (5.0-10.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 169

Photo Location: JOF-114 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (10.0-12.0 feet). Boring refusal at 12.0 feet.

Photograph ID: 170

Photo Location: JOF-114-Pre

Photo Date: 8/21/2019

0/21/2013

Comments:

Second boring location interval (5.0-10.0 feet). Offset 3 feet to the north of the first boring. The boring ID on the white board should be JOF-114-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

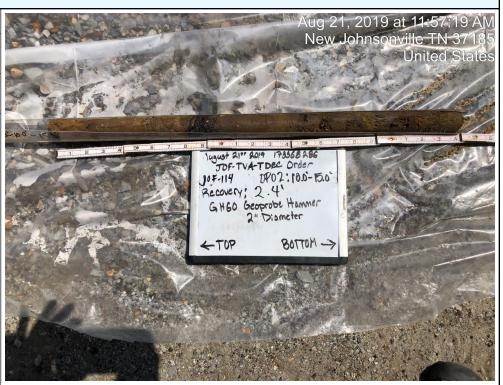

Photograph ID: 171

Photo Location: JOF-114-Pre

Photo Date: 8/21/2019

Comments:

Second boring location interval (10.0-15.0 feet). The boring ID on the white board should be JOF-114-Pre.

Photograph ID: 172

Photo Location: JOF-114-Pre

Photo Date: 8/21/2019

Comments:

Second boring location interval (15.0-20.0 feet). The boring ID on the white board should be JOF-114-Pre.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 173

Photo Location: JOF-114-Pre

Photo Date: 8/21/2019

Comments:

Second boring location interval (20.0-25.0 feet). The boring ID on the white board should be JOF-114-Pre.

Photograph ID: 174

Photo Location: JOF-114-Pre

Photo Date: 8/21/2019

Comments:

Second boring location interval (25.0-27.5 feet). The boring ID on the white board should be JOF-114-Pre. Boring refusal at 27.5 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 175

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (6.0-7.5 feet). Adjacent to the second boring.

Photograph ID: 176

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (7.5-9.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 177

Photo Location:

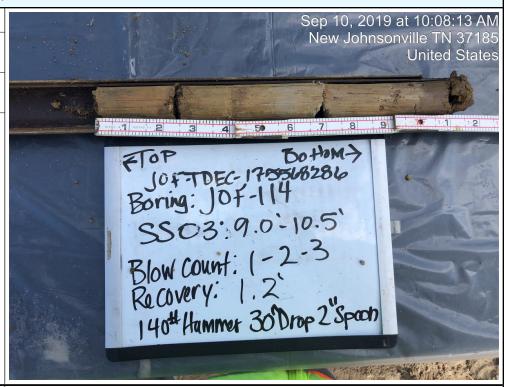

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (9.0-10.5 feet). The blow count on the white board should be 3-2-5.

Photograph ID: 178

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (10.5-12.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 179

Photo Location:

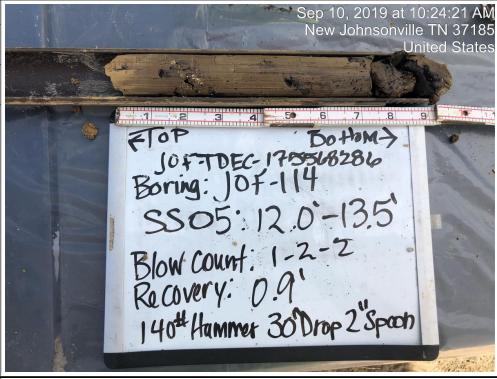

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (12.0-13.5 feet).

Photograph ID: 180

Photo Location:

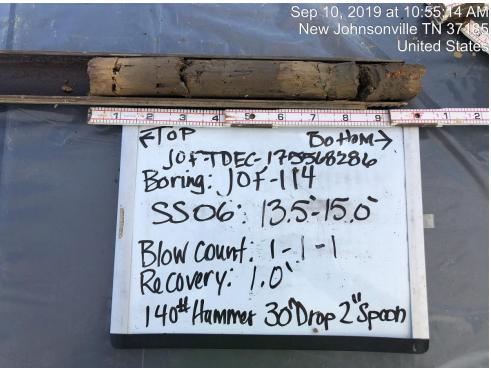

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (13.5-15.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 181

Photo Location:

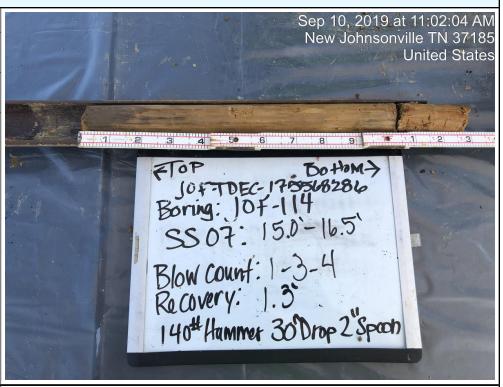

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (15.0-16.5 feet).

Photograph ID: 182

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (16.5-18.0 feet). The split spoon sample, depth range, blow count, and recovery, on the white board should be SS08, 16.5-18.0 feet, WH-1-1, and 1.1 feet, respectively.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 183

Photo Location:

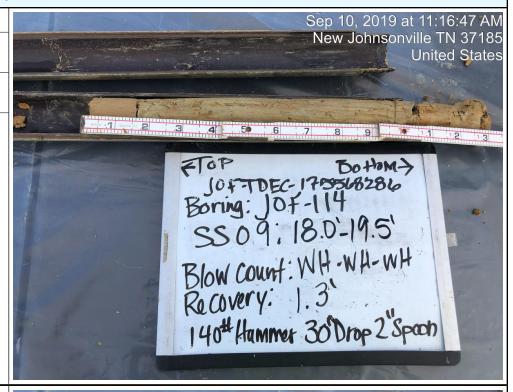

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (18.0-19.5 feet).

Photograph ID: 184

Photo Location:

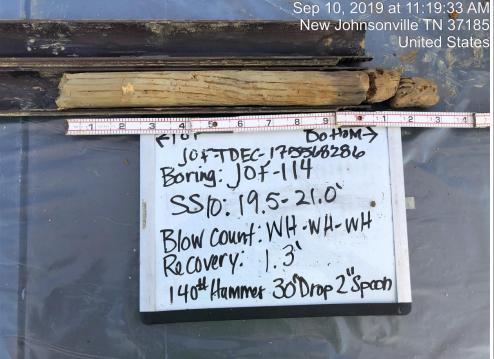

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (19.5-21.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 185

Photo Location:

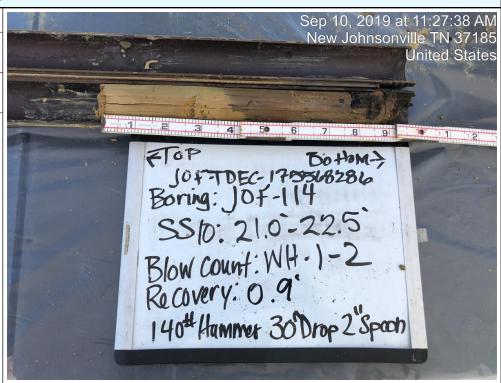

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (21.0-22.5 feet). The split spoon sample on the white board should be SS11.

Photograph ID: 186

Photo Location:

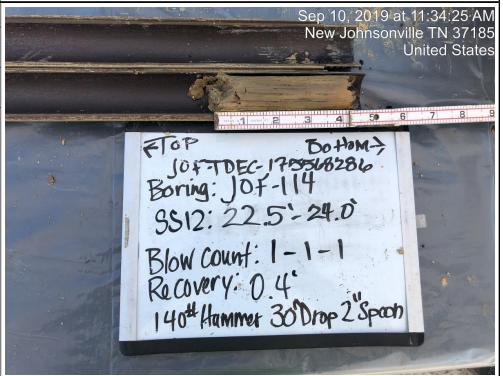

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (22.5-24.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 187

Photo Location:

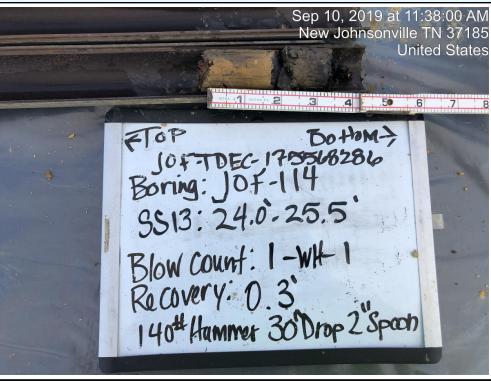

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (24.0-25.5 feet).

Photograph ID: 188

Photo Location:

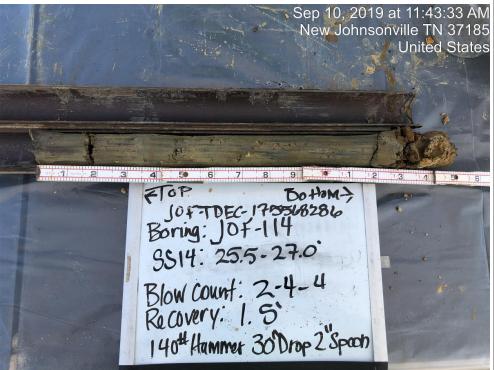

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (25.5-27.0 feet).

Sep 10, 2019 at 1:49:39 PM

Client: Tennessee Valley Authority Project: TDEC Order

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 189

Photo Location:

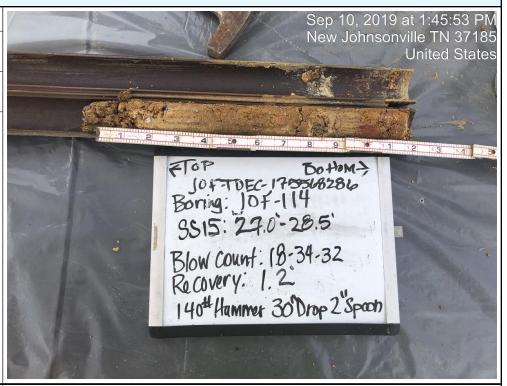

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (27.0-28.5 feet).

Photograph ID: 190

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (28.5-30.0 feet). The split spoon sample on the white board should be SS16.

New Johnsonville TN 37185
United States

United States

FIGP

JOF-TDEC-17-5518286

Boring: JOF-114

SS15: 28.5-30.0

Blow Count: [D-|8-18

Recovery: 1.0

1404 Hummer 30 Drop 2 Speed

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 191

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (30.0-31.5 feet).

Photograph ID: 192

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (31.5-33.0 feet). The blow count on the white board should be

2-20-25.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 193

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (33.0-34.5 feet). The depth range on the white board should be 33.0-34.5 feet. The blow count on the white board should be 18-28-25.

Photograph ID: 194

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (34.5-36.0 feet). The depth range on the white board should be 34.5-36.0 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 195

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (36.0-37.5 feet). The depth range on the white board should be 36.0-37.5 feet.

Photograph ID: 196

Photo Location:

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (37.5-39.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 197

Photo Location:

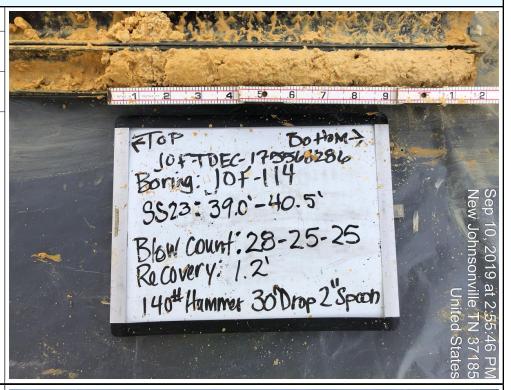

JOF-114

Photo Date:

9/10/2019

Comments:

Third boring location interval (39.0-40.5 feet).

Photograph ID: 198

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (0.0-1.5 feet). The blow count on the white board should be 5-4-4.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 199

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (1.5-3.0 feet).

Photograph ID: 200

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (3.0-4.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 201

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (4.5-6.0 feet).

Photograph ID: 202

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (6.0-7.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 203

Photo Location: JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (7.5-9.0 feet).

Photograph ID: 204

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (9.0-10.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 205

Photo Location: JOF-116-PZ

Photo Date: 7/30/2019

Comments:

Interval (10.5-12.0 feet).

Photograph ID: 206

Photo Location: JOF-116-PZ

Photo Date: 7/30/2019

Comments:

Interval (12.0-13.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 207

Photo Location:

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (13.5-15.0 feet).

Photograph ID: 208

Photo Location:

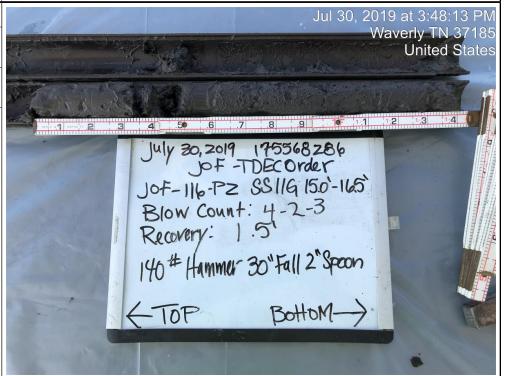

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (15.0-16.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 209

Photo Location:

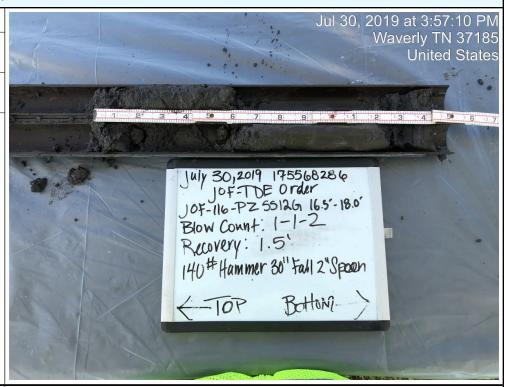

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (16.5-18.0 feet).

Photograph ID: 210

Photo Location:

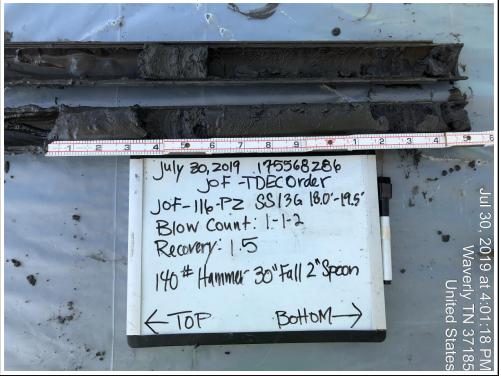

JOF-116-PZ

Photo Date:

7/30/2019

Comments:

Interval (18.0-19.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 211

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019

1/31/2019

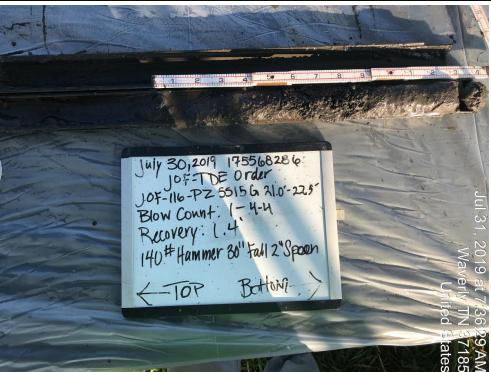
Comments:

Interval (19.5-21.0 feet).

Photograph ID: 212

Photo Location:

JOF-116-PZ


Photo Date:

7/31/2019

Comments:

Interval (21.0-22.5 feet). The date on the white board should be July 31,

2019.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 213

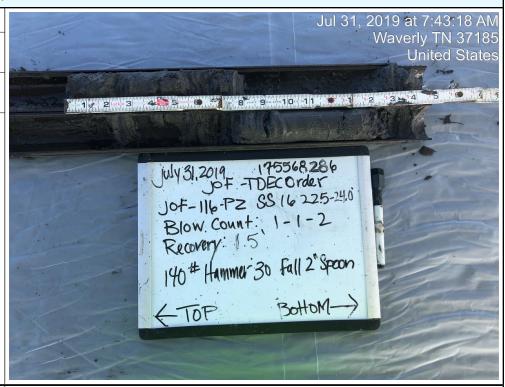

Photo Location: JOF-116-PZ

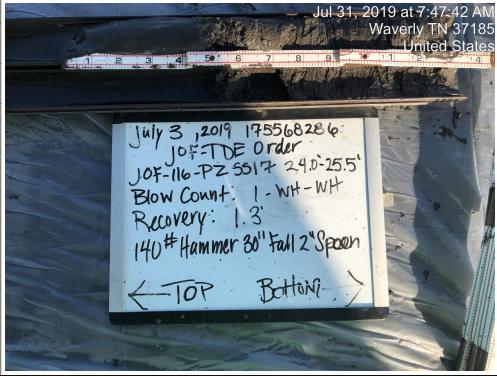
Photo Date:

7/31/2019

Comments:

Interval (22.5-24.0 feet).

Photograph ID: 214


Photo Location:

JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (24.0-25.5 feet). The date on the white board should be July 31, 2019.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 215

Photo Location:

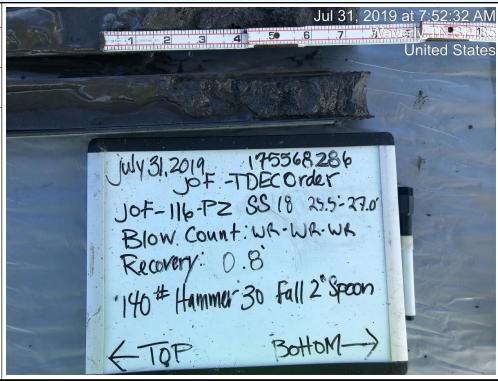

JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (25.5-27.0 feet).

Photograph ID: 216

Photo Location:

JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (27.0-28.5 feet). The blow count on the white board should be WR-WR-WR.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 217

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (28.5-30.0 feet). The date on the white board should be July 31, 2019.

Photograph ID: 218

Photo Location:

JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (30.0-31.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 219

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (31.5-33.0 feet).

Photograph ID: 220

Photo Location:

JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (33.0-34.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 221

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019

Comments: Interval (34.5-36.0 feet).

Photograph ID: 222

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (36.0-37.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 223

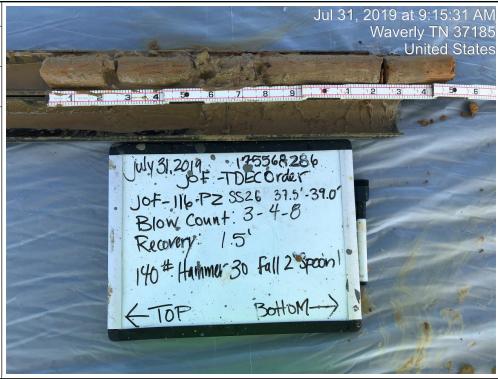

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (37.5-39.0 feet).

Photograph ID: 224

Photo Location:

JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (39.0-40.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 225

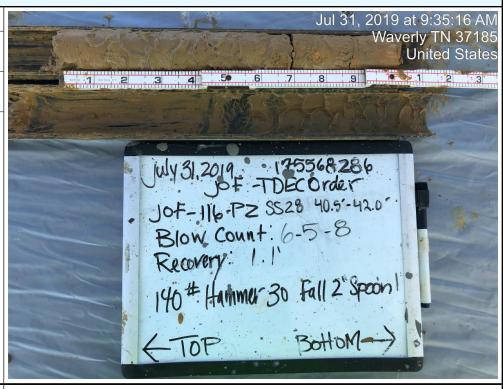

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (40.5-42.0 feet).

Photograph ID: 226

Photo Location:

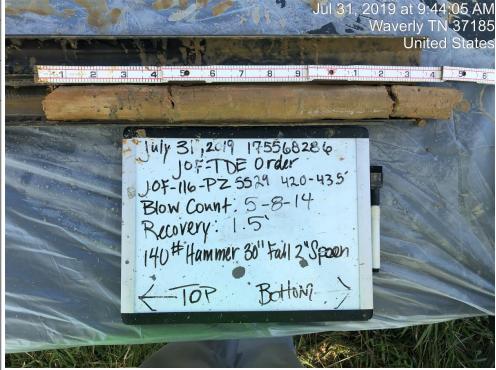

JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (42.0-43.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 227

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (43.5-45.0 feet).

Photograph ID: 228

Photo Location:

JOF-116-PZ

Photo Date:

7/31/2019

Comments:

Interval (45.0-46.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 229

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (46.5-48.0 feet).

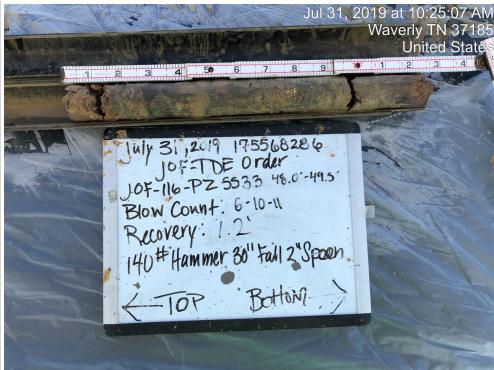

Photograph ID: 230

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (48.0-49.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

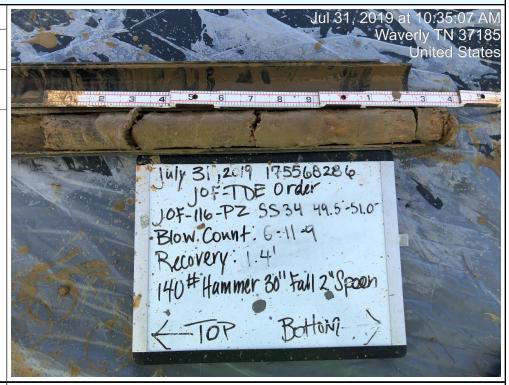

Photograph ID: 231

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (49.5-51.0 feet).

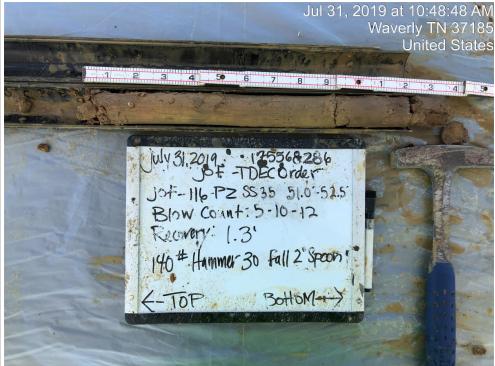

Photograph ID: 232

Photo Location: JOF-116-PZ

Photo Date:

7/31/2019 **Comments:**

Interval (51.0-52.5 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

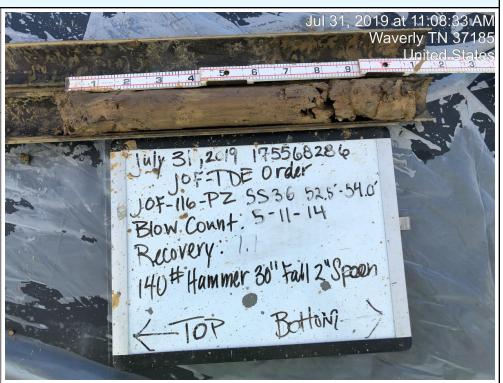

Photograph ID: 233

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (52.5-54.0 feet). The recovery on the white board should be 1.1 feet.

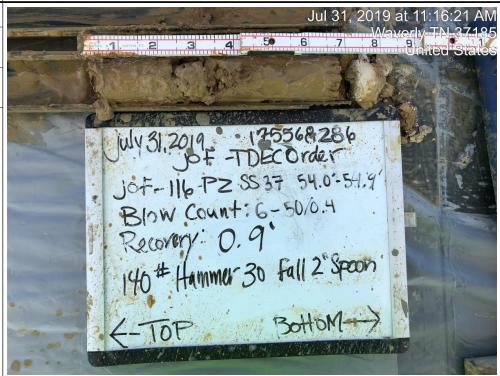

Photograph ID: 234

Photo Location: JOF-116-PZ

Photo Date: 7/31/2019

Comments:

Interval (54.0-54.9 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 235

Photo Location:

JOF-116-PZ

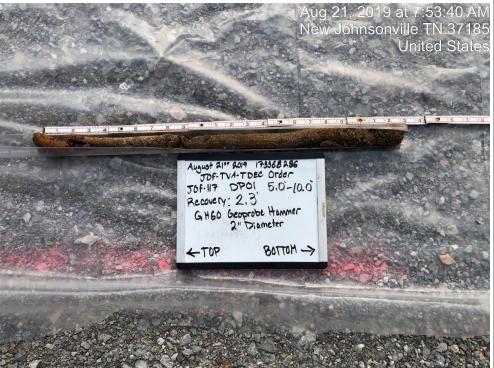
Photo Date:

7/31/2019

Comments:

Interval (55.5-55.6 feet). Boring first encountered CCR at 3.3 feet. Boring refusal at 55.6 feet.

Photograph ID: 236


Photo Location:

JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (5.0-10.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

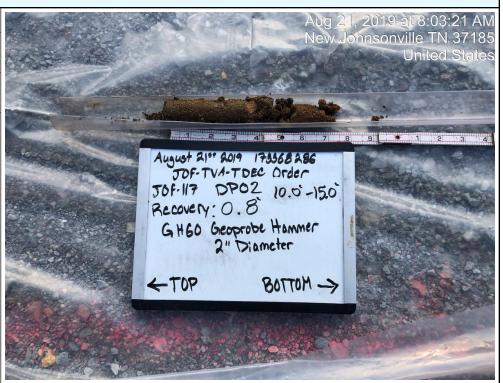

Photograph ID: 237

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (10.0-15.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Photograph ID: 238

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (15.0-20.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 239

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (20.0-25.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Photograph ID: 240

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (25.0-30.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 241

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (30.0-35.0 feet). The boring ID on the white board should be JOF-117 Offset A.

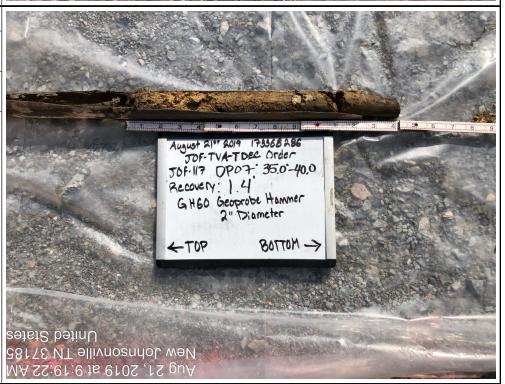

Photograph ID: 242

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (35.0-40.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 243

Photo Location: JOF-117 Offset A

Photo Date: 8/21/2019

Comments:

First boring location interval (40.0-45.0 feet). The boring ID on the white board should be JOF-117 Offset A.

Photograph ID: 244

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Photo of second boring location interval (6.0-7.5 feet) unavailable. Offset 3 feet to the north of the first boring.

No Photo Applicable

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 245

Photo Location:

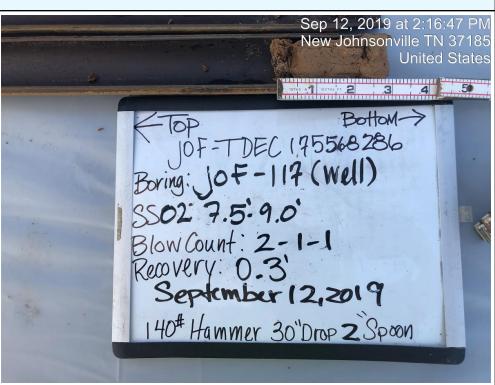

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (7.5-9.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 246

Photo Location:

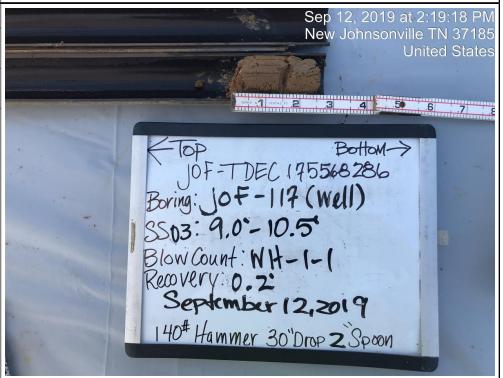

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (9.0-10.5 feet). The boring location shown on the white board is JOF-117.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 247

Photo Location:

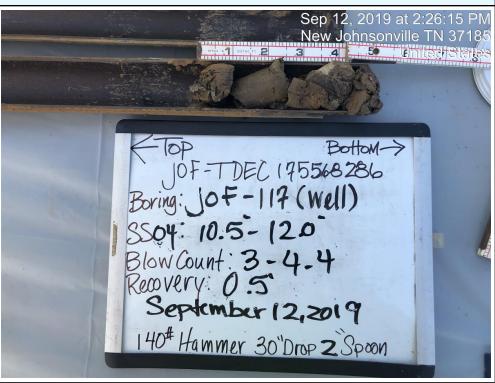

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (10.5-12.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 248

Photo Location:

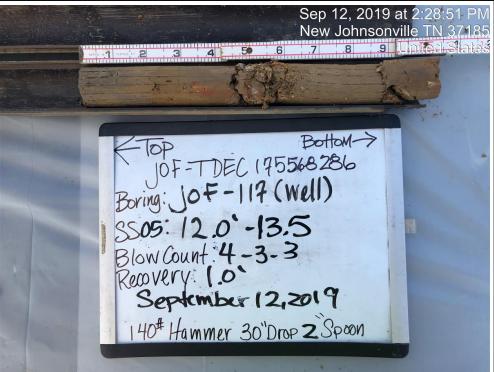

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (12.0-13.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 249

Photo Location:

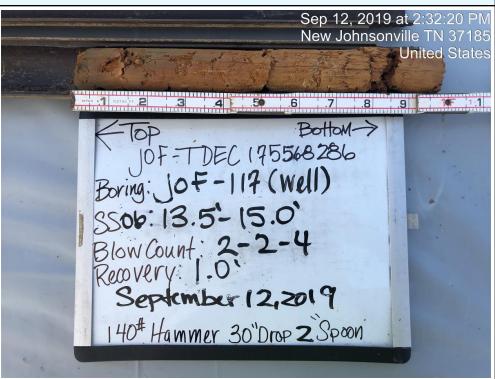

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (13.5-15.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 250

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (15.0-16.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 251

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (16.5-18.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 252

Photo Location:

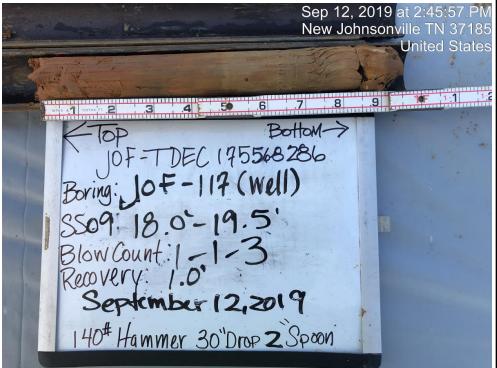

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (18.0-19.5 feet). The boring location shown on the white board is JOF-117. The blow count on the white board should be 1-4-3.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 253

Photo Location:

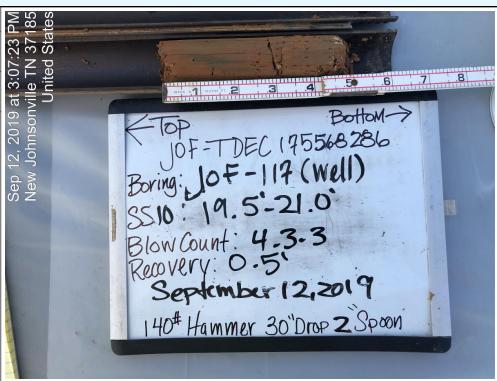

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (19.5-21.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 254

Photo Location:

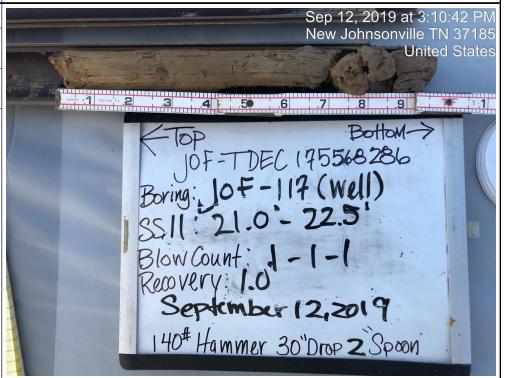

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (21.0-22.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 255

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (22.5-24.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 256

Photo Location:

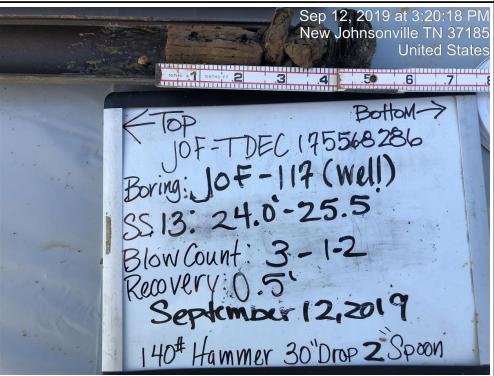

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (24.0-25.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 257

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (25.5-27.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 258

Photo Location:

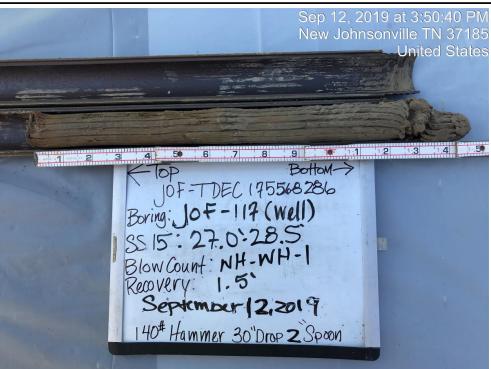

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (27.0-28.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 259

Photo Location:

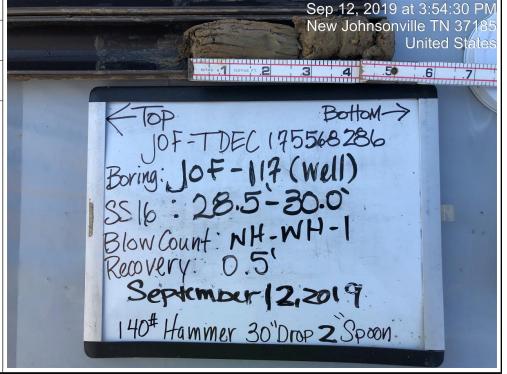

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (28.5-30.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 260

Photo Location:

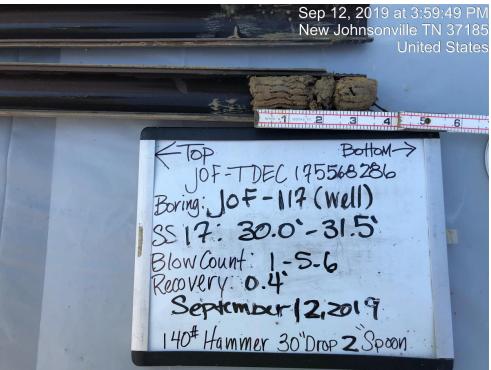

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (30.0-31.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 261

Photo Location:

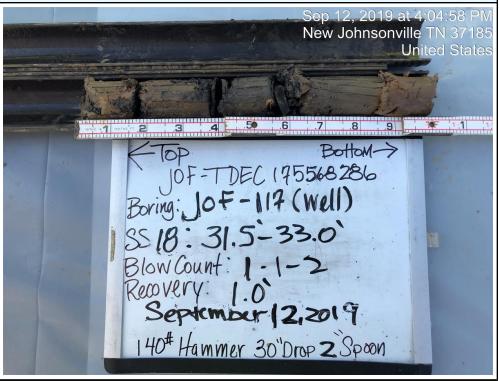

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (31.5-33.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 262

Photo Location:


JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (33.0-34.5 feet). The boring location shown on the white board is JOF-117. The depth range on the white board should be 33.0-34.5 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 263

Photo Location:

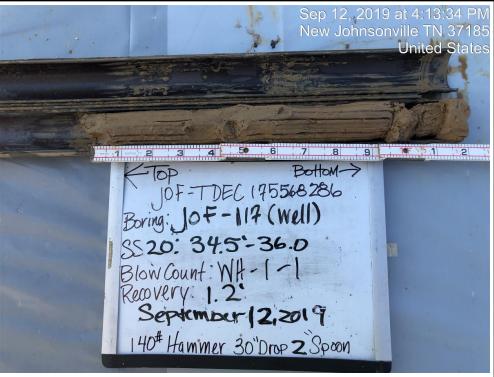

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (34.5-36.0 feet). The boring location shown on the white board is JOF-117.

Photograph ID: 264

Photo Location:

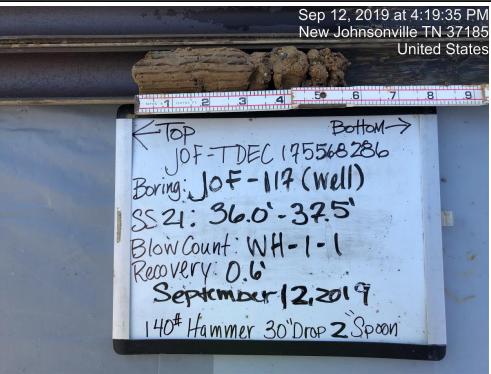

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (36.0-37.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 265

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (37.5-39.0 feet). The boring location shown on the white board is JOF-117. The blow count on the white board should be WH-1-1.

Photograph ID: 266

Photo Location:

JOF-117

Photo Date:

9/12/2019

Comments:

Second boring location interval (39.0-40.5 feet). The boring location shown on the white board is

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 267

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (3.0-4.5 feet).

Photograph ID: 268

Photo Location:

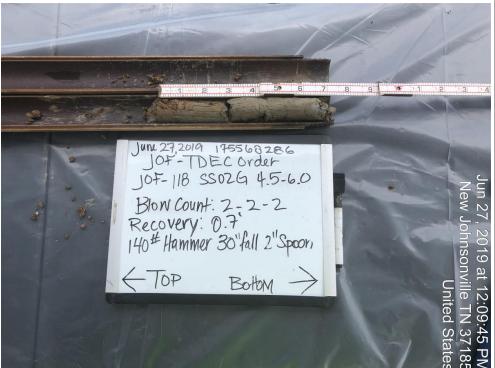

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (4.5-6.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 269

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (6.0-7.5 feet).

Photograph ID: 270

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (7.5-9.0 feet). The depth range on the white board should be 7.5-9.0

feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 271

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (9.0-10.5 feet).

Photograph ID: 272

Photo Location:

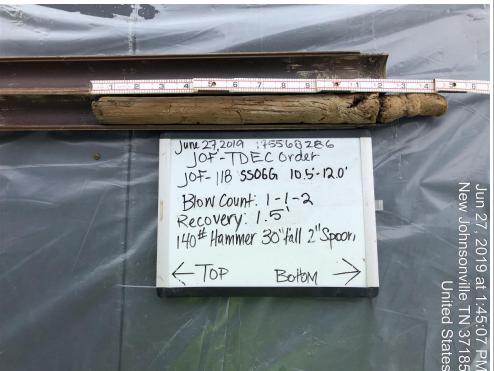

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (10.5-12.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 273

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (12.0-13.5 feet).

Photograph ID: 274

Photo Location:

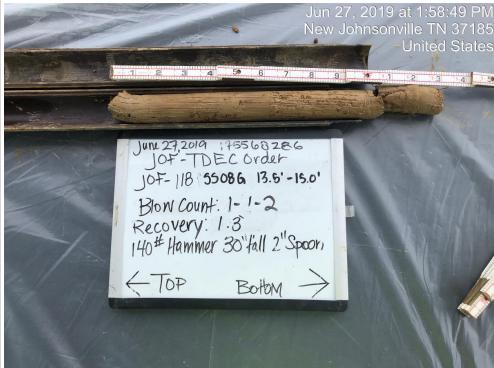

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (13.5-15.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 275

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (15.0-16.5 feet). The recovery on the white board should be 1.4 feet.

Photograph ID: 276

Photo Location:

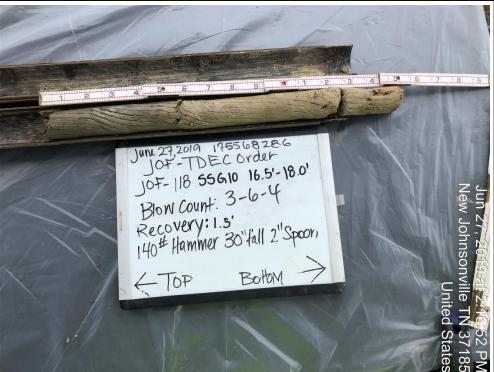

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (16.5-18.0 feet). The split spoon sample on the white board should be SS10G.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 277

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (18.0-19.5 feet).

Photograph ID: 278

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (19.5-21.0 feet). The split spoon sample on the white board shold be

SS12G.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 279

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (21.0-22.5 feet).

Photograph ID: 280

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (22.5-24.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 281

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (24.0-25.5 feet).

Photograph ID: 282

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (25.5-27.0 feet). The recovery on the white board should be 0.9 feet.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 283

Photo Location:

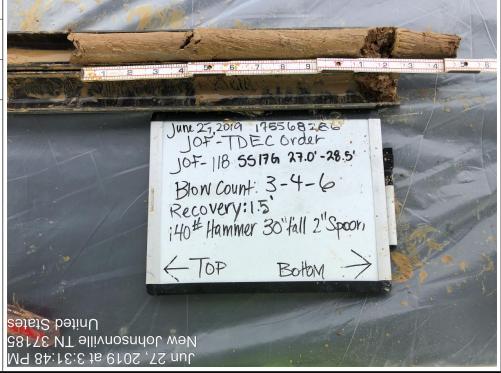

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (27.0-28.5 feet).

Photograph ID: 284

Photo Location:

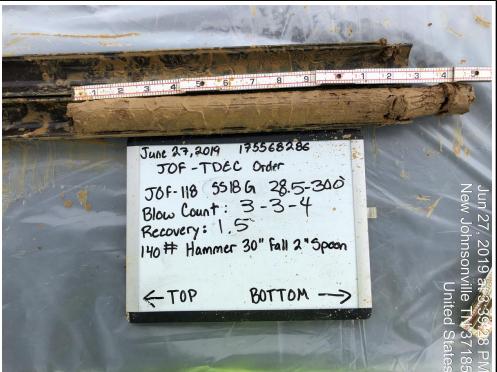

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (28.5-30.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 285

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (30.0-31.5 feet).

Photograph ID: 286

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (31.5-33.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 287

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (33.0-34.5 feet).

Photograph ID: 288

Photo Location:

JOF-118

Photo Date:

6/27/2019

Comments:

Interval (34.5-36.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 289

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (36.0-37.5 feet).

Photograph ID: 290

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (37.5-39.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 291

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (39.0-40.5 feet).

Photograph ID: 292

Photo Location:

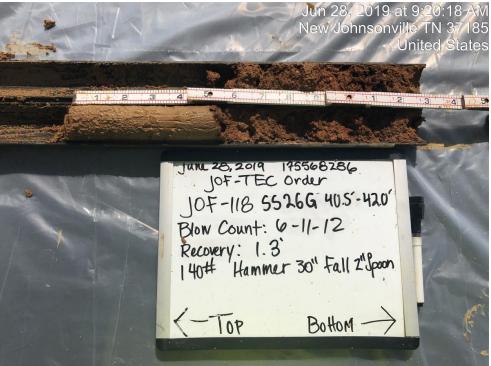

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (40.5-42.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 293

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (42.0-43.5 feet).

Photograph ID: 294

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (43.5-45.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 295

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (45.0-46.5 feet).

Photograph ID: 296

Photo Location:

JOF-118

Photo Date:

6/28/2019

Comments:

Interval (46.5-48.0 feet).

Client: **Tennessee Valley Authority** Project: **TDEC Order** Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee (JOF) Photograph ID: 297 **Photo Location:** JOF-118 **Photo Date:** 6/28/2019 Comments: Interval (48.0-49.5 feet). June 28, 2019 175568286 JOF-TDEC Order. JOF-118 5531 48.11-49.5 Blow Count: 7-8-16 Recovery: 1.1 140# Hammer 30" Fall 2"Spoon Bottom: Photograph ID: 298 **Photo Location: JOF-118 Photo Date:** 6/28/2019 **Comments:** Interval (49.5-51.0 feet). June 28, 2019 175568286 JOF-TEC Order JOF-118.5532 49.5-51.0 Blow Count: 10-10-11 Recovery: 0.9 140# Hammer 30" Fall 2"Spoon Bottom -TOP

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 299

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (0.0-1.5 feet).

Photograph ID: 300

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (1.5-3.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 301

Photo Location:


JOF-119

Photo Date:

7/9/2019

Comments:

Interval (3.0-4.5 feet).

Photograph ID: 302

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (4.5-6.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 303

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (6.0-7.5 feet). The depth range should be shown on the white board as 6.0-7.5.

Photograph ID: 304

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (7.5-9.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 305

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (9.0-10.5 feet).

Photograph ID: 306

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (10.5-12.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 307

Photo Location:

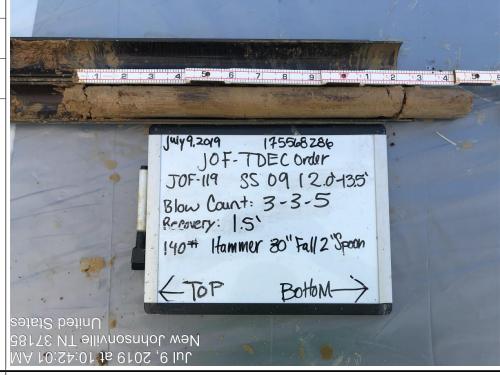

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (12.0-13.5 feet).

Photograph ID: 308

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (13.5-15.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 309

Photo Location:

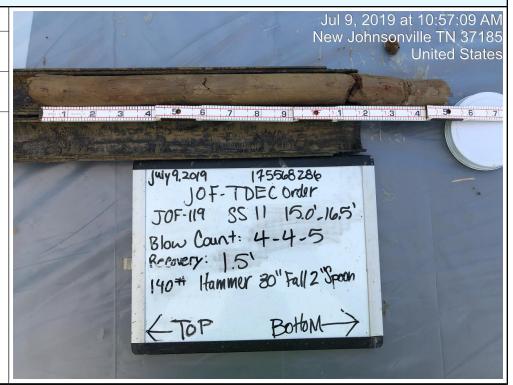

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (15.0-16.5 feet).

Photograph ID: 310

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (16.5-18.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 311

Photo Location:

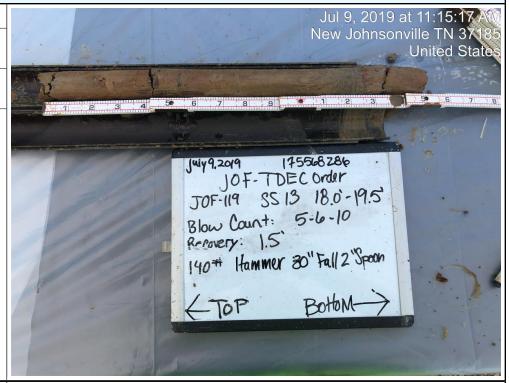

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (18.0-19.5 feet).

Photograph ID: 312

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (19.5-21.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 313

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (21.0-22.5 feet).

Photograph ID: 314

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (22.5-24.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 315

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (24.0-25.5 feet).

Photograph ID: 316

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (25.5-27.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 317

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (27.0-28.5 feet).

Photograph ID: 318

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (28.5-30.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 319

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (30.0-31.5 feet).

Photograph ID: 320

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (31.5-33.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 321

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (33.0-34.5 feet).

Photograph ID: 322

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (34.5-36.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 323

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (36.0-37.5 feet).

Photograph ID: 324

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (37.5-39.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 325

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (39.0-40.5 feet).

Photograph ID: 326

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (40.5-42.0 feet).

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 327

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (42.0-43.5 feet).

Photograph ID: 328

Photo Location:

JOF-119

Photo Date:

7/9/2019

Comments:

Interval (43.5-45.0 feet).

ATTACHMENT D.2

Photographic Log of Monitoring Wells/Piezometer

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 1

Photo Location:

JOF-109

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-109. Well was installed in boring JOF-109.

Photograph ID: 2

Photo Location:

JOF-110

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-110. Well was installed in boring JOF-110.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 3

Photo Location:

JOF-111

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-111. Well was installed in boring JOF-111B.

Photograph ID: 4

Photo Location:

JOF-112

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-112. Well was installed in boring JOF-112.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 5

Photo Location:

JOF-113

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-113. Well was installed in boring JOF-113.

Photograph ID: 6

Photo Location:

JOF-114

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-114. Well was installed in boring JOF-114.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 7

Photo Location:

JOF-116-PZ

Photo Date:

10/15/2020

Comments:

Completion of piezometer JOF-116-PZ. Piezometer was installed in boring JOF-116-PZ.

Photograph ID: 8

Photo Location:

JOF-117

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-117. Well was installed in boring JOF-117.

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 9

Photo Location:

JOF-118

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-118. Well was installed in boring JOF-118.

Photograph ID: 10

Photo Location:

JOF-119

Photo Date:

4/21/2020

Comments:

Completion of monitoring well JOF-119. Well was installed in boring JOF-119.

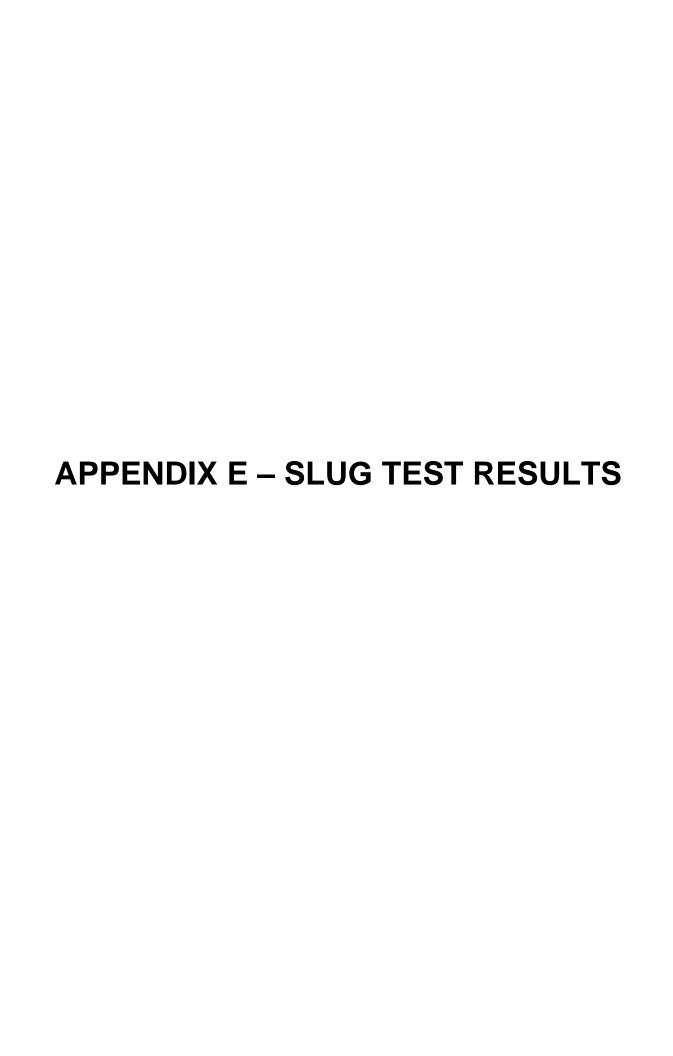
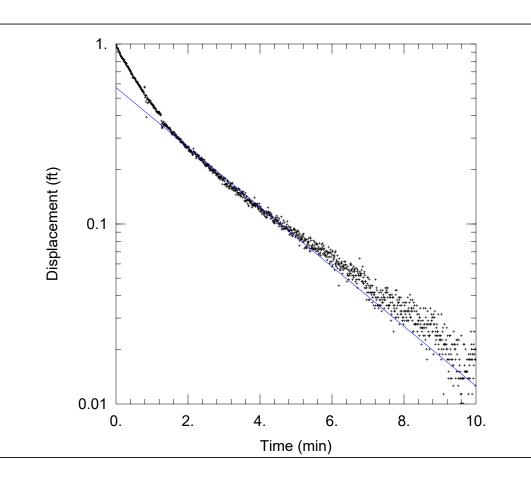



Table 1 May 2019 Slug Test Summary TVA-JOF Facility New Johnsonville, Tennessee PN: 175668286

Well ID	Test	Test Date	Bouwer-Rice Hydraulic Conductivity (ff/day)	Bouwer-Rice Hydraulic Conductivity (cm/sec)	Average	
	Falling Head 1	4/8/2020	2.72	9.6E-04		
	Falling Head 2	4/8/2020	2.769	9.8E-04	2.799	9.9E-04
JOF-109	Falling Head 3	4/8/2020	2.918	1.0E-03		
	Rising Head 1	4/8/2020	2.783	9.8E-04		
	Rising Head 2	4/8/2020	2.717	9.6E-04		
	Rising Head 3	4/8/2020	2.884	1.0E-03		
JOF-110	Falling Head 1	4/20/2020	0.07968	2.8E-05		
	Falling Head 2	4/21/2020	0.07986	2.8E-05		
	Falling Head 3	4/22/2020	0.07915	2.8E-05	0.07960	2.8E-05
	Rising Head 1	4/21/2020	0.07962	2.8E-05		
	Rising Head 2	4/22/2020	0.07962	2.8E-05		
	Rising Head 3	4/23/2020	0.07969	2.8E-05		
JOF-111	Falling Head 1	4/20/2020	3.283	1.2E-03		
	Falling Head 2	4/20/2020	3.313	1.2E-03	3.309	1.2E-03
	Falling Head 3	4/20/2020	3.34	1.2E-03		
	Rising Head 1	4/20/2020	3.322	1.2E-03		
	Rising Head 2	4/20/2020	3.297	1.2E-03		
	Rising Head 3	4/20/2020	3.301	1.2E-03		
JOF-112	Falling Head 1	4/7/2020	23.67	8.4E-03		
	Falling Head 2	4/7/2020	24.51	8.6E-03	26.59	9.4E-03
	Falling Head 3	4/7/2020	25.59	9.0E-03		
	Rising Head 1	4/7/2020	28.03	9.9E-03	1	
	Rising Head 2	4/7/2020	28.69	1.0E-02	1	
	Rising Head 3	4/7/2020	29.04	1.0E-02	1	
JOF-113	Falling Head 1	4/22/2020	1.392	4.9E-04	1	
	Falling Head 2	4/22/2020	1.389	4.9E-04	1.530	5.4E-04
	Falling Head 3	4/22/2020	1.46	5.2E-04	1	
	Rising Head 1	4/22/2020	1.606	5.7E-04	1	
	Rising Head 2	4/22/2020	1.632	5.8E-04	1	
	Rising Head 3	4/22/2020	1.701	6.0E-04	1	
JOF-114	Falling Head 1	4/22/2020	10.46	3.7E-03	1	
	Falling Head 2	4/22/2020	10.45	3.7E-03	10.19	3.6E-03
	Falling Head 3	4/22/2020	10.35	3.7E-03		
	Rising Head 1	4/22/2020	9.587	3.4E-03		
	Rising Head 2	4/22/2020	9.956	3.5E-03	1	
	Rising Head 3	4/22/2020	10.34	3.6E-03	1	
JOF-117	Falling Head 1	4/22/2020	0.7062	2.5E-04		
	Falling Head 2	4/23/2020	0.7001	2.5E-04	0.7067	2.5E-04
	Falling Head 3	4/23/2020	0.7299	2.6E-04	1	
	Rising Head 1	4/23/2020	0.7104	2.5E-04	1	
	Rising Head 2	4/23/2020	0.6932	2.4E-04	1	
	Rising Head 3	4/23/2020	0.7003	2.5E-04	1	
JOF-118	Falling Head 1	4/21/2020	235.6	8.3E-02	1	
	Falling Head 2	4/21/2020	179.5	6.3E-02	217.7	7.7E-02
	Falling Head 3	4/21/2020	192.7	6.8E-02	1	
	Rising Head 1	4/21/2020	227.3	8.0E-02	1	
	Rising Head 2	4/21/2020	227.7	8.0E-02	1	
	Rising Head 3	4/21/2020	243.3	8.6E-02	1	
JOF-119	Falling Head 1	4/21/2020	142.6	5.0E-02	1	
	Falling Head 2	4/21/2020	141.8	5.0E-02	152.9	5.4E-02
	Falling Head 3	4/21/2020	148.6	5.2E-02	1	
	Rising Head 1	4/21/2020	163.0	5.8E-02	1	
	Rising Head 2	4/21/2020	165.2	5.8E-02	1	

Notes ft/day - feet per day cm/sec - centimeters per second Data analysis was completed using AQTESOLV™, Version 4.50 Professional

JOF-109 FH 1

Data Set: C:\...\JOF-109_FH-1.aqt

Date: 05/22/20 Time: 14:33:36

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

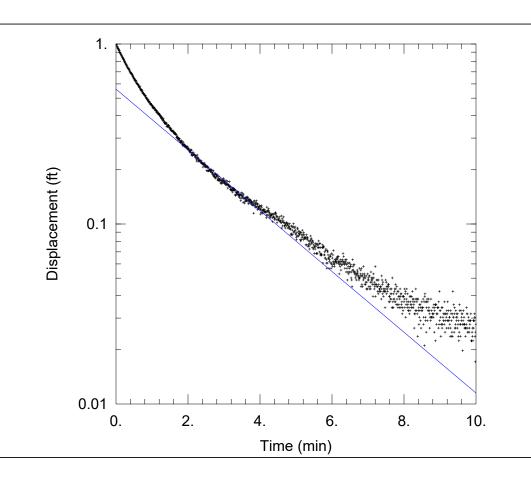
Test Well: $\frac{\text{JOF-}109}{4/8/2020}$

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 2.72 ft/dayy0 = 0.5727 ft


AQUIFER DATA

Saturated Thickness: 32.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-109)

Initial Displacement: 1. ft Static Water Column Height: 40.29 ft

Total Well Penetration Depth: 31.5 ft Screen Length: 9.8 ft Casing Radius: 0.1667 ft Well Radius: 0.542 ft

JOF-109 FH 2

Data Set: C:\...\JOF-109_FH-2.aqt

Date: 05/22/20 Time: 14:35:57

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}109}{4/8/2020}$

SOLUTION

Aquifer Model: Confined

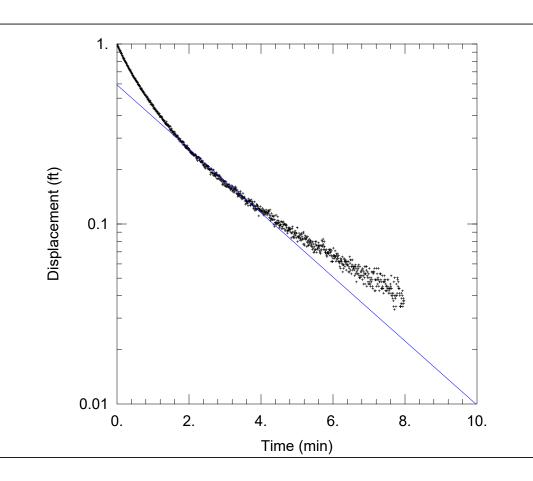
Solution Method: Bouwer-Rice

K = 2.769 ft/dayy0 = 0.5611 ft

AQUIFER DATA

Saturated Thickness: 32.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-109)


Initial Displacement: 1. ft

Total Well Penetration Depth: 31.5 ft

State
St

Casing Radius: 0.1667 ft

Static Water Column Height: 40.29 ft

JOF-109 FH 3

Data Set: C:\...\JOF-109_FH-3.aqt

Date: 05/22/20 Time: 14:38:26

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}109}{4/8/2020}$

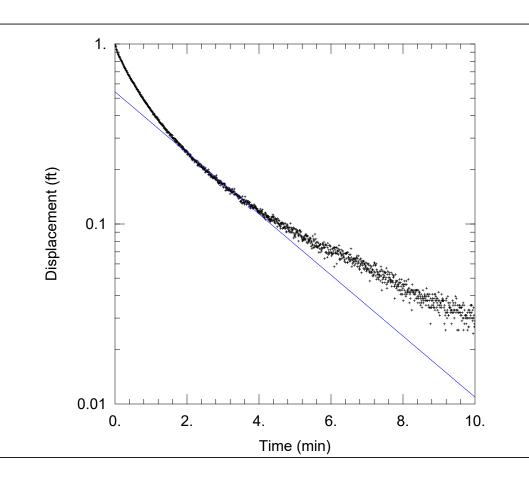
SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 2.918 ft/dayy0 = 0.5924 ft

AQUIFER DATA


Saturated Thickness: 32.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-109)

Initial Displacement: 1. ft
Total Well Penetration Depth: 31.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 40.29 ft

JOF-109 RH 1

Data Set: C:\...\JOF-109 RH-1.aqt

Date: 05/22/20 Time: 14:40:38

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-109 Test Date: 4/8/2020

SOLUTION

Aguifer Model: Confined

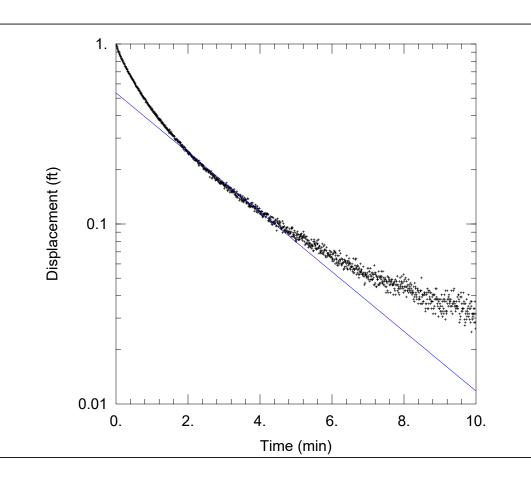
Solution Method: Bouwer-Rice

K = 2.783 ft/dayy0 = 0.5421 ft

AQUIFER DATA

Saturated Thickness: 32.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-109)


Static Water Column Height: 40.29 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 31.5 ft

Casing Radius: 0.1667 ft

JOF-109 RH 2

Data Set: C:\...\JOF-109_RH-2.aqt

Date: 05/22/20 Time: 14:47:57

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}109}{4/8/2020}$

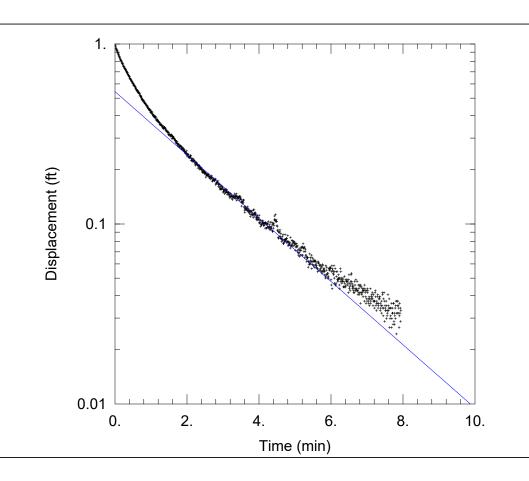
SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 2.717 ft/dayy0 = 0.535 ft

AQUIFER DATA


Saturated Thickness: 32.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-109)

Initial Displacement: 1. ft
Total Well Penetration Depth: 31.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 40.29 ft

JOF-109 RH 3

Data Set: C:\...\JOF-109_RH-3.aqt

Date: 05/22/20 Time: 14:47:09

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

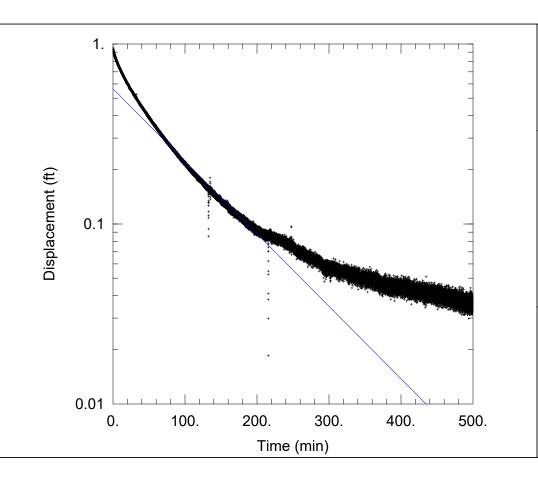
Test Well: $\frac{\text{JOF-}109}{4/8/2020}$

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 2.884 ft/dayy0 = 0.5436 ft


AQUIFER DATA

Saturated Thickness: 32.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-109)

Initial Displacement: 1. ft Static Water Column Height: 40.29 ft

Total Well Penetration Depth: 31.5 ft Screen Length: 9.8 ft Casing Radius: 0.1667 ft Well Radius: 0.542 ft

JOF-110 FH 1

Data Set: C:\...\JOF-110_FH-1.aqt

Date: 06/18/20

Time: 12:07:40

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

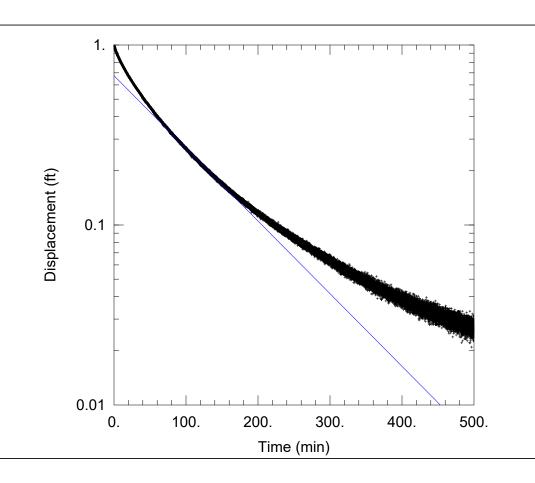
Test Well: <u>JOF-110</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: Bouwer-Rice

K = 0.07968 ft/dayy0 = 0.5637 ft

AQUIFER DATA


Saturated Thickness: 44.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-110)

Initial Displacement: 1. ft
Total Well Penetration Depth: 44.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 44.8 ft

JOF-110 FH 2

Data Set: C:\...\JOF-110_FH-2.aqt

Date: 06/18/20 Time: 12:06:23

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-110</u> Test Date: <u>4/21/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

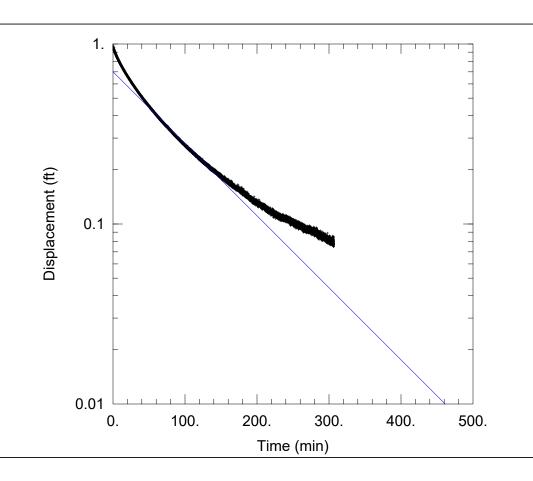
K = 0.07986 ft/day

y0 = 0.675 ft

AQUIFER DATA

Saturated Thickness: 44.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-110)


Static Water Column Height: 44.8 ft

Screen Length: 9.8 ft Well Radius: 0.333 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 44.4 ft

Casing Radius: 0.1667 ft

JOF-110 FH 3

Data Set: C:\...\JOF-110_FH-3.aqt

Date: 06/18/20 Time: 11:53:21

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

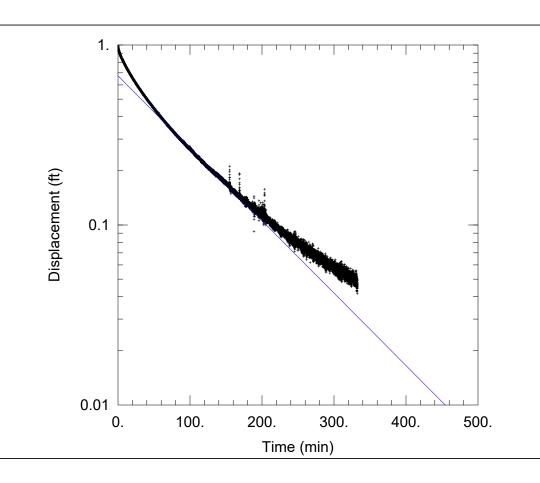
Test Well: <u>JOF-110</u> Test Date: <u>4/22/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.07915 ft/dayy0 = 0.7007 ft

AQUIFER DATA


Saturated Thickness: 44.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-110)

Initial Displacement: 1. ft
Total Well Penetration Depth: 44.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 44.8 ft

JOF-110 RH 1

Data Set: C:\...\JOF-110_RH-1.aqt

Date: 06/18/20

Time: 11:55:10

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-110</u> Test Date: <u>4/21/2020</u>

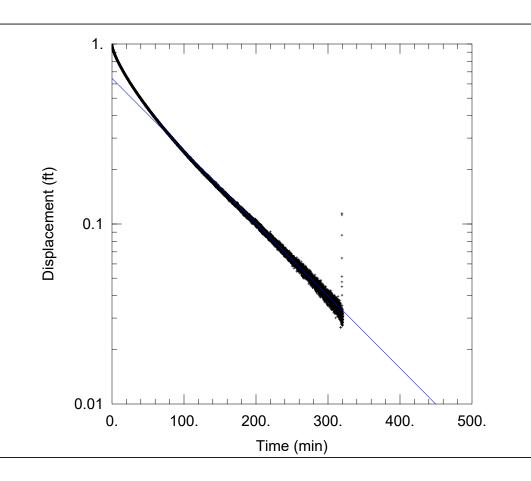
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.07962 ft/dayy0 = 0.6739 ft

AQUIFER DATA

Saturated Thickness: 44.8 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-110)

Initial Displacement: 1. ft
Total Well Popularities Donth: 44.4 f

Total Well Penetration Depth: 44.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 44.8 ft

JOF-110 RH 2

Data Set: C:\...\JOF-110_RH-2.aqt

Date: 06/18/20

Time: 11:56:15

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-110</u> Test Date: <u>4/22/2020</u>

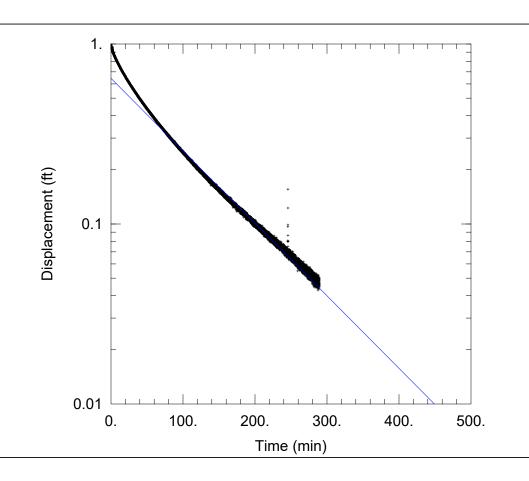
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.07962 ft/day

y0 = 0.644 ft

AQUIFER DATA


Saturated Thickness: 44.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-110)

Initial Displacement: <u>1.</u> ft Total Well Penetration Depth: 44.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 44.8 ft

Casing Radius: 0.1667 ft

JOF-110 RH 3

Data Set: C:\...\JOF-110 RH-3.aqt Time: 11:58:10

Date: 06/18/20

PROJECT INFORMATION

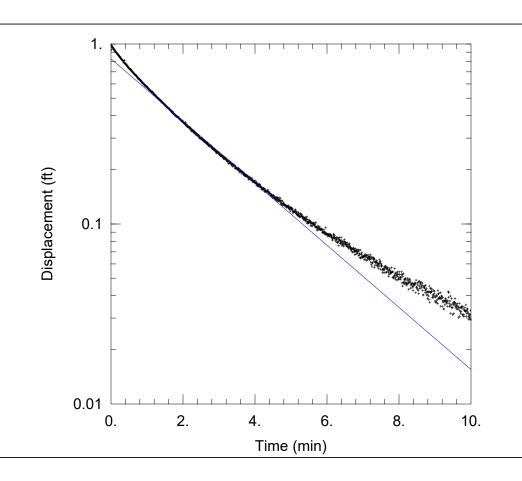
Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-110 Test Date: 4/23/2020

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice


K = 0.07969 ft/dayy0 = 0.6445 ft

AQUIFER DATA

Saturated Thickness: 44.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-110)

Initial Displacement: 1. ft Static Water Column Height: 44.8 ft Total Well Penetration Depth: 44.4 ft

JOF-111 FH 1

Data Set: C:\...\JOF-111_FH-1.aqt

Date: 06/18/20

Time: <u>12:10:07</u>

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

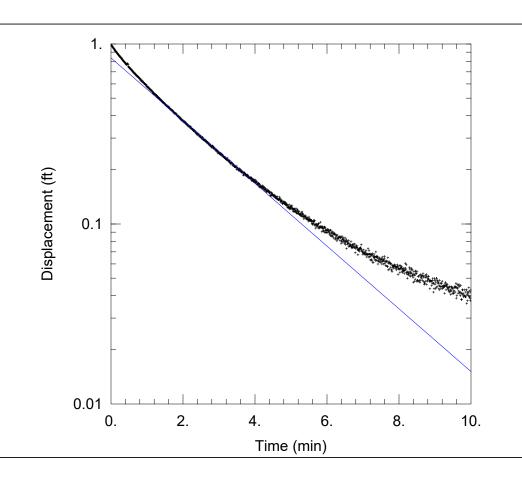
Test Well: <u>JOF-111</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 3.283 ft/dayy0 = 0.8272 ft

AQUIFER DATA


Saturated Thickness: 32.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-111)

Initial Displacement: <u>1.</u> ft Total Well Penetration Depth: 32.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 32.8 ft

JOF-111 FH 2

Data Set: C:\...\JOF-111_FH-2.aqt

Date: 06/18/20

Time: <u>12:00:06</u>

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

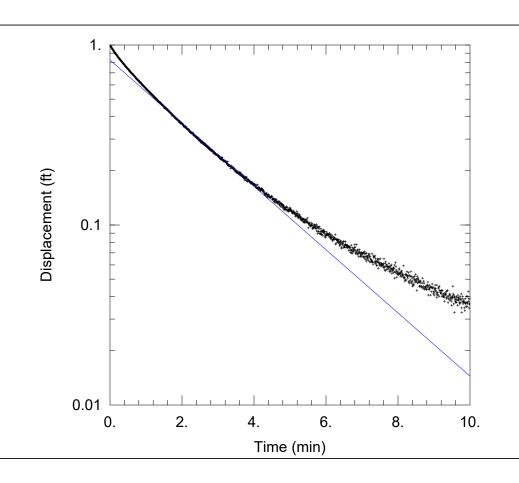
Test Well: <u>JOF-111</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 3.313 ft/dayy0 = 0.8362 ft

AQUIFER DATA


Saturated Thickness: 32.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-111)

Initial Displacement: <u>1.</u> ft
Total Well Penetration Depth: 32.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 32.8 ft

JOF-111 FH 3

Data Set: C:\...\JOF-111_FH-3.aqt

Date: 06/18/20 Time: 12:00:47

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

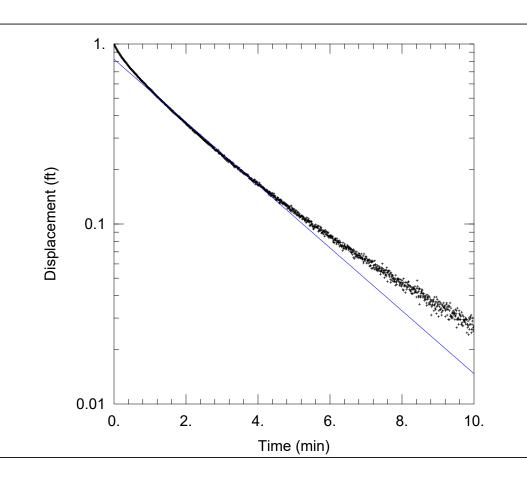
Test Well: <u>JOF-111</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 3.34 ft/dayy0 = 0.8251 ft

AQUIFER DATA


Saturated Thickness: 32.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-111)

Initial Displacement: <u>1.</u> ft
Total Well Penetration Depth: 32.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 32.8 ft

JOF-111 RH 1

Data Set: C:\...\JOF-111_RH-1.aqt

Date: 06/18/20 Time: 12:01:35

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

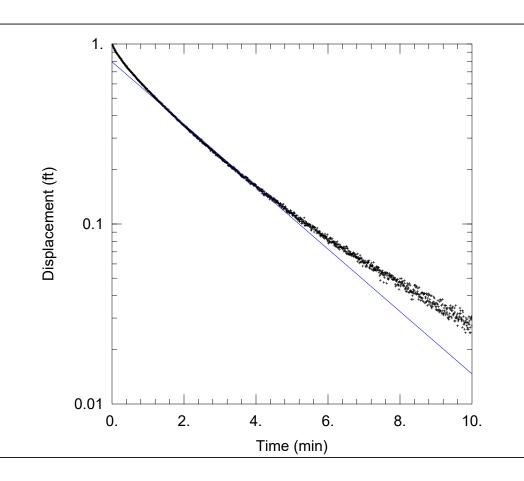
Test Well: <u>JOF-111</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 3.322 ft/dayy0 = 0.8231 ft

AQUIFER DATA


Saturated Thickness: 32.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-111)

Initial Displacement: 1. ft
Total Well Penetration Depth: 32.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 32.8 ft

JOF-111 RH 2

Data Set: C:\...\JOF-111_RH-2.aqt

Date: 06/18/20

Time: 12:02:25

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

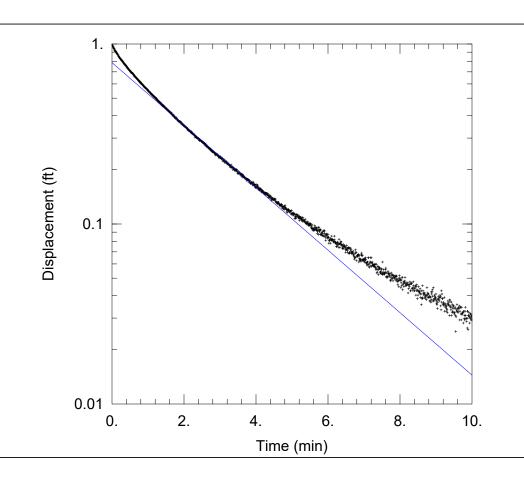
Test Well: <u>JOF-111</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 3.297 ft/dayy0 = 0.7954 ft

AQUIFER DATA


Saturated Thickness: 32.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-111)

Initial Displacement: 1. ft
Total Well Penetration Depth: 32.4 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 32.8 ft

JOF-111 RH 3

Data Set: C:\...\JOF-111_RH-3.aqt

Date: 06/18/20

Time: 12:03:10

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

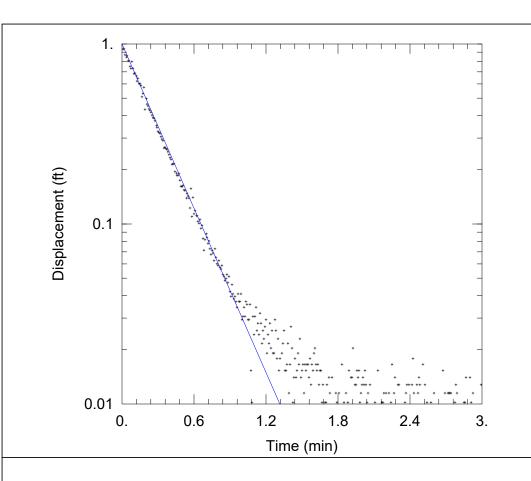
Location: New Johnsonville, TN

Test Well: <u>JOF-111</u> Test Date: <u>4/20/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 3.301 ft/dayy0 = 0.7872 ft


AQUIFER DATA

Saturated Thickness: 32.8 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-111)

Initial Displacement: 1. ft Static Water Column Height: 32.8 ft

Total Well Penetration Depth: 32.4 ft Screen Length: 9.8 ft Casing Radius: 0.1667 ft Well Radius: 0.33 ft

JOF-112 FH 1

Data Set: C:\...\JOF-112_FH-1.aqt

Date: 06/16/20 Time: 11:43:33

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}112}{4/7/2020}$

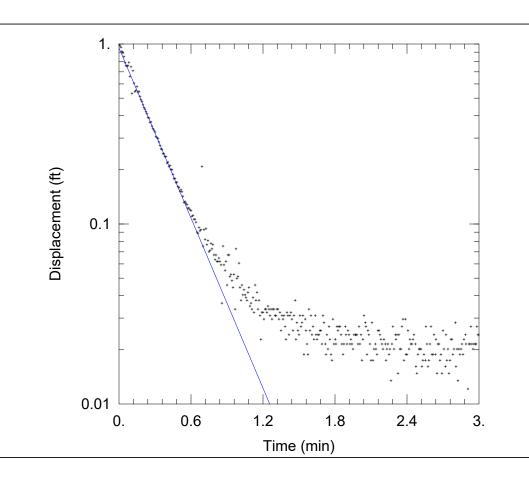
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 23.67 ft/dayy0 = 0.9999 ft

AQUIFER DATA

Saturated Thickness: 18.3 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-112)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.9 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 18.3 ft

JOF-112 FH 2

Data Set: C:\...\JOF-112_FH-2.aqt

Date: 06/16/20 Time: 11:44:50

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}112}{4/7/2020}$

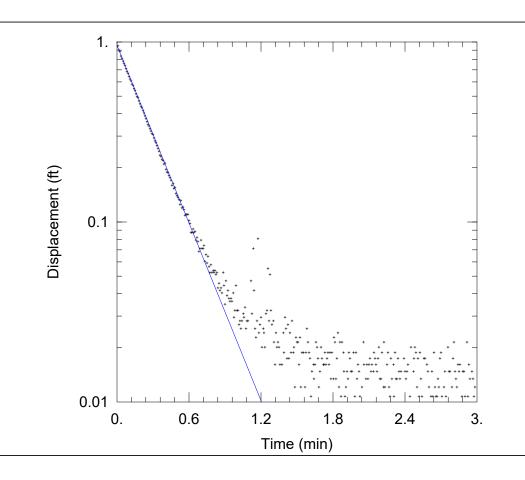
SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: Bouwer-Rice

K = 24.51 ft/dayy0 = 0.9499 ft

AQUIFER DATA

Saturated Thickness: 18.3 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-112)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.9 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 18.3 ft

JOF-112 FH 3

Data Set: C:\...\JOF-112_FH-3.aqt

Date: 06/16/20 Time: 11:45:42

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-112 Test Date: 4/7/2020

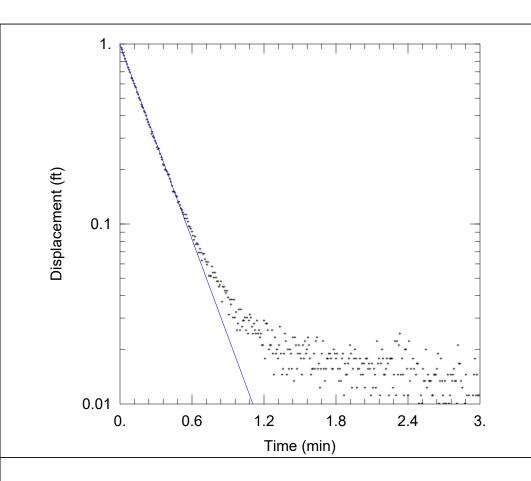
SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 25.59 ft/dayy0 = 0.9565 ft

AQUIFER DATA

Saturated Thickness: 18.3 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-112)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.9 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 18.3 ft

JOF-112 RH 1

Data Set: C:\...\JOF-112_RH-1.aqt

Date: 06/16/20 Time: 11:48:38

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}112}{4/7/2020}$

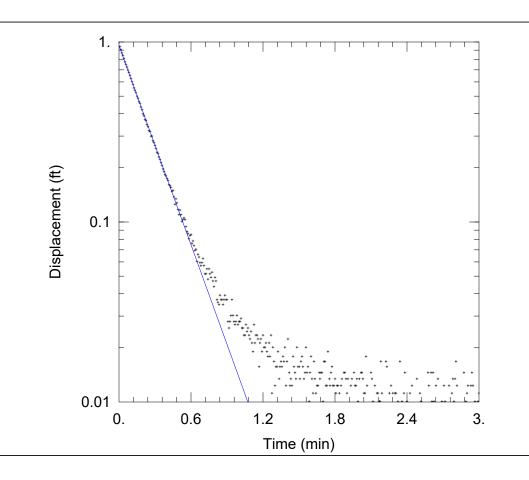
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 28.03 ft/dayy0 = 0.9886 ft

AQUIFER DATA

Saturated Thickness: 18.3 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-112)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.9 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 18.3 ft

JOF-112 RH 2

Data Set: C:\...\JOF-112_RH-2.aqt

Date: 06/16/20 Time: 11:49:18

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}112}{4/7/2020}$

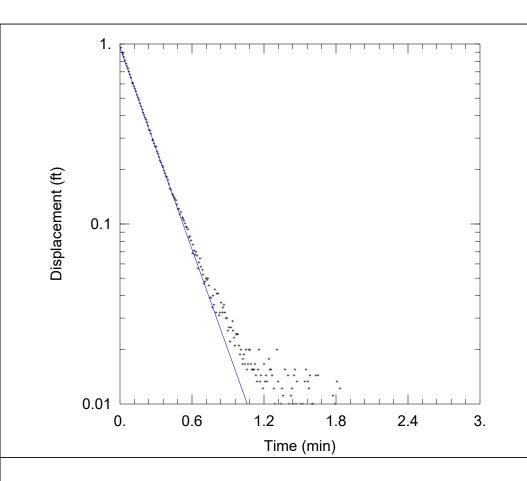
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 28.69 ft/dayy0 = 0.9529 ft

AQUIFER DATA

Saturated Thickness: 18.3 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-112)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.9 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 18.3 ft

JOF-112 RH 3

Data Set: C:\...\JOF-112_RH-3.aqt

Date: 06/16/20 Time: 11:50:06

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: $\frac{\text{JOF-}112}{4/7/2020}$

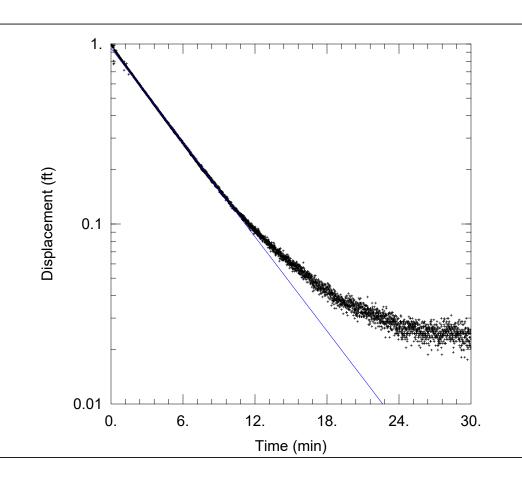
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 29.04 ft/dayy0 = 0.9528 ft

AQUIFER DATA

Saturated Thickness: 18.3 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-112)

Initial Displacement: 1. ft

Total Well Penetration Depth: 17.9 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 18.3 ft

JOF-113 FH 1

Data Set: C:\...\JOF-113 FH-1.aqt Time: 11:51:32

Date: 06/16/20

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-113 Test Date: 4/22/2020

SOLUTION

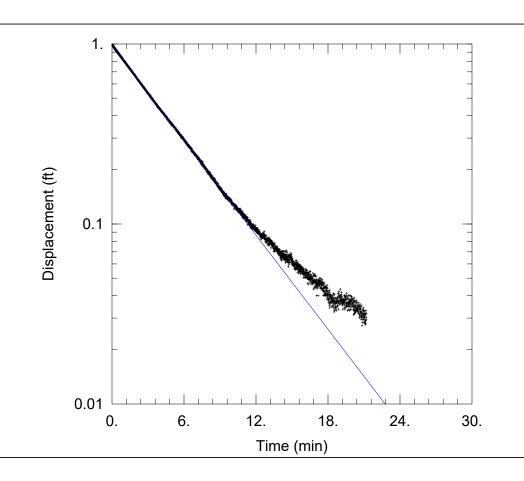
Aguifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.392 ft/dayy0 = 0.9466 ft

AQUIFER DATA

Saturated Thickness: 21.1 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-113)

Static Water Column Height: 21.1 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 20.7 ft

JOF-113 FH 2

Data Set: C:\...\JOF-113_FH-2.aqt

Date: 06/16/20 Time: 11:52:17

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

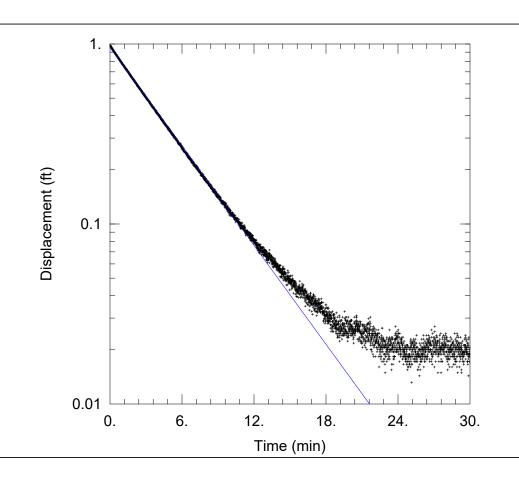
Test Well: <u>JOF-113</u> Test Date: <u>4/22/2020</u>

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.389 ft/dayy0 = 0.9629 ft


AQUIFER DATA

Saturated Thickness: 21.1 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-113)

Initial Displacement: 1. ft Static Water Column Height: 21.1 ft

Total Well Penetration Depth: 20.7 ft Screen Length: 9.8 ft Casing Radius: 0.1667 ft Well Radius: 0.542 ft

JOF-113 FH 3

Data Set: C:\...\JOF-113 FH-3.aqt

Date: 06/16/20

Time: 11:53:03

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-113 Test Date: 4/22/2020

SOLUTION

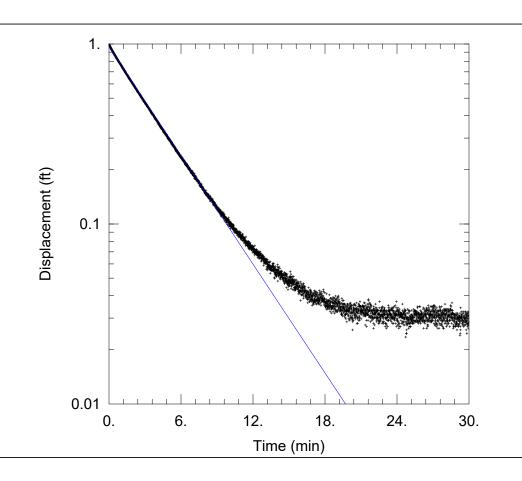
Aguifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.46 ft/dayy0 = 0.9551 ft

AQUIFER DATA

Saturated Thickness: 21.1 ft


Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-113)

Initial Displacement: 1. ft Total Well Penetration Depth: 20.7 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 21.1 ft

JOF-113 RH 1

Data Set: C:\...\JOF-113_RH-1.aqt

Date: 06/16/20 Time: 11:53:55

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

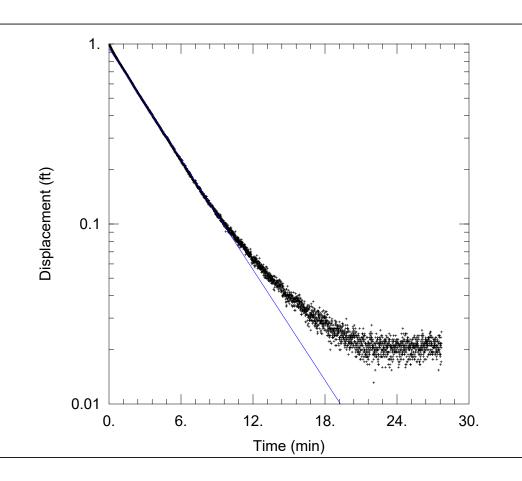
Test Well: <u>JOF-113</u> Test Date: <u>4/22/2020</u>

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.606 ft/dayy0 = 0.9677 ft


AQUIFER DATA

Saturated Thickness: 21.1 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-113)

Initial Displacement: 1. ft Static Water Column Height: 21.1 ft

Total Well Penetration Depth: 20.7 ft Screen Length: 9.8 ft Casing Radius: 0.1667 ft Well Radius: 0.542 ft

JOF-113 RH 2

Data Set: C:\...\JOF-113_RH-2.aqt

Date: 06/16/20

PROJECT INFORMATION

Time: 11:54:53

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-113</u> Test Date: <u>4/22/2020</u>

SOLUTION

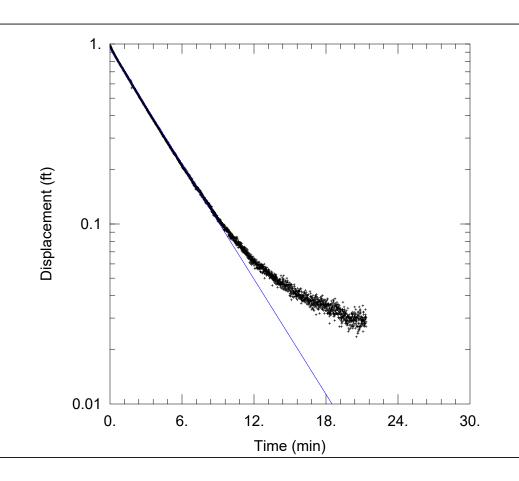
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.632 ft/dayy0 = 0.9425 ft

AQUIFER DATA

Saturated Thickness: 21.1 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-113)

Static Water Column Height: 21.1 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 20.7 ft

JOF-113 RH 3

Data Set: C:\...\JOF-113 RH-3.aqt Time: 11:55:45

Date: 06/16/20

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-113 Test Date: 4/22/2020

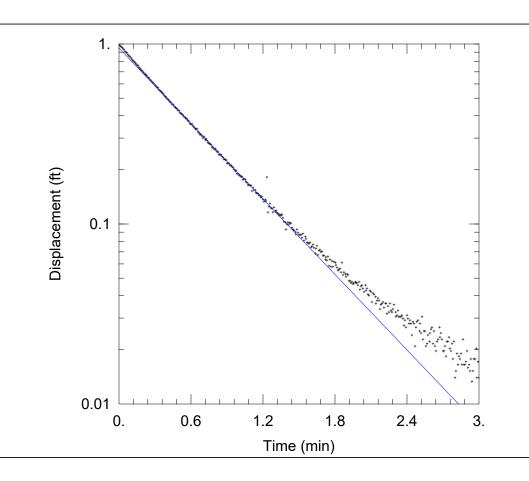
SOLUTION

Aguifer Model: Confined

Solution Method: Bouwer-Rice

K = 1.701 ft/day $y0 = \overline{0.941}3 \text{ ft}$

AQUIFER DATA


Saturated Thickness: 21.1 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-113)

Initial Displacement: 1. ft Total Well Penetration Depth: 20.7 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 21.1 ft

JOF-114 FH 1

Data Set: C:\...\JOF-114_FH-1.aqt

Date: 05/22/20 Time: 15:17:26

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-114</u> Test Date: <u>4/22/2020</u>

SOLUTION

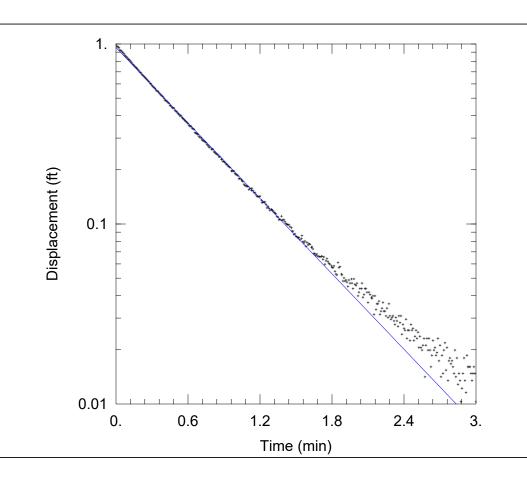
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 10.46 ft/dayy0 = 0.9481 ft

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-114)

Initial Displacement: 1. ft

Total Well Penetration Depth: 14.3 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 19.09 ft

JOF-114 FH 2

Data Set: C:\...\JOF-114_FH-2.aqt

Date: 05/22/20 Time: 16:09:04

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-114</u> Test Date: <u>4/22/2020</u>

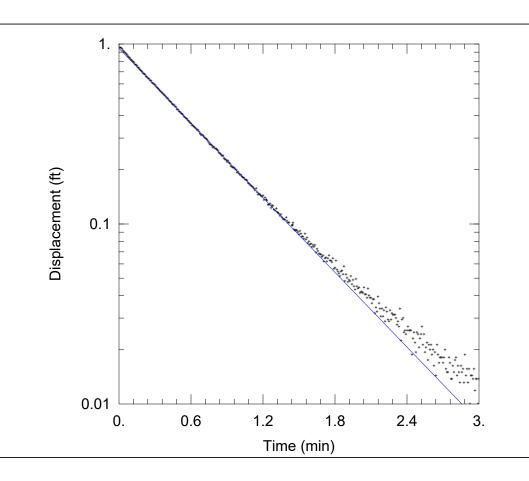
SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 10.45 ft/dayy0 = 0.9551 ft

AQUIFER DATA


Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-114)

Initial Displacement: 1. ft
Total Well Penetration Depth: 14.3 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 19.09 ft

JOF-114 FH 3

Data Set: C:\...\JOF-114_FH-3.aqt

Date: 05/22/20 Time: 16:09:42

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-114</u> Test Date: <u>4/22/2020</u>

SOLUTION

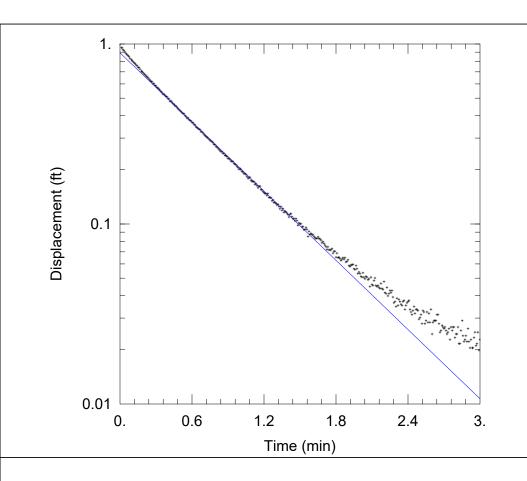
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 10.35 ft/dayy0 = 0.9452 ft

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-114)

Initial Displacement: 1. ft

Total Well Penetration Depth: 14.3 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 19.09 ft

JOF-114 RH 1

Data Set: C:\...\JOF-114_RH-1.aqt

Date: 05/22/20 Time: 16:10:29

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-114</u> Test Date: <u>4/22/2020</u>

SOLUTION

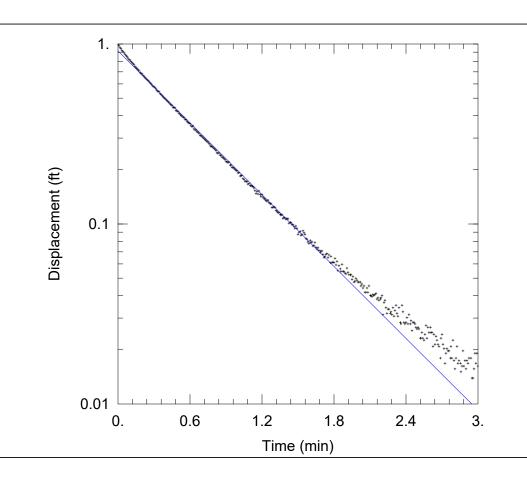
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 9.587 ft/dayy0 = 0.8927 ft

AQUIFER DATA

Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-114)

Initial Displacement: 1. ft

Total Well Penetration Depth: 14.3 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 19.09 ft

JOF-114 RH 2

Data Set: C:\...\JOF-114 RH-2.aqt

Date: 05/22/20 Time: 16:11:13

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-114 Test Date: 4/22/2020

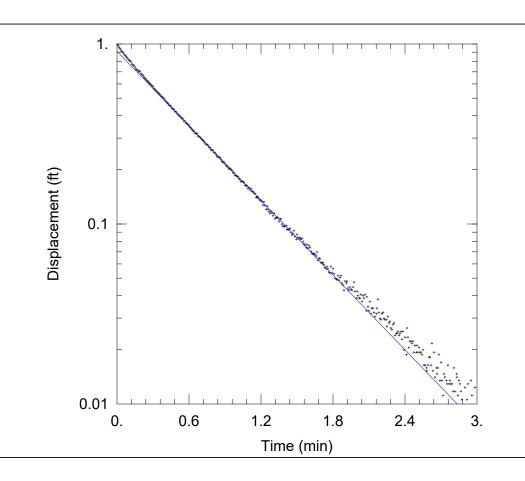
SOLUTION

Aguifer Model: Confined

Solution Method: Bouwer-Rice

K = 9.956 ft/dayy0 = 0.9139 ft

AQUIFER DATA


Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-114)

Static Water Column Height: 19.09 ft Initial Displacement: 1. ft

Total Well Penetration Depth: 14.3 ft Screen Length: 9.8 ft

Well Radius: 0.542 ft Casing Radius: 0.1667 ft

JOF-114 RH 3

Data Set: C:\...\JOF-114 RH-3.aqt Time: 16:11:47

Date: 05/22/20

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-114 Test Date: 4/22/2020

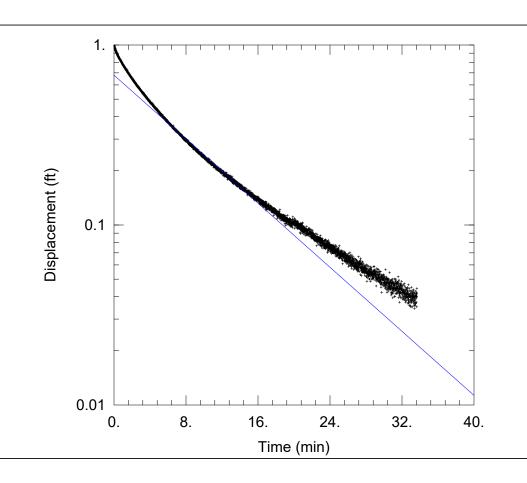
SOLUTION

Aguifer Model: Confined

Solution Method: Bouwer-Rice

K = 10.34 ft/dayy0 = 0.9105 ft

AQUIFER DATA


Saturated Thickness: 14.7 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-114)

Initial Displacement: 1. ft Total Well Penetration Depth: 14.3 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 19.09 ft

JOF-117 FH 1

Data Set: C:\...\JOF-117_FH-1.aqt

Date: 05/22/20 Time: 15:07:04

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-117</u> Test Date: <u>4/22/2020</u>

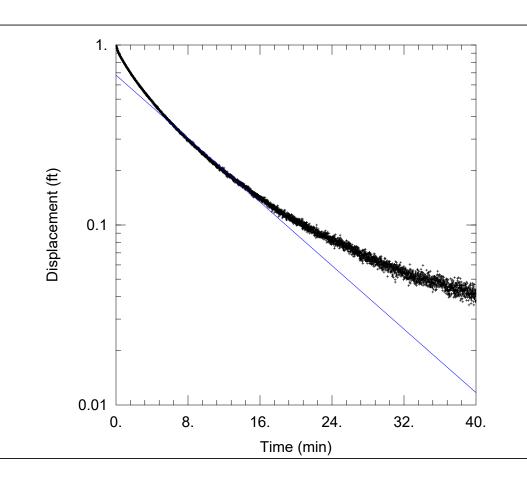
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.7062 ft/dayy0 = 0.6798 ft

AQUIFER DATA

Saturated Thickness: <u>20.6</u> ft Anisotropy Ratio (Kz/Kr): <u>0.1</u>


WELL DATA (JOF-117)

Static Water Column Height: 20.6 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 20.2 ft

JOF-117 FH 2

Data Set: C:\...\JOF-117_FH-2.aqt

Date: 05/22/20 Time: 16:12:54

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

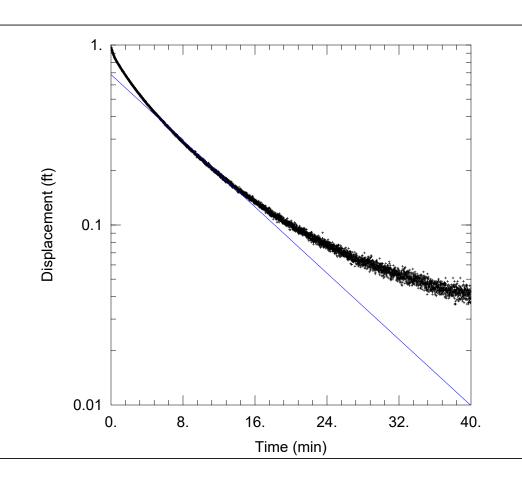
Test Well: <u>JOF-117</u> Test Date: <u>4/23/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.7001 ft/dayy0 = 0.6798 ft

AQUIFER DATA


Saturated Thickness: <u>20.6</u> ft Anisotropy Ratio (Kz/Kr): <u>0.1</u>

WELL DATA (JOF-117)

Initial Displacement: 1. ft Static Water Column Height: 20.6 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Total Well Penetration Depth: 20.2 ft

JOF-117 FH 3

Data Set: C:\...\JOF-117 FH-3.aqt

Date: 05/22/20 Time: 16:13:28

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-117 Test Date: 4/23/2020

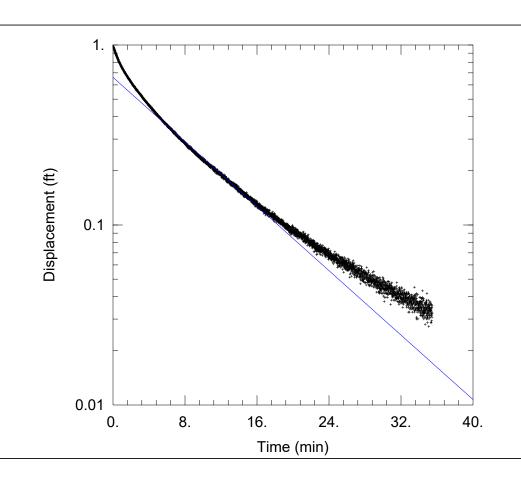
SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.7299 ft/dayy0 = 0.6849 ft

AQUIFER DATA

Saturated Thickness: 20.6 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-117)

Static Water Column Height: 20.6 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 20.2 ft

JOF-117 RH 1

Data Set: C:\...\JOF-117_RH-1.aqt

Date: 05/22/20

PROJECT INFORMATION

Time: 16:14:13

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-117</u> Test Date: <u>4/23/2020</u>

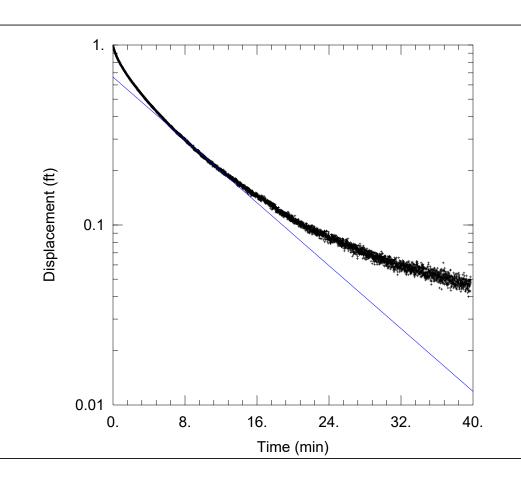
SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.7104 ft/dayy0 = 0.6609 ft

AQUIFER DATA

Saturated Thickness: <u>20.6</u> ft Anisotropy Ratio (Kz/Kr): <u>0.1</u>


WELL DATA (JOF-117)

Static Water Column Height: 20.6 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 20.2 ft

JOF-117 RH 2

Data Set: C:\...\JOF-117_RH-2.aqt

Date: 05/22/20

Time: 16:14:55

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

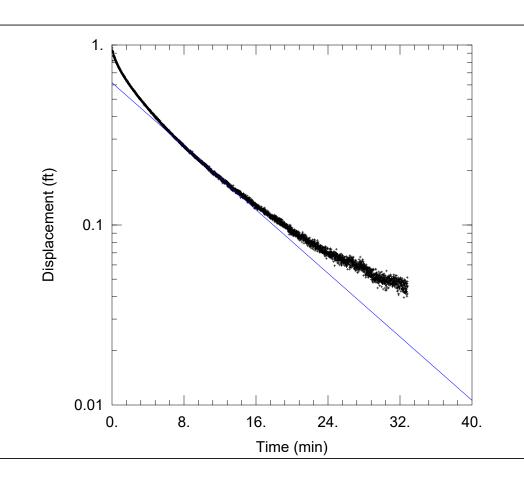
Test Well: <u>JOF-117</u> Test Date: <u>4/23/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.6932 ft/dayy0 = 0.6634 ft

AQUIFER DATA


Saturated Thickness: <u>20.6</u> ft Anisotropy Ratio (Kz/Kr): <u>0.1</u>

WELL DATA (JOF-117)

Initial Displacement: 1. ft
Total Well Penetration Depth: 20.2 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 20.6 ft

JOF-117 RH 3

Data Set: C:\...\JOF-117_RH-3.aqt

Date: 05/22/20

Time: 16:15:45

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

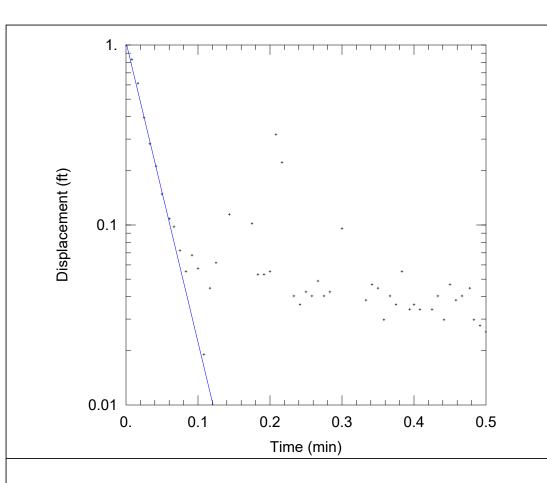
Test Well: <u>JOF-117</u> Test Date: <u>4/23/2020</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>
Solution Method: Bouwer-Rice

K = 0.7003 ft/dayy0 = 0.6169 ft

AQUIFER DATA


Saturated Thickness: 20.6 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-117)

Initial Displacement: <u>1.</u> ft Total Well Penetration Depth: 20.2 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 20.6 ft

JOF-118 FH 1

Data Set: C:\...\JOF-118_FH-1.aqt

Date: 05/22/20 Time: 15:15:52

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-118</u> Test Date: <u>4/21/2020</u>

SOLUTION

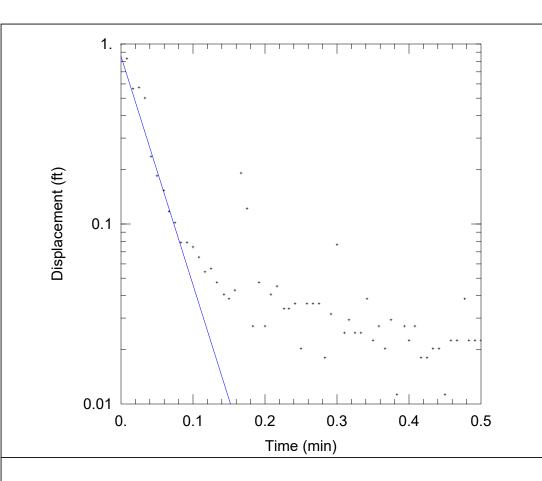
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 235.6 ft/dayy0 = 1.04 ft

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-118)

Initial Displacement: 1. ft

Total Well Penetration Depth: 10.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 42.02 ft

JOF-118 FH 2

Data Set: C:\...\JOF-118_FH-2.aqt

Date: 05/22/20 Time: 16:16:57

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-118</u> Test Date: <u>4/21/2020</u>

SOLUTION

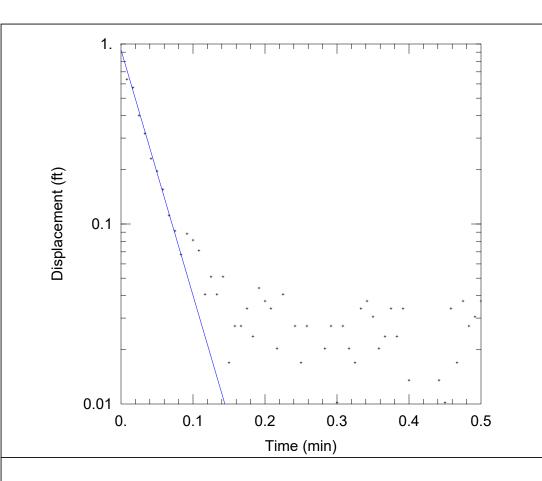
Aquifer Model: Confined

Solution Method: Bouwer-Rice

 $K = \frac{179.5}{0.8549}$ ft/day y0 = 0.8549 ft

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-118)

Initial Displacement: 1. ft

Total Well Penetration Depth: 10.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 42.02 ft

JOF-118 FH 3

Data Set: C:\...\JOF-118_FH-3.aqt

Date: 05/22/20 Time: 16:31:36

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-118</u> Test Date: <u>4/21/2020</u>

SOLUTION

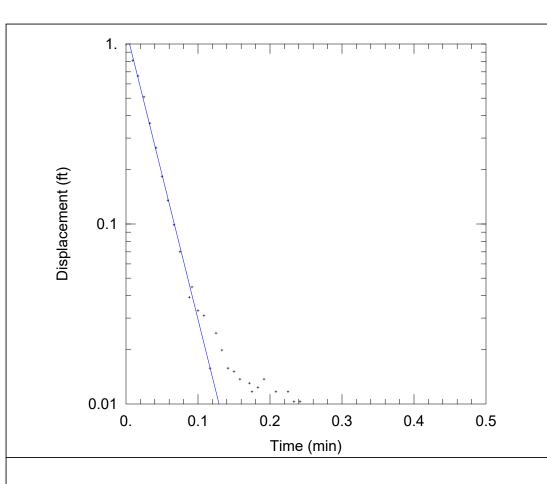
Aquifer Model: Confined

Solution Method: Bouwer-Rice

 $K = \frac{192.7}{0.9276}$ ft/day y0 = 0.9276 ft

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-118)

Initial Displacement: 1. ft

Total Well Penetration Depth: 10.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 42.02 ft

JOF-118 RH 1

Data Set: C:\...\JOF-118_RH-1.aqt

Date: 05/22/20 Time: 16:32:22

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-118</u> Test Date: <u>4/21/2020</u>

SOLUTION

Aquifer Model: Confined

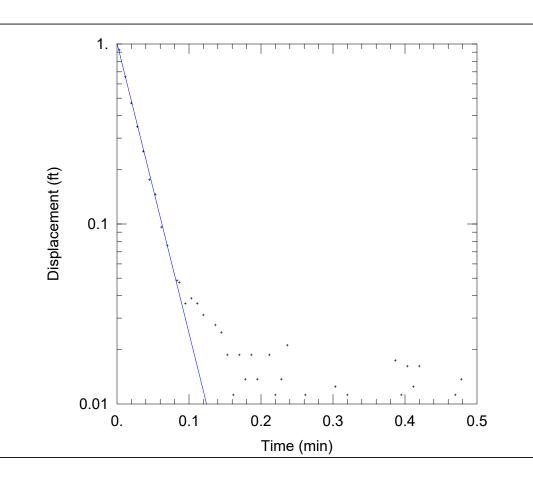
Solution Method: Bouwer-Rice

K = 227.3 ft/day

y0 = 1.2 ft

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-118)

Initial Displacement: 1. ft

Total Well Penetration Depth: 10.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 42.02 ft

JOF-118 RH 2

Data Set: C:\...\JOF-118_RH-2.aqt

Date: 05/22/20 Time: 16:33:11

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-118</u> Test Date: <u>4/21/2020</u>

SOLUTION

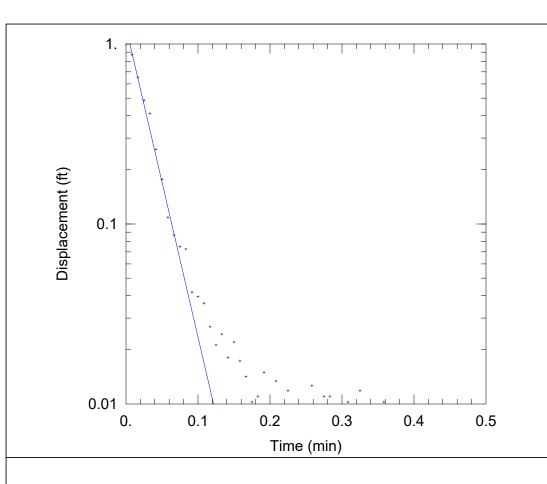
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 227.7 ft/dayy0 = 1.012 ft

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-118)

Initial Displacement: 1. ft

Total Well Penetration Depth: 10.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 42.02 ft

JOF-118 RH 3

Data Set: C:\...\JOF-118_RH-3.aqt

Date: 05/22/20 Time: 16:33:58

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-118</u> Test Date: <u>4/21/2020</u>

SOLUTION

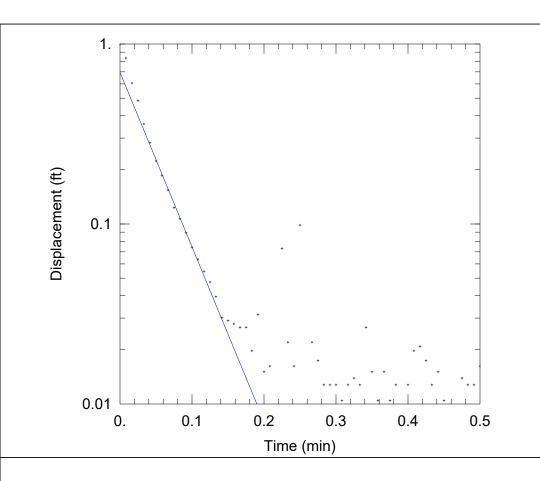
Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 243.3 ft/dayy0 = 1.241 ft

AQUIFER DATA

Saturated Thickness: 10.9 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-118)

Initial Displacement: 1. ft

Total Well Penetration Depth: 10.5 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 42.02 ft

JOF-119 FH 1

Data Set: C:\...\JOF-119_FH-1.aqt

Date: 05/22/20 Time: 15:15:08

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: JOF-119 Test Date: 4/21/2020

SOLUTION

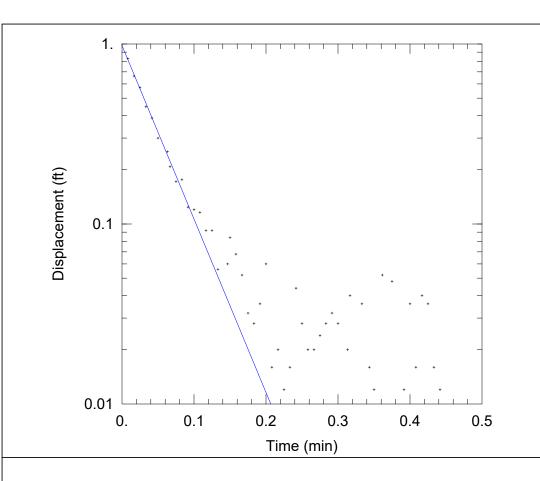
Aguifer Model: Confined

Solution Method: Bouwer-Rice

K = 142.6 ft/dayy0 = 0.6953 ft

AQUIFER DATA

Saturated Thickness: 13.4 ft Anisotropy Ratio (Kz/Kr): 0.1


WELL DATA (JOF-119)

Static Water Column Height: 41.95 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

Initial Displacement: 1. ft

Total Well Penetration Depth: 13. ft

JOF-119 FH 2

Data Set: C:\...\JOF-119_FH-2.aqt

Date: 05/22/20 Time: 15:20:03

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

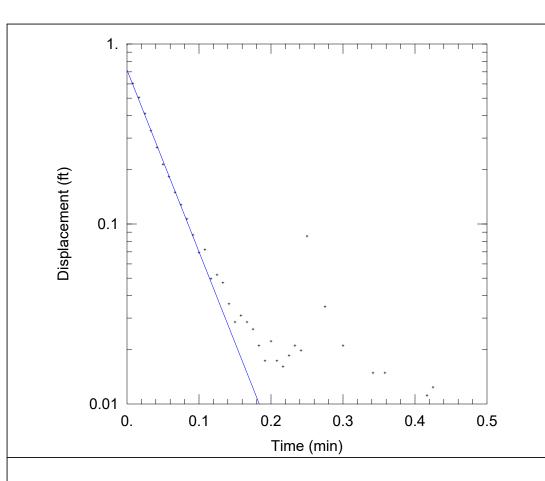
Test Well: <u>JOF-119</u> Test Date: <u>4/21/2020</u>

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 141.8 ft/dayy0 = 0.9804 ft


AQUIFER DATA

Saturated Thickness: 13.4 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-119)

Initial Displacement: 1. ft Static Water Column Height: 41.95 ft

Total Well Penetration Depth: 13. ft Screen Length: 9.8 ft Casing Radius: 0.1667 ft Well Radius: 0.542 ft

JOF-119 FH 3

Data Set: C:\...\JOF-119_FH-3.aqt

Date: 05/22/20 Time: 15:20:55

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-119</u> Test Date: <u>4/21/2020</u>

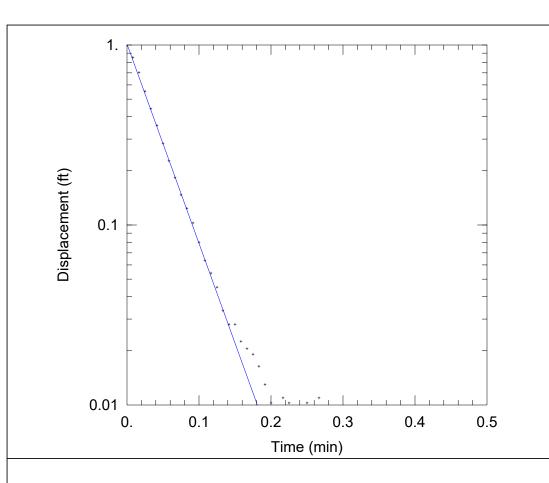
SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 148.6 ft/dayy0 = 0.7171 ft

AQUIFER DATA


Saturated Thickness: 13.4 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-119)

Initial Displacement: 1. ft
Total Well Penetration Depth: 13. ft

Casing Radius: 0.1667 ft

Static Water Column Height: 41.95 ft

JOF-119 RH 1

Data Set: C:\...\JOF-119_RH-1.aqt

Date: 05/22/20 Time: 16:34:56

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-119</u> Test Date: <u>4/21/2020</u>

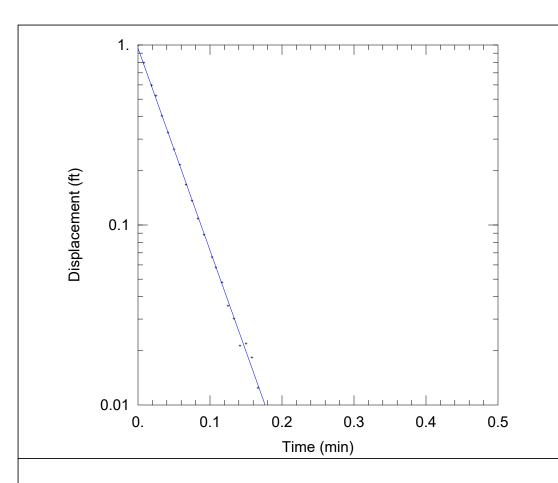
SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

 $K = \frac{163}{1.013}$ ft/day y0 = $\frac{1.013}{1.013}$ ft

AQUIFER DATA


Saturated Thickness: 13.4 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-119)

Initial Displacement: 1. ft
Total Well Penetration Depth: 13. ft

Casing Radius: 0.1667 ft

Static Water Column Height: 41.95 ft

JOF-119 RH 2

Data Set: C:\...\JOF-119_RH-2.aqt

Date: 05/22/20 Time: 15:22:32

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-119</u> Test Date: <u>4/21/2020</u>

SOLUTION

Aquifer Model: Confined

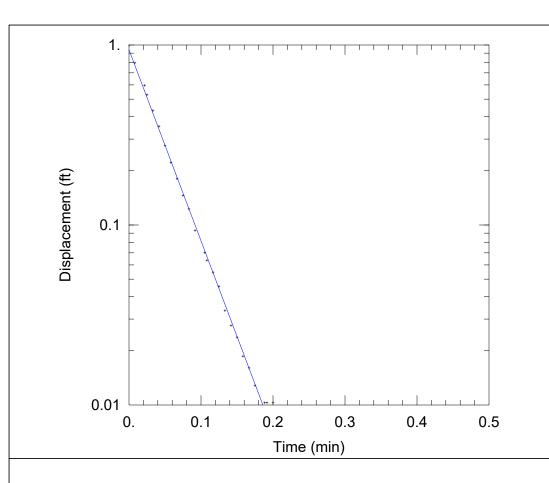
Solution Method: Bouwer-Rice

K = 165.2 ft/dayy0 = 0.9593 ft

AQUIFER DATA

Saturated Thickness: 13.4 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-119)


Initial Displacement: 1. ft

Total Well Penetration Depth: 13. ft

Static Water Column Height: 41.95 ft

Screen Length: 9.8 ft

Screen Length: 9.8 ft Well Radius: 0.542 ft

JOF-119 RH 3

Data Set: C:\...\JOF-119_RH-3.aqt

Date: <u>05/22/20</u> Time: <u>15:21:57</u>

PROJECT INFORMATION

Company: Stantec Client: TVA-JOF Project: 175568286

Location: New Johnsonville, TN

Test Well: <u>JOF-119</u> Test Date: <u>4/21/2020</u>

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 156.1 ft/dayy0 = 0.9401 ft

AQUIFER DATA

Saturated Thickness: 13.4 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (JOF-119)

Initial Displacement: 1. ft

Total Well Penetration Depth: 13. ft

Casing Radius: 0.1667 ft

Static Water Column Height: 41.95 ft

APPENDIX H.3

GROUNDWATER INVESTIGATION EVENT #1 SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Groundwater Investigation Event #1 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

October 29, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	July 30, 2021
1	Addresses August 27, 2021 TDEC Review Comments and Issued for TDEC	September 17, 2021
2	Addresses October 18, 2021 TDEC Review Comments and Issued for TDEC	October 29, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Groundwater Investigation Event #1 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staff

Reviewed by

Carole M. Farr, Senior Principal Geologist

Approved by

Brigid Zvirbulis, Project Manager

Table of Contents

ABBR	EVIATION	IS	
1.0	INTRODU	JCTION	1
2.0	OBJECTI	IVE AND SCOPE	3
3.0	FIELD AC	CTIVITIES	4
3.1		OCATIONS	
3.2	DOCUME	ENTATION	5
	3.2.1	Field Forms	5
	3.2.2		
3.3	SAMPLIN	IG METHODS	7
	3.3.1		
	3.3.2		
3.4	INVESTIC	GATION DERIVED WASTE	9
3.5	SAMPLE	SHIPMENT	9
3.6	VARIATIO	ONS	10
	3.6.1	Variations in Scope	10
	3.6.2	Variations in Procedures	10
4.0	SUMMAR	RY	11
5.0	REFERE	NCES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well and Piezometer Network

Exhibit A.2 – Groundwater Elevation Contour Map, Event #1 (December 2, 2019)

Exhibit A.3 – Pore water Elevation Contour Map, Event #1 (December 2, 2019)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

i

Abbreviations

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CFR Code of Federal Regulations

COC Chain-of-Custody
DO Dissolved Oxygen

EAR Environmental Assessment Report EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.

Event #1 Groundwater investigation field event performed December 2-5, 2019

FSP Field Sampling Personnel

ft Feet

GEL Laboratories LLC

ID Identification

IDWInvestigation Derived WasteJOF PlantJohnsonville Fossil Plantmg/LMilligrams per Liter

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
PPE Personal Protective Equipment
QAPP Quality Assurance Project Plan

QC Quality Control

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TestAmerica Eurofins TestAmerica Inc.
TI Technical Instruction
TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

Introduction October 29, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed December 2-5, 2019 (Event #1) at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #1 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #1 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #1 is the first in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance

Introduction October 29, 2021

oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #1. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the JOF Plant are made and documented in the EAR.

Objective and Scope October 29, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the JOF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of the direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #1, performed in December 2019, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells as specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the JOF Plant Hydrogeologic Investigation SAR.

In addition, pore water measurements from piezometers installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data. Groundwater piezometer installation activities are described in the JOF Plant Hydrogeologic Investigation SAR.

Field Activities October 29, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #1 were conducted December 2-5, 2019. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency (USEPA) documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation, and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During Event #1, Stantec conducted the following field activities:

- Measured groundwater levels at nine monitoring wells and one piezometer installed for the TDEC order, and 19 monitoring wells and nine piezometers installed for other environmental programs (28 total monitoring wells)
- Measured pore water levels at 13 piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River/Kentucky Lake
- Collected groundwater samples from nine monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, four field blanks, one filter blank, one tubing blank, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the JOF Plant (Ash Disposal Area 1, Active Ash Pond 2, DuPont Road Dredge Cell, South Rail Loop Area 4, and Coal Yard) as well as the monitoring wells and piezometers sampled and/or gauged during Event #1 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the JOF Plant for TDEC Solid Waste Management permit requirements and the USEPA CCR Rule codified in Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). Monitoring wells that are being sampled as part of other programs are not sampled as part of the groundwater investigation for the TDEC Order.

Field Activities October 29, 2021

Groundwater levels were measured in TDEC Order monitoring wells and one piezometer, as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the JOF Plant EAR. Pore water levels measured in piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and other environmental programs will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Level Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

Field Activities October 29, 2021

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. No signs of damage or necessary repairs were noted during Event #1.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer identification (ID), serial number, time, digits, and temperature. The readings were used to calculate the pressure head (feet [ft] of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.5 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well ID, time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in ft below top of casing.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the

Field Activities October 29, 2021

corresponding COC. COCs were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lexington-Parsons Regional Airport in Darden, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #1.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 28 monitoring wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement.* On December 2, 2019, static groundwater level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination.* Depth to groundwater measurements were recorded on a *Groundwater Level Measurement Form.* A groundwater level measurement was not obtained at monitoring well JOF-105 because the well was inaccessible due to construction activities during Event #1.

Stantec calculated the static groundwater level at vibrating wire piezometer JOF-116-PZ. FSP recorded the measured readings and temperature using a vibrating wire readout instrument on a *Vibrating Wire Piezometer Measurement Form*. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain groundwater elevation.

Groundwater and pore water measurements were also obtained from transducers installed within nine and 13 piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River/Kentucky Lake was provided by TVA using the reading closest to noon recorded by an automated staff gauge. The surface water staff gauge location is shown on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements made in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a

Field Activities October 29, 2021

pore water elevation contour map based on pore water measurements in piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples were collected from nine monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP and/or applicable TI. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to the values below to meet overall programmatic objectives for groundwater investigations at the JOF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Due to final turbidity readings higher than 5 NTUs at wells JOF-109 and JOF-110, an additional sample was collected at each of these wells and submitted to the laboratory for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line with the exception of the dissolved metals samples, which were collected via a new 0.45-micron disposable inline filter attached to the end of the discharge line to field filter the sample. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, Sample Labeling and Custody. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the

Field Activities October 29, 2021

bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control*.

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 CFR 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with JOF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the JOF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the JOF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and secured under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

Field Activities October 29, 2021

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As dicussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #1 at the JOF Plant.

3.6.1 Variations in Scope

Variations in scope are provided below.

- Groundwater level gauging and sampling was not performed at well JOF-108 as specified in the SAP because it was not installed (the five borings drilled in that area encountered CCR and/or shallow refusal). This change in scope was approved by TDEC.
- Groundwater level gauging was not performed at monitoring well JOF-105 during this event as specified in the SAP because the well was inaccessible due to active construction and excavation. A groundwater elevation contour map was prepared based on available static groundwater level measurements from this event. Water level measurements were taken in well JOF-105 during Events #2-6 for evaluation in the EAR.

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

- The calibration verification of pH 4 was not within the afternoon acceptance criteria on December 5, 2019. This calibration variation was evaluated as part of the data validation/verification process performed by EnvStds.
- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations.

Summary October 29, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #1 at the JOF Plant. The scope of work for Event #1 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data.

Event #1 included collecting groundwater level measurements at 28 monitoring wells and 10 piezometers; pore water measurements at 13 piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River/Kentucky Lake. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1b, and depicted on Exhibits A.2 and A.3.

Water quality measurements and groundwater analytical samples were collected at nine monitoring wells as summarized in Table B.2. Water quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the nine sampling locations. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated or verified by EnvStds.

Stantec has completed Event #1 of the groundwater investigation at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #1 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this event will be evaluated along with data collected during the remaining groundwater sampling events and under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References October 29, 2021

5.0 REFERENCES

Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.

Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Stantec. 2018b. *Environmental Investigation Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

TVA, ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.

TVA, ENV-TI-05.80.42, Groundwater Sampling.

TVA, ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA, ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

A.1

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-05-24 Technical Review by MD on 2021-05-24 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34) Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

A.2

Groundwater Elevation Contour Map, Event #1 (December 2, 2019)

Client/Project

Tennessee Valley Authority

Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 New Johnsonville, Tennessee Prepared by DMB on 2021-10-27 Technical Review by MD on 2021-10-27

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- groundwater elevation in feet above mean sea level (ft amsl) Other Monitoring Well
- groundwater elevation in ft amsl
- Piezometer, groundwater label in blue text,
- pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2) elevation in ft amsl
- Piezometer in CCR
 - pore water elevation in ft amsl; value not used for contouring
- Temporary well in CCR pore water elevation in ft amsl; value not used for contouring
- Planned Temporary Well Location
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl
- Interpolated Groundwater Contour (5 ft interval; elevations are in ft amsl)

Groundwater Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

*Groundwater and pore water elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery 3. Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment

4. Temporary well installation was not completed prior to this event.

Pore water Elevation Contour Map, Event #1 (December 2, 2019)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-11-01 Technical Review by MD on 2021-11-01 New Johnsonville, Tennessee

> 1,350 1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- groundwater elevation in feet above mean sea level (ft amsl); value not used for contouring
- Other Monitoring Well groundwater elevation in ft amsl; value not used for contouring
- Piezometer, groundwater label in blue text, (e.g., JOF-E-2A-PZ2) pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ5)
- Piezometer in CCR
- pore water elevation in ft amsl
- Temporary well in CCR pore water elevation in ft amsl

elevation in ft amsl

- Planned Temporary Well Location
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl

Pore water Contour (5 ft interval; elevations are in ft amsl)

Interpolated Pore water Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)


Coal Yard (Approximate)

NM: Not measured; data not available

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
 Pore water contours were created using manual adjustment and
- Surfer Version 16.1.350 (December 13, 2018)
- 4. Temporary well installation was not completed prior to this event. Gauging of temporary wells was not performed until Event #4.

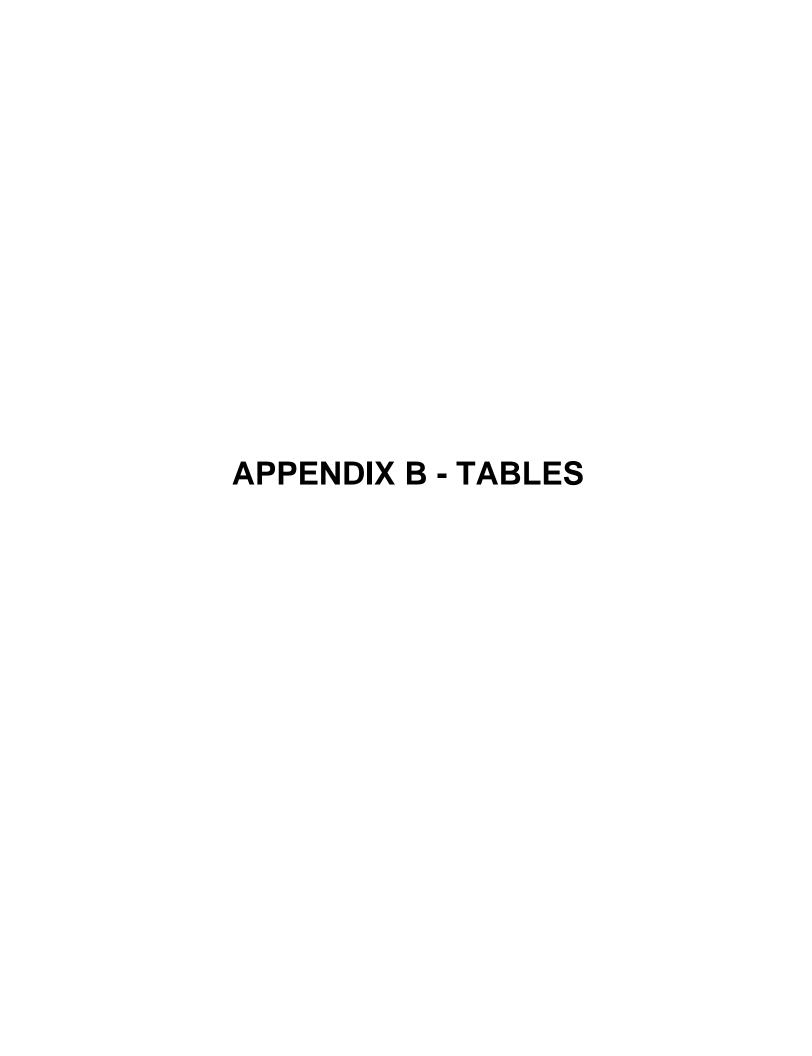


TABLE B.1a – Groundwater Level Measurements Johnsonville Fossil Plant December 2019

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells	T	T T		1			1 .			T
JOF-00-GW-43-001	10-AP1	2-Dec-19	14.40	370.51	356.11	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
IOF-00-GW-43-002	10-AP3	2-Dec-19	11.18	367.27	356.09	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	2-Dec-19	24.61	401.19	376.58	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
IOF-00-GW-43-004	94-B16	2-Dec-19	11.83	390.53	378.70	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
OF-00-GW-43-005	99-B19	2-Dec-19	15.46	394.50	379.04	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
OF-00-GW-43-006	99-B20A	2-Dec-19	29.80	408.88	379.08	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
OF-00-GW-43-007	B-6R	2-Dec-19	17.46	395.57	378.11	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
OF-00-GW-43-008	B-8R	2-Dec-19	10.75	391.04	380.29	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
OF-00-GW-43-009	B-9	2-Dec-19	26.47	423.88	397.41	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
OF-00-GW-43-010	B-11	2-Dec-19	20.48	400.67	380.19	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
OF-00-GW-43-011	B-12	2-Dec-19	12.71	393.03	380.32	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
OF-00-GW-43-012	B-13	2-Dec-19	29.61	409.87	380.26	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
OF-00-GW-43-013	JOF-101	2-Dec-19	25.82	424.59	398.77	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
OF-00-GW-43-014	JOF-102	2-Dec-19	19.82	407.64	387.82	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
OF-00-GW-43-015	JOF-103	2-Dec-19	17.82	374.24	356.42	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
OF-00-GW-43-016	JOF-104	2-Dec-19	23.16	379.44	356.28	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
OF-00-GW-43-017	JOF-105	n/a	NM	406.15	NM	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
OF-00-GW-43-018	A-3	2-Dec-19	23.51	403.73	380.22	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
OF-00-GW-43-019	JOF-106	2-Dec-19	22.71	403.16	380.45	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
OF-00-GW-43-020	JOF-107	2-Dec-19	28.81	409.95	381.14	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
OF-00-GW-43-021	JOF-109	2-Dec-19	5.45	386.11	380.66	n/a	n/a	n/a	34.1 - 43.9	Alluvium
OF-00-GW-43-022	JOF-110	2-Dec-19	18.30	388.76	370.46	n/a	n/a	n/a	52.3 - 62.1	Alluvium
OF-00-GW-43-023	JOF-111	2-Dec-19 2-Dec-19	19.49	390.08	370.40	n/a	n/a	n/a	41.3 - 51.1	Clay
OF-00-GW-43-024	JOF-111	2-Dec-19 2-Dec-19				n/a		n/a	24.9 - 34.7	Alluvium
			16.29	394.48	378.19		n/a	-		
OF-00-GW-43-025	JOF-113	2-Dec-19	29.08	388.13	359.05	n/a	n/a	n/a	39.6 - 49.4	Alluvium
OF-00-GW-43-026	JOF-114	2-Dec-19	26.69	388.36	361.67	n/a	n/a	n/a	34.7 - 44.5	Alluvium
OF-00-GW-43-027	JOF-117	2-Dec-19	28.73	388.63	359.90	n/a	n/a	n/a	35.0 - 44.8	Alluvium
OF-00-GW-43-028	JOF-118	2-Dec-19	16.45	372.69	356.24	n/a	n/a	n/a	43.9 - 53.7	Alluvium
OF-00-GW-43-029	JOF-119	2-Dec-19	10.62	366.89	356.27	n/a	n/a	n/a	38.0 - 47.8	Alluvium
Piezometers	105 D 04 D70	0.010	1-		055.0	200.7	200.7	70.0	1-	Albertal Count and Count
ı/a	JOF-B-2A-PZ3	2-Dec-19	n/a	n/a	355.8	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
ı/a	JOF-C-2A-PZ3	2-Dec-19	n/a	n/a	357.3	392.8	326.8	66.0	n/a	Alluvial Sand and Gravel
ı/a	JOF-C-2B-PZ2	2-Dec-19	n/a	n/a	355.7	370.6	321.6	49.0	n/a	Alluvial Sand and Gravel
/a	JOF-E-2A-PZ2	2-Dec-19	n/a	n/a	355.9	390.9	327.9	63.0	n/a	Alluvial Sand and Gravel
/a	JOF-E-2B-PZ2	2-Dec-19	n/a	n/a	355.2	365.4	310.4	55.0	n/a	Alluvial Sand and Gravel
/a	JOF-K-2A-PZ1	2-Dec-19	n/a	n/a	357.9	377.5	327.5	50.0	n/a	Alluvial Sand and Gravel
/a	JOF_PZET	2-Dec-19	n/a	n/a	352.0	363.8	329.8	34.0	n/a	Alluvial Clay and Silt and Alluvial Sand and Grav
/a	JOF_PZFT	2-Dec-19	n/a	n/a	352.7	362.9	327.6	35.3	n/a	Alluvial Clay and Silt and Alluvial Sand and Grav
/a	JOF_PZHT	2-Dec-19	n/a	n/a	355.7	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
/a	JOF-116-PZ	2-Dec-19	n/a	n/a	376.3	388.0	342.0	46.0	n/a	Alluvium

See notes on last page.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater ft btoc	Top of Casing Elevation ft msl	Groundwater Elevation ft msl	Piezometer Ground Surface Elevation ft msl	Piezometer Sensor Elevation ft msl	Piezometer Sensor Depth ft bgs	Screened Interval ft btoc	Screened / Piezometer Sensor Formation
Surface Water Gauge										•
Tennessee River/Kentucky Lake gauge (GS-1)	n/a	2-Dec-19	n/a	n/a	356.36	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msl mean sea level
n/a not applicable
NM not measured
UNID Unique Numerical Identification

- 1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.
- 2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.
- 3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information was obtained from boring logs. Data from automated piezometers are averaged for the measurement date.
- 4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.
- 5. A groundwater level was not measured in well JOF-105 because the well was inaccessible.

Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	-
Temporary Wells									
JOF-TW01	n/a	NM	396.33	NM	n/a	n/a	n/a	24.8 - 34.6	CCR
JOF-TW02	n/a	NM	397.38	NM	n/a	n/a	n/a	25.5 - 35.3	CCR
JOF-TW03	n/a	NM	409.49	NM	n/a	n/a	n/a	40.4 - 50.2	CCR
JOF-TW04	n/a	NM	394.25	NM	n/a	n/a	n/a	25.9 - 35.7	CCR
JOF-TW05	n/a	NM	393.44	NM	n/a	n/a	n/a	36.2 - 46.0	CCR
JOF-TW06	n/a	NM	395.13	NM	n/a	n/a	n/a	26.5 - 36.3	CCR
JOF-TW07	n/a	NM	402.92	NM	n/a	n/a	n/a	32.2 - 42.0	CCR
JOF-TW08	n/a	NM	387.22	NM	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW09	n/a	NM	387.52	NM	n/a	n/a	n/a	15.8 - 25.6	CCR
JOF-TW10	n/a	NM	384.92	NM	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW11	n/a	NM	440.13	NM	n/a	n/a	n/a	31.6 - 41.4	CCR
JOF-TW12	n/a	NM	444.17	NM	n/a	n/a	n/a	36.1 - 45.9	CCR
JOF-TW13	n/a	NM	441.39	NM	n/a	n/a	n/a	33.3 - 43.1	CCR
JOF-TW15	n/a	NM	451.71	NM	n/a	n/a	n/a	55.0 - 64.8	CCR
JOF-TW16	n/a	NM	473.81	NM	n/a	n/a	n/a	72.9 - 82.7	CCR
Piezometers									
JOF-E-2A-PZ5	2-Dec-19	n/a	n/a	382.8	390.9	370.9	20.0	n/a	CCR
JOF_PZEC	2-Dec-19	n/a	n/a	382.1	390.4	365.4	25.0	n/a	CCR and Dike Fill
JOF_PZFC	2-Dec-19	n/a	n/a	382.3	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZGC	2-Dec-19	n/a	n/a	376.9	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZHC	2-Dec-19	n/a	n/a	380.6	390.0	365.8	24.2	n/a	CCR
JOF_PZIC	2-Dec-19	n/a	n/a	382.5	390.1	360.1	30.0	n/a	CCR and Dike Fill
JOF_PZJC	2-Dec-19	n/a	n/a	384.0	390.0	365.0	25.0	n/a	CCR
JOF_PZKC	2-Dec-19	n/a	n/a	382.5	390.5	365.5	25.0	n/a	CCR
JOF_PZLC	2-Dec-19	n/a	n/a	380.4	390.5	365.5	25.0	n/a	CCR
JOF_PZMC	2-Dec-19	n/a	n/a	377.6	391.1	366.1	25.0	n/a	CCR and Dike Fill
P-8	2-Dec-19	n/a	n/a	400.3	432.8	394.5	38.3	n/a	CCR
P-9	2-Dec-19	n/a	n/a	395.8	432.9	393.8	39.2	n/a	CCR and Clayey Fill
P-10	2-Dec-19	n/a	n/a	400.5	430.7	391.0	39.8	n/a	CCR

Notes:

bgs below ground surface
btoc below top of casing
CCR coal combustion residuals
ft feet
ID identification
msl mean sea level
n/a not applicable
NM not measured

^{1.} Top of casing elevations, screen intervals, and screened formations were obtained from boring logs, well detail and well survey data.

^{2.} For piezometers, ground surface elevation, pore water elevations, and piezometer data obtained from the geotechnical instrumentation database. Data from automated piezometers are averaged for the measurement date.

^{3.} Pore water elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

^{4.} Temporary wells were not gauged during this event. Gauging and sampling of temporary wells did not commence until all temporary wells associated with the Exploratory Drilling scope were installed and developed.

Analysis	Type
----------	------

Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Dissolved Metals	Total Mercury	Dissolved Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
JOF-109	JOF-GW-021-20191203	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
JOF-110	JOF-GW-022-20191204	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
JOF-111	JOF-GW-023-20191204	Normal Environmental Sample	Х	Х		X		Х	Х	X	Х	Х	X
JOF-112	JOF-GW-024-20191202	Normal Environmental Sample	X	X		X		Х	Х	X	Х	Х	X
JOF-113	JOF-GW-025-20191204	Normal Environmental Sample	X	X		X		Х	Х	X	Х	Х	X
JOF-114	JOF-GW-026-20191204	Normal Environmental Sample	Х	Х		X		Х	Х	X	Х	Х	X
JOF-117	JOF-GW-027-20191205	Normal Environmental Sample	Х	Х		Х		Х	Х	X	Х	Х	X
JOF-118	JOF-GW-028-20191203	Normal Environmental Sample	Х	Х		Х		Х	Х	X	Х	Х	X
JOF-119	JOF-GW-029-20191203	Normal Environmental Sample	Х	Х		Х		Х	Х	X	Х	Х	X
JOF-119	JOF-GW-DUP01-20191203	Field Duplicate Sample		Х		Х		Х	Х	X	Х	Х	X

Notes:

Total and Dissolved Metals SW-846 6020A

Total and Dissolved Mercury SW-846 7470A

Anions EPA 300.0/SW 9056

Alkalinity SM2320B
Total Dissolved Solids SM2540C
Radium-226 EPA 903.0
Radium-228 EPA 904.0
Radium-226+228 CALC
ID identification

Page 1 of 1

^{1.} Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

TABLE B.3 – Summary of Groundwater Quality Parameters Johnsonville Fossil Plant December 2019

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	JOF-109 3-Dec-19 JOF-GW-021-20191203 39 ft Normal Environmental Sample Final QC Review	JOF-110 4-Dec-19 JOF-GW-022-20191204 57 ft Normal Environmental Sample Final QC Review	JOF-111 4-Dec-19 JOF-GW-023-20191204 46 ft Normal Environmental Sample Final QC Review	JOF-112 2-Dec-19 JOF-GW-024-20191202 29.5 ft Normal Environmental Sample Final QC Review	JOF-113 4-Dec-19 JOF-GW-025-20191204 43.5 ft Normal Environmental Sample Final QC Review	JOF-114 4-Dec-19 JOF-GW-026-20191204 39.5 ft Normal Environmental Sample Final QC Review	JOF-117 5-Dec-19 JOF-GW-027-20191205 40.5 ft Normal Environmental Sample Final QC Review	JOF-118 3-Dec-19 JOF-GW-028-20191203 48.5 ft Normal Environmental Sample Final QC Review	JOF-119 3-Dec-19 JOF-GW-029-20191203 42.5 ft Normal Environmental Sample Final QC Review
Field Parameters										<u> </u>
Dissolved Oxygen	%	24.6	4.5	1.8	3.2	4.8	2.7	3.0	2.5	2.8
Dissolved Oxygen ORP	mg/L mV	2.45 162.4	0.44 24 7	0.18 -62 7	0.31 48.1	0.48 81.2	0.27 119.3	0.30	0.23	0.28
Dissolved Oxygen ORP pH (field) Specific Cond. (Field)	mg/L mV SU uS/cm	2.45 162.4 5.67 189.3	0.44 24.7 5.85 337.9	0.18 -62.7 6.40 3,027	0.31 48.1 6.27 436.6	0.48 81.2 6.02 2.400	0.27 119.3 4.98 3,697		-	

Notes:

% Cond. DEG C percent conductance degrees Celsius feet below top of casing identification ft
ID
mg/L
mV
NTU
ORP
SU
uS/cm milligrams per Liter milliVolts

Nephelometric Turbidity Unit
Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

Standard Units

microSiemens per centimeter

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant December 2019

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-109 3-Dec-19 JOF-GW-021-20191203 39 ft Normal Environmental Sample Validated	JOF-110 4-Dec-19 JOF-GW-022-20191204 57 ft Normal Environmental Sample Final-Verified	JOF-111 4-Dec-19 JOF-GW-023-20191204 46 ft Normal Environmental Sample Final-Verified	JOF-112 2-Dec-19 JOF-GW-024-20191202 29.5 ft Normal Environmental Sample Validated	JOF-113 4-Dec-19 JOF-GW-025-20191204 43.5 ft Normal Environmental Sample Final-Verified	JOF-114 4-Dec-19 JOF-GW-026-20191204 39.5 ft Normal Environmental Sample Final-Verified	JOF-117 5-Dec-19 JOF-GW-027-20191205 40.5 ft Normal Environmental Sample Final-Verified
Total Metals										
Antimony	ug/L	6 ^A	n/v	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Arsenic Barium	ug/L	10 ^A	n/v n/v	0.328 J	3.75	6.61 49.0	0.579 J	1.62 29.4	1.11	28.5^A 95.4
Beryllium	ug/L ug/L	2,000 ^A	n/v	17.1 0.331 J	76.0 <0.182	49.0 <0.182	58.8 0.223 U*	29.4 <0.182	24.0 0.619 J	95.4 <0.182
Boron	ug/L	n/v	n/v	84.5	1,290	4,450	56.6 J	15,500	10,700	<386
Cadmium	ug/L	5 ^A	n/v	0.316 J	<0.125	0.179 J	0.357 J	0.535 J	0.335 J	<0.125
Calcium	ug/L	n/v	n/v	18,400	19,300	426,000	31,600	538,000	469,000	89,500
Chromium	ug/L	100 ^A	n/v	1.63 J	2.98	2.84	2.15	2.15	2.84	3.10 U*
Cobalt	ug/L	n/v	6 ^B	2.56	5.47	98.8 ^B	112 ^B	7.83 ^B	76.9 ^B	25.7 ^B
Copper	ug/L	n/v	n/v	1.09 J	<0.627	0.787 J	0.637 J	0.655 J	1.79 J	0.697 J
Lead	ug/L	n/v	15 ^B	0.172 J	0.284 J	<0.128	<0.128	<0.128	<0.128 101^B	<0.128
Lithium Magnesium	ug/L	n/v n/v	40 ^B n/v	<3.39 4,250	12.9 U* 4,860	40.4^B 30,000	3.80 J 13,100	156^B 6,860	101 ⁵ 48,500	12.9 U* 30,400
Mercury	ug/L ug/L	11/V 2 ^A	n/v	4,250 <0.101	4,860 <0.101	30,000 <0.101	<0.101	6,860 <0.101	48,500 <0.101	30,400 <0.101
Molybdenum	ug/L	n/v	100 ^B	<0.610	<0.610	48.5	0.746 J	204 ^B	<0.610	26.8
Nickel	ug/L	100 _(TN MCL) ^A	n/v	36.2	8.85	26.8	10.3	123 ^A	24.0	10.1
Potassium	ug/L	n/v	n/v	1,110	350 J	46,000	861	59,200	95,900	2,760
Selenium	ug/L	50 ^A	n/v	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) A	n/v	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	n/v	n/v	7,360	39,500	177,000	25,600	62,700	328,000	35,900
Thallium	ug/L	2 ^A	n/v	0.170 J	<0.148	0.163 J	0.493 U*	0.758 J	0.636 J	<0.148
Vanadium Zinc	ug/L	n/v	n/v n/v	1.30 51.5	2.42 13.2 U*	1.36 49.1	1.31 17.2 U*	1.22 173	1.46 70.6	1.18 4.62 U*
Dissolved Metals	ug/L	n/v	TI/V	51.5	13.2 0	49.1	17.20	173	70.6	4.62 0
Antimony	ug/l	6 ^A	n/v	<0.378	<0.378		I			
Arsenic	ug/L ug/L	10 ^A	n/v	<0.376	3.57]	-]	
Barium	ug/L	2,000 ^A	n/v	17.1	76.3	- -		- -	-	- -
Beryllium	ug/L	4 ^A	n/v	0.255 J	<0.182	-	-	-	-	-
Boron	ug/L	n/v	n/v	78.7 J	1,340	-	-	-	-	-
Cadmium	ug/L	5 ^A	n/v	0.316 J	<0.125	-	-	-	-	-
Calcium	ug/L	n/v	n/v	18,800	19,500	-	-	-	-	-
Chromium Cobalt	ug/L ug/L	100 ^A n/v	n/v 6 ^B	1.59 J 2.48	2.57 5.48	-	-	-	-	-
Copper	ug/L ug/L	n/v	n/v	2.46 1.37 J	<0.627	_				_
Lead	ug/L	n/v	15 ^B	<0.128	0.145 J	-	_	-	_	_
Lithium	ug/L	n/v	40 ^B	4.04 J	13.3 U*	-	_	-	-	<u>-</u>
Magnesium	ug/L	n/v	n/v	4,260	4,950	-	-	-	-	-
Mercury	ug/L	2 ^A	n/v_	<0.101	<0.101	-	-	-	-	-
Molybdenum	ug/L	n/v	100 ^B	<0.610	<0.610	-	-	-	-	-
Nickel	ug/L	100 _(TN MCL) A	n/v	37.2	8.83	-	-	-	-	-
Potassium Selenium	ug/L ug/L	n/v 50 ^A	n/v n/v	1,140 <1.51	298 J <1.51			<u>-</u>		
Silver	ug/L ug/L	100 _(TN MCL) ^A	n/v	<0.177	<0.177]]]	
Sodium	ug/L	n/v	n/v	7,460	40,100	- -	-	- -	-	- -
Thallium	ug/L	2 ^A	n/v	0.160 J	<0.148	-	-	-	-	-
Vanadium	ug/L	n/v	n/v	1.48	1.99	-	-	-	-	-
Zinc	ug/L	n/v	n/v	54.3	11.0	-	-	-	-	-
Anions							1			
Chloride	mg/L	n/v	n/v	38.6	52.4	456	47.3	38.8	258	82.3
Fluoride	mg/L	4 ^A	n/v	0.0408 J 5.17	0.376 27.5	0.150 J 930	0.379 61.0	0.164 1,390	<0.0658 1,800	0.793 6.80
Sulfate General Chemistry	mg/L	n/v	n/v	5.17	21.5	930	01.0	1,390	1,800	08.0
	me/I	n/.	p.h.	27.0	E0 E	04.0	100	22.0		200
Alkalinity, Bicarbonate Alkalinity, Carbonate	mg/L mg/L	n/v n/v	n/v n/v	27.2 <5.00	52.5 <5.00	81.9 <5.00	106 <5.00	22.9 <5.00	<5.00 <5.00	322 <5.00
Alkalinity, Carbonate Alkalinity, Total as CaCO3	mg/L	n/v	n/v	27.2	52.5	81.9	106	22.9	<5.00 <5.00	322
Total Dissolved Solids	mg/L	n/v	n/v	112	242	2,160	268	2,330	3,240	470

See notes on last page.

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant December 2019

							-
Sample Location				JOF-118	JOF-1	19	
Sample Date				3-Dec-19	3-Dec-19	3-Dec-19	
Sample ID				JOF-GW-028-20191203	JOF-GW-029-20191203	JOF-GW-DUP01-20191203	š
Sample Depth				48.5 ft	42.5 ft	42.5 ft	
Sample Type				Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	
Level of Review				Validated	Validated	Validated	
Total Metals	Units	EPA MCLs	CCR Rule GWPS				_
	/!	cA.	m/s.	40.270	z0 270	<0.270	_
Antimony Arsenic	ug/L ug/L	6 ^A 10 ^A	n/v n/v	<0.378 1.30	<0.378 1.36	<0.378 1.29	
Barium	ug/L	2,000 ^A	n/v	22.3	38.9	38.9	
Beryllium	ug/L ug/L	2,000 4 ^A	n/v	<0.182	<0.182	<0.182	
Boron	ug/L	n/v	n/v	57.3 J	<38.6	<38.6	
Cadmium	ug/L	5 ^A	n/v	<0.125	<0.125	<0.125	
Calcium	ug/L	n/v	n/v	31,200	22,200	21,700	
Chromium	ug/L	100 ^A	n/v	1.58 J	<1.53	2.12	
Cobalt	ug/L	n/v	6 ^B	2.41	2.22	2.49	
Copper		n/v	n/v	<0.627	<0.627	<0.627	
Lead	ug/L	n/v	15 ^B	<0.027	<0.027 <0.128	<0.027	
	ug/L		40 ^B	<3.39	<3.39	<3.39	
Lithium	ug/L	n/v	-				
Magnesium	ug/L	n/v	n/v	5,730	4,240	4,170	
Mercury	ug/L	2 ^A	n/v	<0.101	<0.101	<0.101	
Molybdenum	ug/L	n/v	100 ^B	<0.610	<0.610	<0.610	
Nickel	ug/L	100 _(TN MCL) A	n/v	8.56	2.47	2.60	
Potassium	ug/L	n/v	n/v	932	1,480	1,480	
Selenium	ug/L	50 ^A	n/v	<1.51	<1.51	<1.51	
Silver	ug/L	100 _(TN MCL) A	n/v	<0.177	<0.177	<0.177	
Sodium	ug/L	n/v	n/v	26,800	52,100	52,800	
Thallium	ug/L	2 ^A	n/v	<0.148	<0.148	<0.148	
Vanadium	ug/L	n/v	n/v	1.33	0.999 J	1.65	
Zinc Discolved Metals	ug/L	n/v	n/v	5.51 U*	5.09 U*	3.79 U*	_
Dissolved Metals	ua/I	CA.	p.h.	<u> </u>			_
Antimony Arsenic	ug/L	6 ^A 10 ^A	n/v n/v	-	-	- -	
Arsenic Barium	ug/L		n/v n/v			-	
	ug/L	2,000 ^A			<u>.</u>	-	
Beryllium	ug/L	4 ^A n/v	n/v	-	-	-	
Boron Cadmium	ug/L	n/v 5 ^A	n/v n/v		<u>.</u>	-	N
Calcium	ug/L	5′` n/v	n/v n/v		<u>.</u>	-	IN
	ug/L	n/v 100 ^A		-	-	-	
Chromium	ug/L	100°° n/v	n/v 6 ^B	-	-	-	Α
Copper	ug/L	n/v	n/v			-	В
Copper	ug/L	n/v n/v	15 ^B	-	-	-	_
Lead	ug/L			-	-	-	n
Lithium	ug/L	n/v	40 ^B	-	-	-	
Magnesium	ug/L	n/v	n/v	-	-	-	<
Mercury	ug/L	2 ^A	n/v	-	-	-	-
Molybdenum	ug/L	n/v	100 ^B	-	-	-	f
Nickel	ug/L	100 _(TN MCL) A	n/v	-	-	-	ID
Potassium	ug/L	n/v	n/v	-	-	-	J
Selenium	ug/L	50 ^A	n/v	-	-	-	mg
Silver	ug/L	100 _(TN MCL) ^A	n/v	-	-	-	U*
Sodium Thallium	ug/L	n/v	n/v	-	-	-	ug/
	ug/L	2 ^A	n/v	-	-	-	1.
Vanadium Zinc	ug/L ug/L	n/v n/v	n/v n/v	-	- -	-	Т.
Anions	ug/L	11/V	1 I/ V	-	<u> </u>	-	_
	1 1	/	T	44.0	04.2	04.0	_
Chloride	mg/L	n/v	n/v	11.6	24.8	24.9	
Fluoride	mg/L	4 ^A	n/v	0.0818 J	0.0719 J	0.203 J	
Sulfate	mg/L	n/v	n/v	99.7	65.6	66.3	_
0							
General Chemistry							_
Alkalinity, Bicarbonate	mg/L	n/v	n/v	50.5	99.3	101	_
Alkalinity, Bicarbonate Alkalinity, Carbonate	mg/L	n/v	n/v	<5.00	<5.00	<5.00	
Alkalinity, Bicarbonate							

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant December 2019

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-109 3-Dec-19 JOF-GW-021-20191203 39 ft Normal Environmental Sample Validated	JOF-110 4-Dec-19 JOF-GW-022-20191204 57 ft Normal Environmental Sample Validated	JOF-111 4-Dec-19 JOF-GW-023-20191204 46 ft Normal Environmental Sample Validated	JOF-112 2-Dec-19 JOF-GW-024-20191202 29.5 ft Normal Environmental Sample Validated	JOF-113 4-Dec-19 JOF-GW-025-20191204 43.5 ft Normal Environmental Sample Validated	JOF-114 4-Dec-19 JOF-GW-026-20191204 39.5 ft Normal Environmental Sample Validated
Radiological Parameters									
Radium-226	pCi/L	n/v	n/v	0.765 +/-(0.398)	0.332 +/-(0.556)U	0.481 +/-(0.292)	2.81 +/-(0.812)	3.49 +/-(0.906)	2.56 +/-(0.730)
Radium-228	pCi/L	n/v	n/v	-0.0935 +/-(0.274)U	-0.21 +/-(0.261)U	1.02 +/-(0.484)U*	-0.03 +/-(0.330)U	0.853 +/-(0.574)U*	2.26 +/-(0.828)
Radium-226+228	pCi/L	_ A	n/v	0.765 +/-(0.484)J	0.332 +/-(0.614)U	1.50 +/-(0.565)J	2.81 +/-(0.876)J	4.34 +/-(1.07)J	4.82 +/-(1.10)

See notes on last page.

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant December 2019

Sample Location				JOF-117	JOF-118	JOF-1	19
Sample Date Sample ID Sample Depth Sample Type Level of Review				5-Dec-19 JOF-GW-027-20191205 40.5 ft Normal Environmental Sample Validated	3-Dec-19 JOF-GW-028-20191203 48.5 ft Normal Environmental Sample Validated	3-Dec-19 JOF-GW-029-20191203 42.5 ft Normal Environmental Sample Validated	3-Dec-19 JOF-GW-DUP01-20191203 42.5 ft Field Duplicate Sample Validated
	Units	EPA MCLs	CCR Rule GWPS				
Radiological Parameter	rs .						
Radium-226	pCi/L	n/v	n/v	1.80 +/-(0.579)	0.273 +/-(0.412)U	0.752 +/-(0.696)U	0.453 +/-(0.531)U
Radium-228	pCi/L	n/v	n/v	0.897 +/-(0.496)	-0.264 +/-(0.347)U	-0.211 +/-(0.267)U	-0.358 +/-(0.364)U

Notes:

A EPA Maximum Contaminant Level

B CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value

ft feet below top of casing

ID identification

J quantitation is approximate due to limitations identified during data validation

pCi/L picoCurie per Liter
U not detected

U* this result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level.

^{1.} Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.4

GROUNDWATER INVESTIGATION EVENT #2 SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Groundwater Investigation Event #2 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

September 17, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	July 30, 2021
1	Addresses August 31, 2021 TDEC Review Comments and Issued for TDEC	September 17, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Groundwater Investigation Event #2 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staff

Reviewed by

Approved by **2**

Carole M. Farr, Senior Principal Geologist

Brigid Zvirbulis, Project Manager

Table of Contents

ABB	REVIATIO	ONS	II
1.0	INTROI	DUCTION	1
2.0	OBJEC	CTIVE AND SCOPE	3
3.0	FIELD A	ACTIVITIES	4
3.1		LOCATIONS	
3.2	DOCUMENTATION		
	3.2.1	Field Forms	5
	3.2.2	Equipment Calibration	7
3.3	SAMPLING METHODS		7
	3.3.1	Static Water Level Measurements	7
	3.3.2	Groundwater Purging & Sampling	8
3.4	INVEST	TIGATION DERIVED WASTE	9
3.5	SAMPLE SHIPMENT		
3.6 VARI		TIONS	9
		Variations in Scope	
		Variations in Procedure	
4.0	SUMMA	ARY	11
5.0	REFER	RENCES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

- Exhibit A.1 Monitoring Well and Piezometer Network
- Exhibit A.2 Groundwater Elevation Contour Map, Event #2 (February 10-11, 2020)
- Exhibit A.3 Pore water Elevation Contour Map, Event #2 (February 10, 2020)

APPENDIX B - TABLES

- Table B.1a Groundwater Level Measurements
- Table B.1b Pore Water Level Measurements
- Table B.2 Summary of Groundwater Samples
- Table B.3 Summary of Groundwater Quality Parameters
- Table B.4 Groundwater Analytical Results for Metals, Anions, and General Chemistry
- Table B.5 Groundwater Analytical Results for Radiological Parameters

i

Abbreviations

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CEC Civil and Environmental Consultants, Inc.

CFR Code of Federal Regulations

COC Chain-of-Custody
DO Dissolved Oxygen

EAR Environmental Assessment Report EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.

Event #2 Groundwater investigation field event performed February 10-13, 2020

FSP Field Sampling Personnel

ft Feet

GEL Laboratories LLC

ID Identification

IDWInvestigation Derived WasteJOF PlantJohnsonville Fossil Plant

mg/L Milligrams per Liter

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
PPE Personal Protective Equipment
QAPP Quality Assurance Project Plan

QC Quality Control

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

Introduction September 17, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed February 10-13, 2020 (Event #2) at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The purpose of the groundwater investigation, upon completion of the six groundwater sampling events, is to characterize groundwater conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #2 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #2 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #2 is the second in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina. Quality assurance oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Introduction September 17, 2021

This report summarizes the groundwater investigation activities for Event #2. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the JOF Plant are made and documented in the EAR.

Objective and Scope September 17, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the JOF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of the direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #2, performed in February 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells as specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the JOF Plant Hydrogeologic Investigation SAR.

In addition, pore water measurements from piezometers installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data. Groundwater piezometer installation activities are described in the JOF Plant Hydrogeologic Investigation SAR.

Field Activities September 17, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #2 were conducted February 10-13, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency (USEPA) documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation. In addition, on behalf of TDEC, Civil and Environmental Consultants, Inc. (CEC) collected split groundwater samples during this sampling event. Additional details regarding CEC split sample collection is provided in Section 3.3.2.

During Event #2, Stantec conducted the following field activities:

- Measured groundwater levels at nine monitoring wells and one piezometer installed for the TDEC Order, and 20 monitoring wells and nine piezometers installed for other environmental programs (29 total monitoring wells)
- Measured pore water levels at 10 piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River/Kentucky Lake
- Collected groundwater samples from nine monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, two
 field blanks, one filter blank, one tubing blank, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the JOF Plant (Ash Disposal Area 1, Active Ash Pond 2, DuPont Road Dredge Cell, South Rail Loop Area 4, and Coal Yard) as well as the monitoring wells and piezometers sampled and/or gauged during Event #2 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the JOF Plant for TDEC Solid Waste Management permit requirements and the USEPA CCR Rule codified in Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). Monitoring wells that are being sampled as part of other programs are not sampled as part of the groundwater investigation for the TDEC Order.

Field Activities September 17, 2021

Groundwater levels were measured in TDEC Order monitoring wells and one piezometer, as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the JOF Plant EAR. Pore water levels measured in piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and other environmental programs will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Level Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

Field Activities September 17, 2021

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. No signs of damage or necessary repairs were noted during Event #2.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer identification (ID), serial number, time, digits, and temperature. The readings were used to calculate the pressure head (feet [ft] of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.5 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well ID, time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in ft below top of casing.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the

Field Activities September 17, 2021

corresponding COC. COCs were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lexington-Parsons Regional Airport in Darden, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #2.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 29 monitoring wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement.* On February 10, 2020, static groundwater level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination.* Depth to groundwater measurements were recorded on a *Groundwater Level Measurement Form.*

Stantec calculated the static groundwater level at vibrating wire piezometer JOF-116-PZ. FSP recorded the measured readings and temperature using a vibrating wire readout instrument on a *Vibrating Wire Piezometer Measurement Form*. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain groundwater elevation.

On February 10-11, 2020, groundwater and pore water measurements were obtained from transducers installed within nine and 10 piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River/Kentucky Lake was provided by TVA using the reading closest to noon recorded by an automated staff gauge. The surface water staff gauge location is shown on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements made in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

Field Activities September 17, 2021

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples were collected from nine monitoring wells as shown in Table B.2 in Appendix B. Split samples collected by CEC during Event #2 are also identified in Table B.2. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP and/or applicable TI. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations for the JOF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Due to final turbidity readings higher than 5 NTUs at wells JOF-109 and JOF-117, an additional sample was collected at each of these wells and submitted to the laboratory for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line with the exception of the dissolved metals samples, which were collected via a new 0.45-micron disposable inline filter attached to the end of the discharge line to field filter the sample. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control*.

Field Activities September 17, 2021

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 CFR 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with JOF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the JOF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the JOF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and secured under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina. The laboratory submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As dicussed below, these

Field Activities September 17, 2021

variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #2 at the JOF Plant.

3.6.1 Variations in Scope

Variations in scope are provided below.

 Groundwater level gauging and sampling was not performed at well JOF-108 as specified in the SAP because it was not installed (the five borings drilled in that area encountered CCR and/or shallow refusal). This change in scope was approved by TDEC.

3.6.2 Variations in Procedure

Variations in procedures occurring in the field are provided below.

- The calibration verification of pH 4 and pH 7 were not within the morning acceptance criteria on February 11, 2020. These calibration variations were evaluated as part of the data validation/verification process performed by EnvStds.
- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations
- GEL was used as the laboratory for non-radium sample analysis in place of Eurofins TestAmerica. This change was approved by TVA and TDEC prior to field work.

Summary September 17, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #2 at the JOF Plant. The scope of work for Event #2 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data.

Event #2 included collecting groundwater level measurements at 29 monitoring wells and 10 piezometers; pore water measurements at 10 piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River/Kentucky Lake. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1b, and depicted on Exhibits A.2 and A.3.

Water quality measurements and groundwater analytical samples were collected at nine monitoring wells as summarized in Table B.2. Water quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the nine sampling locations. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and then validated or verified by EnvStds.

Stantec has completed Event #2 of the groundwater investigation at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #2 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this event will be evaluated along with data collected during the remaining groundwater sampling events and under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References September 17, 2021

5.0 REFERENCES

Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.

Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Stantec. 2018b. *Environmental Investigation Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

TVA, ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.

TVA, ENV-TI-05.80.42, Groundwater Sampling.

TVA, ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA, ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

A.1

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-05-24 Technical Review by MD on 2021-05-24 New Johnsonville, Tennessee

> 1,350 1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

A.2

Groundwater Elevation Contour Map, Event #2 (February 10-11, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-09-16 Technical Review by MD on 2021-09-16 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34) Legend

- Groundwater Investigation Monitoring Well
- groundwater elevation in feet above mean sea level (ft amsl) Other Monitoring Well
- groundwater elevation in ft amsl
- Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JoF-E-2A-PZ5) elevation in ft amsl
- pore water elevation in ft amsl; value not used for contouring
- Temporary well in CCR pore water elevation in ft amsl; value not used for contouring
- Planned Temporary Well Location
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl
- Interpolated Groundwater Contour (5 ft interval; elevations
- Groundwater Contour (5 ft interval; elevations are in ft

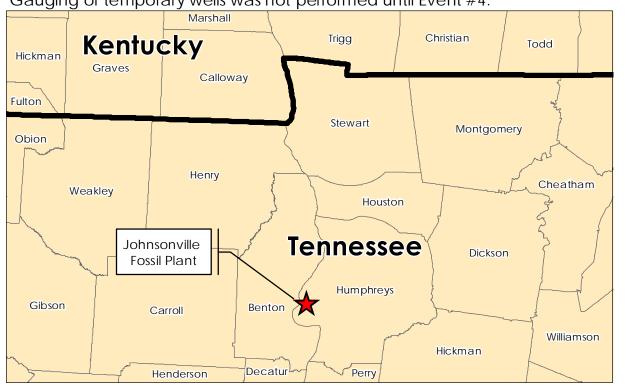
2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals


NM: Not measured; data not available

*Groundwater and pore water elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery 3. Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment
- 4. Temporary well installation was not completed prior to this event. Gauging of temporary wells was not performed until Event #4.

Pore water Elevation Contour Map, Event #2 (February 10, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-09-16 Technical Review by MD on 2021-09-16 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- groundwater elevation in feet above mean sea level (ft amsl); value not used for contouring
- Other Monitoring Well groundwater elevation in ft amsl; value not used for contouring
- Piezometer, groundwater label in blue text, (e.g., JOF-E-2A-PZ2) pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ5) elevation in ft amsl
- Piezometer in CCR
- pore water elevation in ft amsl; value not used for contouring
- Temporary well in CCR pore water elevation in ft amsl; value not used for contouring
- Planned Temporary Well Location
- Tennessee River/Kentucky Lake Gauging Station
- surface water elevation in ft amsl

Interpolated Pore water Contour (5 ft interval; elevations are in ft amsl)

Pore water Contour (5 ft interval; elevations are in ft amsl)

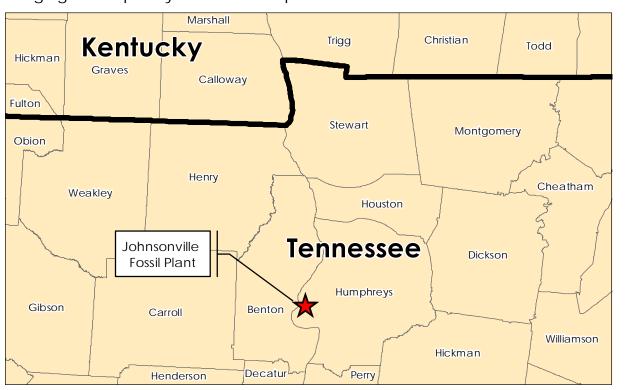
2017 Imagery Boundary

2018 Imagery Boundary

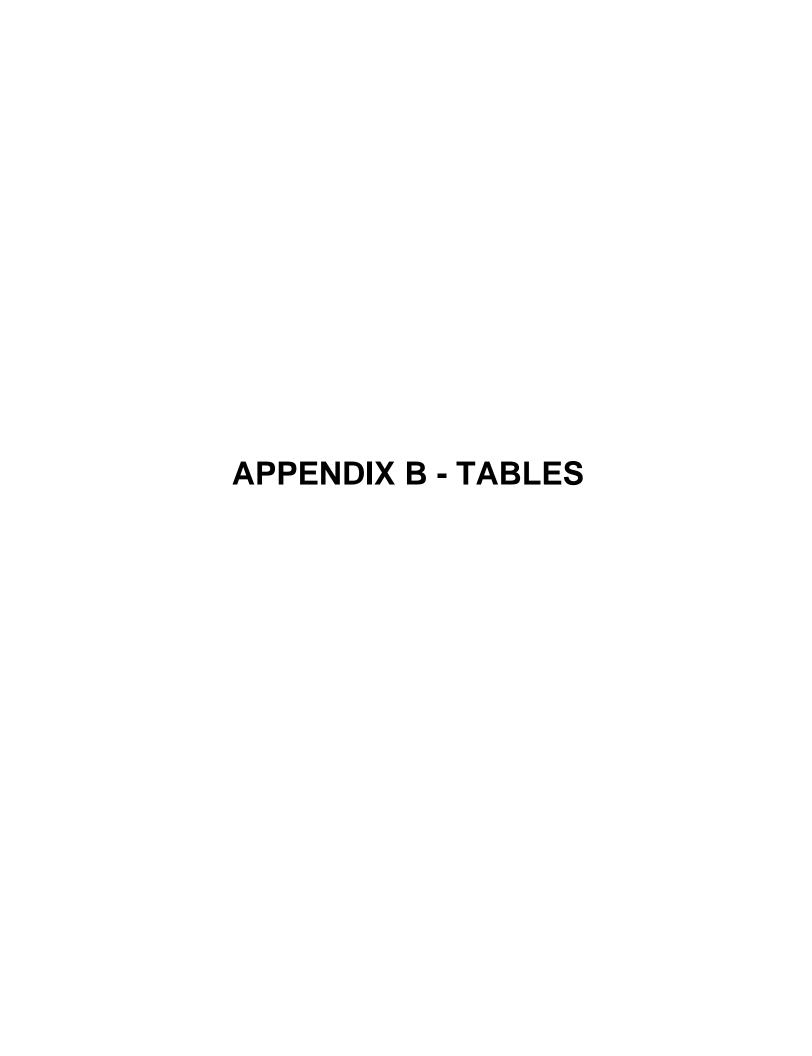
CCR Unit Area (Approximate)

Coal Yard (Approximate)

NM: Not measured; data not available


CCR: Coal combustion residuals

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.


**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
 Pore water contours were created using manual adjustment and Surfer Version 16.1.350 (December 13, 2018)
- 4. Temporary well installation was not completed prior to this event.

 Gauging of temporary wells was not performed until Event #4.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
Monitoring Wells			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
JOF-00-GW-43-001	10-AP1	10-Feb-20	11.37	370.51	359.14	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
JOF-00-GW-43-002	10-AP3	10-Feb-20	8.13	367.27	359.14	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	10-Feb-20	23.89	401.19	377.30	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
JOF-00-GW-43-004	94-B16	10-Feb-20	11.55	390.53	378.98	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
JOF-00-GW-43-005	99-B19	10-Feb-20	14.86	394.50	379.64	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
JOF-00-GW-43-006	99-B20A	10-Feb-20	28.89	408.88	379.99	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
JOF-00-GW-43-007	B-6R	10-Feb-20	17.51	395.57	378.06	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
JOF-00-GW-43-008	B-8R	10-Feb-20	10.38	391.04	380.66	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
JOF-00-GW-43-009	B-9	10-Feb-20	24.58	423.88	399.30	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
JOF-00-GW-43-010	B-11	10-Feb-20	19.40	400.67	381.27	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
JOF-00-GW-43-011	B-12	10-Feb-20	11.00	393.03	382.03	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
JOF-00-GW-43-012	B-13	10-Feb-20	28.20	409.87	381.67	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
JOF-00-GW-43-013	JOF-101	10-Feb-20	23.81	424.59	400.78	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
JOF-00-GW-43-014	JOF-102	10-Feb-20	18.45	407.64	389.19	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
JOF-00-GW-43-015	JOF-103	10-Feb-20	14.82	374.24	359.42	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
JOF-00-GW-43-016	JOF-104	10-Feb-20	20.08	379.44	359.36	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
JOF-00-GW-43-017	JOF-105	10-Feb-20	26.22	406.15	379.93	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
JOF-00-GW-43-018	A-3	10-Feb-20	22.52	403.73	381.21	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
JOF-00-GW-43-019	JOF-106	10-Feb-20	21.59	403.16	381.57	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
JOF-00-GW-43-020	JOF-107	10-Feb-20	27.58	409.95	382.37	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
JOF-00-GW-43-021	JOF-109	10-Feb-20	5.26	386.11	380.85	n/a	n/a	n/a	34.1 - 43.9	Alluvium
JOF-00-GW-43-021	JOF-110	10-Feb-20	18.39	388.76	370.37			n/a	52.3 - 62.1	Alluvium
JOF-00-GW-43-022	JOF-111	10-Feb-20	21.35	390.08	368.73	n/a n/a	n/a	n/a	41.3 - 51.1	Clay
JOF-00-GW-43-024	JOF-111	10-Feb-20 10-Feb-20	20.68			n/a	n/a	n/a	24.9 - 34.7	Alluvium
JOF-00-GW-43-024 JOF-00-GW-43-025	JOF-112 JOF-113	10-Feb-20 10-Feb-20	20.08	394.48 388.13	373.80 361.12	n/a n/a	n/a	n/a n/a	24.9 - 34.7 39.6 - 49.4	Alluvium
JOF-00-GW-43-025 JOF-00-GW-43-026	JOF-113 JOF-114	10-Feb-20 10-Feb-20	27.01				n/a	n/a n/a	34.7 - 44.5	Alluvium
JOF-00-GW-43-026 JOF-00-GW-43-027	JOF-114 JOF-117	10-Feb-20 10-Feb-20	27.02	388.36 388.63	360.97 361.61	n/a n/a	n/a n/a	n/a n/a	34.7 - 44.5 35.0 - 44.8	Alluvium
JOF-00-GW-43-027 JOF-00-GW-43-028	JOF-117 JOF-118	10-Feb-20 10-Feb-20	13.39	372.69	359.30		-	-	43.9 - 53.7	Alluvium
JOF-00-GW-43-028 JOF-00-GW-43-029	JOF-118 JOF-119	10-Feb-20 10-Feb-20	8.46	372.69	358.43	n/a n/a	n/a n/a	n/a n/a	43.9 - 53.7 38.0 - 47.8	Alluvium
Piezometers	JOF-119	10-Feb-20	8.46	300.89	358.43	n/a	n/a	n/a	38.0 - 47.8	Alluvium
n/a	JOF-B-2A-PZ3	11-Feb-20	n/a	n/a	359.0	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2A-PZ3	10-Feb-20	n/a	n/a	359.6	392.7	326.8	66.0	n/a	Alluvial Sand and Gravel Alluvial Sand and Gravel
n/a	JOF-C-2B-PZ2	10-Feb-20 10-Feb-20	n/a n/a	n/a n/a	358.3	392.8	320.8	49.0	n/a n/a	Alluvial Sand and Gravel
n/a n/a	JOF-C-2B-PZ2 JOF-E-2A-PZ2	10-Feb-20 10-Feb-20	n/a n/a	n/a n/a	358.7	370.6	327.9	63.0	n/a n/a	Alluvial Sand and Gravel
n/a n/a	JOF-E-2A-PZ2 JOF-E-2B-PZ2	10-Feb-20 10-Feb-20	n/a n/a	n/a n/a	358.0	365.4	327.9	55.0	n/a n/a	Alluvial Sand and Gravel
n/a	JOF-E-2B-PZ2 JOF-K-2A-PZ1	10-Feb-20 10-Feb-20	n/a n/a	n/a	359.3	377.5	310.4	50.0	n/a n/a	Alluvial Sand and Gravel Alluvial Sand and Gravel
n/a n/a	JOF-K-ZA-PZ I JOF PZET	10-Feb-20 10-Feb-20	n/a n/a	n/a	354.9	363.8	327.5	34.0	n/a n/a	Alluvial Sand and Gravel Alluvial Clay and Silt and Alluvial Sand and Gravel
	_									*
n/a	JOF_PZFT	10-Feb-20	n/a	n/a	355.4	362.9	327.6	35.3	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF_PZHT	10-Feb-20	n/a	n/a	358.6	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
n/a	JOF-116-PZ	10-Feb-20	n/a	n/a	372.3	388.0	342.0	46.0	n/a	Alluvium

See notes on last page.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater ft btoc	Top of Casing Elevation ft msl	Groundwater Elevation ft msl	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth ft bgs	Screened Interval ft btoc	Screened / Plezometer Sensor Formation
Surface Water Gauge Tennessee River/Kentucky Lake gauge (GS-1)	n/a	10-Feb-20	n/a	n/a	359.07	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msI mean sea level
n/a not applicable
UNID Unique Numerical Identification

1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information was obtained from boring logs. Data from automated piezometers are averaged for the measurement date.

4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

Page 2 of 2

Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells		•	•		•			•	
JOF-TW01	n/a	NM	396.33	NM	n/a	n/a	n/a	24.8 - 34.6	CCR
JOF-TW02	n/a	NM	397.38	NM	n/a	n/a	n/a	25.5 - 35.3	CCR
JOF-TW03	n/a	NM	409.49	NM	n/a	n/a	n/a	40.4 - 50.2	CCR
JOF-TW04	n/a	NM	394.25	NM	n/a	n/a	n/a	25.9 - 35.7	CCR
JOF-TW05	n/a	NM	393.44	NM	n/a	n/a	n/a	36.2 - 46.0	CCR
JOF-TW06	n/a	NM	395.13	NM	n/a	n/a	n/a	26.5 - 36.3	CCR
JOF-TW07	n/a	NM	402.92	NM	n/a	n/a	n/a	32.2 - 42.0	CCR
JOF-TW08	n/a	NM	387.22	NM	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW09	n/a	NM	387.52	NM	n/a	n/a	n/a	15.8 - 25.6	CCR
JOF-TW10	n/a	NM	384.92	NM	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW11	n/a	NM	440.13	NM	n/a	n/a	n/a	31.6 - 41.4	CCR
JOF-TW12	n/a	NM	444.17	NM	n/a	n/a	n/a	36.1 - 45.9	CCR
JOF-TW13	n/a	NM	441.39	NM	n/a	n/a	n/a	33.3 - 43.1	CCR
JOF-TW15	n/a	NM	451.71	NM	n/a	n/a	n/a	55.0 - 64.8	CCR
JOF-TW16	n/a	NM	473.81	NM	n/a	n/a	n/a	72.9 - 82.7	CCR
Piezometers									
JOF-E-2A-PZ5	10-Feb-20	n/a	n/a	382.9	390.9	370.9	20.0	n/a	CCR
JOF_PZEC	10-Feb-20	n/a	n/a	382.2	390.4	365.4	25.0	n/a	CCR and Dike Fill
JOF_PZFC	10-Feb-20	n/a	n/a	382.4	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZGC	10-Feb-20	n/a	n/a	376.6	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZHC	10-Feb-20	n/a	n/a	380.9	390.0	365.8	24.2	n/a	CCR
JOF_PZIC	10-Feb-20	n/a	n/a	382.6	390.1	360.1	30.0	n/a	CCR and Dike Fill
JOF_PZJC	10-Feb-20	n/a	n/a	384.1	390.0	365.0	25.0	n/a	CCR
JOF_PZKC	10-Feb-20	n/a	n/a	382.9	390.5	365.5	25.0	n/a	CCR
JOF_PZLC	10-Feb-20	n/a	n/a	380.9	390.5	365.5	25.0	n/a	CCR
JOF_PZMC	10-Feb-20	n/a	n/a	378.2	391.1	366.1	25.0	n/a	CCR and Dike Fill
P-8	n/a	n/a	n/a	NM	432.8	394.5	38.3	n/a	CCR
P-9	n/a	n/a	n/a	NM	432.9	393.8	39.2	n/a	CCR and Clayey Fill
P-10	n/a	n/a	n/a	NM	430.7	391.0	39.8	n/a	CCR

Notes:

bgs below ground surface
btoc below top of casing
CCR coal combustion residuals
ft feet
ID identification
msI mean sea level
n/a not applicable
NM not measured

^{1.} Top of casing elevations, screen intervals, and screened formations were obtained from boring logs, well detail and well survey data.

^{2.} For piezometers, ground surface elevation, pore water elevations, and piezometer data obtained from the geotechnical instrumentation database. Data from automated piezometers are averaged for the measurement date.

^{3.} Pore water elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

^{4.} Temporary wells were not gauged during this event. Gauging and sampling of temporary wells did not commence until all temporary wells associated with the Exploratory Drilling scope were installed and developed. In select piezometers, as noted by "NM" above, pore water elevation data were not available for this event.

Ana	lysis	Type

Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Dissolved Metals	Total Mercury	Dissolved Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
JOF-109	JOF-GW-021-20200211	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
JOF-110	JOF-GW-022-20200212	Normal Environmental Sample	Х	Х		Х		Х	Х	X	Х	X	Х
JOF-111	JOF-GW-023-20200212	Normal Environmental Sample	Х	Х		X		Х	Х	Х	Х	X	X
JOF-112	JOF-GW-024-20200211	Normal Environmental Sample	Х	Х		Х		Х	Х	X	Х	X	X
JOF-113	JOF-GW-025-20200212	Normal Environmental Sample	Х	Х		X		Х	Х	X	Х	X	X
JOF-114	JOF-GW-026-20200212	Normal Environmental Sample	Х	Х		X		Х	Х	X	Х	X	X
JOF-117	JOF-GW-027-20200212	Normal Environmental Sample	Х	Х	X	X	Х	Х	Х	X	Х	X	X
JOF-118	JOF-GW-028-20200211	Normal Environmental Sample	Х	Х		X		Х	Х	X	Х	X	X
JOF-119	JOF-GW-029-20200211	Normal Environmental Sample	Х	Х		X		Х	Х	X	Х	X	X
301-119	JOF-GW-DUP01-20200211	Field Duplicate Sample		X		Х		X	Х	X	Х	X	X

Notes:

Total and Dissolved Metals SW-846 6020A

Total and Dissolved Mercury SW-846 7470A

Anions EPA 300.0/SW 9056

Alkalinity SM2320B
Total Dissolved Solids SM2540C
Radium-226 EPA 903.0
Radium-228 EPA 904.0
Radium-226+228 CALC
ID identification

Page 1 of 1

^{1.} Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

^{2.} CEC collected split samples from JOF-114, JOF-118, and JOF-119.

TABLE B.3 – Summary of Groundwater Quality Parameters Johnsonville Fossil Plant February 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	JOF-109 11-Feb-20 JOF-GW-021-20200211 39 ft Normal Environmental Sample Final QC Review	JOF-110 12-Feb-20 JOF-GW-022-20200212 57 ft Normal Environmental Sample Final QC Review	JOF-111 12-Feb-20 JOF-GW-023-20200212 46 ft Normal Environmental Sample Final QC Review	JOF-112 11-Feb-20 JOF-GW-024-20200211 29.5 ft Normal Environmental Sample Final QC Review	JOF-113 12-Feb-20 JOF-GW-025-20200212 43.5 ft Normal Environmental Sample Final QC Review	JOF-114 12-Feb-20 JOF-GW-026-20200212 39.5 ft Normal Environmental Sample Final QC Review	JOF-117 12-Feb-20 JOF-GW-027-20200212 40.5 ft Normal Environmental Sample Final QC Review	JOF-118 11-Feb-20 JOF-GW-028-20200211 48.5 ft Normal Environmental Sample Final QC Review	JOF-119 11-Feb-20 JOF-GW-029-20200211 42.5 ft Normal Environmental Sample Final QC Review
Field Parameters										
Dissolved Oxygen	%	40.7	E 0	5.1	44.7	10.7	۲.3	40.0	0.0	• -
		-	5.9	5.1		12.7	5.3	10.9	3.6	3.5
Dissolved Oxygen	mg/L	4.12	0.59	0.50	4.39	1.24	0.46	1.07	0.34	0.36
Dissolved Oxygen ORP	mg/L mV	-	0.59 31.4	0.50 26.5					3.6 0.34 -42.0	0.36 0.4
, ,	_	4.12			4.39	1.24	0.46	1.07		0.36
ORP	mV	4.12 223.8	31.4	26.5	4.39 51.5	1.24 91.0	0.46 159.1	1.07 -111.8	-42.0	0.36 0.4
ORP pH (field)	mV SU	4.12 223.8 5.63 J 169.5	31.4 5.75	26.5 5.85	4.39 51.5 6.29 J	1.24 91.0 5.91	0.46 159.1 4.64	1.07 -111.8 6.60	-42.0 5.87 J	0.36 0.4 6.51 J

	1~	te	•	٠
- 1	ıv	ιe	Э	

parameter not analyzed / not available

% Cond. DEG C percent
conductance
degrees Celsius
feet below top of casing ft ID identification

quantitation is approximate due to limitations identified during data validation

mg/L mV NTU ORP SU

milligrams per Liter milliVolts Nephelometric Turbidity Unit

Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

Standard Units

uS/cm microSiemens per centimeter

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant February 2020

Sample Location				JOF-109	JOF-110	JOF-111	JOF-112	JOF-113	JOF-114	JOF-117
Sample Date Sample ID				11-Feb-20 JOF-GW-021-20200211	12-Feb-20 JOF-GW-022-20200212	12-Feb-20 JOF-GW-023-20200212	11-Feb-20 JOF-GW-024-20200211	12-Feb-20 JOF-GW-025-20200212	12-Feb-20 JOF-GW-026-20200212	12-Feb-20 JOF-GW-027-20200212
Sample Depth				39 ft	57 ft	46 ft	29.5 ft	43.5 ft	39.5 ft	40.5 ft
Sample Type Level of Review				Normal Environmental Sample Final-Verified	Normal Environmental Sample Validated	Normal Environmental Sample Validated	Normal Environmental Sample Final-Verified	Normal Environmental Sample Validated	Normal Environmental Sample Validated	Normal Environmental Sample Validated
	Units	EPA MCLs	CCR Rule GWPS							
Total Metals			_							
Antimony	ug/L	6 ^A 10 ^A	n/v	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic Barium	ug/L ug/L	2,000 ^A	n/v n/v	<2.00 14.9	3.59 J 66.3	7.91 31.9	<2.00 51.5	4.16 J 24.4	4.03 J 20.4	33.9^A 89.7
Beryllium	ug/L	2,000 4 ^A	n/v	0.300 J	<0.200	<0.200	<0.200	<0.200	1.00	<0.200
Boron	ug/L	n/v	n/v	80.0	1,410	5,540	31.0	16,100	11,200	12.7 J
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	<0.300	1.23	3.31	0.346 J	<0.300
Calcium Chromium	ug/L ug/L	n/v 100 ^A	n/v n/v	17,000 <3.00	19,300 <3.00	449,000 <3.00	28,700 <3.00	606,000 <3.00	548,000 <3.00	96,700 <3.00
Cobalt	ug/L	n/v	6 ^B	0.570 J	4.44 J	195 J ^B	112 ^B	3.90 J	77.3 J ^B	24.2 J ^B
Copper	ug/L	n/v	n/v	0.939 U*	<0.300	<0.300	<0.300	<0.300	1.24 U*	<0.300
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	n/v	40 ^B	<3.00	3.05 J	9.95 J	<3.00	133 ^B	81.1 ^B	<3.00
Magnesium	ug/L	n/v	n/v	5,010	5,090	22,100	13,900	7,000	48,300	31,100
Mercury Molybdenum	ug/L	2 ^A n/v	n/v 100 ^B	<0.0670 0.235 U*	<0.0670 0.343 U*	<0.0670 16.1	<0.0670 0.595 U*	<0.0670 235 ^B	<0.0670 <0.200	<0.670 29.3
Nickel	ug/L ug/L		100 ⁻ n/v	27.2	9.63	46.7	10.4	123 ^A	<0.200 22.1	6.96
Potassium	ug/L ug/L	100 _(TN MCL) ^A n/v	n/v	1,260	340	53,500	844	66,100	113,000	2,890
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	n/v	n/v	7,420	40,600	191,000	24,400	54,200	345,000	39,300
Thallium Vanadium	ug/L	2 ^A n/v	n/v n/v	<0.600 <3.30	<0.600 <3.30	<0.600 <3.30	<0.600 <3.30	0.811 J <3.30	0.637 J <3.30	<0.600 <3.30
Zinc	ug/L ug/L	n/v	n/v	45.8	5.29 J	57.8	16.3 J	23.50	64.4	<3.30
Dissolved Metals			•							
Antimony	ug/L	6 ^A	n/v	<1.00	-	-	-	-	-	<1.00
Arsenic	ug/L	10 ^A	n/v	<2.00	-	-	-	-	-	33.9 ^A
Barium	ug/L	2,000 ^A 4 ^A	n/v n/v	14.2 0.236 J	-	-	-	-	-	86.0 <0.200
Beryllium Boron	ug/L ug/L	4 n/v	n/v	79.8						10.6 J
Cadmium	ug/L	5 ^A	n/v	<0.300	-	-	-	-	-	<0.300
Calcium	ug/L	n/v	n/v	16,800	-	-	-	-	-	98,100
Chromium	ug/L	100 ^A	n/v	<3.00	-	-	-	-	-	<3.00
Cobalt	ug/L	n/v	6 ^B	0.491 J	-	-	-	-	-	23.4 J ^B
Copper Lead	ug/L ug/L	n/v n/v	n/v 15 ^B	1.17 J <0.500]]	<0.300 <0.500
Lithium	ug/L	n/v	40 ^B	<3.00	_	- -	_	_	_	<3.00
Magnesium	ug/L	n/v	n/v	5,020	-	-	-	-	-	30,100
Mercury	ug/L	2 ^A	n/v	<0.0670	-	-	-	-	-	<0.670
Molybdenum	ug/L	n/v	100 ^B	<0.200	-	-	-	-	-	30.4
Nickel Potassium	ug/L ug/L	100 _(TN MCL) ^A n/v	n/v n/v	26.7 1,240		- -]	6.68 2,850
Selenium	ug/L ug/L	50 ^A	n/v	<2.00] -	- -]]	<u> </u>	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	-	-	-	-	-	<0.300
Sodium	ug/L	n/v	n/v	7,280	-	-	-	-	-	38,600
Thallium Vanadium	ug/L	2 ^A	n/v	<0.600	-	-	-	-	-	<0.600
Vanadium Zinc	ug/L ug/L	n/v n/v	n/v n/v	<3.30 45.3]	- -]]	-	<3.30 <3.30
Anions	~g, L			10.0						
Chloride	mg/L	n/v	n/v	39.3	50.8	452	41.7	43.1	252	79.3
Fluoride	mg/L	4 ^A	n/v	0.122	0.405 J	0.143 J	0.441	0.642 J	0.106 J	0.972 J
Sulfate	mg/L	n/v	n/v	4.63	26.0	938	49.4	1,530	2,090	8.68
General Chemistry			T .	1	T		T =- :	T	T	T
Alkalinity, Bicarbonate Alkalinity, Carbonate	mg/L	n/v	n/v n/v	14.8 J <1.45	43.0	40.6	79.4	16.6	6.00 J	348 <1.45
ARABIDIV CALDODATE	mg/L	n/v	[1/V	\$1. 4 0	<1.45	<1.45	<1.45	<1.45	<1.45	\$1.40
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	14.8 J	43.0	40.6	79.4	16.6	6.00 J	348

See notes on last page.

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant February 2020

Sample Location				JOF-118	JOF-1	19	
Sample Date				11-Feb-20	11-Feb-20	11-Feb-20	
Sample ID				JOF-GW-028-20200211	JOF-GW-029-20200211	JOF-GW-DUP01-20200211	
Sample Depth				48.5 ft	42.5 ft	42.5 ft	
Sample Type				Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	
evel of Review	Unita	EDA MOLA	CCD Dula CWDS	Final-Verified	Final-Verified	Final-Verified	
Total Metals	Units	EPA MCLs	CCR Rule GWPS				=
Antimony	ug/L	6 ^A	n/v	<1.00	<1.00	<1.00	-
Arsenic	ug/L	10 ^A	n/v	3.11 U*	3.77 U*	3.59 U*	
Barium	ug/L	2,000 ^A	n/v	22.2	41.0	41.7	
Beryllium	ug/L	4 ^A	n/v	<0.200	<0.200	<0.200	
Boron	ug/L	n/v	n/v	59.4	37.0	36.2	
Cadmium Calcium	ug/L	5 ^A n/v	n/v n/v	<0.300 29,900	<0.300 25,800	<0.300 25,600	
Chromium	ug/L ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	
Cobalt	ug/L	n/v	6 ^B	1.86	3.04	3.06	
Copper	ug/L	n/v	n/v	<0.300	<0.300	<0.300	
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	<3.00	
Magnesium	ug/L	n/v	n/v	5,970	5,070	5,140	
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	
Molybdenum	ug/L	n/v	100 ^B	<0.200	0.789 U*	0.795 U*	
Nickel	ug/L	100 _(TN MCL) A	n/v	7.12	2.79	2.63	
Potassium	ug/L	n/v	n/v	1,020	1,600	1,640	
Selenium Silver	ug/L	50 ^A 100 _(TN MCL) ^A	n/v n/v	<2.00 <0.300	<2.00 <0.300	<2.00 <0.300	
Sodium	ug/L ug/L	n/v	n/v	24,400	62,300	60,800	
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30	
Zinc	ug/L	n/v	n/v	4.56 J	<3.30	<3.30	<u>-</u>
Dissolved Metals			_				<u>-</u>
Antimony	ug/L	6 ^A	n/v	-	-	-	
Arsenic Barium	ug/L ug/L	10 ^A 2,000 ^A	n/v n/v	-	-	-	
Beryllium	ug/L ug/L	2,000 4 ^A	n/v	- -			
Boron	ug/L	n/v	n/v	-	-	_	
Cadmium	ug/L	5 ^A	n/v	-	-	-	Notes:
Calcium	ug/L	n/v	n/v	-	-	-	
Chromium	ug/L	100 ^A	n/v	-	-	-	A FDA Mavimum Conteminant Loyal
Cobalt	ug/L	n/v	6 ^B	-	-	-	EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
Copper Lead	ug/L ug/L	n/v n/v	n/v 15 ^B	-	_		n/v No standard/guideline value
Lithium	ug/L ug/L	n/v	40 ^B	- -			6.5 ^A Concentration is greater than or equal to the indicated standard.
Magnesium	ug/L	n/v	n/v	- -	- -	_	<0.03 analyte was not detected at a concentration greater than the Method Detection Limit
Mercury	ug/L	2 ^A	n/v	-	-	_	- parameter not analyzed / not available
Molybdenum	ug/L	n/v	100 ^B	-	-	-	ft feet below top of casing
Nickel	ug/L	100 _(TN MCL) A	n/v	-	-	-	ID identification
Potassium	ug/L	n/v	n/v	-	-	-	J quantitation is approximate due to limitations identified during data validation
Selenium Silver	ug/L ug/L	50 ^A 100 _(TN MCL) ^A	n/v n/v	<u>-</u> -	<u>-</u>		mg/L milligrams per Liter U* result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar leve
Sodium	ug/L ug/L	n/v	n/v	- -	- -		ug/L micrograms per Liter
Thallium	ug/L	2 ^A	n/v	-	-	_	O 0 11- F-1 -11-11
Vanadium	ug/L	n/v	n/v	-	-	-	1. Level of review is defined in the Quality Assurance Project Plan.
Zinc	ug/L	n/v	n/v	-	-	-	_
Anions							<u>-</u>
Chloride	mg/L	n/v	n/v	10.3	21.5	21.4	
Fluoride Sulfate	mg/L mg/L	4 ^A n/v	n/v n/v	0.344 81.0	0.411 53.8	0.408 53.7	
General Chemistry	IIIg/L	I I/V	11/V	01.0	ეე. ეე. ე	03.1	-
Alkalinity, Bicarbonate	mg/L	n/v	n/v	41.0	113	111	-
randining, biodiboliate		n/v	n/v	41.0 <1.45	<1.45	<1.45	
Alkalinity, Carbonate	[[[[[]]]]]						
Alkalinity, Carbonate Alkalinity, Total as CaCO3	mg/L mg/L	n/v	n/v	41.0	113	111	

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant February 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-109 11-Feb-20 JOF-GW-021-20200211 39 ft Normal Environmental Sample Final-Verified	JOF-110 12-Feb-20 JOF-GW-022-20200212 57 ft Normal Environmental Sample Validated	JOF-111 12-Feb-20 JOF-GW-023-20200212 46 ft Normal Environmental Sample Validated	JOF-112 11-Feb-20 JOF-GW-024-20200211 29.5 ft Normal Environmental Sample Final-Verified	JOF-113 12-Feb-20 JOF-GW-025-20200212 43.5 ft Normal Environmental Sample Validated	JOF-114 12-Feb-20 JOF-GW-026-20200212 39.5 ft Normal Environmental Sample Validated
Radiological Parameters									
Radium-226	pCi/L	n/v	n/v	0.828 +/-(0.645)U	0.599 +/-(0.602)U	0.595 +/-(0.323)	2.86 +/-(0.781)	2.44 +/-(0.689)	2.71 +/-(0.763)
Radium-228	pCi/L	n/v	n/v	0.273 +/-(0.378)U	0.304 +/-(0.333)U	0.726 +/-(0.443)	0.484 +/-(0.418)U	0.275 +/-(0.335)U	2.18 +/-(0.828)
Radium-226+228	pCi/L	5 ^A	n/v	1.10 +/-(0.748)U	0.902 +/-(0.688)U	1.32 +/-(0.549)	3.35 +/-(0.886)J	2.72 +/-(0.766)J	4.89 +/-(1.13)

See notes on last page.

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant February 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-117 12-Feb-20 JOF-GW-027-20200212 40.5 ft Normal Environmental Sample Validated	JOF-118 11-Feb-20 JOF-GW-028-20200211 48.5 ft Normal Environmental Sample Final-Verified	JOF-1 11-Feb-20 JOF-GW-029-20200211 42.5 ft Normal Environmental Sample Final-Verified	19 11-Feb-20 JOF-GW-DUP01-20200211 42.5 ft Field Duplicate Sample Final-Verified
Radiological Parameters							
Radium-226	pCi/L	n/v	n/v	1.73 +/-(0.576)	-0.436 +/-(0.380)U	0.804 +/-(0.682)U	0.275 +/-(0.550)U
Radium-228	pCi/L	n/v	n/v	0.499 +/-(0.342)	0.303 +/-(0.484)U	-0.397 +/-(0.318)U	0.108 +/-(0.507)U
Radium-226+228	pCi/L	5 ^A	n/v	2.23 +/-(0.670)	0.303 +/-(0.616)U	0.804 +/-(0.752)U	0.383 +/-(0.748)U

Notes:

EPA Maximum Contaminant Level

CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value feet below top of casing

identification

ID

quantitation is approximate due to limitations identified during data validation

pCi/L picoCurie per Liter not detected

^{1.} Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.5

GROUNDWATER INVESTIGATION EVENT #3 SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Groundwater Investigation Event #3 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

October 29, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	July 30, 2021
1	Addresses September 01, 2021 TDEC Review Comments and Issued for TDEC	September 17, 2021
2	Addresses October 18, 2021 TDEC Review Comments and Issued for TDEC	October 29, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Groundwater Investigation Event #3 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staf

Reviewed by

Carole M. Farr, Senior Principal Geologist

Brigid Zvirbulis, Project Manager

Table of Contents

2.0 OBJECTIVE AND SCOPE 3.0 FIELD ACTIVITIES 3.1 WORK LOCATIONS 3.2 DOCUMENTATION 3.2.1 Field Forms 3.2.2 Equipment Calibration 3.3 SAMPLING METHODS 3.3.1 Static Water Level Measurements 3.3.2 Groundwater Purging & Sampling 3.4 INVESTIGATION DERIVED WASTE 3.5 SAMPLE SHIPMENT 3.6 VARIATIONS. 3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY	ABBI	REVIATIO	NS	I	
3.0 FIELD ACTIVITIES 3.1 WORK LOCATIONS. 3.2 DOCUMENTATION. 3.2.1 Field Forms. 3.2.2 Equipment Calibration. 3.3 SAMPLING METHODS. 3.3.1 Static Water Level Measurements. 3.3.2 Groundwater Purging & Sampling. 3.4 INVESTIGATION DERIVED WASTE. 3.5 SAMPLE SHIPMENT. 3.6 VARIATIONS. 3.6.1 Variations in Scope. 3.6.2 Variations in Procedure. 4.0 SUMMARY.	1.0	INTRODUCTION			
3.1 WORK LOCATIONS 3.2 DOCUMENTATION 3.2.1 Field Forms 3.2.2 Equipment Calibration 3.3 SAMPLING METHODS 3.3.1 Static Water Level Measurements 3.3.2 Groundwater Purging & Sampling 3.4 INVESTIGATION DERIVED WASTE 3.5 SAMPLE SHIPMENT 3.6 VARIATIONS 3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY	2.0	OBJEC.	TIVE AND SCOPE	3	
3.1 WORK LOCATIONS 3.2 DOCUMENTATION 3.2.1 Field Forms 3.2.2 Equipment Calibration 3.3 SAMPLING METHODS 3.3.1 Static Water Level Measurements 3.3.2 Groundwater Purging & Sampling 3.4 INVESTIGATION DERIVED WASTE 3.5 SAMPLE SHIPMENT 3.6 VARIATIONS 3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY	3.0	FIELD A	ACTIVITIES	4	
3.2 DOCUMENTATION	3.1				
3.2.2 Equipment Calibration. 3.3 SAMPLING METHODS	3.2				
3.2.2 Equipment Calibration. 3.3 SAMPLING METHODS		3.2.1	Field Forms	5	
3.3.1 Static Water Level Measurements 3.3.2 Groundwater Purging & Sampling 3.4 INVESTIGATION DERIVED WASTE 3.5 SAMPLE SHIPMENT 3.6 VARIATIONS 3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY					
3.3.2 Groundwater Purging & Sampling 3.4 INVESTIGATION DERIVED WASTE 3.5 SAMPLE SHIPMENT 3.6 VARIATIONS 3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY	3.3				
3.4 INVESTIGATION DERIVED WASTE 3.5 SAMPLE SHIPMENT 3.6 VARIATIONS 3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY		3.3.1	Static Water Level Measurements		
3.5 SAMPLE SHIPMENT					
3.6 VARIATIONS	3.4	INVEST	IGATION DERIVED WASTE	9	
3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY	3.5	SAMPLI	E SHIPMENT	g	
3.6.1 Variations in Scope 3.6.2 Variations in Procedure 4.0 SUMMARY	3.6	VARIATIONS			
3.6.2 Variations in Procedure					
		3.6.2			
	4.0	SUMMA	ARY	11	
5.0 REFERENCES	5.0	REFERI	ENCES	12	

LIST OF APPENDICES

APPENDIX A - EXHIBITS

- Exhibit A.1 Monitoring Well and Piezometer Network
- Exhibit A.2 Groundwater Elevation Contour Map, Event #3 (April 6 and April 8, 2020)
- Exhibit A.3 Pore water Elevation Contour Map, Event #3 (April 6, 2020)

APPENDIX B - TABLES

- Table B.1a Groundwater Level Measurements
- Table B.1b Pore Water Level Measurements
- Table B.2 Summary of Groundwater Samples
- Table B.3 Summary of Groundwater Quality Parameters
- Table B.4 Groundwater Analytical Results for Metals, Anions, and General Chemistry
- Table B.5 Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CFR Code of Federal Regulations

COC Chain-of-Custody
DO Dissolved Oxygen

EAR Environmental Assessment Report EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.

Event #3 Groundwater investigation field event performed April 6-9, 2020

FSP Field Sampling Personnel

ft Feet

GEL Laboratories LLC

ID Identification

IDWInvestigation Derived WasteJOF PlantJohnsonville Fossil Plantmg/LMilligrams per Liter

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
PPE Personal Protective Equipment
QAPP Quality Assurance Project Plan

QC Quality Control

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

Introduction October 29, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed April 6-9, 2020 (Event #3) at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The purpose of the groundwater investigation, upon completion of the six groundwater sampling events, is to characterize groundwater conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #3 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #3 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #3 is the third in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina. Quality assurance oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Introduction October 29, 2021

This report summarizes the groundwater investigation activities for Event #3. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the JOF Plant are made and documented in the EAR.

Objective and Scope October 29, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the JOF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of the direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #3, performed in April 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells as specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the JOF Plant Hydrogeologic Investigation SAR.

In addition, pore water measurements from piezometers installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data. Groundwater piezometer installation activities are described in the JOF Plant Hydrogeologic Investigation SAR.

Field Activities October 29, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #3 were conducted April 6-9, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency (USEPA) documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During Event #3, Stantec conducted the following field activities:

- Measured goundwater levels at nine monitoring wells and one piezometer installed for the TDEC Order, and 20 monitoring wells and nine piezometers installed for other environmental programs (29 total monitoring wells)
- Measured pore water levels at 11 piezometers in the CCR units
- Measured the surface water level at one location in the Tennessee River/Kentucky Lake
- Collected groundwater samples from nine monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, three field blanks, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the JOF Plant (Ash Disposal Area 1, Active Ash Pond 2, DuPont Road Dredge Cell, South Rail Loop Area 4, and Coal Yard) as well as the monitoring wells and piezometers sampled and/or gauged during Event #3 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the JOF Plant for TDEC Solid Waste Management permit requirements and the USEPA CCR Rule codified in Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). Monitoring wells that are being sampled as part of other programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells and one piezometer, as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in

Field Activities October 29, 2021

Appendix B, to provide information to prepare groundwater contour maps for this SAR and the JOF Plant EAR. Pore water levels measured in piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and other environmental programs will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Level Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well*

Field Activities October 29, 2021

Inspection and Maintenance. Inspection results were documented on a *Monitoring Well Inspection Checklist.* No signs of damage or necessary repairs were noted during Event #3.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer identification (ID), serial number, time, digits, and temperature. The readings were used to calculate the pressure head (feet [ft] of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.5 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well ID, time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in ft below top of casing.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*.

Field Activities October 29, 2021

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lexington-Parsons Regional Airport in Darden, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #3.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 29 monitoring wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement.* On April 6 and April 8, 2020, static groundwater level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination.* Depth to groundwater measurements were recorded on a *Groundwater Level Measurement Form.*

Stantec calculated the static groundwater level at vibrating wire piezometer JOF-116-PZ. FSP recorded the measured readings and temperature using a vibrating wire readout instrument on a *Vibrating Wire Piezometer Measurement Form.* The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain groundwater elevation.

Groundwater and pore water measurements were also obtained from transducers installed within nine and 11 piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River/Kentucky Lake was provided by TVA using the reading closest to noon recorded by an automated staff gauge. The surface water staff gauge location is shown on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements made in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

Field Activities October 29, 2021

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples were collected from nine monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP and/or applicable TI. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations for the JOF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line. Turbidity readings at wells stabilized below 5 NTUs, therefore samples were not collected for dissolved metals analysis. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control*.

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 CFR 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC

Field Activities October 29, 2021

Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- · General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with JOF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the JOF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the JOF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and secured under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina. The laboratory submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As dicussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #3 at the JOF Plant.

3.6.1 Variations in Scope

Variations in scope are provided below.

Field Activities October 29, 2021

- Groundwater level gauging and sampling was not performed at well JOF-108 as specified in the SAP because it was not installed (the five borings drilled in that area encountered CCR and/or shallow refusal). This change in scope was approved by TDEC.
- Monitoring well JOF-114 was not gauged on April 6, 2020 because the well was inaccessible due
 to active demolition. The well was subsequently gauged and sampled on April 8, 2020. Because
 the reading was not within the same 24-hour period as the other water level measurements, the
 data were not used for the groundwater elevation contour map.

3.6.2 Variations in Procedure

Variations in procedures occurring in the field are provided below.

- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations
- GEL was used as the laboratory for non-radium sample analysis in place of Eurofins TestAmerica. This change was approved by TVA and TDEC prior to field work.

Summary October 29, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #3 at the JOF Plant. The scope of work for Event #3 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data.

Event #3 included collecting groundwater level measurements at 29 monitoring wells and 10 piezometers; pore water measurements at 11 piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River/Kentucky Lake. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1b, and depicted on Exhibits A.2 and A.3.

Water quality measurements and groundwater analytical samples were collected at nine monitoring wells as summarized in Table B.2. Water quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the nine sampling locations. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and then validated or verified by EnvStds.

Stantec has completed Event #3 of the groundwater investigation at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #3 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this event will be evaluated along with data collected during the remaining groundwater sampling events and under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References October 29, 2021

5.0 REFERENCES

Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.

Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Stantec. 2018b. *Environmental Investigation Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

TVA, ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.

TVA, ENV-TI-05.80.42, Groundwater Sampling.

TVA, ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA, ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

A.1

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-05-24 Technical Review by MD on 2021-05-24 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

A.2

Groundwater Elevation Contour Map, Event #3 (April 6 and April 8, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-09-16 Technical Review by MD on 2021-09-16 New Johnsonville, Tennessee

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well groundwater elevation in feet above mean sea level (ft amsl)
- Other Monitoring Well groundwater elevation in ft amsl
- Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2) elevation in ft amsl
- pore water elevation in ft amsl; value not used for contouring
- Temporary well in CCR
- pore water elevation in ft amsl; value not used for contouring Tennessee River/Kentucky Lake Gauging Station
- surface water elevation in ft amsl
- Interpolated Groundwater Contour (5 ft interval; elevations are in ft amsl)

Groundwater Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

NM: Not measured; data not available

*Groundwater and pore water elevation displayed but not used as input for contouring due to

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

****JOF-114 was gauged on April 8th and therefore not used for contouring.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
 Groundwater contours were created using Surfer Version 16.1.350
- (December 13, 2018) and manual adjustment
- 4. Temporary well completion, including surveys and development,
- were not completed prior to this event. Gauging of temporary wells was not performed until Event #4.

Pore water Elevation Contour Map, Event #3 (April 6, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-11-01 Technical Review by MD on 2021-11-01 New Johnsonville, Tennessee

> 1,350 1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- groundwater elevation in feet above mean sea level (ft amsl); value not used for contouring
- Other Monitoring Well
- groundwater elevation in ft amsl; value not used for contouring
- Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ5) elevation in ft amsl
- pore water elevation in ft amsl
- Temporary well in CCR pore water elevation in ft amsl
- Tennessee River/Kentucky Lake Gauging Station
- surface water elevation in ft amsl
- Interpolated Pore water Contour (5 ft interval; elevations are in ft

Pore water Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

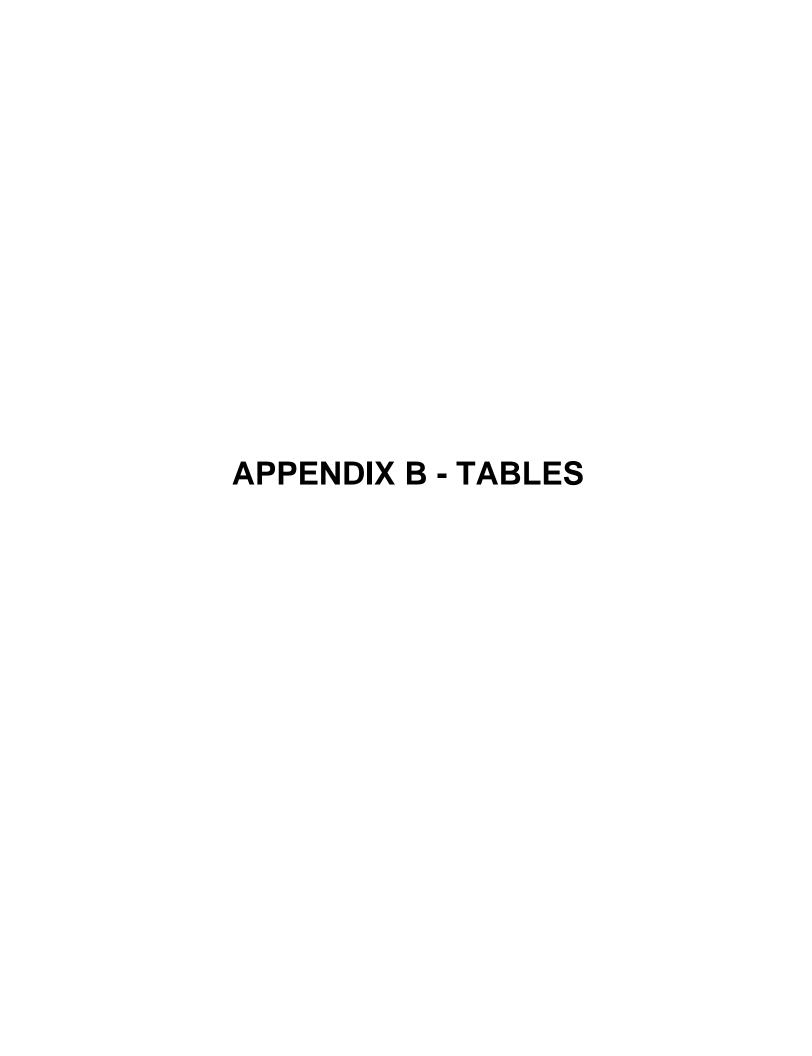
2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

NM: Not measured; data not available


*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
 Pore water contours were created using manual adjustment and
- Surfer Version 16.1.350 (December 13, 2018)
- 4. Temporary well completion, including surveys and development, were not completed prior to this event. Gauging of temporary wells was not performed until Event #4.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Plezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells										
JOF-00-GW-43-001	10-AP1	6-Apr-20	10.87	370.51	359.64	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
JOF-00-GW-43-002	10-AP3	6-Apr-20	7.43	367.27	359.84	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	6-Apr-20	23.90	401.19	377.29	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
JOF-00-GW-43-004	94-B16	6-Apr-20	11.85	390.53	378.68	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
JOF-00-GW-43-005	99-B19	6-Apr-20	15.01	394.50	379.49	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
JOF-00-GW-43-006	99-B20A	6-Apr-20	28.45	408.88	380.43	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
JOF-00-GW-43-007	B-6R	6-Apr-20	17.68	395.57	377.89	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
JOF-00-GW-43-008	B-8R	6-Apr-20	11.06	391.04	379.98	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
JOF-00-GW-43-009	B-9	6-Apr-20	23.61	423.88	400.27	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
JOF-00-GW-43-010	B-11	6-Apr-20	18.94	400.67	381.73	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
JOF-00-GW-43-011	B-12	6-Apr-20	10.76	393.03	382.27	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
JOF-00-GW-43-012	B-13	6-Apr-20	27.59	409.87	382.28	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
JOF-00-GW-43-013	JOF-101	6-Apr-20	22.41	424.59	402.18	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
JOF-00-GW-43-014	JOF-102	6-Apr-20	18.10	407.64	389.54	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
JOF-00-GW-43-015	JOF-103	6-Apr-20	14.16	374.24	360.08	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
JOF-00-GW-43-016	JOF-104	6-Apr-20	19.52	379.44	359.92	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
JOF-00-GW-43-017	JOF-105	6-Apr-20	26.89	406.15	379.26	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
JOF-00-GW-43-018	A-3	6-Apr-20	22.18	403.73	381.55	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
JOF-00-GW-43-019	JOF-106	6-Apr-20	21.13	403.16	382.03	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
JOF-00-GW-43-020	JOF-107	6-Apr-20	27.26	409.95	382.69	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
JOF-00-GW-43-021	JOF-109	6-Apr-20	4.69	386.11	381.42	n/a	n/a	n/a	34.1 - 43.9	Alluvium
JOF-00-GW-43-022	JOF-110	6-Apr-20	17.09	388.76	371.67	n/a	n/a	n/a	52.3 - 62.1	Alluvium
JOF-00-GW-43-023	JOF-111	6-Apr-20	18.70	390.08	371.38	n/a	n/a	n/a	41.3 - 51.1	Clay
JOF-00-GW-43-024	JOF-112	6-Apr-20	16.70	394.48	377.78	n/a	n/a	n/a	24.9 - 34.7	Alluvium
JOF-00-GW-43-025	JOF-112 JOF-113	6-Apr-20	25.92	388.13	362.21	n/a		n/a	39.6 - 49.4	Alluvium
JOF-00-GW-43-026	JOF-113	·	27.45			n/a	n/a	n/a	34.7 - 44.5	Alluvium
		8-Apr-20		388.36	360.91	1	n/a	-		
JOF-00-GW-43-027	JOF-117	6-Apr-20	25.67	388.63	362.96	n/a	n/a	n/a	35.0 - 44.8	Alluvium
JOF-00-GW-43-028	JOF-118	6-Apr-20	12.76	372.69	359.93	n/a	n/a	n/a	43.9 - 53.7	Alluvium
JOF-00-GW-43-029	JOF-119	6-Apr-20	6.97	366.89	359.92	n/a	n/a	n/a	38.0 - 47.8	Alluvium
Piezometers	T	1								Ton the state of
n/a	JOF-B-2A-PZ3	6-Apr-20	n/a	n/a	359.5	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2A-PZ3	6-Apr-20	n/a	n/a	360.7	392.8	326.8	66.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2B-PZ2	6-Apr-20	n/a	n/a	359.1	370.6	321.6	49.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2A-PZ2	6-Apr-20	n/a	n/a	359.3	390.9	327.9	63.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2B-PZ2	6-Apr-20	n/a	n/a	358.6	365.4	310.4	55.0	n/a	Alluvial Sand and Gravel
n/a	JOF-K-2A-PZ1	6-Apr-20	n/a	n/a	361.3	377.5	327.5	50.0	n/a	Alluvial Sand and Gravel
n/a	JOF_PZET	6-Apr-20	n/a	n/a	355.5	363.8	329.8	34.0	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF_PZFT	6-Apr-20	n/a	n/a	356.0	362.9	327.6	35.3	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF_PZHT	6-Apr-20	n/a	n/a	359.1	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
n/a	JOF-116-PZ	6-Apr-20	n/a	n/a	373.1	388.0	342.0	46.0	n/a	Alluvium

See notes on last page.

						Piezometer				
			Depth to	Top of Casing	Groundwater	Ground Surface	Piezometer	Piezometer	Screened	
UNID	Well / Piezometer ID	Date Measured	Groundwater	Elevation	Elevation	Elevation	Sensor Elevation	Sensor Depth	Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Surface Water Gauge										
Tennessee River/Kentucky Lake gauge (GS-1)	n/a	6-Apr-20	n/a	n/a	359.60	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msI mean sea level
n/a not applicable
UNID Unique Numerical Identification

1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information was obtained from boring logs. Data from automated piezometers are averaged for the measurement date.

4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

5. Depth to groundwater at JOF-114 was taken on April 8, 2020 due to the well being inaccessible on April 6, 2020.

Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									•
JOF-TW01	n/a	NM	396.33	NM	n/a	n/a	n/a	24.8 - 34.6	CCR
JOF-TW02	n/a	NM	397.38	NM	n/a	n/a	n/a	25.5 - 35.3	CCR
JOF-TW03	n/a	NM	409.49	NM	n/a	n/a	n/a	40.4 - 50.2	CCR
JOF-TW04	n/a	NM	394.25	NM	n/a	n/a	n/a	25.9 - 35.7	CCR
JOF-TW05	n/a	NM	393.44	NM	n/a	n/a	n/a	36.2 - 46.0	CCR
JOF-TW06	n/a	NM	395.13	NM	n/a	n/a	n/a	26.5 - 36.3	CCR
JOF-TW07	n/a	NM	402.92	NM	n/a	n/a	n/a	32.2 - 42.0	CCR
JOF-TW08	n/a	NM	387.22	NM	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW09	n/a	NM	387.52	NM	n/a	n/a	n/a	15.8 - 25.6	CCR
JOF-TW10	n/a	NM	384.92	NM	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW11	n/a	NM	440.13	NM	n/a	n/a	n/a	31.6 - 41.4	CCR
JOF-TW12	n/a	NM	444.17	NM	n/a	n/a	n/a	36.1 - 45.9	CCR
JOF-TW13	n/a	NM	441.39	NM	n/a	n/a	n/a	33.3 - 43.1	CCR
JOF-TW15	n/a	NM	451.71	NM	n/a	n/a	n/a	55.0 - 64.8	CCR
JOF-TW16	n/a	NM	473.81	NM	n/a	n/a	n/a	72.9 - 82.7	CCR
Piezometers									
JOF-E-2A-PZ5	n/a	n/a	n/a	NM	390.9	370.9	20.0	n/a	CCR
JOF_PZEC	6-Apr-20	n/a	n/a	382.6	390.4	365.4	25.0	n/a	CCR and Dike Fill
JOF_PZFC	6-Apr-20	n/a	n/a	383.8	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZGC	6-Apr-20	n/a	n/a	377.5	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF PZHC	6-Apr-20	n/a	n/a	381.5	390.0	365.8	24.2	n/a	CCR
JOF_PZIC	6-Apr-20	n/a	n/a	382.7	390.1	360.1	30.0	n/a	CCR and Dike Fill
JOF_PZJC	6-Apr-20	n/a	n/a	383.4	390.0	365.0	25.0	n/a	CCR
JOF_PZKC	6-Apr-20	n/a	n/a	382.8	390.5	365.5	25.0	n/a	CCR
JOF_PZLC	6-Apr-20	n/a	n/a	380.7	390.5	365.5	25.0	n/a	CCR
JOF_PZMC	6-Apr-20	n/a	n/a	378.0	391.1	366.1	25.0	n/a	CCR and Dike Fill
P-8	n/a	n/a	n/a	NM	432.8	394.5	38.3	n/a	CCR
P-9	6-Apr-20	n/a	n/a	395.9	432.9	393.8	39.2	n/a	CCR and Clayey Fill
P-10	6-Apr-20	n/a	n/a	401.3	430.7	391.0	39.8	n/a	CCR

Notes:

bgs below ground surface
btoc below top of casing
CCR coal combustion residuals
ft feet
ID identification
msl mean sea level
n/a not applicable
NM not measured

^{1.} Top of casing elevations, screen intervals, and screened formations were obtained from boring logs, well detail and well survey data.

^{2.} For piezometers, ground surface elevation, pore water elevations, and piezometer data obtained from the geotechnical instrumentation database. Data from automated piezometers are averaged for the measurement date.

 $^{3. \ \ \}text{Pore water elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 \ \text{ft}.}$

^{4.} Temporary wells were not gauged during this event. Gauging and sampling of temporary wells did not commence until all temporary wells associated with the Exploratory Drilling scope were installed and developed. In select piezometers, as noted by "NM" above, pore water elevation data were not available for this event.

Analysis Type

Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Total Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
JOF-109	JOF-GW-021-20200407	Normal Environmental Sample	Х	Х	Х	Х	Х	X	Х	Х	Х
JOF-110	JOF-GW-022-20200407	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х
JOF-111	JOF-GW-023-20200407	Normal Environmental Sample	Х	Х	Х	Х	Х	Χ	Х	Х	Х
JOF-112	JOF-GW-024-20200407	Normal Environmental Sample	Х	Х	Х	Х	Х	X	Х	Х	Х
JOF-113	JOF-GW-025-20200408	Normal Environmental Sample	Х	X	X	Х	Х	X	Х	Х	Х
JOF-114	JOF-GW-026-20200408	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	X
JOF-117	JOF-GW-027-20200408	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	Х
JOF-118	JOF-GW-028-20200409	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	X
JOF-116	JOF-GW-DUP01-20200409	Field Duplicate Sample		Х	X	Х	Х	X	Х	Х	X
JOF-119	JOF-GW-029-20200409	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х

Notes:

 Total Metals
 SW-846 6020A

 Total Mercury
 SW-846 7470A

 Anions
 EPA 300.0/SW 9056

Alkalinity SM2320B
Total Dissolved Solids SM2540C
Radium-226 EPA 903.0
Radium-228 EPA 904.0
Radium-226+228 CALC
ID identification

Page 1 of 1

^{1.} Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

TABLE B.3 – Summary of Groundwater Quality Parameters Johnsonville Fossil Plant April 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	JOF-109 7-Apr-20 JOF-GW-021-20200407 39 ft Normal Environmental Sample Final QC Review	JOF-110 7-Apr-20 JOF-GW-022-20200407 57 ft Normal Environmental Sample Final QC Review	JOF-111 7-Apr-20 JOF-GW-023-20200407 46 ft Normal Environmental Sample Final QC Review	JOF-112 7-Apr-20 JOF-GW-024-20200407 29.5 ft Normal Environmental Sample Final QC Review	JOF-113 8-Apr-20 JOF-GW-025-20200408 43.5 ft Normal Environmental Sample Final QC Review	JOF-114 8-Apr-20 JOF-GW-026-20200408 39.5 ft Normal Environmental Sample Final QC Review	JOF-117 8-Apr-20 JOF-GW-027-20200408 40.5 ft Normal Environmental Sample Final QC Review	JOF-118 9-Apr-20 JOF-GW-028-20200409 48.5 ft Normal Environmental Sample Final QC Review	JOF-119 9-Apr-20 JOF-GW-029-20200409 42.5 ft Normal Environmental Sample Final QC Review
Field Parameters										_
Dissolved Oxygen	%	33.1	4.2	6.1	3.5	4.1	2.9	1.1	11.6	22.1
									-	
Dissolved Oxygen	mg/L	3.18	0.39	0.59	0.33	0.39	0.27	0.09	1.08	2.27
Dissolved Oxygen ORP	mg/L mV	3.18 113.4	0.39 52.0	0.59 108.7	0.33 19.9	0.39 87.9	0.27 145.5	0.09 -121.3	-	48.0
							-		1.08	
ORP	mV	113.4	52.0	108.7	19.9	87.9	145.5	-121.3	1.08 69.5	48.0
ORP pH (field)	mV SU	113.4 5.17 164.1	52.0 5.46	108.7 5.42	19.9 6.10	87.9 5.81	145.5 4.45	-121.3 6.49	1.08 69.5 5.92	48.0 6.32

Notes:

percent conductance degrees Celsius feet below top of casing % Cond. DEG C ft
ID
mg/L
mV
NTU
ORP
SU
uS/cm identification milligrams per Liter milliVolts

Nephelometric Turbidity Unit
Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

Standard Units

microSiemens per centimeter

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant April 2020

Sample Location Sample Date Sample ID Sample Depth				JOF-109 7-Apr-20 JOF-GW-021-20200407 39 ft	JOF-110 7-Apr-20 JOF-GW-022-20200407 57 ft	JOF-111 7-Apr-20 JOF-GW-023-20200407 46 ft	JOF-112 7-Apr-20 JOF-GW-024-20200407 29.5 ft	JOF-113 8-Apr-20 JOF-GW-025-20200408 43.5 ft	JOF-114 8-Apr-20 JOF-GW-026-20200408 39.5 ft	JOF-117 8-Apr-20 JOF-GW-027-20200408 40.5 ft
Sample Type Level of Review	Units	EPA MCLs	COD Dula OM/DO	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified
Total Metals	Units	EPA MCLS	CCR Rule GWPS							
Antimony	ug/L	6 ^A	n/v	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	10 ^A	n/v	<2.00	2.07 J	3.02 J	<2.00	<2.00	2.15 J	32.1 ^A
Barium	ug/L	2,000 ^A	n/v	14.7	65.4	24.5	55.4	23.5	21.5	88.8
Beryllium	ug/L	4 ^A	n/v	0.391 J	<0.200	0.310 J	<0.200	<0.200	0.767	<0.200
Boron	ug/L	n/v	n/v	71.7	1,460	4,550	36.2	16,100	12,500	15.6
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	0.418 J	0.523 J	1.64	<0.300	<0.300
Calcium	ug/L	n/v	n/v	16,500	18,600	419,000	34,600	590,000	543,000	96,700
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	n/v	6 ^B	0.467 J	3.69	218 ^B	105 ^B	3.34	68.2 ^B	21.5 ^B
Copper	ug/L	n/v	n/v	0.941 J	<0.300	<0.300	<0.300	0.325 J	1.32 J	<0.300
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	3.15 J	<3.00	118 ^B	83.4 ^B	<3.00
Magnesium	ug/L	n/v	n/v	5,140	4,990	19,300	14,000	6,520	58,300	30,300
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	< 0.0670
Molybdenum	ug/L	n/v	100 ^B	<0.200	0.244 J	9.66	0.923 J	229 ^B	<0.200	29.6
Nickel	ug/L	100 _(TN MCL) A	n/v	22.4	8.34	57.3	8.93	113 ^A	17.9	5.94
Potassium	ug/L	n/v	n/v	1,290	331	47,000	1,030	64,700	113,000	3,000
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	n/v	n/v	6,980	36,800	247,000	26,000	46,200	333,000	34,900
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	<0.600	0.823 J	<0.600	<0.600
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	n/v	n/v	47.3	6.21 U*	111	12.4 U*	234	51.9	3.61 U*
Anions										
Chloride	mg/L	n/v	n/v	39.2	49.3	643	34.8	64.8	257	77.8
Fluoride	mg/L	4 ^A	n/v	0.105	0.402	0.271	0.390	<0.330	<0.330	0.864
Sulfate	mg/L	n/v	n/v	4.09	23.8	783	58.2	1,530	2,100	7.30
General Chemistry	-									
Alkalinity, Bicarbonate	mg/L	n/v	n/v	12.5	42.3	19.0	94.3	15.7	<1.45	332
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	12.5	42.3	19.0	94.3	15.7	<1.45	332
Total Dissolved Solids	mg/L	n/v	n/v	281 J	181 J	2,280	279 J	2,390	3,350	454

See notes on last page.

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant April 2020

Sample Location				JOF-	118	JOF-119		
Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	9-Apr-20 JOF-GW-028-20200409 48.5 ft Normal Environmental Sample Final-Verified	9-Apr-20 JOF-GW-DUP01-20200409 48.5 ft Field Duplicate Sample Final-Verified	9-Apr-20 JOF-GW-029-20200409 42.5 ft Normal Environmental Sample Final-Verified		
Total Metals				'			=	
Antimony	ug/L	6 ^A	n/v	<1.00	<1.00	<1.00	_	
Arsenic	ug/L	10 ^A	n/v	2.18 J	2.25 J	<2.00		
Barium	ug/L	2,000 ^A	n/v	30.6	31.4	29.1		
Beryllium	ug/L	4 ^A	n/v	<0.200	<0.200	<0.200		
Boron	ug/L	n/v	n/v	65.5	63.9	28.5		
Cadmium	ug/L	5 ^A	n/v	0.382 J	0.353 J	<0.300		
Calcium	ug/L	n/v	n/v	40,600	42,100	21,200		
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	Notes:	
Cobalt	ug/L	n/v	6 ^B	3.02	3.08	0.723 J		
Copper	ug/L	n/v	n/v	<0.300	<0.300	<0.300		
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	Α	EPA Maximum Contaminant Level
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	<3.00	В	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
Magnesium	ug/L	n/v	n/v	7,140	7,330	4,210	n/v	No standard/guideline value
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	6.5 ^A	Concentration is greater than or equal to the indicated standard.
Molybdenum	ug/L	n/v	100 ^B	0.344 J	0.341 J	0.354 J	<0.03	analyte was not detected at a concentration greater than the Method Detection Limit
Nickel	ug/L	100 _(TN MCL) A	n/v	9.16	9.68	1.58 J	ft	feet below top of casing
Potassium	ug/L	n/v	n/v	1,300	1,290	1,930	ID	identification
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	J	quantitation is approximate due to limitations identified during data validation
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	mg/L	milligrams per Liter
Sodium	ug/L	n/v	n/v	44,500	46,000	45,600	U*	result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	ug/L	micrograms per Liter
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30		
Zinc	ug/L	n/v	n/v	10.1 U*	10.6 U*	6.82 U*	_1. Leve	of review is defined in the Quality Assurance Project Plan.
Anions						T	_	
Chloride	mg/L	n/v	n/v	14.2	13.8	22.3		
Fluoride	mg/L	4 ^A	n/v	0.498	0.523	0.420		
Sulfate General Chemistry	mg/L	n/v	n/v	127	125	53.1	_	
	1 ,, 1		,	04.0	01.0	140	_	
Alkalinity, Bicarbonate	mg/L	n/v	n/v	64.8	64.0	118		
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45	<1.45	<1.45		
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	64.8	64.0	118		
Total Dissolved Solids	mg/L	n/v	n/v	259	254	199	_	

Page 2 of 2

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant April 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-109 7-Apr-20 JOF-GW-021-20200407 39 ft Normal Environmental Sample Final-Verified	JOF-110 7-Apr-20 JOF-GW-022-20200407 57 ft Normal Environmental Sample Final-Verified	JOF-111 7-Apr-20 JOF-GW-023-20200407 46 ft Normal Environmental Sample Final-Verified	JOF-112 7-Apr-20 JOF-GW-024-20200407 29.5 ft Normal Environmental Sample Final-Verified	JOF-113 8-Apr-20 JOF-GW-025-20200408 43.5 ft Normal Environmental Sample Final-Verified	JOF-114 8-Apr-20 JOF-GW-026-20200408 39.5 ft Normal Environmental Sample Final-Verified
Radiological Parameters									_
Radium-226	pCi/L	n/v	n/v	0.680 +/-(0.500)U	0.588 +/-(0.537)U	0.799 +/-(0.406)	2.50 +/-(0.714)	3.07 +/-(0.801)	1.92 +/-(0.603)
Radium-228	pCi/L	n/v	n/v	0.0308 +/-(0.254)U	0.599 +/-(0.382)U*	0.759 +/-(0.519)U*	0.635 +/-(0.497)U	1.13 +/-(0.733)	2.04 +/-(0.702)
Radium-226+228	pCi/L	5 ^A	n/v	0.711 +/-(0.561)U	1.19 +/-(0.659)U*	1.56 +/-(0.659)J	3.13 +/-(0.870)J	4.21 +/-(1.09)	3.96 +/-(0.925)

See notes on last page.

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant April 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review				JOF-117 8-Apr-20 JOF-GW-027-20200408 40.5 ft Normal Environmental Sample Final-Verified	JOF-118 9-Apr-20		JOF-119 9-Apr-20 JOF-GW-029-20200409 42.5 ft Normal Environmental Sample Final-Verified
		EPA MCLs	CCR Rule GWPS				
Radiological Parameters							
Radium-226	pCi/L	n/v	n/v	1.72 +/-(0.570)	0.751 +/-(0.648)U	1.21 +/-(0.707)	0.241 +/-(0.541)U
Radium-228	pCi/L	n/v	n/v	0.589 +/-(0.364)	0.757 +/-(0.647)U	-0.514 +/-(0.374)U	0.287 +/-(0.407)U
Radium-226+228	pCi/L	5 ^A	n/v	2.31 +/-(0.677)	1.51 +/-(0.916)U	1.21 +/-(0.800)J	0.527 +/-(0.677)U

Notes:

A EPA Maximum Contaminant Level

B CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value

ft feet below top of casing

ID identification

J quantitation is approximate due to limitations identified during data validation

pCi/L picoCurie per Liter
U not detected

U* this result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level.

^{1.} Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.6

GROUNDWATER INVESTIGATION EVENT #4 SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Groundwater Investigation Event #4 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

October 29, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	July 30, 2021
1	Addresses October 18, 2021 TDEC Review Comments and Issued for TDEC	October 29, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Groundwater Investigation Event #4 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staff

Reviewed by

Carole M. Farr, Senior Principal Geologist

Brigid Zvirbulis, Project Manager

Table of Contents

ABB	REVIATIO	ONS	11
1.0	INTRO	DUCTION	1
2.0	OBJEC	CTIVE AND SCOPE	3
3.0	FIELD /	ACTIVITIES	4
3.1		LOCATIONS	
3.2	DOCUN	MENTATION	5
	3.2.1	Field Forms	5
	3.2.2	Equipment Calibration	7
3.3	SAMPL	ING METHODS	7
	3.3.1	Static Water Level Measurements	7
	3.3.2	Groundwater Purging & Sampling	8
3.4	INVEST	TIGATION DERIVED WASTE	9
3.5	SAMPL	E SHIPMENT	9
3.6	VARIAT	TIONS	9
	3.6.1		
	3.6.2	Variations in Procedure	
4.0	SUMMA	ARY	11
5.0	REFER	RENCES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

- Exhibit A.1 Monitoring Well and Piezometer Network
- Exhibit A.2 Groundwater Elevation Contour Map, Event #4 (June 8-9, 2020)
- Exhibit A.3 Pore water Elevation Contour Map, Event #4 (June 8, 2020)

APPENDIX B - TABLES

- Table B.1a Groundwater Level Measurements
- Table B.1b Pore Water Level Measurements
- Table B.2 Summary of Groundwater Samples
- Table B.3 Summary of Groundwater Quality Parameters
- Table B.4 Groundwater Analytical Results for Metals, Anions, and General Chemistry
- Table B.5 Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CEC Civil and Environmental Consultants, Inc.

CFR Code of Federal Regulations

COC Chain-of-Custody
DO Dissolved Oxygen

EAR Environmental Assessment Report EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.

Event #4 Groundwater investigation field event performed June 8-11, 2020

FSP Field Sampling Personnel

ft Feet

GEL Laboratories LLC

ID Identification

IDWInvestigation Derived WasteJOF PlantJohnsonville Fossil Plant

mg/L Milligrams per Liter

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
PPE Personal Protective Equipment
QAPP Quality Assurance Project Plan

QC Quality Control

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

Introduction October 29, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed June 8-11, 2020 (Event #4) at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The purpose of the groundwater investigation, upon completion of the six groundwater sampling events, is to characterize groundwater conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #4 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #4 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #4 is the fourth in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina. Quality assurance oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Introduction October 29, 2021

This report summarizes the groundwater investigation activities for Event #4. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the JOF Plant are made and documented in the EAR.

Objective and Scope October 29, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the JOF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of the direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #4, performed in June 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells as specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the JOF Plant Hydrogeologic Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data. Groundwater piezometer installation activities are described in the JOF Plant Hydrogeologic Investigation SAR. Temporary well installation activities are described in the JOF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the JOF Plant CCR Material Characteristics SAR.

Field Activities October 29, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #4 were conducted June 8-11, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency (USEPA) documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation. In addition, on behalf of TDEC, Civil and Environmental Consultants, Inc. (CEC) collect split groundwater samples during this sampling event. Additional information regarding CEC split sample collection is provided in Section 3.3.2.

During Event #4, Stantec conducted the following field activities:

- Measured groundwater levels at nine monitoring wells and one piezometer installed for the TDEC Order, and 19 monitoring wells and nine piezometers installed for other environmental programs (28 total monitoring wells)
- Measured pore water levels at 15 temporary wells and 13 piezometers in the CCR units
- Measured the surface water level at one location in the Tennessee River/Kentucky Lake
- · Collected groundwater samples from nine monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, three field blanks, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the JOF Plant (Ash Disposal Area 1, Active Ash Pond 2, DuPont Road Dredge Cell, South Rail Loop Area 4, and Coal Yard) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #4 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the JOF Plant for TDEC Solid Waste Management permit requirements and the USEPA CCR Rule codified in Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). Monitoring wells that are being sampled as part of other programs are not sampled as part of the groundwater investigation for the TDEC Order.

Field Activities October 29, 2021

Groundwater levels were measured in TDEC Order monitoring wells and piezometer, as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the JOF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and other environmental programs will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Level Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

Field Activities October 29, 2021

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring and temporary well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. Stantec documented observations and conditions on a well inspection form for this event.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer identification (ID), serial number, time, digits, and temperature. The readings were used to calculate the pressure head (feet [ft] of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.5 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well ID, time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in ft below top of casing.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness,

Field Activities October 29, 2021

and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding COC. COCs were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lexington-Parsons Regional Airport in Darden, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #4.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 28 monitoring wells and pore water levels at 15 temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On June 8, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*. A groundwater level measurement was not obtained at monitoring well A-3 because the well cap was stuck and could not be removed.

On June 9, 2020, Stantec calculated the static groundwater level at vibrating wire piezometer JOF-116-PZ. FSP recorded the measured readings and temperature using a vibrating wire readout instrument on a *Vibrating Wire Piezometer Measurement Form*. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain groundwater elevation.

Groundwater and pore water measurements were also obtained from transducers installed within nine and 13 piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River/Kentucky Lake was provided by TVA using the reading closest to noon recorded by an automated staff gauge. The surface water staff gauge location is shown on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements made in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a

Field Activities October 29, 2021

pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples were collected from nine monitoring wells as shown in Table B.2 in Appendix B. Split samples collected by CEC during Event #4 are also identified in Table B.2. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP and/or applicable TI. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations at the JOF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line. Turbidity readings at wells stabilized below 5 NTUs, therefore samples were not collected for dissolved metals analysis. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control*.

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 CFR 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-

Field Activities October 29, 2021

.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with JOF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the JOF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the JOF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and secured under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina. The laboratory submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As dicussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #4 at the JOF Plant.

Field Activities October 29, 2021

3.6.1 Variations in Scope

Variations in scope are provided below.

- Groundwater level gauging and sampling was not performed at well JOF-108 as specified in the SAP because it was not installed (the five borings drilled in that area encountered CCR and/or shallow refusal). This change in scope was approved by TDEC.
- Groundwater level gauging was not performed at monitoring well A-3 during this event as specified in the SAP because the well cap was stuck and could not be removed. A groundwater elevation contour map was prepared based on available static groundwater level measurements from this event. Groundwater level measurements were taken in well A-3 during other events for evaluation in the EAR.

3.6.2 Variations in Procedure

Variations in procedures occurring in the field are provided below.

- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations
- GEL was used as the laboratory for non-radium sample analysis in place of Eurofins TestAmerica. This change was approved by TVA and TDEC prior to field work.

Summary October 29, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #4 at the JOF Plant. The scope of work for Event #4 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data.

Event #4 included collecting groundwater level measurements at 28 monitoring wells and 10 piezometers; pore water measurements at 15 temporary wells and 13 piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River/Kentucky Lake. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1b, and depicted on Exhibits A.2 and A.3.

Water quality measurements and groundwater analytical samples were collected at nine monitoring wells as summarized in Table B.2. Water quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the nine sampling locations. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and then validated or verified by EnvStds.

Stantec has completed Event #4 of the groundwater investigation at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #4 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this event will be evaluated along with data collected during the remaining groundwater sampling events and under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References October 29, 2021

5.0 REFERENCES

Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.

Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Stantec. 2018b. *Environmental Investigation Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

TVA, ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.

TVA, ENV-TI-05.80.42, Groundwater Sampling.

TVA, ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA, ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

A.1

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-05-24 Technical Review by MD on 2021-05-24 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

A.2

Groundwater Elevation Contour Map, Event #4 (June 8-9, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-06-01 Technical Review by MD on 2021-06-01 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well groundwater elevation in feet above mean sea level (ft amsl)
- Other Monitoring Well groundwater elevation in ft amsl
 - Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2)
- pore water elevation in ft amsl; value not used for contouring Temporary well in CCR
- pore water elevation in ft amsl; value not used for contouring
 - Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl
- Interpolated Groundwater Contour (5 ft interval; elevations are in ft amsl)
 - Groundwater Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate) Coal Yard (Approximate)

CCR: Coal combustion residuals

NM: Not measured; data not available

ater and pore water elevation displayed but not used as input for contourin due to factors such as well construction or being screened in a different hydrogeologic unit.

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the

trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

****The B-12 groundwater elevation is approximately 9 feet below the trend for that well established during other SAR events. The groundwater elevation is displayed but not used in contouring for this event.

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet

- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
- 3. Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment

A.3

Pore water Elevation Contour Map, Event #4 (June 8, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 New Johnsonville, Tennessee Prepared by DMB on 2021-10-25 Technical Review by MD on 2021-10-25

1,350

1:5,400 (At original document size of 22x34)

Legend

Groundwater Investigation Monitoring Well

- groundwater elevation in feet above mean sea level (ft amsl); value not used for contouring
- Other Monitoring Well
- groundwater elevation in ft amsl; value not used for contouring Piezometer, groundwater label in blue text,
- pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2) elevation in ft amsl
- pore water elevation in ft amsl
- Temporary well in CCR
- pore water elevation in ft amsl
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl
- Interpolated Pore water Contour (5 ft interval; elevations are in ft

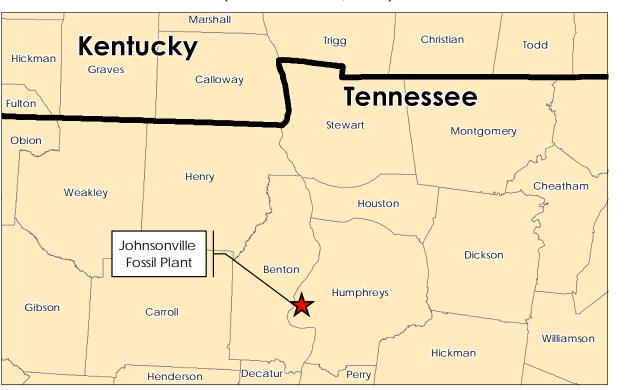
Pore water Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

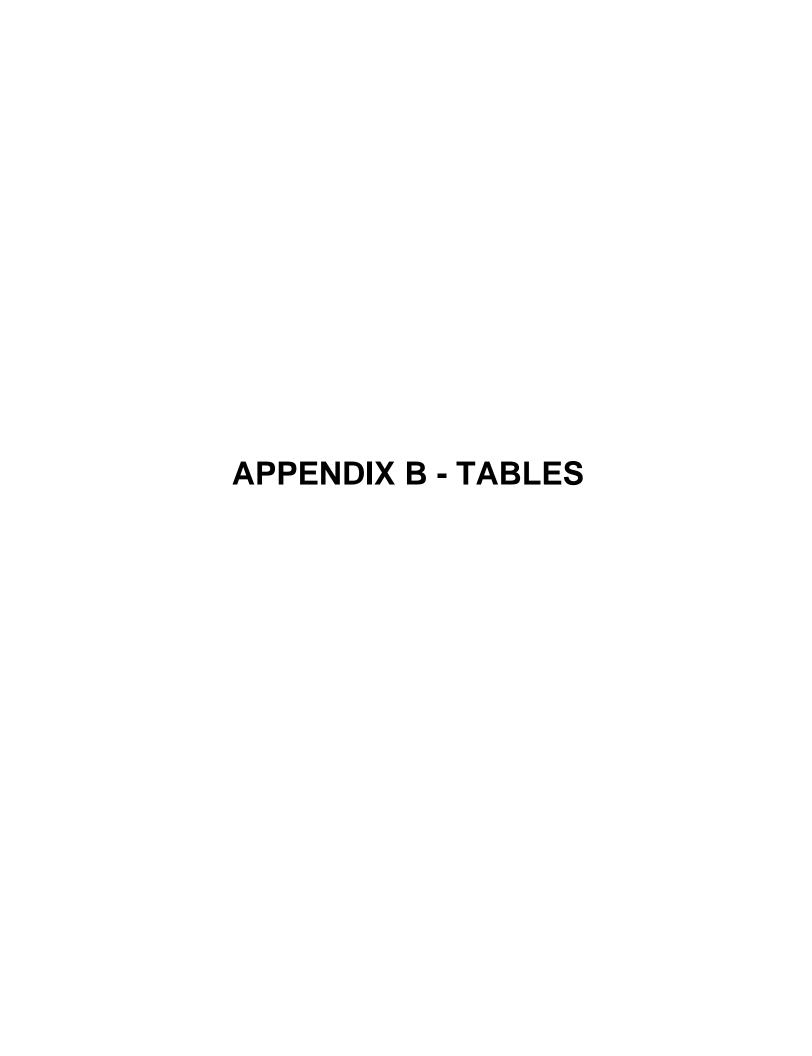
2018 Imagery Boundary

CCR Unit Area (Approximate) Coal Yard (Approximate)

CCR: Coal combustion residuals


NM: Not measured; data not available

*Groundwater and pore water elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.


**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The TW03 pore water elevation is approximately 16 feet above the trend for that well established during subsequent SAR events. The pore water elevation is displayed but not used in contouring for this event.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
- 3. Pore water contours were created using manual adjustment and Surfer Version 16.1.350 (December 13, 2018)

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells		_		ı			1		1	1
JOF-00-GW-43-001	10-AP1	8-Jun-20	11.67	370.51	358.84	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
JOF-00-GW-43-002	10-AP3	8-Jun-20	8.21	367.27	359.06	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	8-Jun-20	25.34	401.19	375.85	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
JOF-00-GW-43-004	94-B16	8-Jun-20	13.01	390.53	377.52	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
JOF-00-GW-43-005	99-B19	8-Jun-20	16.18	394.50	378.32	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
JOF-00-GW-43-006	99-B20A	8-Jun-20	29.43	408.88	379.45	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
IOF-00-GW-43-007	B-6R	8-Jun-20	17.81	395.57	377.76	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
JOF-00-GW-43-008	B-8R	8-Jun-20	11.44	391.04	379.60	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
IOF-00-GW-43-009	B-9	8-Jun-20	26.10	423.88	397.78	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
IOF-00-GW-43-010	B-11	8-Jun-20	20.15	400.67	380.52	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
JOF-00-GW-43-011	B-12	8-Jun-20	20.97	393.03	372.06	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
JOF-00-GW-43-012	B-13	8-Jun-20	28.49	409.87	381.38	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
IOF-00-GW-43-013	JOF-101	8-Jun-20	24.36	424.59	400.23	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
IOF-00-GW-43-014	JOF-102	8-Jun-20	18.62	407.64	389.02	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
OF-00-GW-43-015	JOF-103	8-Jun-20	14.88	374.24	359.36	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
OF-00-GW-43-016	JOF-104	8-Jun-20	20.25	379.44	359.19	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
OF-00-GW-43-017	JOF-105	8-Jun-20	27.00	406.15	379.15	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
OF-00-GW-43-018	A-3	n/a	NM	403.73	NM	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
OF-00-GW-43-019	JOF-106	8-Jun-20	22.29	403.16	380.87	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
OF-00-GW-43-020	JOF-107	8-Jun-20	28.60	409.95	381.35	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
OF-00-GW-43-021	JOF-109	8-Jun-20	5.68	386.11	380.43	n/a	n/a	n/a	34.1 - 43.9	Alluvium
OF-00-GW-43-022	JOF-110	8-Jun-20	17.71	388.76	371.05	n/a	n/a	n/a	52.3 - 62.1	Alluvium
OF-00-GW-43-023	JOF-111	8-Jun-20	19.32	390.08	370.76	n/a	n/a	n/a	41.3 - 51.1	Clay
OF-00-GW-43-024	JOF-112	8-Jun-20	17.26	394.48	377.22	n/a	n/a	n/a	24.9 - 34.7	Alluvium
OF-00-GW-43-025	JOF-113	8-Jun-20	28.57	388.13	359.56	n/a	n/a	n/a	39.6 - 49.4	Alluvium
OF-00-GW-43-026	JOF-114	8-Jun-20	28.78	388.36	359.58	n/a	n/a	n/a	34.7 - 44.5	Alluvium
IOF-00-GW-43-027	JOF-117	8-Jun-20	24.96	388.63	363.67	n/a	n/a	n/a	35.0 - 44.8	Alluvium
OF-00-GW-43-028	JOF-118	8-Jun-20	13.46	372.69	359.23	n/a	n/a	n/a	43.9 - 53.7	Alluvium
IOF-00-GW-43-029	JOF-119	8-Jun-20	7.74	366.89	359.15	n/a	n/a	n/a	38.0 - 47.8	Alluvium
Piezometers	001 110	0 0411 20		000.00	555.15	170	1114	110	00.0 11.0	, utarian
/a	JOF-B-2A-PZ3	8-Jun-20	n/a	n/a	358.4	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
/a	JOF-C-2A-PZ3	8-Jun-20	n/a	n/a	359.6	392.8	326.8	66.0	n/a	Alluvial Sand and Gravel
/a /a	JOF-C-2B-PZ2	8-Jun-20	n/a	n/a	358.1	370.6	321.6	49.0	n/a	Alluvial Sand and Gravel
/a /a	JOF-E-2A-PZ2	8-Jun-20	n/a	n/a	358.3	390.9	327.9	63.0	n/a	Alluvial Sand and Gravel
/a /a	JOF-E-2B-PZ2	8-Jun-20	n/a	n/a	357.5	365.4	310.4	55.0	n/a	Alluvial Sand and Gravel
√a √a	JOF-K-2A-PZ1	8-Jun-20	n/a	n/a	360.3	377.5	327.5	50.0	n/a	Alluvial Sand and Gravel Alluvial Sand and Gravel
	JOF_PZET		n/a		355.3	363.8	327.5	34.0	n/a n/a	Alluvial Sand and Gravel Alluvial Clay and Silt and Alluvial Sand and Gravel
/a /a	_	8-Jun-20 8-Jun-20		n/a	356.0	362.9	329.8	35.3	n/a n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel Alluvial Clay and Silt and Alluvial Sand and Gravel
	JOF_PZFT		n/a	n/a						,
/a	JOF_PZHT	8-Jun-20	n/a	n/a	359.3	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
/a	JOF-116-PZ	9-Jun-20	n/a	n/a	372.4	388.0	342.0	46.0	n/a	Alluvium

See notes on last page.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater ft btoc	Top of Casing Elevation ft msl	Groundwater Elevation ft msl	Piezometer Ground Surface Elevation ft msl	Piezometer Sensor Elevation ft msl	Piezometer Sensor Depth ft bgs	Screened Interval ft btoc	Screened / Piezometer Sensor Formation
Surface Water Gauge									•	•
Tennessee River/Kentucky Lake gauge (GS-1)	n/a	8-Jun-20	n/a	n/a	359.12	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msl mean sea level
n/a not applicable
NM not measured
UNID Unique Numerical Identification

- 1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.
- 2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.
- 3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information was obtained from boring logs. Data from automated piezometers are averaged for the measurement date.
- 4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.
- 5. A groundwater level was not measured in well A-3 because the well was unable to be opened.

Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formatio
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									
JOF-TW01	8-Jun-20	13.62	396.33	382.71	n/a	n/a	n/a	24.8 - 34.6	CCR
JOF-TW02	8-Jun-20	17.36	397.38	380.02	n/a	n/a	n/a	25.5 - 35.3	CCR
JOF-TW03	8-Jun-20	12.87	409.49	396.62	n/a	n/a	n/a	40.4 - 50.2	CCR
JOF-TW04	8-Jun-20	11.57	394.25	382.68	n/a	n/a	n/a	25.9 - 35.7	CCR
JOF-TW05	8-Jun-20	11.38	393.44	382.06	n/a	n/a	n/a	36.2 - 46.0	CCR
JOF-TW06	8-Jun-20	22.81	395.13	372.32	n/a	n/a	n/a	26.5 - 36.3	CCR
JOF-TW07	8-Jun-20	29.23	402.92	373.69	n/a	n/a	n/a	32.2 - 42.0	CCR
JOF-TW08	8-Jun-20	9.84	387.22	377.38	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW09	8-Jun-20	15.04	387.52	372.48	n/a	n/a	n/a	15.8 - 25.6	CCR
JOF-TW10	8-Jun-20	8.70	384.92	376.22	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW11	8-Jun-20	38.11	440.13	402.02	n/a	n/a	n/a	31.6 - 41.4	CCR
JOF-TW12	8-Jun-20	42.31	444.17	401.86	n/a	n/a	n/a	36.1 - 45.9	CCR
JOF-TW13	8-Jun-20	38.73	441.39	402.66	n/a	n/a	n/a	33.3 - 43.1	CCR
JOF-TW15	8-Jun-20	65.26	451.71	386.45	n/a	n/a	n/a	55.0 - 64.8	CCR
JOF-TW16	8-Jun-20	80.75	473.81	393.06	n/a	n/a	n/a	72.9 - 82.7	CCR
Piezometers									
JOF-E-2A-PZ5	8-Jun-20	n/a	n/a	383.1	390.9	370.9	20.0	n/a	CCR
JOF_PZEC	8-Jun-20	n/a	n/a	382.9	390.4	365.4	25.0	n/a	CCR and Dike Fill
JOF_PZFC	8-Jun-20	n/a	n/a	384.5	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZGC	8-Jun-20	n/a	n/a	377.7	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZHC	8-Jun-20	n/a	n/a	382.2	390.0	365.8	24.2	n/a	CCR
JOF_PZIC	8-Jun-20	n/a	n/a	381.8	390.1	360.1	30.0	n/a	CCR and Dike Fill
JOF_PZJC	8-Jun-20	n/a	n/a	381.6	390.0	365.0	25.0	n/a	CCR
IOF_PZKC	8-Jun-20	n/a	n/a	380.3	390.5	365.5	25.0	n/a	CCR
JOF_PZLC	8-Jun-20	n/a	n/a	380.0	390.5	365.5	25.0	n/a	CCR
JOF_PZMC	8-Jun-20	n/a	n/a	375.4	391.1	366.1	25.0	n/a	CCR and Dike Fill
P-8	8-Jun-20	n/a	n/a	400.0	432.8	394.5	38.3	n/a	CCR
p ₋ 9	8-Jun-20	n/a	n/a	395.6	432.9	393.8	39.2	n/a	CCR and Clayey Fill
P-10	8-Jun-20	n/a	n/a	401.6	430.7	391.0	39.8	n/a	CCR

Notes:

bgs below ground surface
btoc below top of casing
CCR coal combustion residuals
ft feet
ID identification
msl mean sea level
n/a not applicable

^{1.} Top of casing elevations, screen intervals, and screened formations were obtained from boring logs, well detail and well survey data.

^{2.} For piezometers, ground surface elevation, pore water elevations, and piezometer data obtained from the geotechnical instrumentation database. Data from automated piezometers are averaged for the measurement date.

^{3.} Pore water elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

Analysis Type	е	Tvi	/sis	Analy
---------------	---	-----	------	-------

Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Total Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
JOF-109	JOF-GW-021-20200609	Normal Environmental Sample	Х	X	Х	Х	Х	X	Х	Х	X
JOF-110	JOF-GW-022-20200611	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х
JOF-111	JOF-GW-023-20200611	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	X
JOF-112	JOF-GW-024-20200609	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	X
JOF-112	JOF-GW-DUP01-20200609	Field Duplicate Sample		X	Х	Х	Х	X	Х	Х	X
JOF-113	JOF-GW-025-20200610	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	X
JOF-114	JOF-GW-026-20200610	Normal Environmental Sample	Х	Х	Х	Х	Х	X	Х	Х	X
JOF-117	JOF-GW-027-20200611	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	X
JOF-118	JOF-GW-028-20200610	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	X
JOF-119	JOF-GW-029-20200609	Normal Environmental Sample	Х	X	Х	Х	Х	X	Х	Х	Х

Notes:

 Total Metals
 SW-846 6020A

 Total Mercury
 SW-846 7470A

 Anions
 EPA 300.0/SW 9056

Alkalinity SM2320B
Total Dissolved Solids SM2540C
Radium-226 EPA 903.0
Radium-228 EPA 904.0
Radium-226+228 CALC
ID identification

Page 1 of 1

^{1.} Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

^{2.} CEC collected split samples from JOF-111, JOF-114, and JOF-118.

TABLE B.3 – Summary of Groundwater Quality Parameters Johnsonville Fossil Plant June 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	JOF-109 9-Jun-20 JOF-GW-021-20200609 39 ft Normal Environmental Sample Final QC Review	JOF-110 11-Jun-20 JOF-GW-022-20200611 57 ft Normal Environmental Sample Final QC Review	JOF-111 11-Jun-20 JOF-GW-023-20200611 46 ft Normal Environmental Sample Final QC Review	JOF-112 9-Jun-20 JOF-GW-024-20200609 29.5 ft Normal Environmental Sample Final QC Review	JOF-113 10-Jun-20 JOF-GW-025-20200610 43.5 ft Normal Environmental Sample Final QC Review	JOF-114 10-Jun-20 JOF-GW-026-20200610 39.5 ft Normal Environmental Sample Final QC Review	JOF-117 11-Jun-20 JOF-GW-027-20200611 40.5 ft Normal Environmental Sample Final QC Review	JOF-118 10-Jun-20 JOF-GW-028-20200610 48.5 ft Normal Environmental Sample Final QC Review	JOF-119 9-Jun-20 JOF-GW-029-20200609 42.5 ft Normal Environmental Sample Final QC Review
Field Parameters										
Dissolved Oxygen	%	10.3	14.1	4.2	3.0	11.5	3.8	3.2	2.2	3.7
Dissolved Oxygen	mg/L	0.93	1.21	0.38	0.29	1.01	0.35	0.29	0.21	0.35
ORP	mV	122.6	74.0	34.3	52.2	143.3	101.7	-97.9	95.1	60.8
pH (field)	SU	5.17	5.43	5.80	6.10	5.84	4.70	6.41	5.68	6.06
Specific Cond. (Field)	uS/cm	188.1	303.4	3,420	418.4	2,377	3,727	1,032	368.4	384.0
Temperature, Water (C)	DEG C	20.0	21.1	19.4	17.4	21.5	19.7	19.8	18.9	17.5
			3.94	2 62	2.80		4 62	4 10		3.97

Notes:

percent conductance degrees Celsius feet below top of casing % Cond. DEG C ft
ID
mg/L
mV
NTU
ORP
SU
uS/cm identification milligrams per Liter milliVolts

Nephelometric Turbidity Unit
Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

Standard Units

microSiemens per centimeter

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant June 2020

Sample Location				JOF-109	JOF-110	JOF-111	JOF-	112	JOF-113	JOF-114
Sample Date Sample ID				9-Jun-20 JOF-GW-021-20200609	11-Jun-20 JOF-GW-022-20200611	11-Jun-20 JOF-GW-023-20200611	9-Jun-20 JOF-GW-024-20200609	9-Jun-20 JOF-GW-DUP01-20200609	10-Jun-20 JOF-GW-025-20200610	10-Jun-20 JOF-GW-026-20200610
Sample Depth				39 ft	57 ft	46 ft	29.5 ft	29.5 ft	43.5 ft	39.5 ft
Sample Type Level of Review				Normal Environmental Sample Final-Verified	Normal Environmental Sample Validated	Normal Environmental Sample Validated	Normal Environmental Sample Final-Verified	Field Duplicate Sample Final-Verified	Normal Environmental Sample Final-Verified	Normal Environmental Sample Final-Verified
T-4-1 M-4-1-	Units	EPA MCLs	CCR Rule GWPS							
Total Metals										
Antimony	ug/L	6 ^A	n/v	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	10 ^A	n/v	<2.00	<2.00	5.19	<2.00	<2.00	3.21 J	3.40 J
Barium	ug/L	2,000 ^A	n/v	14.2	75.1	30.9	60.7	57.1	23.4	20.5
Beryllium	ug/L	4 ^A	n/v	0.362 J	<0.200	<0.200	<0.200	<0.200	<0.200	0.784
Boron	ug/L	n/v	n/v	81.5	1,670	5,000	40.2	41.2	18,600	15,900
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	<0.300	0.523 J	0.531 J	2.01	<0.300
Calcium	ug/L	n/v	n/v	17,900	18,900	464,000	37,000	37,000	658,000	629,000
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	n/v	6 ^B	0.415 J	3.30	203 ^B	108 ^B	105 ^B	3.09	68.7 ^B
Copper	ug/L	n/v	n/v	0.910 J	0.419 U*	0.369 U*	<0.300	<0.300	0.343 U*	1.24 U*
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	3.10 J	<3.00	<3.00	128 ^B	87.6 ^B
Magnesium	ug/L	n/v	n/v	5,080	4,790	23,000	13,900	13,800	6,480	60,500
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	n/v	100 ^B	<0.200	0.200 U*	29.8	0.965 J	0.870 J	251 ^B	0.277 J
Nickel	ug/L	100 _(TN MCL) A	n/v	22.3	8.92	53.5	9.22	8.67	115 ^A	17.7 U*
Potassium	ug/L	n/v	n/v	1,360	380	56,900	1,070	1,070	79,600	122,000
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	n/v	n/v	7,820	35,600	272,000	29,500	29,300	58,500	390,000
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	<0.600	<0.600	0.874 J	<0.600
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	n/v	n/v	47.7	8.23 U*	101	12.5 J	11.7 J	247	50.6
Anions										
Chloride	mg/L	n/v	n/v	41.6	48.8 J	736 J	35.2	34.0	53.3	252
Fluoride	mg/L	4 ^A	n/v	0.0969 J	0.518	0.241 J	0.429	0.420	<0.0330	<0.0330
Sulfate	mg/L	n/v	n/v	4.25	27.3 J	930 J	62.7	61.7	1,510	2,050
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v	n/v	12.1	38.0	34.6	96.9	94.5	15.5	2.35 J
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	12.1	38.0	34.6	96.9	94.5	15.5	2.35 J
Total Dissolved Solids	mg/L	n/v	n/v	87.1	180	2,500	240	220	2,290	3,310
				See notes on last page.						

See notes on last page.

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant June 2020

							_	
Sample Location				JOF-117	JOF-118	JOF-119		
Sample Date				11-Jun-20	10-Jun-20	9-Jun-20		
Sample ID				JOF-GW-027-20200611	JOF-GW-028-20200610	JOF-GW-029-20200609		
Sample Depth				40.5 ft	48.5 ft	42.5 ft		
Sample Type				Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample		
Level of Review				Validated	Final-Verified	Final-Verified		
=	Units	EPA MCLs	CCR Rule GWPS				=	
Total Metals							_	
Antimony	ug/L	6 ^A	n/v	<1.00	<1.00	<1.00		
Arsenic	ug/L	10 ^A	n/v	28.4 ^A	2.81 J	3.11 J		
Barium	ug/L	2,000 ^A	n/v	88.9	25.6	40.4		
Beryllium	ug/L	4 ^A	n/v	<0.200	<0.200	<0.200		
Boron	ug/L	n/v	n/v	17.8 U*	76.9	40.2		
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	<0.300		
Calcium	ug/L	n/v	n/v	92,200	39,700	27,500		
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	Notes:	
Cobalt	ug/L	n/v	6 ^B	20.1 ^B	3.05	3.00		
Copper	ug/L	n/v	n/v	<0.300	<0.300	<0.300		
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	A	EPA Maximum Contaminant Level
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	<3.00	В	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
Magnesium	ug/L	n/v	n/v	28,900	6,300	4,640	n/v	No standard/guideline value
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	6.5 ^A	Concentration is greater than or equal to the indicated standard.
Molybdenum	ug/L	n/v	100 ^B	30.4	0.234 J	0.721 J	<0.03	analyte was not detected at a concentration greater than the Method Detection Limit
Nickel	ug/L	100 _(TN MCL) A	n/v	5.26 U*	8.03 U*	2.41	ft	feet below top of casing
Potassium	ug/L	n/v	n/v	2,790	1,270	1,720	ID	identification
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	J	quantitation is approximate due to limitations identified during data validation
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300		mg/L	milligrams per Liter
Sodium	ug/L	n/v	n/v	34,200	41,800	59,200	U*	result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	ug/L	micrograms per Liter
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30		
Zinc	ug/L	n/v	n/v	<3.30	5.50 U*	3.63 J	1. Leve	l of review is defined in the Quality Assurance Project Plan.
Anions							_	
Chloride	mg/L	n/v	n/v	81.6 J	11.6	22.9	_	
Fluoride	mg/L	4 ^A	n/v	0.957	0.480	0.407		
Sulfate	mg/L	n/v	n/v	7.27 J	100	44.9	_	
General Chemistry							_	
Alkalinity, Bicarbonate	mg/L	n/v	n/v	303	51.5	111		
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45	<1.45	<1.45		
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	303	51.5	111		
Total Dissolved Solids	mg/L	n/v	n/v	403	250	240	_	

Page 2 of 2

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant June 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-109 9-Jun-20 JOF-GW-021-20200609 39 ft Normal Environmental Sample Final-Verified	JOF-110 11-Jun-20 JOF-GW-022-20200611 57 ft Normal Environmental Sample Validated	JOF-111 11-Jun-20 JOF-GW-023-20200611 46 ft Normal Environmental Sample Validated	JOF- 9-Jun-20 JOF-GW-024-20200609 29.5 ft Normal Environmental Sample Final-Verified	9-Jun-20 9-Jun-20 JOF-GW-DUP01-20200609 29.5 ft Field Duplicate Sample Final-Verified	JOF-113 10-Jun-20 JOF-GW-025-20200610 43.5 ft Normal Environmental Sample Final-Verified
Radiological Parameters									
Radium-226	pCi/L	n/v	n/v	0.846 +/-(0.454)	0.328 +/-(0.424)U	1.87 +/-(0.930)	2.46 +/-(0.753)	3.31 +/-(0.897)	3.13 +/-(0.848)
Radium-228	pCi/L	n/v	n/v	-0.00890 +/-(0.355)U	0.0457 +/-(0.403)U	0.740 +/-(0.403)	0.0551 +/-(0.328)U	0.127 +/-(0.350)U	0.399 +/-(0.323)U
Radium-226+228	pCi/L	5 ^A	n/v	0.846 +/-(0.577)J	0.374 +/-(0.585)U	2.61 +/-(1.01)	2.52 +/-(0.822)J	3.44 +/-(0.963)J	3.53 +/-(0.907)J

See notes on last page.

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant June 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-114 10-Jun-20 JOF-GW-026-20200610 39.5 ft Normal Environmental Sample Final-Verified	JOF-117 11-Jun-20 JOF-GW-027-20200611 40.5 ft Normal Environmental Sample Validated	JOF-118 10-Jun-20 JOF-GW-028-20200610 48.5 ft Normal Environmental Sample Final-Verified	JOF-119 9-Jun-20 JOF-GW-029-20200609 42.5 ft Normal Environmental Sample Final-Verified
Radiological Parameters							
Radium-226	pCi/L	n/v	n/v	2.01 +/-(0.670)	2.61 +/-(0.748)	0.345 +/-(0.372)U	0.0436 +/-(0.211)U
Radium-228	pCi/L	n/v	n/v	2.12 +/-(0.738)	0.538 +/-(0.346)	-0.173 +/-(0.326)U	0.238 +/-(0.280)U

Notes:

A EPA Maximum Contaminant Level

CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value

t feet below top of casing

ID identification

J quantitation is approximate due to limitations identified during data validation

pCi/L picoCurie per Liter
U not detected

^{1.} Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.7

GROUNDWATER INVESTIGATION EVENT #5 SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Groundwater Investigation Event #5 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

October 29, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	July 30, 2021
1	Addresses October 18, 2021 TDEC Review Comments and Issued for TDEC	October 29, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Groundwater Investigation Event #5 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staff

Reviewed by

Carole M. Farr, Senior Principal Geologist

Brigid Zvirbulis, Project Manager

Table of Contents

ABBI	REVIATIO	DNS	II
1.0	INTRO	DUCTION	1
2.0	OBJEC	TIVE AND SCOPE	3
3.0	FIELD A	ACTIVITIES	4
3.1		LOCATIONS	
3.2	DOCUM	MENTATION	5
	3.2.1		
	3.2.2	Equipment Calibration	7
3.3		ING METHODS	
		Static Water Level Measurements	
	3.3.2	Groundwater Purging & Sampling	8
3.4	INVEST	FIGATION DERIVED WASTE	9
3.5	SAMPL	E SHIPMENT	9
3.6	VARIAT	FIONS	9
	3.6.1	Variations in Scope	10
	3.6.2	Variations in Procedure	10
4.0	SUMMA	ARY	11
5.0	REFER	ENCES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

- Exhibit A.1 Monitoring Well and Piezometer Network
- Exhibit A.2 Groundwater Elevation Contour Map, Event #5 (August 10-11, 2020)
- Exhibit A.3 Pore water Elevation Contour Map, Event #5 (August 10, 2020)

APPENDIX B - TABLES

- Table B.1a Groundwater Level Measurements
- Table B.1b Pore Water Level Measurements
- Table B.2 Summary of Groundwater Samples
- Table B.3 Summary of Groundwater Quality Parameters
- Table B.4 Groundwater Analytical Results for Metals, Anions, and General Chemistry
- Table B.5 Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CFR Code of Federal Regulations

COC Chain-of-Custody
DO Dissolved Oxygen

EAR Environmental Assessment Report EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.

Event #5 Groundwater investigation field event performed August 10-13, 2020

FSP Field Sampling Personnel

ft Feet

GEL Laboratories LLC

ID Identification

IDWInvestigation Derived WasteJOF PlantJohnsonville Fossil Plantmg/LMilligrams per Liter

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
PPE Personal Protective Equipment
QAPP Quality Assurance Project Plan

QC Quality Control

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

Introduction October 29, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed August 10-13, 2020 (Event #5) at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The purpose of the groundwater investigation, upon completion of the six groundwater sampling events, is to characterize groundwater conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #5 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #5 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #5 is the fifth in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina. Quality assurance oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Introduction October 29, 2021

This report summarizes the groundwater investigation activities for Event #5. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the JOF Plant are made and documented in the EAR.

Objective and Scope October 29, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the JOF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of the direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #5, performed in August 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells as specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the JOF Plant Hydrogeologic Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data. Groundwater piezometer installation activities are described in the JOF Plant Hydrogeologic Investigation SAR. Temporary well installation activities are described in the JOF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the JOF Plant CCR Material Characteristics SAR.

Field Activities October 29, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #5 were conducted August 10-13, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency (USEPA) documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During Event #5, Stantec conducted the following field activities:

- Measured groundwater levels at nine monitoring wells and one piezometer installed for the TDEC Order, and 20 monitoring wells and nine piezometers installed for other environmental programs (29 total monitoring wells)
- Measured pore water levels at 15 temporary wells and 13 piezometers in the CCR units
- Measured the surface water level at one location in the Tennessee River/Kentucky Lake
- Collected groundwater samples from nine monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, two field blanks, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the JOF Plant (Ash Disposal Area 1, Active Ash Pond 2, DuPont Road Dredge Cell, South Rail Loop Area 4, and Coal Yard) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #5 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the JOF Plant for TDEC Solid Waste Management permit requirements and the USEPA CCR Rule codified in Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). Monitoring wells that are being sampled as part of other programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells and piezometer, as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in

Field Activities October 29, 2021

Appendix B, to provide information to prepare groundwater contour maps for this SAR and the JOF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and other environmental programs will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Level Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring and temporary well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well*

Field Activities October 29, 2021

Inspection Checklist. Stantec documented observations and conditions on a well inspection form for this event.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer identification (ID), serial number, time, digits, and temperature. The readings were used to calculate the pressure head (feet [ft] of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.5 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well ID, time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in ft below top of casing.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*.

Field Activities October 29, 2021

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lexington-Parsons Regional Airport in Darden, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #5.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 29 monitoring wells and pore water levels at 15 temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On August 10-11, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Stantec calculated the static groundwater level at vibrating wire piezometer JOF-116-PZ. FSP recorded the measured readings and temperature using a vibrating wire readout instrument on a *Vibrating Wire Piezometer Measurement Form.* The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain groundwater elevation.

Groundwater and pore water measurements were also obtained from transducers installed within nine and 13 piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River/Kentucky Lake was provided by TVA using the reading closest to noon recorded by an automated staff gauge. The surface water staff gauge location is shown on Exhibit A.1 in Appendix A.

Groundwater and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements made in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

Field Activities October 29, 2021

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples were collected from nine monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP and/or applicable TI. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations at the JOF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line. Turbidity readings at wells stabilized below 5 NTUs, therefore samples were not collected for dissolved metals analysis. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control*.

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 CFR 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC

Field Activities October 29, 2021

Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- · General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with JOF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the JOF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the JOF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and secured under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina. The laboratory submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #5 at the JOF Plant.

Field Activities October 29, 2021

3.6.1 Variations in Scope

Variations in scope are provided below.

 Groundwater level gauging and sampling was not performed at well JOF-108 as specified in the SAP because it was not installed (the five borings drilled in that area encountered CCR and/or shallow refusal). This change in scope was approved by TDEC.

3.6.2 Variations in Procedure

Variations in procedures occurring in the field are provided below.

- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations
- GEL was used as the laboratory for non-radium sample analysis in place of Eurofins TestAmerica. This change was approved by TVA and TDEC prior to field work.

Summary October 29, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #5 at the JOF Plant. The scope of work for Event #5 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data.

Event #5 included collecting groundwater level measurements at 29 monitoring wells and 10 piezometers; pore water measurements at 15 temporary wells and 13 piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River/Kentucky Lake. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1b, and depicted on Exhibits A.2 and A.3.

Water quality measurements and groundwater analytical samples were collected at nine monitoring wells as summarized in Table B.2. Water quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the nine sampling locations. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and then validated or verified by EnvStds.

Stantec has completed Event #5 of the groundwater investigation at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #5 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this event will be evaluated along with data collected during the remaining groundwater sampling events and under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References October 29, 2021

5.0 REFERENCES

Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.

Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Stantec. 2018b. *Environmental Investigation Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

TVA, ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.

TVA, ENV-TI-05.80.42, Groundwater Sampling.

TVA, ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA, ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-05-24 Technical Review by MD on 2021-05-24 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

Groundwater Elevation Contour Map, Event #5 (August 10-11, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-06-01 Technical Review by MD on 2021-06-01 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well groundwater elevation in feet above mean sea level (ft amsl)
- Other Monitoring Well groundwater elevation in ft amsl
- Piezometer, groundwater label in blue text,
- pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2) elevation in ft amsl
- pore water elevation in ft amsl; value not used for contouring Temporary well in CCR
- pore water elevation in ft amsl; value not used for contouring
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl
- Interpolated Groundwater Contour (5 ft interval; elevations
- Groundwater Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

*Groundwater and pore water elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
- 3. Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment

Pore water Elevation Contour Map, Event #5 (August 10, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-10-25 New Johnsonville, Tennessee Technical Review by MD on 2021-10-25

1,350

1:5,400 (At original document size of 22x34)

Legend

Groundwater Investigation Monitoring Well

- groundwater elevation in feet above mean sea level (ft amsl); value not used for contouring
- Other Monitoring Well
- groundwater elevation in ft amsl; value not used for contouring Piezometer, groundwater label in blue text,
- pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ5) elevation in ft amsl
- pore water elevation in ft amsl
- Temporary well in CCR pore water elevation in ft amsl
- Tennessee River/Kentucky Lake Gauging Station
- surface water elevation in ft amsl

Interpolated Pore water Contour (5 ft interval; elevations are in ft

Pore water Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

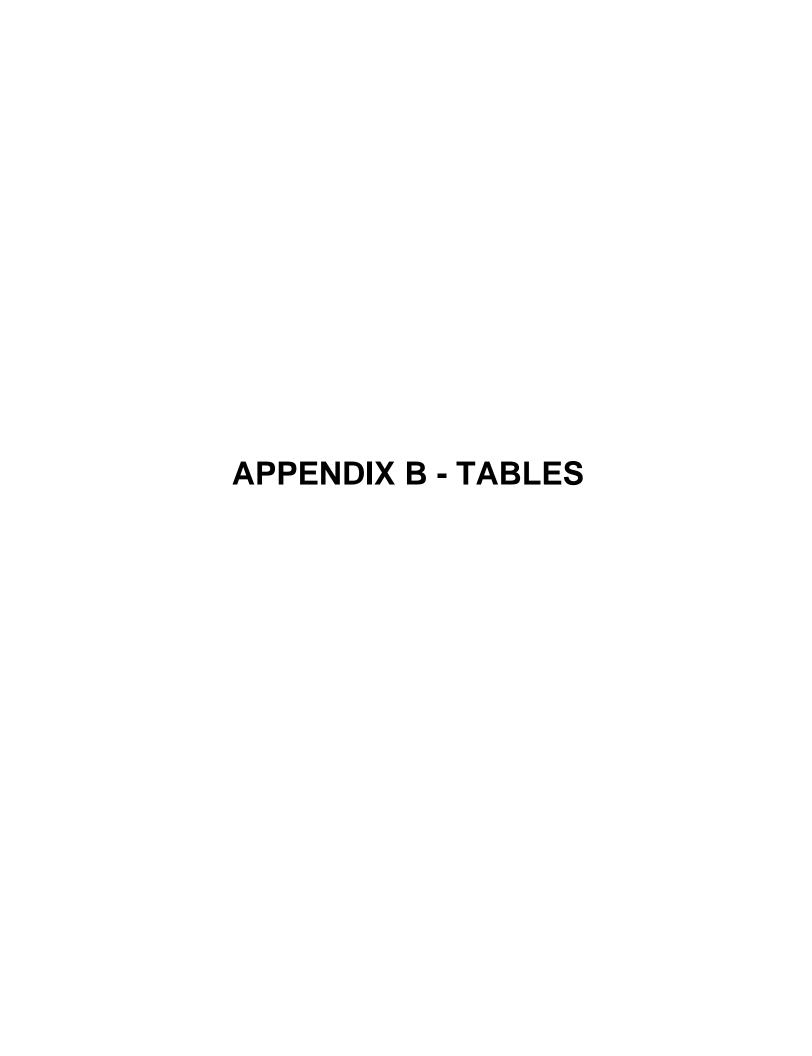
2018 Imagery Boundary

Coal Yard (Approximate)

CCR Unit Area (Approximate)

CCR: Coal combustion residuals

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.


**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
- 3. Pore water contours were created using manual adjustment and Surfer Version 16.1.350 (December 13, 2018)

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells		1								Tour and a second second
JOF-00-GW-43-001	10-AP1	10-Aug-20	13.99	370.51	356.52	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
JOF-00-GW-43-002	10-AP3	10-Aug-20	10.55	367.27	356.72	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	10-Aug-20	25.65	401.19	375.54	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
JOF-00-GW-43-004	94-B16	10-Aug-20	13.61	390.53	376.92	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
JOF-00-GW-43-005	99-B19	10-Aug-20	16.34	394.50	378.16	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
JOF-00-GW-43-006	99-B20A	10-Aug-20	29.90	408.88	378.98	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
JOF-00-GW-43-007	B-6R	10-Aug-20	17.92	395.57	377.65	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
JOF-00-GW-43-008	B-8R	10-Aug-20	12.03	391.04	379.01	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
JOF-00-GW-43-009	B-9	10-Aug-20	26.85	423.88	397.03	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
JOF-00-GW-43-010	B-11	10-Aug-20	20.55	400.67	380.12	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
JOF-00-GW-43-011	B-12	10-Aug-20	12.28	393.03	380.75	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
JOF-00-GW-43-012	B-13	11-Aug-20	29.25	409.87	380.62	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
JOF-00-GW-43-013	JOF-101	10-Aug-20	25.75	424.59	398.84	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
JOF-00-GW-43-014	JOF-102	10-Aug-20	19.58	407.64	388.06	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
JOF-00-GW-43-015	JOF-103	10-Aug-20	17.20	374.24	357.04	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
JOF-00-GW-43-016	JOF-104	10-Aug-20	22.60	379.44	356.84	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
JOF-00-GW-43-017	JOF-105	10-Aug-20	27.33	406.15	378.82	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
JOF-00-GW-43-018	A-3	10-Aug-20	23.70	403.73	380.03	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
JOF-00-GW-43-019	JOF-106	10-Aug-20	22.70	403.16	380.46	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
JOF-00-GW-43-020	JOF-107	10-Aug-20	28.90	409.95	381.05	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
JOF-00-GW-43-021	JOF-109	10-Aug-20	5.70	386.11	380.41	n/a	n/a	n/a	34.1 - 43.9	Alluvium
JOF-00-GW-43-022	JOF-110	10-Aug-20	18.05	388.76	370.71	n/a	n/a	n/a	52.3 - 62.1	Alluvium
JOF-00-GW-43-023	JOF-111	10-Aug-20	19.65	390.08	370.43	n/a	n/a	n/a	41.3 - 51.1	Clay
JOF-00-GW-43-024	JOF-112	10-Aug-20	17.30	394.48	377.18	n/a	n/a	n/a	24.9 - 34.7	Alluvium
JOF-00-GW-43-025	JOF-113	10-Aug-20	28.55	388.13	359.58	n/a	n/a	n/a	39.6 - 49.4	Alluvium
JOF-00-GW-43-026	JOF-114	10-Aug-20	28.88	388.36	359.48	n/a	n/a	n/a	34.7 - 44.5	Alluvium
JOF-00-GW-43-027	JOF-117	10-Aug-20	26.60	388.63	362.03	n/a	n/a	n/a	35.0 - 44.8	Alluvium
JOF-00-GW-43-028	JOF-118	10-Aug-20	15.84	372.69	356.85	n/a	n/a	n/a	43.9 - 53.7	Alluvium
JOF-00-GW-43-029	JOF-119	10-Aug-20	10.09	366.89	356.80	n/a	n/a	n/a	38.0 - 47.8	Alluvium
Piezometers						I	1			_
n/a	JOF-B-2A-PZ3	10-Aug-20	n/a	n/a	356.3	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2A-PZ3	10-Aug-20	n/a	n/a	357.8	392.8	326.8	66.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2B-PZ2	10-Aug-20	n/a	n/a	356.1	370.6	321.6	49.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2A-PZ2	10-Aug-20	n/a	n/a	356.2	390.9	327.9	63.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2B-PZ2	10-Aug-20	n/a	n/a	355.5	365.4	310.4	55.0	n/a	Alluvial Sand and Gravel
n/a	JOF-K-2A-PZ1	10-Aug-20	n/a	n/a	358.9	377.5	327.5	50.0	n/a	Alluvial Sand and Gravel
n/a	JOF_PZET	10-Aug-20	n/a	n/a	352.9	363.8	329.8	34.0	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF PZFT	10-Aug-20	n/a	n/a	352.5	362.9	327.6	35.3	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF_PZHT	10-Aug-20	n/a	n/a	357.3	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
n/a	JOF-116-PZ	10-Aug-20 10-Aug-20	n/a	n/a	372.4	388.0	342.0	46.0	n/a	Alluvium

See notes on last page.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater ft btoc	Top of Casing Elevation ft msl	Groundwater Elevation ft msl	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation ft msl	Piezometer Sensor Depth ft bgs	Screened Interval ft btoc	Screened / Piezometer Sensor Formation
Surface Water Gauge									•	•
Tennessee River/Kentucky Lake gauge (GS-1)	n/a	10-Aug-20	n/a	n/a	356.83	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msI mean sea level
n/a not applicable
UNID Unique Numerical Identification

1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information was obtained from boring logs. Data from automated piezometers are averaged for the measurement date.

4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									
JOF-TW01	10-Aug-20	15.35	396.33	380.98	n/a	n/a	n/a	24.8 - 34.6	CCR
JOF-TW02	10-Aug-20	18.74	397.38	378.64	n/a	n/a	n/a	25.5 - 35.3	CCR
JOF-TW03	10-Aug-20	31.28	409.49	378.21	n/a	n/a	n/a	40.4 - 50.2	CCR
JOF-TW04	10-Aug-20	11.74	394.25	382.51	n/a	n/a	n/a	25.9 - 35.7	CCR
JOF-TW05	10-Aug-20	11.05	393.44	382.39	n/a	n/a	n/a	36.2 - 46.0	CCR
JOF-TW06	10-Aug-20	22.90	395.13	372.23	n/a	n/a	n/a	26.5 - 36.3	CCR
JOF-TW07	10-Aug-20	29.14	402.92	373.78	n/a	n/a	n/a	32.2 - 42.0	CCR
JOF-TW08	10-Aug-20	9.18	387.22	378.04	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW09	10-Aug-20	15.70	387.52	371.82	n/a	n/a	n/a	15.8 - 25.6	CCR
JOF-TW10	10-Aug-20	9.30	384.92	375.62	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW11	10-Aug-20	38.18	440.13	401.95	n/a	n/a	n/a	31.6 - 41.4	CCR
JOF-TW12	10-Aug-20	42.90	444.17	401.27	n/a	n/a	n/a	36.1 - 45.9	CCR
JOF-TW13	10-Aug-20	38.85	441.39	402.54	n/a	n/a	n/a	33.3 - 43.1	CCR
JOF-TW15	10-Aug-20	65.84	451.71	385.87	n/a	n/a	n/a	55.0 - 64.8	CCR
JOF-TW16	10-Aug-20	81.74	473.81	392.07	n/a	n/a	n/a	72.9 - 82.7	CCR
Piezometers									
JOF-E-2A-PZ5	10-Aug-20	n/a	n/a	383.3	390.9	370.9	20.0	n/a	CCR
JOF_PZEC	10-Aug-20	n/n	n/a	382.6	390.4	365.4	25.0	n/a	CCR and Dike Fill
JOF_PZFC	10-Aug-20	n/a	n/a	383.1	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF PZGC	10-Aug-20	n/a	n/a	378.7	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF PZHC	10-Aug-20	n/a	n/a	382.4	390.0	365.8	24.2	n/a	CCR
JOF PZIC	10-Aug-20	n/a	n/a	381.7	390.1	360.1	30.0	n/a	CCR and Dike Fill
JOF PZJC	10-Aug-20	n/a	n/a	381.5	390.0	365.0	25.0	n/a	CCR
JOF_PZKC	10-Aug-20	n/a	n/a	379.9	390.5	365.5	25.0	n/a	CCR
JOF_PZLC	10-Aug-20	n/a	n/a	379.0	390.5	365.5	25.0	n/a	CCR
JOF_PZMC	10-Aug-20	n/a	n/a	376.7	391.1	366.1	25.0	n/a	CCR and Dike Fill
P-8	10-Aug-20	n/a	n/a	400.1	432.8	394.5	38.3	n/a	CCR
P-9	10-Aug-20	n/a	n/a	395.7	432.9	393.8	39.2	n/a	CCR and Clayey Fill
P-10	10-Aug-20	n/a	n/a	401.6	430.7	391.0	39.8	n/a	CCR

Notes:

bgs below ground surface
btoc below top of casing
CCR coal combustion residuals
ft feet
ID identification
msl mean sea level
n/a not applicable

^{1.} Top of casing elevations, screen intervals, and screened formations were obtained from boring logs, well detail and well survey data.

^{2.} For piezometers, ground surface elevation, pore water elevations, and piezometer data obtained from the geotechnical instrumentation database. Data from automated piezometers are averaged for the measurement date.

^{3.} Pore water elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

Analysis Type

Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Total Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
JOF-109	JOF-GW-021-20200812	Normal Environmental Sample	Х	X	Х	Х	Х	X	Х	Х	Х
JOF-110	JOF-GW-022-20200812	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х
JOF-111	JOF-GW-023-20200812	Normal Environmental Sample	Х	Х	X	Х	Х	Х	Х	Х	Х
JOF-112	JOF-GW-024-20200813	Normal Environmental Sample	Х	X	X	Х	Х	Х	Х	Х	Х
JOF-113	JOF-GW-025-20200813	Normal Environmental Sample	Х	X	Х	Х	Х	X	Х	Х	Х
301-113	JOF-GW-DUP01-20200813	Field Duplicate Sample		Х	X	Х	Х	X	Х	Х	Х
JOF-114	JOF-GW-026-20200813	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	Х
JOF-117	JOF-GW-027-20200813	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	Х
JOF-118	JOF-GW-028-20200813	Normal Environmental Sample	Х	Х	X	Х	Х	X	Х	Х	Х
JOF-119	JOF-GW-029-20200813	Normal Environmental Sample	Х	Х	Х	Х	Х	X	Х	Х	Х

Notes:

 Total Metals
 SW-846 6020A

 Total Mercury
 SW-846 7470A

 Anions
 EPA 300.0/SW 9056

Alkalinity SM2320B
Total Dissolved Solids SM2540C
Radium-226 EPA 903.0
Radium-228 EPA 904.0
Radium-226+228 CALC
ID identification

Page 1 of 1

^{1.} Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

TABLE B.3 – Summary of Groundwater Quality Parameters Johnsonville Fossil Plant August 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	JOF-109 12-Aug-20 JOF-GW-021-20200812 39 ft Normal Environmental Sample Final QC Review	JOF-110 12-Aug-20 JOF-GW-022-20200812 57 ft Normal Environmental Sample Final QC Review	JOF-111 12-Aug-20 JOF-GW-023-20200812 46 ft Normal Environmental Sample Final QC Review	JOF-112 13-Aug-20 JOF-GW-024-20200813 29.5 ft Normal Environmental Sample Final QC Review	JOF-113 13-Aug-20 JOF-GW-025-20200813 43.5 ft Normal Environmental Sample Final QC Review	JOF-114 13-Aug-20 JOF-GW-026-20200813 39.5 ft Normal Environmental Sample Final QC Review	JOF-117 13-Aug-20 JOF-GW-027-20200813 40.5 ft Normal Environmental Sample Final QC Review	JOF-118 13-Aug-20 JOF-GW-028-20200813 48.5 ft Normal Environmental Sample Final QC Review	JOF-119 13-Aug-20 JOF-GW-029-20200813 42.5 ft Normal Environmental Sample Final QC Review
Field Parameters										
Dissolved Oxygen	%	32.8	8.1	5.7	3.8	4.9	4.2	1.6	3.1	2.3
Dissolved Oxygen	mg/L	2.99	0.70	0.50	0.35	0.48	0.38	0.14	0.28	0.21
ORP	mV	136.4	-8.0	-27.7	74.0	115.5	170.5	119.5	83.3	41.2
pH (field)	SU	4.84	5.25	6.12	6.22	5.92	4.61	6.34	5.62	6.04
Specific Cond. (Field)	uS/cm	273.8	410.9	3,709	546.3	2,780	4,108	1,616	589	574
Temperature, Water (C)	DEG C	19.7	22.6	20.7	19.3	19.9	20.2	21.6	20.4	19.2
Turbidity, field	NTU	4.66	1.99	3.49	1.00	2.01	3.45	4.83	4.38	3.49

Notes:

percent conductance degrees Celsius feet below top of casing % Cond. DEG C ft
ID
mg/L
mV
NTU
ORP
SU
uS/cm identification milligrams per Liter milliVolts

Nephelometric Turbidity Unit
Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

Standard Units

microSiemens per centimeter

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant August 2020

Sample Location				JOF-109	JOF-110	JOF-111	JOF-112	JOF	-113	JOF-114
Sample Date Sample ID				12-Aug-20 JOF-GW-021-20200812	12-Aug-20 JOF-GW-022-20200812	12-Aug-20 JOF-GW-023-20200812	13-Aug-20 JOF-GW-024-20200813	13-Aug-20 JOF-GW-025-20200813	13-Aug-20 JOF-GW-DUP01-20200813	13-Aug-20 JOF-GW-026-20200813
Sample Depth				39 ft	57 ft	46 ft	29.5 ft	43.5 ft	43.5 ft	39.5 ft
Sample Type				Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample				
Level of Review	Units	EPA MCLs	CCR Rule GWPS	Final-Verified	Final-Verified	Final-Verified	Validated	Validated	Validated	Validated
Total Metals	Units	EPA WICLS	CCR Rule GWP5	<u> </u>						<u> </u>
Antimony	ua/l	6 ^A	n/v	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Anumony	ug/L	10 ^A	n/v	<2.00	2.14 J	11.5 ^A	<1.00 <2.00	3.24 J	3.11 J	2.78 J
	ug/L		7				<2.00 57.0			
Barium	ug/L	2,000 ^A	n/v	13.9 0.348 J	63.8 <0.200	48.3 <0.200	57.0 <0.200	23.3 0.203 J	23.5 <0.200	20.1 0.858
Beryllium Boron	ug/L	n/v	n/v n/v	0.346 J 67.2	1.500	5,260	36.3	0.203 J 15,700	15,700	11,500
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	5,260 <0.300	0.551 J	3.31	3.42	0.307 J
Calcium	ug/L ug/L	n/v	n/v	16,000	17,200	476,000	29,900	553,000	531,000	505,000
Chromium	ug/L ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	n/v	6 ^B	<0.300	2.75	132 ^B	102 ^B	2.65	2.74	68.9 ^B
		n/v	n/v	1.05 J	<0.300	<0.300	0.532 J	2.03 1.36 J	1.49 J	1.80 J
Copper Lead	ug/L	n/v n/v	15 ^B	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L		40 ^B	<3.00	<3.00	17.5	<3.00	121 ^B	121 ^B	79.5 ^B
	ug/L	n/v	1							
Magnesium	ug/L	n/v	n/v	5,000	4,380	31,300	15,000	6,710	6,760	53,300
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	n/v	100 ^B	<0.200	0.261 J	48.8	0.760 J	262 ^B	258 ^B	<0.200
Nickel	ug/L	100 _(TN MCL) A	n/v	19.7	7.90	35.4	8.81	115 ^A	115 ^A	18.8
Potassium	ug/L	n/v	n/v	1,150	254 J	50,600	809	59,500	59,000	106,000
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	n/v	n/v	6,990	34,800	226,000	27,100	42,500	41,800	313,000
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	<0.600	0.883 J	0.857 J	0.609 J
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30
Zinc	ug/L	n/v	n/v	45.7	7.44 J	63.8	13.8 J	246	240	53.7
Anions										
Chloride	mg/L	n/v	n/v	41.5	49.6	603	31.6	70.0	69.9	233
Fluoride	mg/L	4 ^A	n/v	0.158	0.565	0.187	0.452	0.178	0.175	0.0814 J
Sulfate	mg/L	n/v	n/v	3.91	25.1	1,010	56.6	1,480	1,500	1,980
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v	n/v	11.0 J	37.4	65.2	92.6	13.9	13.9	1.96 J
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45	<1.45
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	11.0 J	37.4	65.2	92.6	13.9	13.9	1.96 J
Total Dissolved Solids	mg/L	n/v	n/v	117	193	2,590	213	2,320	2,370	3,270

See notes on last page.

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant August 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-117 13-Aug-20 JOF-GW-027-20200813 40.5 ft Normal Environmental Sample Validated	JOF-118 13-Aug-20 JOF-GW-028-20200813 48.5 ft Normal Environmental Sample Validated	JOF-119 13-Aug-20 JOF-GW-029-20200813 42.5 ft Normal Environmental Sample Validated	_	
Total Metals				•				
Antimony	ug/L	6 ^A	n/v	<1.00	<1.00	<1.00		
Arsenic	ug/L	10 ^A	n/v	32.8 ^A	2.66 J	2.50 J		
Barium	ug/L	2,000 ^A	n/v	81.8	24.4	39.4		
Beryllium	ug/L	4 ^A	n/v	<0.200	<0.200	<0.200		
Boron	ug/L	n/v	n/v	14.6 J	61.2	29.6		
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	<0.300		
Calcium	ug/L	n/v	n/v	84,600	35,400	24,700		
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00		
Cobalt	ug/L	n/v	6 ^B	20.6 ^B	3.07	2.21	Notes:	
Copper	ug/L	n/v	n/v	<0.300	0.490 J	<0.300		
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500		
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	<3.00	Α	EPA Maximum Contaminant Level
Magnesium	ug/L	n/v	n/v	28,600	6,750	4,560	В	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
Mercury	ug/L	2 ^A	n/v	<0.0670	<0.0670	<0.0670	n/v	No standard/guideline value
Molybdenum	ug/L	n/v	100 ^B	30.8	0.210 J	0.455 J	6.5 ^A	Concentration is greater than or equal to the indicated standard.
Nickel	ug/L	100 _(TN MCL) A	n/v	5.52	11.2	2.05	<0.03	analyte was not detected at a concentration greater than the Method Detection Limit
Potassium	ug/L	n/v	n/v	2,510	936	1,350	ft	feet below top of casing
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	ID	identification
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	J	quantitation is approximate due to limitations identified during data validation
Sodium	ug/L	n/v	n/v	32,800	32,800	41,900	mg/L	milligrams per Liter
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	ug/L	micrograms per Liter
Vanadium	ug/L	n/v	n/v	<3.30	<3.30	<3.30		
Zinc	ug/L	n/v	n/v	<3.30	9.71 J	4.52 J	1. Leve	l of review is defined in the Quality Assurance Project Plan.
Anions								
Chloride	mg/L	n/v	n/v	79.3	12.9	21.6		
Fluoride	mg/L	4 ^A	n/v	0.984	0.449	0.413		
Sulfate	mg/L	n/v	n/v	5.42	116	36.9		
General Chemistry								
Alkalinity, Bicarbonate	mg/L	n/v	n/v	327	50.3	99.6		
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45	<1.45	<1.45		
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	327	50.3	99.6		
Total Dissolved Solids	mg/L	n/v	n/v	431	246	171	_	
								

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant August 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type				JOF-109 12-Aug-20 JOF-GW-021-20200812 39 ft Normal Environmental Sample	JOF-110 12-Aug-20 JOF-GW-022-20200812 57 ft Normal Environmental Sample	JOF-111 12-Aug-20 JOF-GW-023-20200812 46 ft Normal Environmental Sample	JOF-112 13-Aug-20 JOF-GW-024-20200813 29.5 ft Normal Environmental Sample	JOF- 13-Aug-20 JOF-GW-025-20200813 43.5 ft Normal Environmental Sample	13-Aug-20 JOF-GW-DUP01-20200813 43.5 ft Field Duplicate Sample
Level of Review	Units	EPA MCLs	CCR Rule GWPS	Final-Verified	Final-Verified	Final-Verified	Validated	Validated	Validated
Radiological Parameters									
Radium-226	pCi/L	n/v	n/v	1.36 +/-(0.818)	-0.0168 +/-(0.463)U	0.711 +/-(0.363)	3.31 +/-(0.894)	3.25 +/-(0.906)	3.63 +/-(0.954)
Radium-228	pCi/L	n/v	n/v	0.522 +/-(0.344)	0.0258 +/-(0.336)U	0.801 +/-(0.386)	-0.325 +/-(0.351)U	0.207 +/-(0.340)U	0.524 +/-(0.442)U
Radium-226+228	pCi/L	5 ^A	n/v	1.89 +/-(0.888)	0.0258 +/-(0.572)U	1.51 +/-(0.530)	3.31 +/-(0.960)J	3.46 +/-(0.968)J	4.16 +/-(1.05)J

See notes on last page.

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant August 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-114 13-Aug-20 JOF-GW-026-20200813 39.5 ft Normal Environmental Sample Validated	JOF-117 13-Aug-20 JOF-GW-027-20200813 40.5 ft Normal Environmental Sample Validated	JOF-118 13-Aug-20 JOF-GW-028-20200813 48.5 ft Normal Environmental Sample Validated	JOF-119 13-Aug-20 JOF-GW-029-20200813 42.5 ft Normal Environmental Sample Validated
Radiological Parameters							
Radium-226	pCi/L	n/v	n/v	2.38 +/-(0.712)	2.57 +/-(0.762)	0.513 +/-(0.534)U	0.456 +/-(0.465)U
Radium-228	pCi/L	n/v	n/v	1.42 +/-(0.689)	0.580 +/-(0.494)U	0.293 +/-(0.447)U	0.130 +/-(0.341)U
Radium-226+228	pCi/L	⊢ A	n/v	3.81 +/-(0.991)	3.15 +/-(0.908)J	0.806 +/-(0.696)U	0.586 +/-(0.577)U

Notes:

A EPA Maximum Contaminant Level

CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value

t feet below top of casing

ID identification

J quantitation is approximate due to limitations identified during data validation

pCi/L picoCurie per Liter
U not detected

^{1.} Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.8

GROUNDWATER INVESTIGATION EVENT #6 SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant Groundwater Investigation Event #6 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

October 29, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	July 30, 2021
1	Addresses October 18, 2021 TDEC Review Comments and Issued for TDEC	October 29, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant Groundwater Investigation Event #6 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Jamie Snider, Geologic Staff

Reviewed by

Carole M. Farr, Senior Principal Geologist

Brigid Zvirbulis, Project Manager

Table of Contents

ABBF	REVIATIO	ONS	II
1.0	INTRO	DUCTION	1
2.0	OBJEC	CTIVE AND SCOPE	3
3.0	FIELD A	ACTIVITIES	4
3.1		LOCATIONS	
3.2	DOCUM	MENTATION	5
	3.2.1		
	3.2.2	Equipment Calibration	7
3.3		ING METHODS	
		Static Water Level Measurements	
	3.3.2	Groundwater Purging & Sampling	8
3.4	INVEST	ΓΙGATION DERIVED WASTE	9
3.5	SAMPL	E SHIPMENT	9
3.6	VARIAT	TIONS	9
		Variations in Scope	
	3.6.2	Variations in Procedure	10
4.0	SUMMA	ARY	11
5.0	REFER	ENCES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

- Exhibit A.1 Monitoring Well and Piezometer Network
- Exhibit A.2 Groundwater Elevation Contour Map, Event #6 (October 12, 2020)
- Exhibit A.3 Pore water Elevation Contour Map, Event #6 (October 12, 2020)

APPENDIX B - TABLES

- Table B.1a Groundwater Level Measurements
- Table B.1b Pore Water Level Measurements
- Table B.2 Summary of Groundwater Samples
- Table B.3 Summary of Groundwater Quality Parameters
- Table B.4 Groundwater Analytical Results for Metals, Anions, and General Chemistry
- Table B.5 Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five

inorganic constituents included in Appendix I of Tennessee Rule 0400-

11-01-.04

CFR Code of Federal Regulations

COC Chain-of-Custody
DO Dissolved Oxygen

EAR Environmental Assessment Report EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.

Event #6 Groundwater investigation field event performed October 12-15, 2020

FSP Field Sampling Personnel

ft Feet

GEL Laboratories LLC

ID Identification

IDWInvestigation Derived WasteJOF PlantJohnsonville Fossil Plantmg/LMilligrams per Liter

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential
PPE Personal Protective Equipment
QAPP Quality Assurance Project Plan

QC Quality Control

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

Introduction October 29, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed October 12-15, 2020 (Event #6) at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The purpose of the groundwater investigation, upon completion of the six groundwater sampling events, is to characterize groundwater conditions at the JOF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #6 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #6 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #6 is the last in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina. Quality assurance oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Introduction October 29, 2021

This report summarizes the groundwater investigation activities for Event #6. Overall conclusions and findings about the groundwater investigation and groundwater conditions at the JOF Plant will be made and documented in the EAR.

Objective and Scope October 29, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the JOF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of the direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #6, performed in October 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells as specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the JOF Plant Hydrogeologic Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data. Groundwater piezometer installation activities are described in the JOF Plant Hydrogeologic Investigation SAR. Temporary well installation activities are described in the JOF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the JOF Plant CCR Material Characteristics SAR.

Field Activities October 29, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #6 were conducted October 12-15, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency (USEPA) documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also provided quality reviews of field documentation.

During Event #6, Stantec conducted the following field activities:

- Measured groundwater levels at nine monitoring wells and one piezometer installed for the TDEC Order, and 20 monitoring wells and eight piezometers installed for other environmental programs (29 total monitoring wells)
- Measured pore water levels at 15 temporary wells and 12 piezometers in the CCR units
- Measured the surface water level at one location in the Tennessee River/Kentucky Lake
- · Collected groundwater samples from nine monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, three field blanks, one equipment blank, one filter blank, and one tubing blank
- Shipped the collected samples to GEL in Charleston, South Carolina.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the JOF Plant (Ash Disposal Area 1, Active Ash Pond 2, DuPont Road Dredge Cell, South Rail Loop Area 4, and Coal Yard) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #6 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the JOF Plant for TDEC Solid Waste Management permit requirements and the USEPA CCR Rule codified in Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). Monitoring wells that are being sampled as part of other programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells and a piezometer, as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the JOF Plant

Field Activities October 29, 2021

EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and other environmental programs will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Level Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring and temporary well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well*

Field Activities October 29, 2021

Inspection Checklist. Stantec documented observations and conditions on a well inspection form for this event.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer identification (ID), serial number, time, digits, and temperature. The readings were used to calculate the pressure head (feet [ft] of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.5 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well ID, time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in ft below top of casing.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*.

Field Activities October 29, 2021

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lexington-Parsons Regional Airport in Darden, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #6.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 29 monitoring wells and pore water levels at 15 temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On October 12, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Stantec calculated the static groundwater level at vibrating wire piezometer JOF-116-PZ. FSP recorded the measured readings and temperature using a vibrating wire readout instrument on a *Vibrating Wire Piezometer Measurement Form.* The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain groundwater elevation.

Groundwater and pore water measurements were also obtained from transducers installed within eight and 12 piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River/Kentucky Lake was provided by TVA using the reading closest to noon recorded by an automated staff gauge. The surface water staff gauge location is shown on Exhibit A.1 in Appendix A.

Groundwater and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements made in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

Field Activities October 29, 2021

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples were collected from nine monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP and/or applicable TI. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations at the JOF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Due to final turbidity readings higher than 5 NTUs at well JOF-117, an additional sample was collected at this well and submitted to the laboratory for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line with the exception of the dissolved metals sample, which was collected via a new 0.45-micron disposable inline filter attached to the end of the discharge line to field filter the sample. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control*.

Field Activities October 29, 2021

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 CFR 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the JOF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with JOF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the JOF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the JOF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and secured under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina. The laboratory submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below,

Field Activities October 29, 2021

these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #6 at the JOF Plant.

3.6.1 Variations in Scope

Variations in scope are provided below.

 Groundwater level gauging and sampling was not performed at well JOF-108 as specified in the SAP because it was not installed (the five borings drilled in that area encountered CCR and/or shallow refusal). This change in scope was approved by TDEC.

3.6.2 Variations in Procedure

Variations in procedures occurring in the field are provided below.

- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations
- GEL was used as the laboratory for non-radium sample analysis in place of Eurofins TestAmerica. This change was approved by TVA and TDEC prior to field work.

Summary October 29, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #6 at the JOF Plant. The scope of work for Event #6 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the JOF Plant are presented in this SAR for comparison with groundwater data.

Event #6 included collecting groundwater level measurements at 29 monitoring wells and nine piezometers; pore water measurements at 15 temporary wells and 12 piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River/Kentucky Lake.

Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1b, and depicted on Exhibits A.2 and A.3.

Water quality measurements and groundwater analytical samples were collected at nine monitoring wells as summarized in Table B.2. Water quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the nine sampling locations. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and then validated or verified by EnvStds.

Stantec has completed Event #6 of the groundwater investigation at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #6 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this event will be evaluated along with data collected during the other groundwater sampling events and under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References October 29, 2021

5.0 REFERENCES

Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Johnsonville Fossil Plant Environmental Investigation*. Revision 3. Prepared for Tennessee Valley Authority. December 2018.

Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Stantec. 2018b. *Environmental Investigation Plan, Johnsonville Fossil Plant.* Revision 4. Prepared for Tennessee Valley Authority. December 10, 2018.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

TVA, ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.

TVA, ENV-TI-05.80.42, Groundwater Sampling.

TVA, ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA, ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

Monitoring Well and Piezometer Network

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-05-24 Technical Review by MD on 2021-05-24 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- Other Monitoring Well
- Piezometer
- Pore Water Piezometer in CCR Material
- Temporary Well within CCR Material
- Tennessee River/Kentucky Lake Gauging Station

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery

Groundwater Elevation Contour Map, Event #6 (October 12, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-06-07 Technical Review by MD on 2021-06-07 New Johnsonville, Tennessee

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well groundwater elevation in feet above mean sea level (ft amsl) Other Monitoring Well
- groundwater elevation in ft amsl
- Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2) elevation in ft amsl
- Piezometer in CCR
- pore water elevation in ft amsl; value not used for contouring Temporary well in CCR
- pore water elevation in ft amsl; value not used for contouring
- Tennessee River/Kentucky Lake Gauging Station surface water elevation in ft amsl
- Interpolated Groundwater Contour (5 ft interval; elevations are
- Groundwater Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Area (Approximate)

Coal Yard (Approximate)

CCR: Coal combustion residuals

NM: Not measured; data not available

Groundwater and pore water elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

***The JOF_PZET and JOF_PZFT groundwater elevations are approximately 3-4 feet below the trend established in other piezometers within the Active Ash Pond 2. The groundwater elevation is displayed but not used for contouring.

****The JOF-117 groundwater elevation is approximately 10 feet below the trend for that well established during other SAR events. The groundwater elevation is displayed but not used in contouring for this event.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
- 3. Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment

A.3

Pore water Elevation Contour Map, Event #6 (October 12, 2020)

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 New Johnsonville, Tennessee Prepared by DMB on 2021-10-25 Technical Review by MD on 2021-10-25

1,350

1:5,400 (At original document size of 22x34)

Legend

- Groundwater Investigation Monitoring Well
- groundwater elevation in feet above mean sea level (ft amsl); value not used for contouring
- Other Monitoring Well
- groundwater elevation in ft amsl; value not used for contouring
- Piezometer, groundwater label in blue text, pore water label in yellow highlighted black text; (e.g., JOF-E-2A-PZ2)
- pore water elevation in ft amsl
- Temporary well in CCR pore water elevation in ft amsl
- Tennessee River/Kentucky Lake Gauging Station
- surface water elevation in ft amsl
- Interpolated Pore water Contour (5 ft interval; elevations are in ft

Pore water Contour (5 ft interval; elevations are in ft amsl)

2017 Imagery Boundary

2018 Imagery Boundary

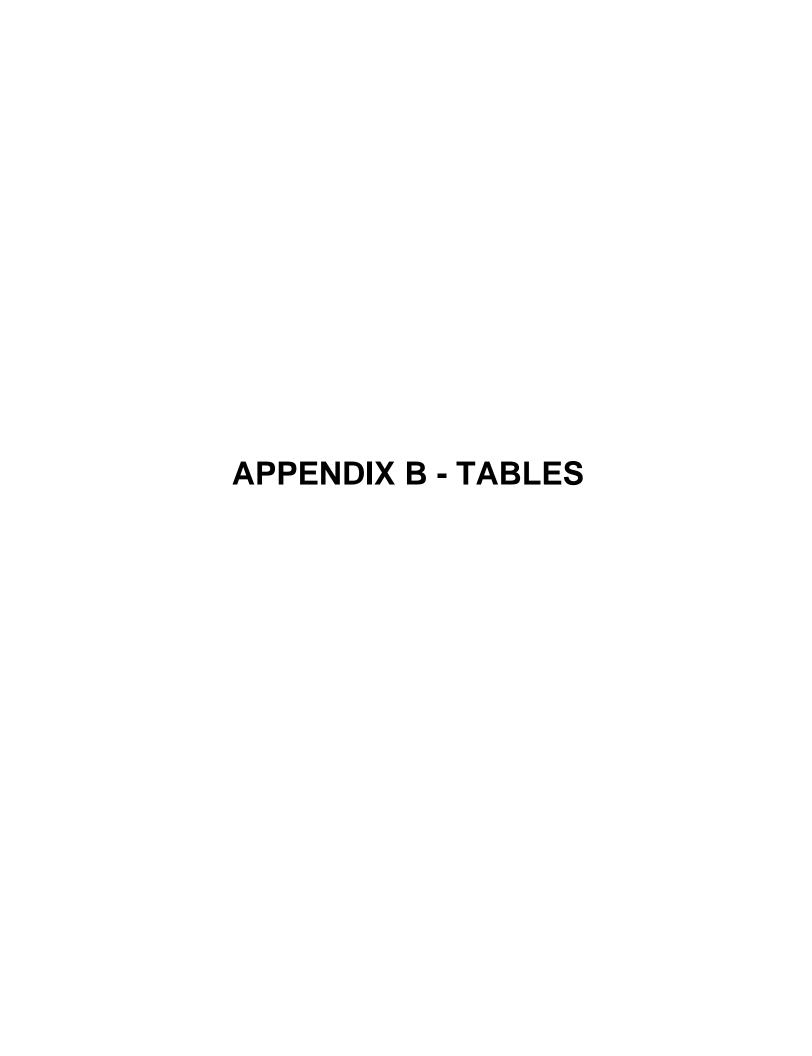
CCR Unit Area (Approximate)

Coal Yard (Approximate)


CCR: Coal combustion residuals

NM: Not measured; data not available

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.


**Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) & ESRI World Imagery
- 3. Pore water contours were created using manual adjustment and Surfer Version 16.1.350 (December 13, 2018)

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells		_		ı			1		1	
JOF-00-GW-43-001	10-AP1	12-Oct-20	16.26	370.51	354.25	n/a	n/a	n/a	39.0 - 49.1	Alluvium: Sands and Gravels
JOF-00-GW-43-002	10-AP3	12-Oct-20	12.86	367.27	354.41	n/a	n/a	n/a	37.4 - 47.5	Alluvium: Sands and Gravels
JOF-00-GW-43-003	89-B10	12-Oct-20	26.07	401.19	375.12	n/a	n/a	n/a	32.0 - 40.3	Alluvium: Sands and Gravels
JOF-00-GW-43-004	94-B16	12-Oct-20	13.71	390.53	376.82	n/a	n/a	n/a	16.2 - 26.2	Alluvium: Sands and Gravels
JOF-00-GW-43-005	99-B19	12-Oct-20	16.82	394.50	377.68	n/a	n/a	n/a	12.6 - 27.7	Alluvium: Sands and Gravels/Shale Bedrock
JOF-00-GW-43-006	99-B20A	12-Oct-20	30.37	408.88	378.51	n/a	n/a	n/a	21.6 - 36.5	Alluvium: Sands and Gravels
JOF-00-GW-43-007	B-6R	12-Oct-20	17.99	395.57	377.58	n/a	n/a	n/a	18.2 - 21.2	Alluvium: Sands and Gravels
JOF-00-GW-43-008	B-8R	12-Oct-20	12.33	391.04	378.71	n/a	n/a	n/a	13.8 - 16.8	Alluvium: Sands and Gravels
JOF-00-GW-43-009	B-9	12-Oct-20	28.55	423.88	395.33	n/a	n/a	n/a	40.5 - 50.0	Alluvium: Silts and Clays
JOF-00-GW-43-010	B-11	12-Oct-20	21.25	400.67	379.42	n/a	n/a	n/a	26.7 - 36.7	Alluvium: Sands and Gravels
JOF-00-GW-43-011	B-12	12-Oct-20	13.12	393.03	379.91	n/a	n/a	n/a	26.8 - 36.9	Alluvium: Sands and Gravels
JOF-00-GW-43-012	B-13	12-Oct-20	29.63	409.87	380.24	n/a	n/a	n/a	33.8 - 43.9	Alluvium: Sands and Gravels
JOF-00-GW-43-013	JOF-101	12-Oct-20	27.26	424.59	397.33	n/a	n/a	n/a	43.6 - 53.2	Alluvium: Sands and Gravels
JOF-00-GW-43-014	JOF-102	12-Oct-20	20.24	407.64	387.40	n/a	n/a	n/a	23.6 - 33.9	Alluvium: Sands and Gravels
JOF-00-GW-43-015	JOF-103	12-Oct-20	19.53	374.24	354.71	n/a	n/a	n/a	41.9 - 52.1	Alluvium: Sands and Gravels
JOF-00-GW-43-016	JOF-104	12-Oct-20	24.91	379.44	354.53	n/a	n/a	n/a	48.4 - 58.6	Alluvium: Sands and Gravels
JOF-00-GW-43-017	JOF-105	12-Oct-20	27.84	406.15	378.31	n/a	n/a	n/a	23.4 - 33.7	Alluvium: Sands and Gravels
JOF-00-GW-43-018	A-3	12-Oct-20	24.18	403.73	379.55	n/a	n/a	n/a	66.1 - 86.1	Chattanooga Shale/Camden Formation
JOF-00-GW-43-019	JOF-106	12-Oct-20	23.40	403.16	379.76	n/a	n/a	n/a	23.3 - 32.8	Alluvium: Sands and Gravels
JOF-00-GW-43-020	JOF-107	12-Oct-20	29.74	409.95	380.21	n/a	n/a	n/a	31.9 - 41.4	Alluvium: Sands and Gravels
JOF-00-GW-43-021	JOF-109	12-Oct-20	6.61	386.11	379.50	n/a	n/a	n/a	34.1 - 43.9	Alluvium
JOF-00-GW-43-022	JOF-110	12-Oct-20	18.51	388.76	370.25	n/a	n/a	n/a	52.3 - 62.1	Alluvium
JOF-00-GW-43-023	JOF-111	12-Oct-20	20.24	390.08	369.84	n/a	n/a	n/a	41.3 - 51.1	Clay
JOF-00-GW-43-024	JOF-112	12-Oct-20	17.67	394.48	376.81	n/a	n/a	n/a	24.9 - 34.7	Alluvium
JOF-00-GW-43-025	JOF-113	12-Oct-20	30.72	388.13	357.41	n/a	n/a	n/a	39.6 - 49.4	Alluvium
JOF-00-GW-43-026	JOF-114	12-Oct-20	31.09	388.36	357.27	n/a	n/a	n/a	34.7 - 44.5	Alluvium
JOF-00-GW-43-027	JOF-117	12-Oct-20	41.40	388.63	347.23	n/a	n/a	n/a	35.0 - 44.8	Alluvium
JOF-00-GW-43-028	JOF-118	12-Oct-20	18.13	372.69	354.56	n/a	n/a	n/a	43.9 - 53.7	Alluvium
JOF-00-GW-43-029	JOF-119	12-Oct-20	12.38	366.89	354.51	n/a	n/a	n/a	38.0 - 47.8	Alluvium
Piezometers	001-110	12-00-20	12.00	300.03	304.01	IVG	104	IVa	00.0 - 47.0	Allaviani
n/a	JOF-B-2A-PZ3	12-Oct-20	n/a	n/a	353.7	392.7	322.7	70.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2A-PZ3	12-Oct-20	n/a	n/a	355.5	392.8	326.8	66.0	n/a	Alluvial Sand and Gravel
n/a	JOF-C-2B-PZ2	n/a	n/a	n/a	NM	370.6	321.6	49.0	n/a	Alluvial Sand and Gravel
n/a	JOF-E-2A-PZ2	12-Oct-20	n/a	n/a	353.7	390.9	327.9	63.0	n/a	Alluvial Sand and Gravel
n/a n/a	JOF-E-2A-PZ2 JOF-E-2B-PZ2	12-Oct-20	n/a n/a	n/a	353.7	365.4	310.4	55.0	n/a n/a	Alluvial Sand and Gravel Alluvial Sand and Gravel
	JOF-E-2B-PZ2 JOF-K-2A-PZ1				356.9					
n/a		12-Oct-20	n/a	n/a		377.5	327.5	50.0	n/a	Alluvial Sand and Gravel
n/a - /-	JOF_PZET	12-Oct-20	n/a	n/a	350.5	363.8	329.8	34.0	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a ,	JOF_PZFT	12-Oct-20	n/a	n/a	350.4	362.9	327.6	35.3	n/a	Alluvial Clay and Silt and Alluvial Sand and Gravel
n/a	JOF_PZHT	12-Oct-20	n/a	n/a	355.0	363.1	316.1	47.0	n/a	Alluvial Sand and Gravel
n/a	JOF-116-PZ	12-Oct-20	n/a	n/a	372.0	388.0	342.0	46.0	n/a	Alluvium

See notes on last page.

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater ft btoc	Top of Casing Elevation ft msl	Groundwater Elevation ft msl	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation ft msl	Piezometer Sensor Depth ft bgs	Screened Interval ft btoc	Screened / Piezometer Sensor Formation
Surface Water Gauge						•			•	•
Tennessee River/Kentucky Lake gauge (GS-1)	n/a	12-Oct-20	n/a	n/a	354.37	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface
btoc below top of casing
ft feet
ID identification
msl mean sea level
n/a not applicable
NM not measured
UNID Unique Numerical Identification

1. Top of casing elevations, screen intervals, and screened formations for monitoring wells were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River/Kentucky Lake data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. For piezometers, ground surface elevation, groundwater elevations and piezometer data were obtained from the geotechnical instrumentation database. Vibrating wire sensor formation information for piezometer JOF-116-PZ was obtained from the boring log. Data from automated piezometers are averaged for the measurement date.

4. Groundwater elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

5. In select piezometers, as noted by "NM" above, groundwater elevation data were not available for this event.

Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									•
JOF-TW01	12-Oct-20	16.61	396.33	379.72	n/a	n/a	n/a	24.8 - 34.6	CCR
JOF-TW02	12-Oct-20	24.31	397.38	373.07	n/a	n/a	n/a	25.5 - 35.3	CCR
JOF-TW03	12-Oct-20	32.58	409.49	376.91	n/a	n/a	n/a	40.4 - 50.2	CCR
JOF-TW04	12-Oct-20	11.82	394.25	382.43	n/a	n/a	n/a	25.9 - 35.7	CCR
JOF-TW05	12-Oct-20	11.01	393.44	382.43	n/a	n/a	n/a	36.2 - 46.0	CCR
JOF-TW06	12-Oct-20	23.25	395.13	371.88	n/a	n/a	n/a	26.5 - 36.3	CCR
JOF-TW07	12-Oct-20	29.43	402.92	373.49	n/a	n/a	n/a	32.2 - 42.0	CCR
JOF-TW08	12-Oct-20	11.10	387.22	376.12	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW09	12-Oct-20	17.68	387.52	369.84	n/a	n/a	n/a	15.8 - 25.6	CCR
JOF-TW10	12-Oct-20	10.60	384.92	374.32	n/a	n/a	n/a	6.0 - 15.8	CCR
JOF-TW11	12-Oct-20	38.27	440.13	401.86	n/a	n/a	n/a	31.6 - 41.4	CCR
JOF-TW12	12-Oct-20	42.66	444.17	401.51	n/a	n/a	n/a	36.1 - 45.9	CCR
JOF-TW13	12-Oct-20	39.12	441.39	402.27	n/a	n/a	n/a	33.3 - 43.1	CCR
JOF-TW15	12-Oct-20	66.18	451.71	385.53	n/a	n/a	n/a	55.0 - 64.8	CCR
JOF-TW16	12-Oct-20	82.23	473.81	391.58	n/a	n/a	n/a	72.9 - 82.7	CCR
Piezometers									
JOF-E-2A-PZ5	12-Oct-20	n/a	n/a	383.0	390.9	370.9	20.0	n/a	CCR
JOF_PZEC	12-Oct-20	n/a	n/a	382.6	390.4	365.4	25.0	n/a	CCR and Dike Fill
JOF_PZFC	12-Oct-20	n/a	n/a	383.0	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZGC	12-Oct-20	n/a	n/a	379.0	389.8	364.8	25.0	n/a	CCR and Dike Fill
JOF_PZHC	12-Oct-20	n/a	n/a	382.3	390.0	365.8	24.2	n/a	CCR
JOF_PZIC	12-Oct-20	n/a	n/a	381.7	390.1	360.1	30.0	n/a	CCR and Dike Fill
JOF_PZJC	12-Oct-20	n/a	n/a	379.4	390.0	365.0	25.0	n/a	CCR
JOF_PZKC	12-Oct-20	n/a	n/a	NM	390.5	365.5	25.0	n/a	CCR
JOF_PZLC	12-Oct-20	n/a	n/a	377.6	390.5	365.5	25.0	n/a	CCR
JOF_PZMC	12-Oct-20	n/a	n/a	375.0	391.1	366.1	25.0	n/a	CCR and Dike Fill
P-8	12-Oct-20	n/a	n/a	400.0	432.8	394.5	38.3	n/a	CCR
P-9	12-Oct-20	n/a	n/a	395.4	432.9	393.8	39.2	n/a	CCR and Clayey Fill
P-10	12-Oct-20	n/a	n/a	401.0	430.7	391.0	39.8	n/a	CCR

Notes:

bgs below ground surface
btoc below top of casing
CCR coal combustion residuals
ft feet
ID identification
msI mean sea level
n/a not applicable
NM not measured

^{1.} Top of casing elevations, screen intervals, and screened formations were obtained from boring logs, well detail and well survey data.

^{2.} For piezometers, ground surface elevation, pore water elevations, and piezometer data obtained from the geotechnical instrumentation database. Data from automated piezometers are averaged for the measurement date.

^{3.} Pore water elevations in piezometers are calculated values. Accuracy of piezometer data is to 0.1 ft.

^{4.} In select piezometers, as noted by "NM" above, pore water elevation data were not available for this event.

Analysis Type

Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Dissolved Metals	Total Mercury	Dissolved Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
JOF-109	JOF-GW-021-20201013	Normal Environmental Sample	Х	Х		Х		Х	Х	Х	Х	Х	Х
JOF-110	JOF-GW-022-20201014	Normal Environmental Sample	Х	Х		Х		Х	Х	Х	Х	Х	Х
JOF-111	JOF-GW-023-20201014	Normal Environmental Sample	Х	Х		X		Χ	Х	Χ	Х	Х	Х
JOF-112	JOF-GW-024-20201013	Normal Environmental Sample	Х	Х		Х		Х	Х	Х	Х	Х	Х
JOF-113	JOF-GW-025-20201015	Normal Environmental Sample	Х	Х		Х		Х	Х	X	Х	Х	Х
JOF-114	JOF-GW-026-20201014	Normal Environmental Sample	Х	Х		Х		Х	Х	Х	Х	Х	Х
JOF-117	JOF-GW-027-20201015	Normal Environmental Sample	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
JOF-118	JOF-GW-028-20201014	Normal Environmental Sample	Х	Х		X		Χ	Х	Χ	Х	Х	Х
JOF-119	JOF-GW-029-20201013	Normal Environmental Sample	Х	Х		X		Χ	Х	Χ	Х	Х	Х
JOF-119	JOF-GW-DUP01-20201013	Field Duplicate Sample		Х		X		Х	Х	X	Х	Х	Х

Notes:

Total and Dissolved Metals SW-846 6020A

Total and Dissolved Mercury SW-846 7470A

Anions EPA 300.0/SW 9056

Alkalinity SM2320B
Total Dissolved Solids SM2540C
Radium-226 EPA 903.0
Radium-228 EPA 904.0
Radium-226+228 CALC
ID identification

Page 1 of 1

^{1.} Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

TABLE B.3 – Summary of Groundwater Quality Parameters Johnsonville Fossil Plant October 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	JOF-109 13-Oct-20 JOF-GW-021-20201013 39 ft Normal Environmental Sample Final QC Review	JOF-110 14-Oct-20 JOF-GW-022-20201014 57 ft Normal Environmental Sample Final QC Review	JOF-111 14-Oct-20 JOF-GW-023-20201014 46 ft Normal Environmental Sample Final QC Review	JOF-112 13-Oct-20 JOF-GW-024-20201013 29.5 ft Normal Environmental Sample Final QC Review	JOF-113 15-Oct-20 JOF-GW-025-20201015 43.5 ft Normal Environmental Sample Final QC Review	JOF-114 14-Oct-20 JOF-GW-026-20201014 39.5 ft Normal Environmental Sample Final QC Review	JOF-117 15-Oct-20 JOF-GW-027-20201015 40.5 ft Normal Environmental Sample Final QC Review	JOF-118 14-Oct-20 JOF-GW-028-20201014 48.5 ft Normal Environmental Sample Final QC Review	JOF-119 13-Oct-20 JOF-GW-029-20201013 42.5 ft Normal Environmental Sample Final QC Review
Field Parameters										_
Dissolved Oxygen	%	34.6	4.2	4.1	3.4	2.4	3.5	1.3	2.0	2.2
Dissolved Oxygen	mg/L	3.24	0.48	0.36	0.30	0.23	0.31	0.12	0.18	0.21
ORP	mV	153.3	109.6	-21.4	81.2	163.6	189.6	-106.8	96.6	87.2
0					01.2	100.0	100.0	100.0	00.0	
pH (field)	SU	5.05	5.29	6.13	5.84	5.70	4.45	6.46	5.49	5.83
	SU uS/cm	5.05 193.7								
pH (field)	_	193.7	5.29	6.13	5.84	5.70	4.45	6.46	5.49	5.83

Notes:

percent conductance degrees Celsius feet below top of casing % Cond. DEG C ft
ID
mg/L
mV
NTU
ORP
SU
uS/cm identification milligrams per Liter milliVolts

Nephelometric Turbidity Unit
Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV

Standard Units

microSiemens per centimeter

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant October 2020

			•	1	1	•	1	•	1	1
Sample Location				JOF-109	JOF-110	JOF-111	JOF-112	JOF-113	JOF-114	JOF-117
Sample Date				13-Oct-20	14-Oct-20	14-Oct-20	13-Oct-20	15-Oct-20	14-Oct-20	15-Oct-20
Sample ID				JOF-GW-021-20201013	JOF-GW-022-20201014	JOF-GW-023-20201014	JOF-GW-024-20201013	JOF-GW-025-20201015	JOF-GW-026-20201014	JOF-GW-027-20201015
Sample Depth				39 ft	57 ft	46 ft	29.5 ft	43.5 ft	39.5 ft	40.5 ft
Sample Type				Normal Environmental Sample	Normal Environmental Sampl					
Level of Review				Final-Verified	Final-Verified	Final-Verified	Final-Verified	Validated	Final-Verified	Validated
	Units	EPA MCLs	CCR Rule GWPS							
Total Metals										
Antimony	ug/L	6 ^A	n/v	<1.00	1.40 J	<1.00	<1.00	<1.00	<1.00	<1.00
Arsenic	ug/L	10 ^A	n/v	<2.00	<2.00	19.2 ^A	<2.00	2.82 J	<2.00	31.9 ^A
Barium	ug/L	2,000 ^A	n/v	14.7	70.3	43.8	64.8	24.4	20.3	92.0
Beryllium	ug/L	4 ^A	n/v	0.374 J	<0.200	<0.200	<0.200	<0.200	1.10	<0.200
Boron	ug/L	n/v	n/v	64.1	1,430	5,190	36.1	15,600	11,600	13.9 J
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	<0.300	0.576 J	7.10 ^A	<0.300	<0.300
Calcium	ug/L	n/v	n/v	16,100	17,000	482,000	29,900	580,000	518,000	91,800
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00
Cobalt	ug/L	n/v	6 ^B	<0.300	2.53	109 ^B	105 ^B	2.48	71.1 ^B	20.4 ^B
Copper	ug/L	n/v	n/v	0.873 U*	0.349 U*	<0.300	<0.300	1.17 U*	2.82 U*	<0.300
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	35.9	<3.00	123 ^B	77.5 ^B	<3.00
Magnesium	ug/L	n/v	n/v	5,040	4,380	29,200	13,400	6,540	47,900	28,500
Mercury	ug/L	2 ^A	n/v	<0.0670	0.0740 U*	<0.0670	<0.0670	<0.0670	<0.0670	<0.0670
Molybdenum	ug/L	n/v	100 ^B	<0.200	0.205 J	40.4	0.824 J	236 ^B	<0.200	26.7
Nickel	ug/L	100 _(TN MCL) A	n/v	19.5	8.57	29.8	8.54	117 ^A	20.4	6.00
Potassium	ug/L	n/v	n/v	1,250	338	46,700	915	61,700	104,000	2,780
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
Sodium	ug/L	n/v	n/v	6,790	33,500	194,000	25,400	42,700	307,000	34,100
Thallium	ug/L	2 ^A	n/v	<0.600	<0.600	<0.600	<0.600	0.919 J	0.741 J	<0.600
Vanadium Zinc	ug/L ug/L	n/v n/v	n/v n/v	5.49 U* 48.8	<3.30 13.8 U*	<3.30 57.6	<3.30 14.8 U*	<3.30 292 J	<3.30 68.0	<3.30 <3.30
Dissolved Metals	ug/L	TI/V	TI/V	40.0	13.6 U	57.0	14.6 U	292 J	06.0	<3.30
Antimony	/1	6 ^A	n/v					T		<1.00
Arsenic	ug/L ug/L	10 ^A	n/v	-	-	-	-	-	-	31.6 ^A
Barium	ug/L ug/L		n/v	-	-	-	-	-	-	92.7
Beryllium	ug/L ug/L	2,000 ^A	n/v	-	-	-	-	-	-	<0.200
Boron	ug/L	n/v	n/v		_	_	- -			16.9
Cadmium	ug/L	5 ^A	n/v	-	- -	<u>-</u>	<u>-</u>	_	<u>-</u>	<0.300
Calcium	ug/L	n/v	n/v	-	-	-	-	-	-	94,000
Chromium	ug/L	100 ^A	n/v	-	-	-	-	-	-	<3.00
Cobalt	ug/L	n/v	6 ^B	-	-	-	-	-	-	20.2 ^B
Copper	ug/L	n/v	n/v	-	-	-	-	-	-	<0.300
Lead	ug/L	n/v	15 ^B	-	-	-	-	-	-	<0.500
Lithium	ug/L	n/v	40 ^B	-	-	-	-	-	-	<3.00
Magnesium	ug/L	n/v	n/v	-	-	-	-	-	-	28,200
Mercury	ug/L	2 ^A	n/v	-	-	-	-	-	-	<0.0670
Molybdenum	ug/L	n/v	100 ^B	-	-	-	-	-	-	27.9
Nickel	ug/L	100 _(TN MCL) A	n/v	-	-	-	-	-	-	5.80
Potassium	ug/L	n/v	n/v	-	-	-	-	-	-	2,740
Selenium	ug/L	50 ^A	n/v	-	-	-	-	-	-	<2.00
Silver	ug/L	100 _(TN MCL) A	n/v	-	-	-	-	-	-	<0.300
Sodium	ug/L	n/v	n/v	-	-	-	-	-	-	33,800
Thallium Vanadium	ug/L	2 ^A	n/v n/v	-	-	-	-	· -	-	<0.600 <3.30
Vanadium Zinc	ug/L ug/L	n/v n/v	n/v		<u>-</u>	<u>-</u> -	- -]	<u>.</u>	3.68 U*
Anions	ug/L	1 1/ V	11/ V	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	3.00 0
Chloride	mg/l	nh:	nh.	42.6	49.4	403	32.0	6F 0	224	70 €
	mg/L	n/v 4 ^A	n/v	42.6	48.4	493	32.0	65.8 0.168	224	78.5 0.851
Fluoride Sulfate	mg/L mg/L	4^` n/v	n/v n/v	<0.0330 3.57	0.432 24.8	0.179 1,070	0.434 52.9	0.168 1,440	0.0623 J 1,890	0.851 3.86
General Chemistry	IIIg/L	1 I/ V	1 I/ V	3.37	24.0	1,070	52.8	1,440	1,090	3.00
	ma a: /1	L .	w.h.	14.0	20.0	64.4	400	I 40.4	4.70 1	004
	mg/L	n/v	n/v	11.0	36.0	64.4	103	13.1	1.76 J	334
Alkalinity, Bicarbonate	mg/l	n/u	n/u	~1 AE	~1 AE	~1 1E	~1 AE	~1 AE	~1 AE	_1 1E
Alkalinity, Carbonate	mg/L	n/v	n/v	<1.45 11.0	<1.45 36.0	<1.45 64.4	<1.45 103	<1.45 13.1	<1.45 1.76 L	<1.45 334
=	mg/L mg/L mg/L	n/v n/v n/v	n/v n/v n/v	<1.45 11.0 106	<1.45 36.0 207	<1.45 64.4 2,610	<1.45 103 267	<1.45 13.1 2,340	<1.45 1.76 J 3,250	<1.45 334 476

See notes on last page.

TABLE B.4 - Groundwater Analytical Results for Metals, Anions, and General Chemistry Johnsonville Fossil Plant October 2020

Sample Location				JOF-118	JOF-1	19		
Sample Date				14-Oct-20	13-Oct-20	13-Oct-20		
Sample ID				JOF-GW-028-20201014	JOF-GW-029-20201013	JOF-GW-DUP01-20201013		
Sample Depth				48.5 ft	42.5 ft	42.5 ft		
Sample Type				Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample		
Level of Review	l,	ED4.4401	000 0 1 00000	Final-Verified	Final-Verified	Final-Verified		
Total Metals	Units	EPA MCLs	CCR Rule GWPS					
	/1	cA	m/s.	-1.00	z4.00	z1.00		
Antimony Arsenic	ug/L	6 ^A 10 ^A	n/v n/v	<1.00 <2.00	<1.00 <2.00	<1.00 <2.00		
Barium	ug/L	2,000 ^A	n/v	24.1	35.5	36.5		
Beryllium	ug/L ug/L	2,000 4 ^A	n/v	<0.200	<0.200	<0.200		
Boron	ug/L	n/v	n/v	62.0	22.2	19.8		
Cadmium	ug/L	5 ^A	n/v	<0.300	<0.300	<0.300		
Calcium	ug/L	n/v	n/v	34,600	20,700	20,600		
Chromium	ug/L	100 ^A	n/v	<3.00	<3.00	<3.00		
Cobalt	ug/L	n/v	6 ^B	2.93	1.91	1.94		
Copper	ug/L	n/v	n/v	<0.300	<0.300	<0.300		
Lead	ug/L	n/v	15 ^B	<0.500	<0.500	<0.500		
Lithium	ug/L	n/v	40 ^B	<3.00	<3.00	<3.00		
Magnesium	ug/L	n/v	n/v	6,980	3,960	3,920		
Mercury	ug/L	2 ^A	n/v	0.0670 U*	<0.0670	<0.0670		
Molybdenum	ug/L	n/v	100 ^B	<0.200	0.386 J	0.334 J		
Nickel	ug/L	100 _(TN MCL) ^A	n/v	13.0	1.66 J	1.69 J		
Potassium	ug/L	n/v	n/v	976	1,310	1,300		
Selenium	ug/L	50 ^A	n/v	<2.00	<2.00	<2.00		
Silver Sodium	ug/L	100 _(TN MCL) ^A	n/v n/v	<0.300 34,400	<0.300 33,800	<0.300 33,700		
Thallium	ug/L ug/L	n/v 2 ^A	n/v	<0.600	<0.600	<0.600		
Vanadium	ug/L	n/v	n/v	<3.30	3.83 U*	3.89 U*		
Zinc	ug/L	n/v	n/v	10.8 U*	3.71 U*	6.32 U*		
Dissolved Metals								
Antimony	ug/L	6 ^A	n/v	-	-	-		
Arsenic	ug/L	10 ^A	n/v	-	-	-		
Barium	ug/L	2,000 ^A	n/v	-	-	-		
Beryllium	ug/L	4 ^A	n/v	-	-	-		
Boron Cadmium	ug/L ug/L	n/v 5 ^A	n/v n/v	-	-	-	Notes:	
Calcium	ug/L ug/L	n/v	n/v	-			votes.	
Chromium	ug/L	100 ^A	n/v	- -	_	_		
Cobalt	ug/L	n/v	6 ^B	-	_	_	EPA Maximum Contaminant Level	
Copper	ug/L	n/v	n/v	-	_	_	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regi	ulations)
Lead	ug/L	n/v	15 ^B	-	-	_	n/v No standard/guideline value	,
Lithium	ug/L	n/v	40 ^B	-	-	_	6.5 Concentration is greater than or equal to the indicated standard.	
Magnesium	ug/L	n/v	n/v	-	-	-	analyte was not detected at a concentration greater than the Method Detection Limit	
Mercury	ug/L	2 ^A	n/v_	-	-	-	parameter not analyzed / not available	
Molybdenum	ug/L	n/v	100 ^B	-	-	-	t feet below top of casing	
Nickel	ug/L	100 _(TN MCL) ^A	n/v	-	-	-	D identification	
Potassium Selenium	ug/L ug/L	n/v 50 ^A	n/v n/v	<u>-</u> -	-	_	quantitation is approximate due to limitations identified during data validation ng/L milligrams per Liter	
Silver	ug/L ug/L	100 _(TN MCL) ^A	n/v]		J* result should be considered "not detected" because it was detected in an associated field or lab	oratory blank at a simila
Sodium	ug/L	n/v	n/v	- -	-	_	g/L micrograms per Liter	Signal at a silling
Thallium	ug/L	2 ^A	n/v	-	-	-		
Vanadium	ug/L	n/v	n/v	-	-	-	. Level of review is defined in the Quality Assurance Project Plan.	
Zinc	ug/L	n/v	n/v	-	-	-		
Anions								
Chloride	mg/L	n/v	n/v	12.5	21.1	21.0		
Fluoride	mg/L	4 ^A	n/v	0.356	0.350	0.378		
Sulfate	mg/L	n/v	n/v	120	27.9	28.0		
General Chemistry					1			
Alkalinity, Bicarbonate	mg/L	n/v	n/v	42.9	83.4	84.5		
Alkalinity, Carbonate Alkalinity, Total as CaCO3	mg/L	n/v n/v	n/v n/v	<1.45 42.9	<1.45 83.4	<1.45 84.5		
Total Dissolved Solids	mg/L mg/L	n/v n/v	n/v n/v	42.9 286	83.4 176	171		
TOTAL DISSUIVED SUIDS	IIIg/L	11/V	11/V	۷00	170	171		

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant October 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	JOF-109 13-Oct-20 JOF-GW-021-20201013 39 ft Normal Environmental Sample Final-Verified	JOF-110 14-Oct-20 JOF-GW-022-20201014 57 ft Normal Environmental Sample Final-Verified	JOF-111 14-Oct-20 JOF-GW-023-20201014 46 ft Normal Environmental Sample Final-Verified	JOF-112 13-Oct-20 JOF-GW-024-20201013 29.5 ft Normal Environmental Sample Final-Verified	JOF-113 15-Oct-20 JOF-GW-025-20201015 43.5 ft Normal Environmental Sample Validated	JOF-114 14-Oct-20 JOF-GW-026-20201014 39.5 ft Normal Environmental Sample Final-Verified
Radiological Parameters									
Radium-226	pCi/L	n/v	n/v	0.741 +/-(0.516)U*	0.808 +/-(0.631)U	1.56 +/-(0.747)U*	3.05 +/-(0.857)	3.77 +/-(1.00)	2.18 +/-(0.735)
Radium-228	pCi/L	n/v	n/v	-0.0120 +/-(0.232)U	0.166 +/-(0.375)U	0.754 +/-(0.452)	0.785 +/-(0.616)U	0.293 +/-(0.341)U	2.26 +/-(0.755)
Radium-226+228	pCi/L	5 ^A	n/v	0.741 +/-(0.565)U*	0.974 +/-(0.734)U	2.31 +/-(0.873)J	3.83 +/-(1.06)J	4.07 +/-(1.06)J	4.44 +/-(1.05)

See notes on last page.

TABLE B.5 – Groundwater Analytical Results for Radiological Parameters Johnsonville Fossil Plant October 2020

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review				JOF-117 15-Oct-20 JOF-GW-027-20201015 40.5 ft Normal Environmental Sample Validated	JOF-118 14-Oct-20 JOF-GW-028-20201014 48.5 ft Normal Environmental Sample Final-Verified	JOF-1 st 13-Oct-20 JOF-GW-029-20201013 42.5 ft Normal Environmental Sample Final-Verified	13-Oct-20 JOF-GW-DUP01-20201013 42.5 ft Field Duplicate Sample Final-Verified
	Units	EPA MCLs	CCR Rule GWPS				
Radiological Parameters							
Radium-226	pCi/L	n/v	n/v	3.72 +/-(0.981)	0.563 +/-(0.511)U	0.0515 +/-(0.274)U	0.284 +/-(0.326)U
Radium-228	pCi/L	n/v	n/v	0.534 +/-(0.394)U	0.136 +/-(0.240)U	-0.0856 +/-(0.329)U	0.0159 +/-(0.268)U
Radium-226+228	pCi/L	5 ^A	n/v	4.25 +/-(1.06)J	0.699 +/-(0.565)U	0.0515 +/-(0.428)U	0.300 +/-(0.422)U

Notes:

A EPA Maximum Contaminant Level

B CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value ft feet below top of casing

ID identification

J quantitation is approximate due to limitations identified during data validation

pCi/L picoCurie per Liter
U not detected

U* this result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level.

^{1.} Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.9 DYE TRACE SAMPLING AND ANALYSIS REPORT

Johnsonville Fossil Plant – Sampling and Analysis Report for Active Ash Pond 2 Dye Trace Study

TDEC Commissioner's Order: Environmental Investigation Plan Johnsonville Fossil Plant New Johnsonville, Tennessee

April 14, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	February 3, 2021
1	Addresses March 30, 2021 TDEC Review Comments and Issued for TDEC	April 14, 2021

Sign-off Sheet

This document entitled Johnsonville Fossil Plant – Active Ash Pond 2 Dye Trace Study Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule, and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by ______

Kevin P. Carey, PG, Senior Geologist

Reviewed by Carolet A.

Carole M. Farr, Senior Principal Geologist

James M. Kerr, Jr., Senior Principal Geologist

Table of Contents

ABBR	EVIATIONS	Ш
1.0	INTRODUCTION	1
2.0 2.1	OBJECTIVES AND SCOPE	.2 .2 .3
3.0 3.1 3.2	WORK LOCATIONS	4 4 .4
3.3 3.4 3.5 3.6	BENCH STUDY	7 8 9 10
3.7 3.8 3.9	3.6.2 Quality Control Methodology SAMPLE SHIPMENT INVESTIGATIVE DERIVED WASTE VARIATIONS. 3.9.1 Variations in Scope 3.9.2 Variations in Procedures	11 11 11
4.0 4.1 4.2	SAMPLING RESULTS AND DATA REVIEW	13
5.0	SUMMARY	16
6.0	REFERENCES	17
TABLE	ES 1 – Bench Study Boring Details	5
LIST C	OF APPENDICES	
Exhibit	A.1 – Bench Study Boring Locations A.2 – Background Study Monitoring Locations	

i

Exhibit A.3 – Injection Boring Locations

Exhibit A.4 – Post-Injection Dye Detection Results

APPENDIX B - TABLES

Table B.1 – EWC Bench Study Results

Table B.2 – Background Study Results

Table B.3 – Post-Injection Study Results

APPENDIX C - SUBSURFACE LOGS

APPENDIX D - PHOTOGRAPHIC LOGS

Attachment D.1 –Bench Study Photographic Log

Attachment D.2 – Dye Injection Photographic Log

APPENDIX E - DATA VALIDATION REPORT (KARST WORKS)

Abbreviations

AAP2 Active Ash Pond 2

CCR Coal Combustion Residuals

COC Chain of Custody

EAR Environmental Assessment Report

EC&O Environmental Compliance and Operations

EIP Environmental Investigation Plan

ENV Environmental

EnvStds Environmental Standards, Inc.
EWC Ewers Water Consultants, Inc.

Fluorescein Sodium Fluorescein (Acid Yellow 73)

FSP Field Sampling Personnel

ID Identification

IDW Investigation Derived Waste

IP Injection Point

JOF Plant Johnsonville Fossil Plant

Karst Works Inc.

mL milliliter

PPE Personal Protective Equipment

QA/QC Quality Assurance/Quality Control

QAMP Quality Assurance Management Plan

RWT Rhodamine WT

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
SRB Sulphorhodamine B (Acid Red 52)
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order No. OGC15-0177

TI Technical Instruction

TVA Tennessee Valley Authority

Introduction April 14, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of the dye trace study activities associated with Active Ash Pond 2 (AAP2), which was conducted from April 2019 through March 2020 at TVA's Johnsonville Fossil Plant (JOF Plant) located in New Johnsonville, Tennessee.

The objective of the dye trace study is to evaluate if preferential hydrogeologic pathways are present between the AAP2 with the underlying alluvial aquifer and surrounding surface water (Kentucky Lake/Tennessee River) in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the phases of work completed during the dye trace study and to present the information and data collected during the execution of the Dye Trace Study Sampling and Analysis Plan (SAP) (Stantec 2019a). This SAR is not intended to provide conclusions or interpretations of results regarding preferential hydrogeologic pathways. The scope of the dye trace study represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the JOF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results from this dye trace study will consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs, and be presented in the Environmental Assessment Report (EAR).

The dye trace study activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the JOF Plant:

- Dye Trace Study SAP (Stantec 2019a)
- Environmental Investigation Plan (EIP) (Stantec 2019b)
- Quality Assurance Management Plan (QAMP) (Ewers Water Consultants 2020).

The Dye Trace Study SAP was implemented as documented herein in accordance with TVA- and TDEC-approved Programmatic- and Project-specific changes. Variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.9.

Stantec conducted the dye trace study field activities, and Ewers Water Consultants, Inc. (EWC) in Richmond, Kentucky, supplied and analyzed the dye detectors. Quality assurance oversight for the dye detector preparation, sampling, and analysis was performed by both EWC and Stantec; data validation and verification were performed by Karst Works, Inc. (Karst Works); and Environmental Standards, Inc.(EnvStds) provided review of the overall dataset and report. This report summarizes the activities conducted to complete the dye trace study.

Objectives and Scope April 14, 2021

2.0 OBJECTIVES AND SCOPE

The primary objective of the dye trace study was to evaluate if preferential hydrogeologic pathways are present between AAP2, a CCR Unit at the JOF Plant, with the underlying alluvial aquifer and surrounding surface water (Kentucky Lake/Tennessee River) in response to the TDEC Order. The approach and scope of the dye trace study consisted of four phases and included the following site activities:

- A bench-scale and dye survivability study (herein referred to as the bench study) during which the CCR material and clay liner interface depths were determined, and CCR samples collected to evaluate which dyes should be used for the dye trace study
- A background study to evaluate if the potential dyes selected for the dye injection were present in surface water and monitoring wells around AAP2 prior to dye injections
- Dye injection into five borings advanced along the centerline of AAP2
- Post-injection sampling and analysis using dye detectors.

The following sections further describe the approach to the dye trace study.

2.1 APPROACH TO DYE TRACE STUDY

2.1.1 Bench Study

The objective of the bench study was to investigate the depth of the CCR material/clay bottom interface in five direct push borings that were advanced near the north-south trending centerline of AAP2, which was the proposed injection area. Two injection borings (IP-1 and IP-2) were advanced along the divider dike in the southern portion of AAP2, and three borings (IP-3, IP-4, and IP-5) were advanced near the centerline in the northern portion of AAP2. This investigation included logging the material encountered in each boring and collecting samples of the CCR material from the injection zone, which was immediately above the CCR material/clay bottom interface, to evaluate which commercially available organic dyes interact with, and adsorb the least to, the CCR material. Dyes were selected by EWC for the injection based on the results of bench-scale testing and background study.

2.1.2 Background Study

The objective of the background study was to evaluate if dyes were present within the underlying alluvial aquifer and adjacent surface water. In conjunction with the bench study, the background study was performed to assist in selecting dyes to use for the dye trace study. The background study consisted of two sampling events, the first of which occurred from May 6-7, 2019 followed by dye detector collection on May 13, 2019, and the second of which occurred on July 29-30 with dye detectors collected on August 5, 2019. A dye detector was placed in JOF-PZAT on August 5, 2019 and collected on August 12, 2019. Dye detectors were placed in surface water, monitoring wells, and piezometers around AAP2 and samples were collected for analysis of dyes by EWC. Dye detectors for the study were prepared and supplied by

Objectives and Scope April 14, 2021

EWC and were comprised of approximately 10 grams of granular carbon housed in a vinyl coated fiberglass screen cloth and provided in individual resealable plastic bags.

2.1.3 Dye Injection

The objectives of the dye injection activities were to advance five injection borings aligned down the north-south trending centerline of AAP2 to the depths identified during the bench study and inject dyes within the zone immediately above the CCR material/clay bottom interface. Two injection borings (IP-1 and IP-2) were advanced along the divider dike in the southern portion of AAP2, and three borings (IP-3, IP-4, and IP-5) were advanced near the centerline in the northern portion of AAP2. Each injection point was advanced immediately adjacent to its corresponding bench study boring. Dye was injected into each boring, followed by an additional volume of water obtained from the reverse-osmosis building at the JOF Plant to disperse the dyes within the bottom portion of the CCR unit along the clay bottom interface.

2.1.4 Post-Injection Sampling and Analysis

The objective of the post-injection sampling and analysis phase was to place and retrieve dye detectors for analysis by EWC. As part of that process, Stantec established Quality Assurance/Quality Control (QA/QC) guidelines for Stantec field sampling personnel (FSP) to implement when retrieving, replacing, handling, and transporting the dye detectors to EWC during the dye trace study. The QA/QC guidelines included collecting field blanks, field duplicates, and trip blanks during sampling activities. For nine sampling events from August 19 through October 14, 2019, the dye detector packets were retrieved and replaced weekly. For 11 sampling events from October 28, 2019 through March 4, 2020, the dye detectors were retrieved and replaced biweekly.

EWC implemented, maintained, and documented the QA/QC practices followed when preparing and analyzing the dye detectors.

Field Activities April 14, 2021

3.0 FIELD ACTIVITIES

Dye trace study investigation field activities were conducted between April 8, 2019 and March 4, 2020. As described in Sections 3.3 through 3.6 below, field activities were conducted in four phases: the bench study, the background study, dye injection, and post-injection sampling and analysis. Stantec performed field activities based on guidance and specifications in TVA's Technical Instructions (TIs), the SAP, and the QAMP, except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, quality assurance oversight for the dye detector preparation, sampling, and analysis was performed by both EWC and Stantec, and data validation and verification were performed by Karst Works, Inc. (Karst Works). EnvStds, under direct contract with TVA, also provided quality reviews of field documentation. In addition, TVA's Environmental Compliance and Operations (EC&O) team observed dye trace field activities during post-injection sampling activities.

3.1 WORK LOCATIONS

The dye trace study investigation and sampling locations at the JOF Plant AAP2 are shown on Exhibits A.1 through A.3 in Appendix A. Dye trace study sampling results are presented in Tables B.1 through B.3 in Appendix B.

3.2 DOCUMENTATION

Stantec maintained field documentation in general accordance with TVA TI ENV-TI-05.80.03, *Field Record Keeping* and the QAMP. Field activities were recorded in field logbooks and other program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the BGS investigation included:

- Field Logbook and Daily Field Activity Log
- Subsurface Log
- Chain-of-Custody (COC).

3.2.1.1 Field Logbook and Daily Field Activity Log

Stantec FSP recorded field activities, observations, and data in a field logbook or a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAMP were documented in the field logs.

Field Activities April 14, 2021

3.2.1.2 Subsurface Log

A Professional Geologist (PG) licensed in the State of Tennessee prepared a *Subsurface Log* for the investigation borings. The log documented date, boring location, drilling personnel, tooling/equipment used, sample depth and time, sample recovery, subsurface lithology and other relevant observations. The *Subsurface Logs* are provided in Appendix C.

3.2.1.3 Chain-of-Custody

Stantec FSP completed *COC* documentation for bench study, background study, and post-injection samples collected during the dye trace study. *COCs* were provided by EWC. The unique sample identification (ID), sample location, type of sample, collection date and time, analyses requested, and sample custody were recorded on the *COC*. The Field Team Leader reviewed the *COCs* for completeness, and the FSP conducted a quality check of samples compared to sample IDs on the corresponding *COC*. *COCs* were completed in general accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*.

3.2.2 Photographs

Photographs of the dye trace study investigation, bench study, and dye injection activities are presented in Appendix D, Attachments D.1 and D.2 respectively.

3.3 BENCH STUDY

On April 8 and 9, 2019, Stantec retained the track-mounted Geoprobe® services of Geo Logic, Inc. to collect the CCR material samples from each of the five injection point (IP) borings (IP-1, IP-2, IP-3, IP-4, and IP-5), which were advanced along the north-south trending centerline of AAP2. A CCR material sample was collected from the proposed injection zone in each boring, which was immediately above the CCR material/clay bottom interface of the CCR unit. The depths of the CCR material/clay interface in each boring and intervals from which the CCR material samples were collected were as follows:

Table 1 - Bench Study Boring Details

Boring Location	Depth of CCR Material/Clay Interface	CCR Sample Interval	Depth of Dye Injection
IP-1	47.0 ft bgs	45.5-47.0 ft	46.0 ft
IP-2	43.5 ft bgs	42.0-43.5 ft	43.0 ft
IP-3	51.8 ft bgs	50.3-51.8 ft	51.0 ft
IP-4	42.0 ft bgs	40.5-42.0 ft	41.5 ft
IP-5	35.0 ft bgs	33.5-35.0 ft	34.5 ft

Notes: bgs - below ground surface

CCR - coal combustion residuals

ft - feet

IP-injection point

Field Activities April 14, 2021

The locations of the bench study borings are shown on Exhibit A.1 in Appendix A, and photographs of bench study activities are included in Appendix D.1 in Appendix D.

Once the base of the CCR material was reached, CCR material was collected from the injection interval and placed into laboratory provided soil jars, placed into an iced cooler, and transported to the EWC laboratory for analysis. The analysis consisted of mixing a portion of CCR material from each boring with four different dyes to evaluate how each dye reacted with the CCR material. The four dyes used during the Bench Study analyses were:

- Eosine (Acid Red 87)
- Rhodamine-WT (Acid Red 388)
- Sodium Fluorescein (Acid Yellow 73)
- Sulphorhodamine B (Acid Red 52).

During EWC's analysis, six sets of two closable 50 milliliter (mL) Pyrex® reactor vessels were used in the Bench Study tests. A "set" consisted of two vessels: one for Sodium Fluorescein (Fluorescein) and Rhodamine-WT (RWT) and a second for Eosine and Sulphorhodamine-B (SRB). The six sets consisted of one for each of the five CCR samples and one control sample set for the two dye solutions. The two dye solutions were prepared in bicarbonate water, one using Fluorescein and RWT (Solution A), the other containing Eosine and SRB (Solution B).

Ten grams of CCR material from a boring location were placed into a set of two reactor vessels. Thirty (30) mL of dye Solution A were added to one of the vessels and a similar quantity of Solution B was added to the second vessel. The process was repeated for each of the five samples and the control sample. The control sample consisted of unused carbon and did not contain CCR material. The vessels were filled with the same dye solutions, capped, and placed in a Gyrotary® shaker and agitated to prevent the CCR material from settling on the bottom of the vessels.

Two mL of the liquid from the samples were withdrawn from each set of vessels at intervals of one, three, nine, and 21 hours. These samples were analyzed spectrofluorometrically with a Shimadzu RF-5301-PC Spectrofluorophotometer.

Based on analysis of the samples from each boring, EWC determined that both Fluorescein and SRB dyes were the appropriate dyes to be used for the injection activities. A table summarizing the results of the bench-scale dye survivability study is included in Table B.1 in Appendix B.

Field Activities April 14, 2021

3.4 BACKGROUND STUDY

The background study was conducted in accordance with the SAP. Dye detector sampling was performed at the following locations:

- Fifteen surface water sampling locations around the periphery of AAP2 (SW01 through SW14) The 15 surface water sampling locations included five background/upgradient locations: two
 along the south end of AAP2 (SW11 and SW12); one on the southwest end of Highway 70 bridge
 (SW14); one on the southeast end of Highway 70 bridge (SW13); and the Spillway in the
 southeast portion of AAP2. The remaining 10 surface water locations were SW01 through SW10,
 located along the east and west sides of AAP2.
- Groundwater monitoring wells 10-AP1, 10-AP3, JOF-103, and JOF-104 Groundwater monitoring wells JOF-118 and JOF-119 were later added to the sampling network, as these two monitoring wells were not installed at the time the background study began.
- Piezometer JOF-PZAT was added to the second background study event.

The monitoring points for the background study are shown on Exhibit A.2 in Appendix A. Results of the dye detector background analysis are provided in Table B.2 in Appendix B.

On May 6-7, 2019, Stantec FSP set up surface water and aquifer background sampling locations by placing dye detectors at each location. Two dye detectors were placed within the screened intervals of each groundwater monitoring well, one at the top portion and one in the bottom portion to provide two sampling locations within the screened interval. The dye detectors in the groundwater monitoring wells were designated as "top" and "bottom." Dye detectors remained in their respective locations for approximately one week.

On May 13, 2019, the dye detectors were retrieved from each sampling location, placed into new resealable plastic bags, placed into a cooler to prevent exposure to sunlight, and transported to EWC laboratory for analysis.

The laboratory procedure performed to produce the eluent for analysis was prepared and implemented by EWC and consisted of the following sequence:

- Vigorously rinse each dye detector with dechlorinated activated carbon filtered potable water
- Remove excess water by centrifugal extraction
- Dry the dye detectors in a temperature-controlled, filtered forced air, dye-free drying cabinet
- Withdraw approximately three grams of the granular activated carbon into a disposable plastic container
- Elute the dye (if present) with six mL of Smart Solution for one hour (Smart Solution consists of a 5:3:2 ratio of 1-propanol: 30% ammonium hydroxide and deionized water at 140°F, respectively)

Field Activities April 14, 2021

- Decant the eluent into a clean, disposable cuvette
- Place the cuvette into a spectrofluorophotometer for analysis.

On July 29 and 30, 2019, a second, limited background sampling event was conducted, which included five surface water locations (SW01-SW05), to evaluate the surface water in-between the initial background sampling event and the dye injection activities, and JOF-118 and JOF-119, which had been installed since the initial background sampling event. On August 5th, the dye detectors were collected from the second background sampling event. During that time, piezometer JOF-PZAT was located and deemed a viable sampling location. A dye detector was then placed into piezometer JOF-PZAT to add this piezometer as part of the background study. The dye detector placed in piezometer JOF-PZAT during the second background study was collected on August 12, 2019.

3.5 DYE INJECTION

On August 12 and 13, 2019, prior to performing the dye injection activities, new dye detectors were placed in groundwater monitoring wells JOF-103, JOF-104, JOF118, JOF-119, 10-AP1, 10-AP3, the Spillway, and the surface water sampling locations. On August 13-15, 2019, Stantec retained the Geoprobe® and material injection services of Geo Logic, Inc. to inject dye into five boring locations adjacent to the bench study borings. Two different dyes were used for the study: SRB was injected into borings IP-1 and IP-2, which were advanced along the divider dike in the southern portion of the AAP2; and Fluorescein was injected into borings IP-3, IP-4, and IP-5, which were advanced within the northern portion of the unit.

Locations of the injection points are depicted on Exhibit A.3 in Appendix A, and photographs of dye injection activities are included in Appendix D.2 in Appendix D.

For the injections, EWC supplied 25 pounds of SRB powder and 25 pounds of 40% Fluorescein solution. The SRB powder was dissolved in water and evenly divided among injection points IP-1 and IP-2. Approximately 12.5 pounds of SRB was dissolved in five to ten gallons of water and injected into IP-1 and IP-2. The Fluorescein was evenly divided between injection points IP-3, IP-4, and IP-5. To do so, approximately one gallon of Fluorescein dye was mixed with 15 to 20 gallons of water per boring and injected into IP-3, IP-4, and IP-5.

The injections were performed by advancing a 1.25-inch diameter Geoprobe® drill-rod with an expendable point in each injection boring location to the depth just above the CCR material/clay bottom interface, as determined during the Bench Study. Once the target depth was reached in each boring location, five to ten gallons of water were pumped through the drill-rod (at a boring-specific pounds per square inch, as determined by Stantec's geotechnical engineers) while slowly retracting the drill-rod in order to detach the expendable point and allow water to flow into the injection interval (Table 1). Water was injected first to determine how well the CCR material would accept water. After injecting the water, the dye was prepared for each injection point in a new five-gallon bucket and injected through the drill-rod into the bottom five-feet of CCR material. Once the dye was fully injected, an additional 25 to 35 gallons

Field Activities April 14, 2021

of water was injected into each boring location to aid in dispersing the dye along the CCR material/clay bottom interface.

3.6 SAMPLING AND ANALYSIS

The dye detectors that were placed at each sampling location prior to the dye injection were retrieved and replaced with new dye detectors on August 19 and 20, 2019, approximately one week after the dye injection activities were conducted. The retrieved dye detectors were transported to EWC for analysis.

The dye detectors were then retrieved and replaced once per week for the next eight weeks (August 19 through October 14, 2019). After the October 14, 2019, event (Round 9), the dye detectors were retrieved and replaced twice per month until the final dye detector packet retrieval event was conducted on March 3-4, 2020. During the post-injection sampling, a total of 584 dye packets (including duplicate samples) were retrieved for dye detection analysis.

Dye detectors used between August 19 and October 28, 2019, contained unwashed (coconut) carbon. From November 12 through the end of the study, acid-washed carbon was used in the dye detectors. The change in carbon was implemented by EWC when early rounds of dye detectors placed in the monitoring wells consistently showed a "low-flow signature" near the wavelength of Fluorescein. Low-flow signature is indicative of background levels of fluorescence that naturally occur in unwashed (coconut) carbon due to low water flow in the wells and through the dye detectors. A positive low-flow signature does not indicate a positive dye recovery. The acid-washed carbon was reported by EWC to have lower capture efficiency than the unwashed carbon, but this was offset by reducing the low flow signature interference.

As described below in the Variations section of this report, although new dye detectors and duplicates were placed after each sampling event, several dye detectors and duplicates were missing when the Stantec FSP returned to collect them. Dye detectors and duplicates were missing at the following locations and dates during the post-injection sampling activities:

- August 19-20, 2019 (Round 1): SW07 and SW08
- August 26-27, 2019 (Round 2): SW03, SW04, and SW07
- September 3-4, 2019 (Round 3): SW14
- September 9, 2019 (Round 4): SW04
- October 28, 2019 (Round 10): duplicates missing from SW06 and SW10
- November 12, 2019 (Round 11): SW01, SW02, and SW13
- November 25, 2019 (Round 12): SW02 and SW12
- December 9, 2019 (Round 13): SW04 and SW09
- December 19, 2019 (Round 14): duplicates missing from SW09 and SW11

Field Activities April 14, 2021

- January 6, 2020 (Round 15): SW04, SW08, and SW13
- January 21-22, 2020 (Round 16): SW03 and SW05
- February 18-19, 2020 (Round 18): SW06 and SW13, missing duplicates from SW06 and JOF-119TOP
- March 3-4, 2020 (Round 19): SW13

The missing dye detectors may be attributed to various causes including strong currents/water movement detaching the packet, aquatic life interfering with the packet, or non-dye trace study related anthropogenic activities. As described in Section 4.2, there were adequate dye detectors analyzed from the locations included in this study.

3.6.1 Analysis of Dye Detector Packets

Dye detectors were transported to EWC for analysis. The procedure utilized by EWC to produce the eluent for analysis was the same as described in Section 3.4 above for the background study.

3.6.2 Quality Control Methodology

Quality Control samples were collected in accordance with TVA's Technical Instruction ENV-TI.05.080.04 – *Field Sampling Quality Control*. During the sampling activities, Stantec FSP followed QA/QC procedures designed specifically for the dye trace study including:

- Changing nitrile gloves between each sample location or when handling a different dye detector
- Double-bagging dye detectors once collected using resealable plastic bags with no color(s) in the zipper seal
- After double-bagging was completed, a custody seal was placed across the zipper seal of the outer resealable plastic bag
- Labeling all sample bags using only a black marker
- Stantec FSP were directed not to wear high-visibility (fluorescent) clothing while handling the dye detectors
- QA/QC samples were maintained in accordance with the QAMP (EWC 2020) except as
 documented in the Section 3.9 Variations. The QAMP called for one field blank per five dye
 detector samples; one field duplicate per 10 dye detector samples, and one trip blank per event.

Field Activities April 14, 2021

3.7 SAMPLE SHIPMENT

Samples were delivered by Stantec FSP to EWC's laboratory under *COC* protocols in accordance with TVA's Technical Instruction ENV-TI.05.80.06 *Handling and Shipping of Samples*.

In accordance with EWC practices, "under normal circumstances, dye detectors are stored and transported in coolers at ambient temperature. If more than 48 hours (will) lapse before the samples are sent to the laboratory, they are refrigerated to retard bacterial action". As such, ice was only placed in the cooler in the event the dye detectors were shipped overnight to EWC, possibly exceeding the 48-hour hold-time. However, if the dye detectors were driven/transported directly to EWC immediately following the sampling activities, ice was not placed in the cooler.

Once received by EWC, the dye detectors were either processed immediately or within 24-hours of receipt. If the dye detectors were not processed immediately, they were stored under locked refrigeration accessible only to laboratory personnel. The laboratory refrigerator at EWC operates between 0.7° Celsius and 2.0° Celsius.

3.8 INVESTIGATIVE DERIVED WASTE

Investigation derived waste (IDW) generated during the dye trace study activities included:

- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; the Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with TVA Plant facility management. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the dye trace study were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.9 VARIATIONS

The proposed scope and procedures for the dye trace study were outlined in the SAP, QAMP, and applicable TVA TIs, as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for the dye trace study at the JOF Plant.

Field Activities April 14, 2021

3.9.1 Variations in Scope

Variations in scope are provided below.

Although new dye detectors and duplicates were placed during each sampling event by Stantec FSP, several dye detectors and duplicates were missing upon returning to collect them. As described in Section 3.6, the missing dye detectors may be attributed to various reasons not related to the dye trace study (e.g., strong currents/water movement, aquatic life, or other anthropogenic activities). Based on the QA/QC assessment performed by Karst Works, there were adequate dye detectors analyzed from the locations included in this study (see Section 4.2).

3.9.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

- Borings IP-1 through IP-5 were not professionally surveyed as part of this investigation per the SAP; however, boring locations were determined using field measurements and GPS, providing sufficient information to meet the objective of the study.
- The frequency of field QC sample collection did not meet the specific QAMP and SAP requirements. The results of the collected field QC samples were evaluated as part of the data validation/verification process performed by Karst Works.
- TVA's Environmental Compliance and Operations (EC&O) team observed dye trace activities
 during the September 4, 2019 dye detector collection event. The EC&O auditor noted that the
 carbon used for the study should have a certification verifying its purity. After discussions with
 several carbon vendors, it was determined that EWC would self-certify the carbon. EWC's selfcertification was included with the data packages.

Sampling Results and Data Review April 14, 2021

4.0 SAMPLING RESULTS AND DATA REVIEW

The following sections summarize EWC's evaluation of the dye packet sampling analysis results, and Karst Works data review of the dye trace study field methods, laboratory procedures, and sampling results.

4.1 SAMPLING RESULTS EVALUATION

Once an eluent was analyzed, a graph was produced depicting the wavelength generated for each eluent and was reviewed by EWC to determine if peak(s) within the graph indicated a positive signature for the injected dyes (Fluorescein or SRB). According to EWC, the combined criteria for determining a positive dye detection result for post-injection samples are as follows:

- A spectrofluorometric emission scan must show a peak at the appropriate wavelength for the dye and the sample matrix
- A spectrofluorometric emission scan must reveal a peak with the appropriate shape, one similar to that observed in the scans of the standards
- The dye must be present only in the samples taken after dye injection or the peak amplitude or
 post injection dye fluorescence must exceed the dye background peak amplitude fluorescence by
 an appropriate factor (a factor of four is acceptable)
- The dye should appear in a series of samples, not in a single sample.

The following summarizes the dye trace study sampling results based on these combined criteria, with post-injection sampling results for positive, trace or questionable results for dye detection shown on Exhibit A.4 in Appendix A, and summarized in Table B.3 in Appendix B.

Positive Dye Detections: JOF-104

Based on the above criteria, a positive signature for Fluorescein was observed in monitoring well JOF-104 in both the "top" and "bottom" dye detectors from the following sampling events:

- The initial trace detection of Fluorescein was reported after the November 25, 2019 (Round 12) sampling event
- Four consecutive positive signatures for Fluorescein were detected in JOF-104 after the initial trace detection in samples from the December 9, 2019; December 19, 2019; January 6, 2020; and January 21-22, 2020 (Rounds 13 through 16) sampling events
- A trace amount of Fluorescein was detected on the "bottom" dye detector in JOF-104 after the February 3, 2020 (Round 17) sampling event (Note: The "top" dye detector was deemed "dry" at that time)

Sampling Results and Data Review April 14, 2021

- Trace amounts of Fluorescein were detected on both the "top" and "bottom" dye detectors in JOF-104 after the February 18-19, 2020 (Round 18) sampling event
- A possible trace amount of Fluorescein was detected on the "bottom" dye detector in JOF-104
 after the March 3-4, 2020 (Round 19) sampling event (Note: The "top" dye detector was deemed
 "dry" at that time).

Positive dye detections in JOF-104 met the four criteria for a positive Fluorescein detection. The positive Fluorescein detections were found after the change to acid-washed carbon.

False Positive Dye Detections: JOF-PZAT

A positive signature for Fluorescein was detected on the "bottom" dye detector in piezometer JOF-PZAT after the August 12, 2019 background sampling event (Table B.2). The positive signature for this sample was detected before the dye injection, and therefore does not meet the criteria for a positive result for the dye trace study.

False-positive signatures for Fluorescein were observed in piezometer JOF-PZAT after the following sampling events:

- A false-positive Fluorescein signature was detected on the "bottom" dye detector in piezometer JOF-PZAT after the August 19-20, 2019 (Round 1) sampling event
- A false-positive Fluorescein signature was detected on the "bottom" dye detector in piezometer JOF-PZAT after the August 26-27, 2019 (Round 2) sampling event.

The false positives in JOF-PZAT post-injection samples were not considered positive dye detections because no dye was detected in JOF-PZAT after the first and second rounds of post-injection sampling.

Possible Trace and Questionable Results: JOF 118, JOF-119, 10-AP1

- A possible trace result for Fluorescein was reported in the top and bottom samples from well JOF-118 during the last round of dye detector sampling on March 3-4, 2020. These results are not considered positive dye detections because possible trace results were not reported in a series of samples. The dye trace study concluded after the March 3-4, 2020 event.
- Questionable (denoted by '?' in Table B.3) and possible trace results for Fluorescein were
 reported for the top and bottom samples in well JOF-119 for one or both of the February 11, 2020
 and March 3-4, 2020 sampling events. A questionable result indicates that one or more of the
 criteria for a positive dye detection was not met. Additionally, well JOF-119 is located on the
 upgradient end of AAP2 where SRB dye was injected.
- Questionable and possible trace results for Fluorescein were also reported for the top samples
 from monitoring well 10-AP1 from the February 3, 2020 and March 3-4, 2020 sampling events,
 respectively. These were not considered to be positive results because one or more criteria for a

Sampling Results and Data Review April 14, 2021

positive dye detection were not met for the samples, and because 10-AP1 is located on the west side of the area where SRB dye was injected.

The locations of groundwater monitoring wells JOF-104, JOF-118, 10-AP1, and JOF-119, as well as piezometer JOF-PZAT, are shown on Exhibit A.3 in Appendix A.

4.2 DATA REVIEW

For QA/QC purposes, Stantec retained the services of Karst Works to provide a third-party review and evaluation of the dye trace study field methods, laboratory procedures, and sampling results. Karst Works reviewed the following:

- Guidelines on retrieving and replacing dye detectors
- · Bench study implementation and sample results
- QAMP
- Dye injection amounts and volumes
- Field forms including COCs, sample receipt checklists, sample preparation checklists, and instrument checklists
- Laboratory methods
- Analytical results and luminance plots
- Laboratory quality control sample results
- Field duplicate, field blank, and trip blank results.

The Data Validation Report prepared by Karst Works is provided in Appendix E. Based on this review, Karst Works determined that quality control variations were minimal, did not compromise the findings of the tracer tests (dye trace study), and did not impact the quality or use of the data. Additionally, Karst Works determined that although some dye packets were missing upon retrieval, sufficient data have been collected during the dye trace study from the following locations:

- 14 surface water locations, including four background/upgradient locations; two along the southern end of AAP2 (SW11 and SW12); and two on the southern side of the bridge (SW13 and SW 14)
- One within the Spillway located in the southwestern portion of AAP2
- Groundwater monitoring wells 10-AP1, 10-AP3, JOF-103, JOF-104, JOF-118, and JOF-119
- Piezometer JOF-PZAT.

Finally, Karst Works' review of the spectrofluorometric emissions scans validated that the reported dye detections in well JOF-104 were consistent with the presence of Fluorescein dye.

Summary April 14, 2021

5.0 SUMMARY

The data presented in this report are from the dye trace study conducted at the JOF Plant. The dye trace study investigation field activities consisted of four phases: the bench study, the background study, dye injection, and post-injection sampling and analysis. Dye injection activities included injecting two dyes (Fluorescein and SRB) during August 13-15, 2019 into five injection borings located along the north-south trending centerline of AAP2. The post-injection sampling was performed for the following six months at weekly or biweekly intervals.

A summary of bench study boring locations is presented in Section 3.3 and bench study boring, background study monitoring, and injection boring locations are shown on Exhibits A.1 through A.3. Bench study, background study, and post-injection sampling results are presented in Tables B.1 through B.3. Dye trace study data were reported by EWC and validated by Karst Works.

After the November 25, 2019, sampling event, Fluorescein was detected in the bottom dye detector from monitoring well JOF-104, followed by four consecutive "positive" Fluorescein signatures in the top and bottom dye detectors from the December 2019 and the January 2020 sampling events. The Fluorescein then decreased to a "trace" and "possible trace" in the February 2020 sampling events and March 2020 sampling event, respectively. SRB was not detected in any of the sampling locations during the dye trace study. A summary of the positive detections in well JOF-104 is described in Section 4.1 and presented in Table B.3 in Appendix B.

Stantec has completed the dye trace study at the JOF Plant in New Johnsonville, Tennessee, in accordance with the Dye Trace Study SAP as documented herein. The data collected during the dye trace study are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete dataset from this study will be evaluated along with data collected during the other TDEC Order SAPs, as well as data collected under other State and CCR Programs. This evaluation will be provided in the EAR.

References April 14, 2021

6.0 REFERENCES

Ewers Water Consultants, 2020, Quality Assurance Management Plan, March 2020.

Stantec Consulting Services Inc. (Stantec). 2019a. *Dye Trace Study Sampling and Analysis Plan, Johnsonville Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. August 8, 2019.

Stantec. 2019b. *Environmental Investigation Plan, Johnsonville Fossil Plant*. Revision 3. Prepared for Tennessee Valley Authority. March 4, 2019.

Tennessee Department of Environment and Conservation. 2015. *Commissioner's Order No. OGC15-0177.*

Tennessee Valley Authority (TVA), ENV-TI-05.80.02, Sample Labeling and Custody.

TVA, ENV-TI-05.80.03, Field Record Keeping.

TVA, ENV-TI-05.80.04, Field Sampling Quality Control.

TVA, ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA, ENV-TI-05.80.06, Handling and Shipping of Samples.

Ash Disposal Area 1 DuPont Road Dredge Cell Kentucky Lake / Tennessee River JOF-103

A.1

^eDye Trace Study **Bench Study Boring Locations** Active Ash Pond 2

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2020-06-29 Technical Review by KC on 2020-06-29 New Johnsonville, Tennessee

1:4,800 (At original document size of 22x34)

Legend

- CCR Well Monitoring Location
 - Boring Location to Collect Samples for Bench Study

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Boundary (Approximate)

Coal Yard

TVA Property Boundary

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet

A.2

^eBackground Study Monitoring Locations Active Ash Pond 2

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 New Johnsonville, Tennessee Prepared by DMB on 2021-01-25 Technical Review by KC on 2021-01-25

1:4,800 (At original document size of 22x34)

Legend

- CCR Well Monitoring Location
- Surface Water Monitoring Location
- Monitoring Well
- Existing Piezometer Open Standpipe
- 2017 Imagery Boundary
- 2018 Imagery Boundary
- CCR Unit Boundary (Approximate)
- Coal Yard

TVA Property Boundary

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet

A.3

Dye Trace Study **Injection Boring Locations** Active Ash Pond 2

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-01-25 Technical Review by KC on 2021-01-25 New Johnsonville, Tennessee

1:4,800 (At original document size of 22x34)

Legend

- CCR Well Monitoring Location
- Boring Location to Collect Samples for Bench
- Surface Water Upgradient Monitoring
- Dye Injection Boring Location
- Surface Water Monitoring
- Monitoring Well
- Existing Piezometer Open
- 2017 Imagery Boundary
- 2018 Imagery Boundary
- CCR Unit Boundary
- Coal Yard
- TVA Property Boundary

Injected Dyes: IP-1 and IP-2 Sulpho Rhodamine-B IP-3, IP-4, and IP-5 fluorescein

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- 2. Imagery Provided by TVA (2017 & 2018) and ESRI World Imagery

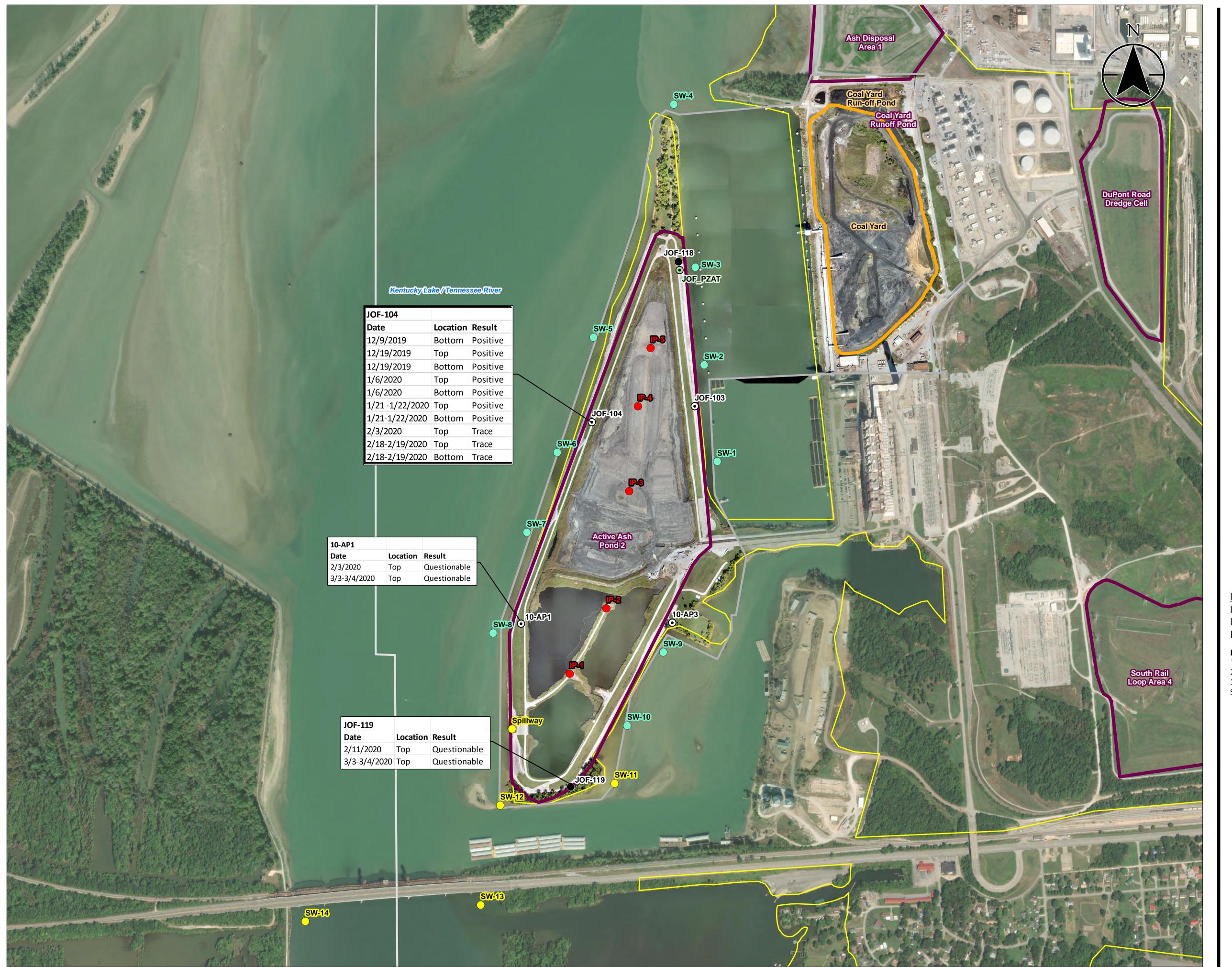


Exhibit No.

A.4

Post-Injection Dye Detection Results

Client/Project

Tennessee Valley Authority Johnsonville Fossil (JOF) Plant TDEC Order

Project Location 175568286 Prepared by DMB on 2021-04-16 Technical Review by KC on 2021-04-16 New Johnsonville, Tennessee

1,200 1:4,800 (At original document size of 22x34)

Legend

- CCR Well Monitoring Location
- Surface Water Upgradient Monitoring Location
- Dye Injection Boring Location
- Surface Water Monitoring Location
- Monitoring Well
- Existing Piezometer Open Standpipe

2017 Imagery Boundary

2018 Imagery Boundary

CCR Unit Boundary (Approximate)

Coal Yard

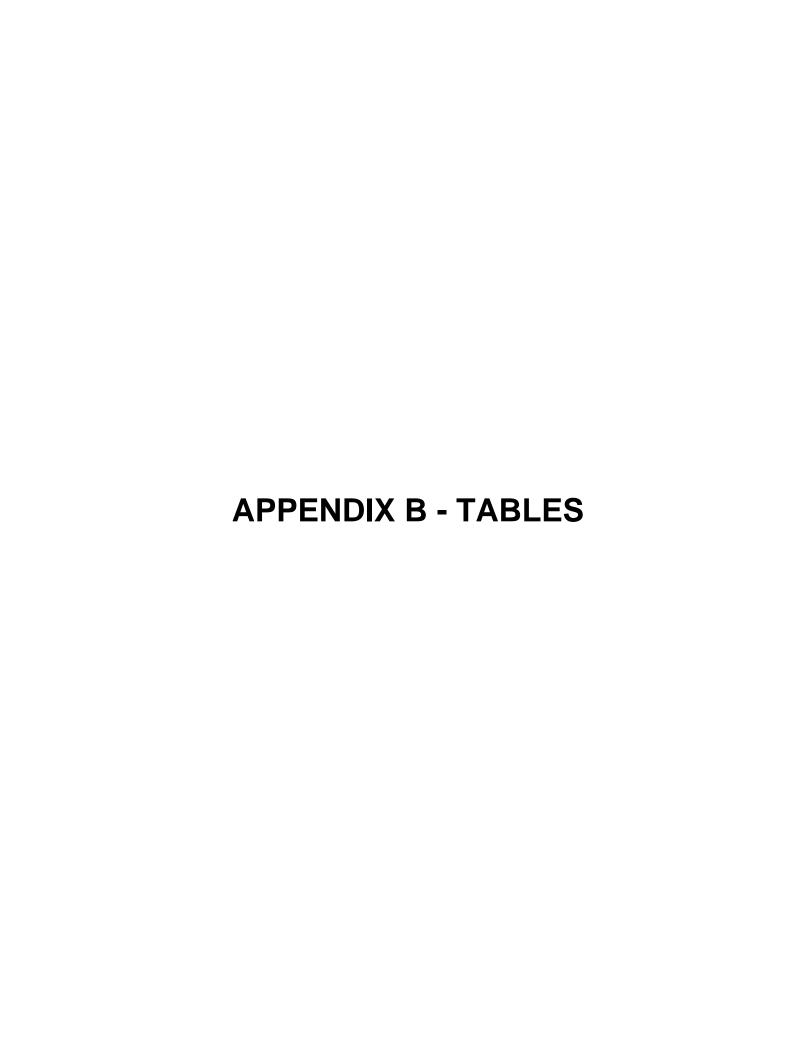
TVA Property Boundary

Injected Dyes:

IP-1 and IP-2 Sulpho Rhodamine-B

IP-3, IP-4, and IP-5 fluorescein

Refer to Table B.3 for complete Post-injection analytical results


- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (2017 & 2018) and ESRI World Imagery
 All results reported on this Exhibit are for Fluoescein.
- Sulpho Rhodamine-B was not detected during post-injection monitoring.

Hickman

Table B.1 - Bench Study Results (1)

EWC Ewers Water Consultants Inc.

160 Redwood Drive, Richmond, Kentucky 40475 Phone & Fax (859) 623-8464 E-mail: ewc@mis.net

StanTec, TVA Dye Survivability Study

Sampling Time After Inoculation With Dyes

Vessel	Sample/Dye	1 Hour	3 Hours	9 Hours	21 Hours
Vessel 1	Control Fluor	3091	3064	2930	2774
	Control RWT	2668	2723	2746	2613
Vessel 2	Control Eos	4912	4784	4692	4250
	Control SRB	3698	3753	3786	3634
ē!	IP-1 Fluor	25.6	23.6	22.6	21.2
	IP-1 RWT	Trace	Trace	Trace	Trace
Vessel -4	IP-1 Eos	*24.9,10	*22.7	*22.3	*21.2
	IP-1 SRB	9.2	1.7	Trace	1.5
	IP-2 Fluor	131.4	64.5	36.9	35.3
	IP-2 RWT	11.1	4.9	3.2	3.7
Vessel- 6	IP-2 Eos	*30, 84	*23.8, 15.8	*22.6, 4.1	*21.3, 5
	IP-2 SRB	32.7	9.6	4.1	4.2
Vessel- 7	IP-3 Fluor	1748	1306	863	824
	IP-3 RWT	276	87.4	32.6	35.8
Vessel -8	IP-3 Eos	1624	519.8	*40, 124.9	*25, 114.5
	IP-3 SRB	860	266.1	90.6	89.7
Vessel -9	IP-4 Fluor	24.5	23.1	22.8	21.6
	IP-4 RWT	Trace	1.9	Trace	Trace
Vessel- 10	IP-4 Eos	*24.5	*22.8	*22.7	21.3
	IP-4 SRB	2.2	1.6	Trace	Trace
Vessel- 11	IP-5 Fluor IP-5 RWT	24.3 Trace	22.9 1.5	22.5 Trace	21.7
Vessel -12	IP-5 Eos	*24.3	*22.7	*22.5	21.1
	IP-5 SRB	2.3	Trace	1.8	2

^{*} indicates Eosine has shifted from a peak of 535nm to +/-510nm.

An additional number indicates that a peak at 535nm is also present.

Fluor = Fluorescein, RWT = Rhodamine-WT, Eos = Eosine, SRB = Sulphorhodamine-B
(1) - Results are for the Dye Trace Study performed at the Johnsonville Fossil Plant
Trace - dye detected in trace amount based on analysis of scans and peak amplitude.
Results are reported in Fluorescence units.

[&]quot;Control" is obtained from analysis of the dye inoculation solution in a separate reaction vessel.

Table B.2 Background Study Results

			5/13/2019			8/5/2019			8/12/2019	
ID	Location of Dye Detectors	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
	e Water			Signature			Signature			Signature
TSW01	SW01	-	-	-	-	-	-			
TSW02	SW02	-	-	-	-	-	-			
TSW03	SW03	-	-	-	-	-	-			
TSW04	SW04	-	-	-	-	-	-			
TSW05	SW05	-	-	-	-	-	-			
TSW06	SW06	-	-	-						
TSW07	SW07	-	-	-						
TSW08	SW08	-	-	-						
TSW09	SW09	-	-	-						
TSW10	SW10	-	-	-						
TSW11	SW11	-	-	-						
TSW12	SW12	-	-	-						
TSW13	SW13	-	-	-						
TSW14	SW14	-	-	-						
TSPILL	Spillway	-	-	-						
Well	Samples									
T103T	JOF103	-	-	+						
T103B	JOF103	-	-	+						
T104T	JOF104	-	-	+						
T104B	JOF104	-	-	+						
T118T	JOF118	NS	NS	NS	-	-	-			
T118B	JOF118	NS	NS	NS	-	-	-			
T119T	JOF119	NS	NS	NS	-	-	-			
T119B	JOF119	NS	NS	NS	-	-	-			
TAP1T	10AP1	-	-	+						
TAP1B	10AP1	-	-	+						
TAP3T	10AP3	-	-	+						
TAP3B	10AP3	-	-	+						
TPAZT	JOFPZAT	NS	NS	NS				-	-	+
TPAZB	JOFPZAT	NS	NS	NS				+	<u> </u>	=

Notes:

SRB Sulphorhodamine-B Dye

T "T" at end of sample ID indicates upper dye detector set at location shown.

B "B" at end of sample ID indicates lower dye detector set at bottom location shown.

NS No sample collected
- Dye not detected

Low Flow Signature A '+' result in the low flow signature column indicated background flourescence was detected in the

dye detector carbon due to low water flow. This condition was found in dye detectors placed in wells and piezometers where unwashed carbon was used and does not indicate a positive dye detection.

Positive dye detection

Locat	ion of Dye Detectors		SW01			DUP 01			DUP03			SW02			DUP01	
	ID/Duplicate Parent		TSW01			TSW01			TSW01			TSW02			TSW02	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Surf	ace Water			Signature			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 2	8/26-27/2019	-	-	-							-	-	-			
Round 3	9/03-04/2019	-	-	-							-	-	-			
Round 4	9/9/219	-	-	-							-	-	-			
Round 5	9/16/2019	-	-	-							-	-	-			
Round 6	9/23/2019	-	-	-							-	-	-			
Round 7	9/30/2019	-	-	-							-	-	-			
Round 8	10/7/2019	-	-	-							-	-	-			
Round 9	10/14/2019	-	-	-							-	-	-			
Round 10	10/28/2019	-	-	-							-	-	-			
Round 11	11/12/2019 ^a	NS	NS	NS							NS	NS	NS			
Round 12	11/25/2019	-	-	-							NS	NS	NS			
Round 13	12/9/2019	-	-	-							-	-	-			
Round 14	12/19-20/2019	-	-	-							-	-	-	-	-	-
Round 15	1/6/2020	-	-	-				-	-	-	-	-	-			
Round 16	1/21-22/2020	-	-	-							-	-	-			
Round 17	2/3/2020	-	-	-							-	-	-			
Round 18	2/18-19/2020	-	-	-							-	-	-			
Round 19	3/03-04/2020	-	-	-							-	-	-			

Locat	ion of Dye Detectors		DUP02			DUP03			SW03			DUP02			DUP03	
	ID/Duplicate Parent		TSW02			TSW02			TSW03			TSW03			TSW03	
		Flourescein	SRB	Low-Flow Signature												
	ace Water	l		Signature			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019							-	-	-						
Round 2	8/26-27/2019							NS	NS	NS						
Round 3	9/03-04/2019							-	-	-						
Round 4	9/9/219							-	-	-						
Round 5	9/16/2019							-	-	-						
Round 6	9/23/2019							-	-	-	-	-	-			
Round 7	9/30/2019	-	-	-				-	-	-						
Round 8	10/7/2019							-	-	-						
Round 9	10/14/2019							-	-	-						
Round 10	10/28/2019							-	-	-	-	-	-			
Round 11	11/12/2019 ^a							-	-	-				-	-	-
Round 12	11/25/2019							-	-	-						
Round 13	12/9/2019	-	-	-				-	-	-						
Round 14	12/19-20/2019							-	-	-						
Round 15	1/6/2020	-	-	-				-	-	-						
Round 16	1/21-22/2020							NS	NS	NS						
Round 17	2/3/2020				-	-	-	-	-	-						
Round 18	2/18-19/2020							-	-	-						
Round 19	3/03-04/2020							-	-	-						

Locati	ion of Dye Detectors		SW04			SW05			DUP01			SW06			DUP03	
	ID/Duplicate Parent		TSW04			TSW05			TSW05			TSW06			TSW06	
		Flourescein	SRB	Low-Flow Signature												
Surfa	ace Water			Signature												
Round 1	8/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 2	8/26-27/2019	NS	NS	NS	-	-	-				-	-	-			
Round 3	9/03-04/2019	-	-	-	-	-	-	-	-	-	-	-	-			
Round 4	9/9/219	NS	NS	NS	-	-	-				-	-	-			
Round 5	9/16/2019	-	-	-	-	-	-				-	-	-			
Round 6	9/23/2019	-	-	-	-	-	-				-	-	-			
Round 7	9/30/2019	-	-	-	-	-	-				-	-	-			
Round 8	10/7/2019	-	-	-	-	-	-				-	-	-	-	-	-
Round 9	10/14/2019	-	-	-	-	-	-				-	-	-	-	-	-
Round 10	10/28/2019	-	-	-	-	-	-				-	-	-			
Round 11	11/12/2019 ^a	-	-	-	-	-	-				-	-	-			
Round 12	11/25/2019	-	-	-	-	-	-				-	-	-			
Round 13	12/9/2019	NS	NS	NS	-	-	-				-	-	-			
Round 14	12/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 15	1/6/2020	NS	NS	NS	-	-	-	-	-	-	-	-	-			
Round 16	1/21-22/2020	-	-	-	NS	NS	NS				-	-	-			
Round 17	2/3/2020	-	-	-	-	-	-				-	-	-			
Round 18	2/18-19/2020	-	-	-	-	-	-				NS	NS	NS			
Round 19	3/03-04/2020	-	-	-	-	-	-				-	-	-			

Locat	ion of Dye Detectors		SW07			SW08			DUP01			SW09			DUP01	
	ID/Duplicate Parent		TSW07			TSW08			TSW08			TSW09			TSW09	
		Flourescein	SRB	Low-Flow Signature												
	ace Water			_						Signature			Signature			Signature
Round 1	8/19-20/2019	NS	NS	NS	NS	NS	NS				-	-	-			
Round 2	8/26-27/2019	NS	NS	NS	-	-	-				-	-	-			
Round 3	9/03-04/2019	-	-	-	-	-	-				-	-	-			
Round 4	9/9/219	-	-	-	-	-	-				-	-	-			
Round 5	9/16/2019	-	-	-	-	-	-				-	-	-			
Round 6	9/23/2019	-	-	-	-	-	-				-	-	-			
Round 7	9/30/2019	-	-	-	-	-	-				-	-	-	-	-	-
Round 8	10/7/2019	-	-	-	-	-	-				-	-	-			
Round 9	10/14/2019	-	-	-	-	-	-				-	-	-			
Round 10	10/28/2019	-	-	-	-	-	-				-	-	-			
Round 11	11/12/2019 ^a	-	-	-	-	-	-				-	-	-			
Round 12	11/25/2019	-	-	-	-	-	-				-	-	-			
Round 13	12/9/2019	-	-	-	-	-	-				NS	NS	NS			
Round 14	12/19-20/2019	-	-	-	-	-	-				-	-	-			
Round 15	1/6/2020	-	-	-	NS	NS	NS				-	-	-			
Round 16	1/21-22/2020	-	-	-	-	-	-	-	-	-	-	-	-			
Round 17	2/3/2020	-	-	-	-	-	-				-	-	-			
Round 18	2/18-19/2020	-	-	-	-	-	-				-	-	-			
Round 19	3/03-04/2020	-	-	-	-	-	-				-	-	-			

Locat	ion of Dye Detectors		DUP02			SW10			DUP01			DUP02			SW11	
	ID/Duplicate Parent		TSW09			TSW10			TSW10			TSW10			TSW11	
		Flourescein	SRB	Low-Flow Signature												
Surf	ace Water			Signature												
Round 1	8/19-20/2019				-	-	-							-	-	-
Round 2	8/26-27/2019				-	-	-							-	-	-
Round 3	9/03-04/2019				-	-	-							-	-	-
Round 4	9/9/219				-	-	-							-	-	-
Round 5	9/16/2019				-	-	-	-	-	+				-	-	-
Round 6	9/23/2019				-	-	-	-	-	-				-	-	-
Round 7	9/30/2019				-	-	-							-	-	-
Round 8	10/7/2019				-	-	-				-	-	-	-	-	-
Round 9	10/14/2019				-	-	-				-	-	-	-	-	-
Round 10	10/28/2019				-	-	-							-	-	-
Round 11	11/12/2019 ^a	-	-	-	-	-	-							-	-	-
Round 12	11/25/2019				-	-	-							-	-	-
Round 13	12/9/2019				-	-	-	-	-	-				-	-	-
Round 14	12/19-20/2019				-	-	-							-	-	-
Round 15	1/6/2020				-	-	-							-	-	-
Round 16	1/21-22/2020				-	-	-							-	-	-
Round 17	2/3/2020				-	-	-							-	-	-
Round 18	2/18-19/2020				-	-	-							-	-	-
Round 19	3/03-04/2020	-	-	-	-	-	-							-	-	-

Locat	ion of Dye Detectors		DUP01			SW12			DUP01			SW13			SW14	
	ID/Duplicate Parent		TSW11			TSW12			TSW12			TSW13			TSW14	
		Flourescein	SRB	Low-Flow Signature												
Surf	ace Water			Signature												
Round 1	8/19-20/2019				-	-	-				-	-	-	-	-	-
Round 2	8/26-27/2019				-	-	-				-	-	-	-	-	-
Round 3	9/03-04/2019				-	-	-				-	-	-	NS	NS	NS
Round 4	9/9/219				-	-	-				-	-	-	-	-	-
Round 5	9/16/2019				-	-	-				-	-	-	-	-	-
Round 6	9/23/2019				-	-	-				-	-	-	-	-	-
Round 7	9/30/2019				-	-	-				-	-	-	-	-	-
Round 8	10/7/2019				-	-	-				-	-	-	-	-	-
Round 9	10/14/2019				-	-	-				-	-	-	-	-	-
Round 10	10/28/2019				-	-	-	-	-	+	-	-	-	-	-	-
Round 11	11/12/2019 ^a	-	-	-	-	-	-				NS	NS	NS	-	-	-
Round 12	11/25/2019				NS	NS	NS				-	-	-	-	-	-
Round 13	12/9/2019				-	-	-				-	-	-	-	-	-
Round 14	12/19-20/2019				-	-	-				-	-	-	-	-	-
Round 15	1/6/2020				-	-	-				NS	NS	NS	-	-	-
Round 16	1/21-22/2020				-	-	-				-	-	-	-	-	-
Round 17	2/3/2020				-	-	-				-	-	-	-	-	-
Round 18	2/18-19/2020				-	-	-				NS	NS	NS	-	-	-
Round 19	3/03-04/2020				-	-	-				NS	NS	NS	-	-	-

Locati	on of Dye Detectors		Spillway			DUP02			DUP04			DUP05	
	ID/Duplicate Parent		TSPILL			TSPILL			TSPILL			TSPILL	
		Flourescein	SRB	Low-Flow	Flourescein	SRB	Low-Flow	Flourescein	SRB	Low-Flow	Flourescein	SRB	Low-Flow
Surfa	ice Water			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	-	-	-									
Round 2	8/26-27/2019	-	-	-									
Round 3	9/03-04/2019	-	-	-									
Round 4	9/9/219	-	-	-									
Round 5	9/16/2019	-	-	-									
Round 6	9/23/2019	-	-	-									
Round 7	9/30/2019	-	-	-									
Round 8	10/7/2019	-	-	-									
Round 9	10/14/2019	-	-	-									
Round 10	10/28/2019	-	-	-				-	-	-			
Round 11	11/12/2019 ^a	-	-	-									
Round 12	11/25/2019	-	-	-									
Round 13	12/9/2019	-	-	-									
Round 14	12/19-20/2019	-	-	-									
Round 15	1/6/2020	-	-	-							-	-	-
Round 16	1/21-22/2020	-	-	-									
Round 17	2/3/2020	-	-	-	-	-	-						
Round 18	2/18-19/2020	-	-	-									
Round 19	3/03-04/2020	-	-	-									

Locati	ion of Dye Detectors		JOF103			DUP03			DUP01			JOF103			DUP04	
	ID		T103T			T103T			T103T			T103B			T103B	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Wel	l Samples			Signature			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	-	-	+							-	-	+			
Round 2	8/26-27/2019	-	-	+							-	-	+			
Round 3	9/03-04/2019	-	-	+							-	-	+			
Round 4	9/9/2019	-	-	+							-	-	+			
Round 5	9/16/2019	-	-	+							-	-	+	-	-	+
Round 6	9/23/2019	-	-	+							-	-	+			
Round 7	9/30/2019	-	-	+							-	-	+			
Round 8	10/7/2019	-	-	+							-	-	+			
Round 9	10/14/2019	-	-	+							-	-	+			
Round 10	10/28/2019	-	-	+	-	-	-				-	-	+			
Round 11	11/12/2019 ^a	-	-	-							-	-	-			
Round 12	11/25/2019	-	-	-							-	-	-			
Round 13	12/9/2019	-	-	-							-	-	-			
Round 14	12/19-20/2019	-	-	-							-	-	-			
Round 15	1/6/2020	-	-	-							-	-	-			
Round 16	1/21-22/2020	-	-	-							-	-	-			
Round 17	2/3/2020	-	-	-							-	-	-			
Round 18	2/18-19/2020	-	-	-				Possible trace	-	-	-	-	-			
Round 19	2/11/2020 ^b 3/03-04/2020	-	-	-							-	-	-			

Locati	ion of Dye Detectors		DUP01			JOF104			DUP02			DUP04			JOF104	
	ID		T103B			T104T			T104T			T104T			T104B	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	Sulphorhoda mine-B	Low-Flow Signature
Wel	l Samples			Signature			Signature			Signature			Signature		IIIIIIe-D	Signature
Round 1	8/19-20/2019				-	-	+							-	-	+
Round 2	8/26-27/2019				-	-	+							-	-	+
Round 3	9/03-04/2019				-	-	+							-	-	+
Round 4	9/9/2019				-	-	+							-	-	+
Round 5	9/16/2019				-	-	+							-	-	+
Round 6	9/23/2019				-	-	+							-	-	+
Round 7	9/30/2019				-	-	+							-	-	+
Round 8	10/7/2019				-	-	+							-	-	+
Round 9	10/14/2019				-	-	+							-	-	+
Round 10	10/28/2019				-	-	+							-	-	+
Round 11	11/12/2019 ^a				-	-	-							-	-	-
Round 12	11/25/2019	-	-	-	-	-	-							+	-	-
Round 13	12/9/2019				+	-	-							+	-	-
Round 14	12/19-20/2019				+	-	-	-	-	-				+	-	-
Round 15	1/6/2020				+	-	-				+	-	-	+	-	-
Round 16	1/21-22/2020				+	-	-							+	-	-
Round 17	2/3/2020				DRY	DRY	DRY							Trace	-	-
Round 18	2/18-19/2020				Trace	-	-	+	-	-				Trace	-	-
Round 19	2/11/2020 ^b 3/03-04/2020				DRY	DRY	DRY							Possible Trace	· -	-

Locati	ion of Dye Detectors		DUP02			DUP03			DUP01			JOF118			DUP02	
	ID		T104B			T104B			T104B			T118T			T118T	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Wel	l Samples			Jigilatule			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019										-	-	+			
Round 2	8/26-27/2019										-	-	+			
Round 3	9/03-04/2019	-	-	+							-	-	+			
Round 4	9/9/2019										-	-	+			
Round 5	9/16/2019										-	-	+			
Round 6	9/23/2019										-	-	+			
Round 7	9/30/2019										-	-	+			
Round 8	10/7/2019										-	-	+			
Round 9	10/14/2019										-	-	+			
Round 10	10/28/2019										-	-	+			
Round 11	11/12/2019 ^a										-	-	-			
Round 12	11/25/2019				-	-	-				-	-	-	-	-	-
Round 13	12/9/2019										-	-	-			
Round 14	12/19-20/2019										-	-	-			
Round 15	1/6/2020										-	-	-			
Round 16	1/21-22/2020	-	-	-							-	-	-			
Round 17	2/3/2020										-	-	-			
Round 18	2/18-19/2020										UC	UC	UC			
Round 19	2/11/2020 ^b 3/03-04/2020							Possible Trace	-	-	- Possible trace	-	-			

Locati	ion of Dye Detectors		DUP03			JOF118			DUP01			JOF119			DUP01	
	ID		T118T			T118B			T118B			T119T			T119T	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Wel	l Samples			Signature			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019				-	-	+				-	-	+			
Round 2	8/26-27/2019				-	-	+				-	-	+			
Round 3	9/03-04/2019				-	-	+				-	-	+			
Round 4	9/9/2019				-	-	+				-	-	+			
Round 5	9/16/2019	-	-	+	-	-	+				-	-	+			
Round 6	9/23/2019				-	-	+				-	-	+			
Round 7	9/30/2019				-	-	+				-	-	+			
Round 8	10/7/2019				-	-	+				-	-	+	-	-	+
Round 9	10/14/2019				-	-	+				-	-	+			
Round 10	10/28/2019				-	-	+				-	-	+			
Round 11	11/12/2019 ^a				-	-	-				-	-	-			
Round 12	11/25/2019				-	-	-				-	-	-			
Round 13	12/9/2019				-	-	-				-	-	-			
Round 14	12/19-20/2019				-	-	-	-	-	-	-	-	-			
Round 15	1/6/2020				-	-	-				-	-	-			
Round 16	1/21-22/2020				-	-	-				-	-	-	-	-	-
Round 17	2/3/2020				DRY	DRY	+	DRY	DRY	+	-	-	-			
Round 18	2/18-19/2020				UC	UC	UC				UC	UC	UC			
Round 19	2/11/2020 ^b 3/03-04/2020				- Possible trace	-	-				? Possible trace	-	-			

Locati	ion of Dye Detectors		JOF119			DUP02			DUP03			10AP1			10AP1	
	ID		T119B			T119B			T119B			TAP1T			TAP1B	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature
Wel	l Samples			Signature			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	-	-	+	-	-	-				-	-	+	-	-	+
Round 2	8/26-27/2019	-	-	+							-	-	+	-	-	+
Round 3	9/03-04/2019	-	-	+							-	-	+	-	-	+
Round 4	9/9/2019	-	-	+							-	-	+	-	-	+
Round 5	9/16/2019	-	-	+							-	-	+	-	-	+
Round 6	9/23/2019	-	-	+							-	-	+	-	-	+
Round 7	9/30/2019	-	-	+				-	-	+	-	-	+	-	-	+
Round 8	10/7/2019	-	-	+							-	-	+	-	-	+
Round 9	10/14/2019	-	-	+							-	-	+	-	-	+
Round 10	10/28/2019	-	-	+							-	-	+	-	-	+
Round 11	11/12/2019 ^a	-	-	-							-	-	-	-	-	-
Round 12	11/25/2019	-	-	-							-	-	-	-	-	-
Round 13	12/9/2019	-	-	-				-	-	-	-	-	-	-	-	-
Round 14	12/19-20/2019	-	-	-							-	-	-	-	-	-
Round 15	1/6/2020	-	-	-							-	-	-	-	-	-
Round 16	1/21-22/2020	-	-	-							-	-	-	-	-	-
Round 17	2/3/2020	-	-	-							DRY	DRY	+	-	-	-
Round 18	2/18-19/2020	UC	UC	UC							?	-	+	-	-	-
Round 19	2/11/2020 ^b 3/03-04/2020	Possible trace -	-	-							Possible Trace	-	-	-	-	-

Locati	ion of Dye Detectors		DUP01			10AP3			10AP3			DUP03			JOFPZAT	
	ID		TAP1B			TAP3T			TAP3B			TAP3B			TPAZT	
		Flourescein	SRB	Low-Flow Signature	Flourescein	SRB	Low-Flow Signature									
	l Samples			o.g.ratare	ļ <u> </u>		o.gata.c			o.gatarc			o.gacarc			o.g.rata.c
Round 1	8/19-20/2019				-	-	+	-	-	+				NS	NS	NS
Round 2	8/26-27/2019				-	-	+	-	-	+				NS	NS	NS
Round 3	9/03-04/2019				-	-	+	-	-	+				NS	NS	NS
Round 4	9/9/2019				-	-	+	-	-	+				NS	NS	NS
Round 5	9/16/2019				-	-	+	-	-	+				NS	NS	NS
Round 6	9/23/2019				-	-	+	-	-	+	-	-	+	-	-	+
Round 7	9/30/2019				-	-	+	-	-	+				-	-	+
Round 8	10/7/2019				-	-	+	-	-	+				-	-	+
Round 9	10/14/2019	-	-	+	-	-	+	-	-	+						
Round 10	10/28/2019				-	-	+	-	-	+						
Round 11	11/12/2019 ^a				-	-	-	-	-	-				DRY	DRY	DRY
Round 12	11/25/2019				-	-	-	-	-	-				DRY	DRY	DRY
Round 13	12/9/2019				-	-	-	-	-	-				DRY	DRY	DRY
Round 14	12/19-20/2019				-	-	-	-	-	-				DRY	DRY	DRY
Round 15	1/6/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 16	1/21-22/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 17	2/3/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 18	2/18-19/2020				-	-	-	-	-	-				DRY	DRY	DRY
Round 19	2/11/2020 ^b 3/03-04/2020				-	-	-	-	-	-				DRY	DRY	+

Locati	on of Dye Detectors		JOFPZAT			DUP01			DUP02			DUP03	
	ID		TPAZB			UNKNOWN			UNKNOWN			UNKNOWN	
		Flourescein	SRB	Low-Flow Signature									
	Samples			Signature			Signature			Signature			Signature
Round 1	8/19-20/2019	+*	-	+									
Round 2	8/26-27/2019	+*	-	+	-	-	-						
Round 3	9/03-04/2019	-	-	+									
Round 4	9/9/2019	-	-	+	-	-	-	-	-	-	-	-	+
Round 5	9/16/2019	-	-	+				-	-	+			
Round 6	9/23/2019	-	-	+									
Round 7	9/30/2019	-	-	+									
Round 8	10/7/2019	-	-	+									
Round 9	10/14/2019												
Round 10	10/28/2019												
Round 11	11/12/2019 ^a	DRY	DRY	DRY									
Round 12	11/25/2019	DRY	DRY	DRY									
Round 13	12/9/2019	DRY	DRY	DRY									
Round 14	12/19-20/2019	DRY	DRY	DRY									
Round 15	1/6/2020	-	-	-									
Round 16	1/21-22/2020	-	-										
Round 17	2/3/2020	-	-	-									
Round 18	2/18-19/2020	-	-	-									
Round 19	2/11/2020 ^b 3/03-04/2020	-	-	-									

Notes:

SRB Sulphorhodamine-B Dye
NS No sample collected
- Dye not detected

Low Flow Signature A '+' result in the low flow signature column indicated background flourescence is present in the dye detector carbon due to low water

flow. This condition was found in dye detectors placed in wells and piezometers where unwashed carbon was used and does not indicate a

positive dye detection.

Possible trace Possible detection of dye in trace amount, but not repeated in a series.

Trace Dye detected in trace amount based on analysis of scans and peak amplitude.

+ Positive dye detection

+* Results for JOFPZAT for Fluorescein in Rounds 1 and 2 were determined not to be positive detections since Fluorescein was also reported

during the Background Study.

UC Dye detector contained unwashed carbon, sample not analyzed
? Questionable dye detection, criteria not met for positive result
DRY The dye detector packet was not submerged in water after placement.

NA Sample not analyzed

T "T" at end of sample ID indicates upper dye detector set at top of location shown.

B "B" at end of sample ID indicates lower dye detector set at bottom location shown.

Prior to November 12, 2019, unwashed carbon was used in the dye detectors. Beginning with this event, acid washed carbon was used in

the dye detectors.

Dye detectors collected on February 11, 2020 were removed from wells that were included in groundwater sampling. The dye detectors

were analyzed with the same batch as the dye detectors collected on March 3-4, 2020.

Page: 1 of 3

С	lient E	Borehole	ID <u>Inj</u> e	ection Point 1 (IP-1)	Stantec Boring	g N	lo. IP-1				
C	lient		Tennes	ssee Valley Authority	Boring Location	on	NR				
Р	roject	Number	175568	3286	Surface Eleva	ıtioı	n <u>NR</u>	Elevation	n D	atum_n	N/A
Р	roject	Name	JOF TE	DEC Order Dye Trace Study	Date Started	_	4/8/19	Comple	ted	4/8/19)
Р	roject	Location	Nev	w Johnsonville, Humphreys Co., TN	Depth to Water	er _	N/A	Date/Ti	me	N/A	
Ir	rspect	or K. Ca	arey	Logger K. Carey	Depth to Wate	er _	N/A	Date/Ti	me	N/A	
	-	Contract			Drill Rig Type						
			_	Sampling Tools (Type and Size))" sa	ampler w/ P	VC liner			
		_		ling Tools (Type and Size) N/A					_		
		_		and Size) N/A	D N	1/4		Overdrill			N/A
				N/A Weight N/A	Drop N			Efficiency	N/	N/A ^	
		le Azimut red By		Ilhollin	Borehole Inclination Approved By		P. Dunne	vertical)	IN/	н.	
- 1			C. IVIII								
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0			Top of Hole							
				LEAN CLAY, CL, light brown, stiff, dry contains pebbles and cobbles, [FILL]	to moist,				((
- 1				contains peoples and coobles, [i izz]					1 10		-
- 2											_
							DP01	0.0 - 5.0	0.0 - 5.	4.5	N/A
- 3									0		-
- 4											_
ľ									(((
- 5									1 #		_
6									(((
- 6									((_
- 7									5.0		-
							DP02	5.0 - 10.0	0-10.0	5.0	N/A
- 8									1 1		_
- 9))		_
	10.0										
- 10	10.0			CCR, light brown mottled with gray and	l orange, soft,				1 1		_
- 11				wet, [CCR]	-						_
- 12							DD03	10.0 - 15.0	10.0	2.5	
- 13							DP03	10.0 - 15.0	- 15.0	2.5	N/A -
									((
- 14				With angular pebbles/cobbles from 14.	0' to 15 0'				1 11		-
– 15	15.0			War angular possion cossiles from The	0 10 10.0						_
				CCR, reddish orange to gray, soft, wet,	-				1 11		
- 16				silty clay with pebbles/cobbles through	out, [CCR]						-
– 17											_
							DP04	15.0 - 20.0	5.0 - 20	5.0	N/A
40	1	I				ıl	I	I	1211	.1	

Page: 2 of 3

Clie	ent E	Borehole	ID Inje	ection Point 1 (IP-1)	St	antec Borinç	g N	o. IP-1				
Clie	ent		Tennes	see Valley Authority	Вс	oring Locatio	n	NR				
Pro	ject	Number	175568	286	Sι	urface Eleva	tio	n <u>NR</u>	Elevati	on D	oatum <u>r</u>	N/A
	ı	_ithology				Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth	Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18				CCR, reddish orange to gray, soft, we								_
- 19				silty clay with pebbles/cobbles through (Continued)	nout,	[CCR]						_
- 20												_
- 21												_
- 22 - 23								DP05	20.0 - 25.0	20.0 - 25.0	0.0	N/A
- 24												_
- 25												_
- 26												=
- 27								DP06	25.0 - 30.0	25.0	0.0	N/A
- 28								DP06	25.0 - 30.0	- 30.0	0.0	IN/A -
- 29												-
- 30												_
- 31												_
- 32								DP07	30.0 - 35.0	30.0 - 35.	0.0	N/A
- 33 - 34										0		
- 35												_
- 36												_
- 37										35.		
- 38								DP08	35.0 - 40.0	.0 - 40.0	0.0	N/A -
- 39												=
- 40												_
- 41												-
- 42												_

Page: 3 of 3

				_			ID 4				
	Borehole		ction Point 1 (IP-1)		antec Borin						
Client	. N.I		see Valley Authority		ring Location		NR		F	_4	
Projec	Number	175568	286	Su	rface Eleva	atio	n <u>NR</u>	Elevatio	on L	patum_r	N/A
	Lithology				Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 43 - 44			CCR, reddish orange to gray, soft, we silty clay with pebbles/cobbles through (Continued)				DP09	40.0 - 45.0	40.0 - 45.0	0.0	N/A _
- 45 - 46						45.5/47.0				_	_
- 47 <u>47.0</u>			LEAN CLAY, CL, reddish orange mott	led w	vith light	-20190408	DP10	45.0 - 49.0	45.0 - 49.0	4.0	N/A -
- 48 49.0			gray, low plasticity, stiff, moist		•						_
		Dye tra 1: E = G = 2: a,b,0	naterial/clay interface @ 47.0' bgs. Beganace study survivability sample collected a Environmental Sample Custody (two Spl Geotechnical Sample Custody c denote Split Spoon divided between Erths are reported in feet below ground sur	at 45. lit Spa	5' to 47.0' at 1 oons may be r	640 requ	04/08/19. lired to obtai	in sufficient san	nple)		
											_

Page: 1 of 3

С	lient E	Borehole	ID Inje	ection Point 2 (IP-2)	Stantec Boring	g N	lo. IP-2				
С	lient		Tennes	see Valley Authority	Boring Location	on	NR				
Р	roject	Number	175568	2286	Surface Eleva	itioi	n <u>NR</u>	Elevatio	on D	atum_n	N/A
Р	roject	Name	JOF TE	DEC Order Dye Trace Study	Date Started	_	4/8/19	Comple	eted	4/8/19)
Р	roject	Location	Nev	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	N/A	Date/Ti	me	N/A	
				Logger K. Carey	Depth to Wate	_		Date/Ti	me	N/A	
	-	Contract			Drill Rig Type						
			_	Sampling Tools (Type and Size)		0" sa	ampler w/ P	VC liner			
		_		ling Tools (Type and Size) N/A					_		1/4
				and Size) N/A	Dran A	1/Λ		Overdrill			N/A
		er Hamme le Azimut		N/A Weight N/A	Drop <u>N</u> Borehole Incli		ion (from	Efficiency	N/	N/A Δ	
		ed By		lhollin	Approved By		P. Dunne	vertical)	19//	٦	
''			O. IVIII								
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0		///	Top of Hole					110	i i	_
				LEAN CLAY, CL, dark gray and orange pebbles and cobbles present throughout					((
- 1				F	, []				1 (((_
- 2											-
							DP01	0.0 - 5.0).0 - 5.1	4.7	N/A
- 3											_
- 4											_
									1 88		
- 5									1 8		_
- 6									1 89		_
									((
- 7									5.0		-
۰							DP02	5.0 - 10.0	- 10.0	4.7	N/A
- 8				Moist from 8.0' to 8.5'					1 111		
- 9))		_
40)))		
- 10									1 🕅		_
- 11)))		-
- 12	12.5						DP03	10.0 - 15.0	10.0-	5.0	N/A
- 13				CCR, orange to dark gray, moist to we			DI 00	10.0 - 10.0	15.0	3.0	-
				mixed with gravelly CCR material, [CC	R]				((
- 14									1 (((-
- 15											_
									1 (((
- 16											_
- 17											-
,,							DP04	15.0 - 20.0	5.0 - 20.0	4.3	N/A

Page: 2 of 3

Client E	Borehole	ID Inje	ection Point 2 (IP-2)	Stantec Boring	g No	. IP-2				
Client		Tennes		Boring Locatio		NR				
Project	Number	175568	286	Surface Eleva	tion	NR	Elevation	on E	Datum <u>r</u>	N/A
	Lithology			Overburden:	S	ample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	F	RQD %	Run Ft		Rec. Ft	Rec. %
- 18			CCR, orange to dark gray, moist to wet, mixed with gravelly CCR material, [CCF							-
- 19 			(Continued) Decrease in hammer resistance (much							-
- 20			material) at 18.5'							_
- 21										_
- 22						DP05	20.0 - 25.0	20.0 - 25	4.1	N/A
- 23								5.0		_
- 24										-
- 25										_
- 26										_
- 27						DP06	25.0 - 30.0	25.0 - 30.	2.8	N/A
- 28								0		_
- 29										_
- 30										_
- 31										_
- 32 - 33						DP07	30.0 - 35.0	30.0 - 35.0	1.0	N/A
- 34										
- 35										_
- 36										_
- 37								ω		_
- 38						DP08	35.0 - 40.0	\$5.0 - 40.0	0.0	N/A
- 39										_
- 40										_
- 41										_
- 42										

Page: 3 of 3

С	lient E	Borehole	ID Injed	ction Point 2 (IP-2)	Stantec Borin	ng N	No. IP-2				
С	lient		Tenness	see Valley Authority	Boring Locati		NR				
Р	roject	Number	1755682	286	Surface Eleva	atic	n <u>NR</u>	Elevation	ı D	atum <u>r</u>	N/A
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 43 - 44	43.5			CCR, orange to dark gray, moist to w mixed with gravelly CCR material, [Continued) LEAN CLAY, CL, light gray		42.0/43.5-20190408	DP09	40.0 - 45.0	40.0 - 45.0	5.0	N/A _
- 45				ELAN OLAT, OL, light gray							
- 46 - 47							DP10	45.0 - 48.0	450-480	0.0	N/A
	48.0								$ \rangle\rangle$		
- 48				No Refusal / Bottom of Hole at 48.0 Ft.							_
											_
											_
			CCR m	aterial/clay interface @ 43.5' bgs.							_
			Dye tra	ce study survivability sample collected	at 42.0' to 43.5' at	152	5 04/08/19.				=
			G = 0 2: a,b,c	Environmental Sample Custody (two Sp Geotechnical Sample Custody denote Split Spoon divided between E hs are reported in feet below ground su	nvironmental and (ole)		_
											_
											-
											_
											_
											_
											_
											_
											_
											-
											_

Page: 1 of 3

С	lient E	Borehole	ID <u>Inj</u> e	ection Point 3 (IP-3)	Stantec Boring	g N	o. IP-3				
С	lient		Tennes	ssee Valley Authority	Boring Location	on	NR				
Р	roject	Number	175568	3286	Surface Eleva	tior	n <u>NR</u>	Elevation	n D	atum_n	N/A
Р	roject	Name	JOF TE	DEC Order Dye Trace Study	Date Started	_	4/9/19	Comple	ted	4/9/19)
Р	roject	Location	Ne	w Johnsonville, Humphreys Co., TN	Depth to Wate	er _	N/A	Date/Ti	me	N/A	
Ir	spect	or K. Ca	arey	Logger K. Carey	Depth to Wate	_		Date/Ti	me	N/A	
	_	Contract			Drill Rig Type						
			_	Sampling Tools (Type and Size)		0" sa	ampler w/ P	VC liner			
		•	•	ling Tools (Type and Size) N/A					_		
		_		and Size) N/A	D	1/ A		Overdrill			N/A
			• •	N/A Weight N/A	Drop N			Efficiency	r N//	N/A ^	
		le Azimut ed By		Ilhollin	Borehole Incli Approved By		ion (irom P. Dunne	vertical)	IN//	н.	
			O. IVIII			_					
		Lithology			Overburden:	_	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	•	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0			Top of Hole					1 100	V	
				CCR, medium gray, stiff, dry to moist,	[CCR]				(((
- 1									1 (((_
- 2											_
							DP01	0.0 - 5.0	0.0 - 5.	4.3	N/A
- 3											-
- 4											_
- 5									1 8%		_
- 6											_
									(((
- 7									5.0		-
- 8							DP02	5.0 - 10.0	- 10.0	4.3	N/A
- 0									1 111		
- 9											_
40	10.0)))		
- 10				CCR, gray, non-plastic, soft to firm, dr	y to moist,				1 1777		_
- 11				[CCR])))		-
40											
- 12							DP03	10.0 - 15.0	10.0-	4.7	N/A
- 13							2.00	10.0 10.0	15.0	'	-
									(((
– 14									(_
- 15											_
									((
- 16									1 111		-
- 17											_
,,							DP04	15.0 - 20.0	5.0 - 20.0	5.0	N/A

Page: 2 of 3

С	lient E	Borehole	ID Inje	ection Point 3 (IP-3)	Stantec Bo	oring	No. IP-3			
С	lient		Tennes	see Valley Authority	Boring Loc					
Р	roject	Number	175568	286	Surface El	levatio	on <u>NR</u>	Elevation	Datum_I	N/A
	ı	_ithology			Overburo	den:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Co	ore:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18				CCR, gray, non-plastic, soft to firm, d	ry to moist					-
- 19				[CCR] (Continued)	ry to molot,					-
- 20										_
- 21										=
- 22							DP05	20.0 - 25.0	5.0	N/A
- 23										=
- 24										=
- 25										_
- 26										-
- 27							DP06	25.0 - 30.0		N/A
- 28								C		_
- 29	29.5			SILTY LEAN CLAY, CL, reddish oran	nge contains					_
- 30				chert pebbles/cobbles throughout, [FII						_
- 31 - 32										
- 33							DP07	30.0 - 35.0	5.0	N/A
- 34										_
- 35										_
- 36	36.0									_
- 37				CCR, dark gray, medium to coarse, n silty clay, [CCR]	noist to wet,)	_
- 38							DP08	35.0 - 40.0	5.0	N/A -
- 39										_
- 40										_
- 41										-
- 42										_

Page: 3 of 3

Client Borehole ID _ Injection Point 3 (IP-3)					Sta	antec Borin	g N	lo. IP-3				
Client Tennessee Valley Authority					Boring Location NR							
Р	roject	Number	175568	286	Surface Elevation NR Elevation Datum					atum <u>ı</u>	N/A	
Lithology					Overburden:	:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dep	th Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 43				CCR, dark gray, medium to coarse, silty clay, [CCR] (Continued)	moist	to wet,		DP09	40.0 - 45.0	40.0 - 45.0	5.0	N/A _
- 44												_
- 45												_
- 46												_
- 47 - 48								DP10	45.0 - 50.0	45.0 - 50.0	5.0	N/A
- 49												_
- 50							5					_
- 51							0.3/51.8-20			50.1		_
- 52	51.8			LEAN CLAY, CL, tan mottled with gra	ay, lov	v to	190409	DP11	50.0 - 53.0	0 - 53.0	3.0	N/A _
- 53	53.0			medium plasticity								
				No Refusal / Bottom of Hole at 53.0 Ft.								-
												_
			CCR n	naterial/clay interface @ 51.8' bgs.								_
			Dye tra	ace study survivability sample collected	at 50.	.3' to 51.8' at 0	955	04/09/19.				_
			1: E = G =	Environmental Sample Custody (two Sp Geotechnical Sample Custody	olit Sp	oons may be r	equ	ired to obta	in sufficient sam	nple)		_
			2: a,b,	c denote Split Spoon divided between E ths are reported in feet below ground su	inviroi urface	nmental and G	eot	echnical Sa	mples			_
												_
												-
												=
												-
												_
												_

Page: 1 of 3

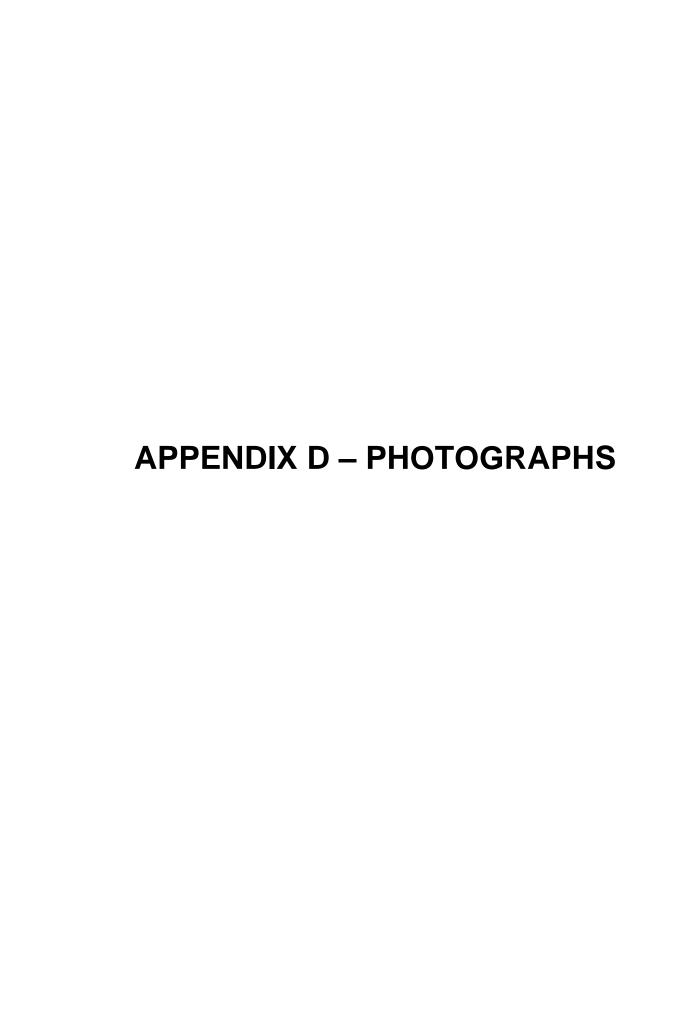
C	lient E	Borehole	ID Inje	ection Point 4 (IP-4)		Stantec Boring	g N	o. <u>IP-4</u>					
C	lient		Tennes	see Valley Authority		Boring Location NR							
Project Number 175568286						Surface Elevation NR Elevation Datum N/A							
P	roject	Name		DEC Order Dye Trace Study		Date Started 4/9/19 Completed 4/9/19							
	-	Location		w Johnsonville, Humphreys C		Depth to Water		N/A	Date/Ti		N/A		
	-					Depth to Water	_		Date/Ti	me	N/A		
	_	Contract				Drill Rig Type							
			_	Sampling Tools (Type)" sa	ampler w/ P	VC liner				
		•	•	ling Tools (Type and Siz	ze) <u>N/A</u>				Overdrill		nth N	N/A	
				and Size) <u>N/A</u> N/A Weigh	nt N/A	Drop N	Ι/Δ		Overdrill Efficiency		рит <u>'</u> N/A	N/A	
		le Azimu	• •	N/A Weigi	11	Borehole Inclin		ion (from	•	' N//			
		ed By	C. Mil			Approved By		P. Dunne	vortical)		•		
						.,			D (1 E/3		D		
_		Lithology				Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dep	oth Ft ³	Elevation	Graphic	Description		Rock Core:		RQD %	Run Ft	П	Rec. Ft	Rec. %	
- 0	0.0			Top of Hole CCR, dark gray, fine, soft	to yory soft	moist to wot				1 1)))			
_				[CCR]	to very soit,	moist to wet,				(((
- 1										(((_	
- 2												-	
								DP01	0.0 - 5.0).0 - 5.0	3.8	N/A	
- 3												-	
- 4												_	
ľ										$ \rangle \rangle$			
- 5												_	
										((
- 6										(((_	
- 7										σ (((_	
								DP02	5.0 - 10.0	0-10.1	1.9	N/A	
- 8										1		-	
- 9												_	
)))			
- 10				No resistance from 10.0' to	. 40 0'					1 1		_	
44				No resistance nom 10.0 to	40.0					(((
- 11										(((-	
- 12										_ ((-	
								DP03	10.0 - 15.0).0 - 15	1.9	N/A	
- 13										Ö		_	
- 14												_	
- 15												_	
40													
– 16										(_	
47										1 111			

Page: 2 of 3

Client l	ection Point 4 (IP-4)										
Client		Tennes	see Valley Authority	Boring Location NR							
Project	Number	175568	2286	Surface Elevation NR Elevation Datum N/A							
Lithology				Overburden:					Rec. Ft	Blows/PSI	
Depth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %	
- 17			CCR, dark gray, fine, soft to very soft,	moist to wet,		DP04	15.0 - 20.0	15.0 - 2	1.9	N/A	
- 18			[CCR] (Continued)					0.0		_	
- 19 										_	
- 20										_	
- 21 - 22								2		_	
- 23						DP05	20.0 - 25.0	0.0 - 25.0	1.9	N/A	
- 24										_	
- 25										_	
- 26										_	
- 27						DP06	25.0 - 30.0	25.0 -	1.9	N/A	
- 28						2. 00	20.0 00.0	30.0	1.0	-	
- 29										_	
- 30										_	
- 31										_	
- 32 - 33						DP07	30.0 - 35.0	30.0 - 35.0	1.9	N/A	
- 34										_	
- 35											
- 36										_	
- 37								35.0		-	
- 38						DP08	35.0 - 40.0	0 - 40.0	1.9	N/A -	
- 39										_	

Page: 3 of 3

 c	ction Point 4 (IP-4)	Stantec Boring No. IP-4											
C	lient		Tennes	see Valley Authority	Boring Location NR								
Project Number 175568286					Surface Elevation NR Elevation Datum N/A								
Lithology					Overburden: Sample ^{1,2}			Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dep	th Ft ³	Elevation	Graphic	Description	Rock Co	re:		RQD %	Run Ft	t Rec. F		Rec. %	
- 40 - 41 - 42	42.0			CCR, dark gray, fine, soft to very sof [CCR] (Continued)	t, moist to wet,		40.5/42.0-201904		40.0 - 43.0	40.0 - 43.0	3.0	 N/A	
- 43 -	43.0			SILTY LEAN CLAY, CL, reddish oran gray/tan, low plasticity, stiff, dry	nge mottled with								
				No Refusal / Bottom of Hole at 43.0 Ft.								_	
			Dye tra 1: E = G = 2: a,b,c	naterial/clay interface @ 42.0' bgs. Begance study survivability sample collected Environmental Sample Custody (two Sp. Geotechnical Sample Custody collected between Eths are reported in feet below ground survival survi	at 40.5' to 42.0' olit Spoons may	at 0	0832 requi	04/09/19. ired to obta	in sufficient san	nple)		- - - -	
												_	
												_	
												_	
												_	
												-	
												-	


Page: 1 of 2

	N: 4 F		ID Inic	potion Doint E (ID E)	Otanta - Danin	N	. ID-5						
Client Borehole ID Injection Point 5 (IP-5) Client Tennessee Valley Authority					Stantec Boring No. IP-5 Boring Location NR								
Project Number 175568286 Project Name JOF TDEC Order Dye Trace Study				Surface Elevation NR Elevation Datum N/ Date Started 4/9/19 Completed 4/9/19									
	-	Location		w Johnsonville, Humphreys Co., TN	Date Started Depth to Wate	_ >r	N/A	Comple Date/Tir		N/A	<u> </u>		
	-	or K. Ca		Logger K. Carey	Depth to Wate		N/A	Date/Til		N/A			
	•	Contract		o Logic	Drill Rig Type	_			IIC				
	-			 I Sampling Tools (Type and Size)	• • • •								
			-	ling Tools (Type and Size) N/A			<u> </u>						
		_	•	and Size) N/A				Overdrill	De	pth ¹	N/A		
5	Sample	er Hamme	er Type	N/A Weight N/A	Drop _N	I/A		Efficiency	_1	N/A			
Е	Boreho	le Azimut	th	N/A	Borehole Inclin	nat	ion (from	Vertical)	N/	Ą			
F	Review	ed By _	C. Mil	llhollin	Approved By		P. Dunne						
	I	_ithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI		
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %		
- 0	0.0			Top of Hole									
- 0				CCR, medium gray, fine, soft, dry to r	moist, [CCR]								
- 1											-		
- 2											-		
							DP01	0.0 - 5.0	.0 - 5.0	3.6	N/A		
- 3											_		
- 4									((-		
- 5	5.0										_		
				CCR, medium gray, fine, soft, moist to	o wet, [CCR]				11				
- 6											-		
- 7									5.0		-		
0							DP02	5.0 - 10.0) - 10.0	2.5	N/A		
- 8													
- 9											-		
- 10											_		
									((
- 11									11		-		
- 12							DD00	400 450	10.0		-		
- 13							DP03	10.0 - 15.0	- 15.0	2.5	N/A		
))				
- 14											-		
- 15									l #	1	_		
- 16									((_		
10									((
- 17							DP04	15.0 - 20.0	15.0-	2.5	N/A		
- 18							D1:04	13.0 - 20.0	20.0	2.5	IN/ <i>F</i> \		
- 19													
ıσ													
00	1					i I	1	i	1 1/1/1				

Page: 2 of 2

Client Borehole IDInjection Point 5 (IP-5)					Stantec Boring No. IP-5									
Client Tennessee Valley Authority						Boring Location NR								
Р	roject	Number	175568	286	Surface Elevation NR Elevation Datum N/						N/A			
	l	ithology			O	verburden:	Sample ^{1,2}		Depth Ft ³		Rec. Ft	Blows/PSI		
Dep	th Ft ³	Elevation	Graphic	Description	R	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %		
- 20											N	_		
- 21				CCR, medium gray, fine, soft, moist to (Continued)	o wet, [0	CCRJ						_		
- 22								DP05	20.0 - 25.0	20.0 -	2.5	– N/A		
- 23								D1 00	20.0 20.0	25.0	2.0	-		
- 24												_		
- 25												_		
- 26 27												=		
- 27 - 28								DP06	25.0 - 30.0	25.0 - 30.0	2.5	N/A		
- 29												_		
- 30											-	_		
- 31												_		
- 32								DP07	30.0 - 35.0	30.0	2.5	N/A		
- 33							33.5	DF07	30.0 - 33.0	. 35.0	2.5	IN/A _		
- 34	05.0						35.0-201					_		
- 35	35.0			LEAN CLAY, CL, gray to tan, non-plas	stic, dry	, with	90409			35.1		=		
- 36	37.0			red-orange mottling				DP08	35.0 - 37.0	0-37.0	2.0	N/A -		
- 37 -				No Refusal / Bottom of Hole at 37.0 Ft.						1 111		_		
												_		
												_		
												-		
			CCR m	naterial/clay interface @ 35.0' bgs.								_		
			Dye tra	ace study survivability sample collected a	at 33.5' t	to 35.0' at 0	905	04/09/19.				=		
			1: E = G =	Environmental Sample Custody (two Spli Geotechnical Sample Custody	lit Spooi	ns may be r	equi	ired to obta	in sufficient sar	nple))	=		
			2: a,b,c	c denote Split Spoon divided between En ths are reported in feet below ground sur	nvironm rface	ental and G	eote	echnical Sa	mples			_		
[_		

ATTACHMENT D.1

Bench Study Photographic Log

Site Name: Johnsonville Fossil (JOF) Site Location: New Johnsonville, Tennessee

Plant

Photograph ID: 1

Photo Location:

JOF Bench Study Boring

Photo Date:

4/8/2019

Comments:

Location of Bench Study Boring IP-1

Photograph ID: 2

Photo Location:

JOF Bench Study Boring

Photo Date:

4/8/2019

Comments:

Location of Bench Study Boring IP-2

Site Name: Johnsonville Fossil (JOF) Site Location: New Johnsonville, Tennessee

Plant

Photograph ID: 3

Photo Location:

JOF Bench Study Boring

Photo Date:

4/9/2019

Comments:

Location of Bench Study

Boring IP-3

Photograph ID: 4

Photo Location:

JOF Bench Study Boring

Photo Date:

4/9/2019

Comments:

Location of Bench Study

Boring IP-4

Photographic Log

Client:	Tennessee Valley Authority	Project:	TDEC Order
Site Name:	Johnsonville Fossil (JOF) Plant	Site Location:	New Johnsonville, Tennessee
Photograph ID: 5			
Photo Location: JOF Bench Study Bo	ring		
Photo Date: 4/9/2019			
Comments: Photo of Location of B Study Boring IP-5 unavailable.	Bench	No Photo Applica	able

ATTACHMENT D.2

Dye Injection Photographic Log

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 1

Photo Location: Injection Boring IP-1

Photo Date: 8/13/2019

Comments:

Location of Injection Boring IP-1

Photograph ID: 2

Photo Location: Injection Boring IP-1

Photo Date: 8/13/2019

Comments:

Injecting SRB Dye into Injection Boring IP-1

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 3

Photo Location: Injection Boring IP-2

Photo Date: 8/14/2019

Comments:

Location of Injection Boring IP-2

Photograph ID: 4

Photo Location: Injection Boring IP-2

Photo Date: 8/14/2019

Comments:

Injecting SRB Dye into Injection Boring IP-2

Site Name: Johnsonville Fossil Plant Site Location: New Johnsonville, Tennessee

(JOF)

Photograph ID: 5

Photo Location: Injection Boring IP-3

Photo Date: 8/14/2019

Comments:

Location of Injection Boring IP-3

Photograph ID: 6

Photo Location: Injection Boring IP-3

Photo Date: 8/14/2019

Comments:

Injecting Fluorescein Dye into Injection Boring IP-3

APPENDIX E – DATA VALIDATION REPORT (KARST WORKS)

Data Validation Report Stantec EIP Tracer Test Johnsonville Fossil Plant, Tennessee

Prepared by

Geary M. Schindel, P.G. Karst Works, Inc. 11310 Whisper Dawn San Antonio, Texas 78230

February 1, 2021

I. INTRODUCTION

This Data Validation Report (DVR) describes and summarizes the field forms and data review for the Stantec Consulting Services Inc. (Stantec) Dye Trace Study, New Johnsonville, Tennessee. Stantec employees were tasked with designing a dye trace study (tracer test) within Active Ash Pond 2 which resulted in the injection of dyes and collection of field samples. Analysis of samples was performed by Ewers Water Consultants Inc (EWC) of Richmond, Kentucky as a subcontractor to Stantec. In August 2019, sulforhodamine B (SRB) was injected into two borings and sodium fluorescein (fluorescein) was injected into three borings within Active Ash Pond 2 at the Tennessee Valley Authority (TVA) Johnsonville Fossil Plant at New Johnsonville, Tennessee. The intent of the tracer test was to evaluate if preferential flow paths exist between the CCR unit and the uppermost aquifer or the surrounding surface water body. SRB was not recovered during the sampling period. Fluorescein was detected in samples collected during five events at well JOF-104.

EWC specializes in groundwater tracer testing using fluorescent dyes. EWC provided consultation on tracer test study design considerations, provided granular activated carbon (charcoal) packets for dye monitoring and performed analysis of the charcoal samples used to capture fluorescent dyes.

The Department of Defense (DoD) Environmental Laboratory Program (ELAP), National Environmental Laboratory Accreditation Program (NELAP) and State Agencies do not conduct certification of laboratories for the analysis of fluorescent dyes. Consequently, EWC, a laboratory that specializes in the analysis of fluorescent dyes does not hold laboratory certifications but does follow relevant laboratory quality control processes and standards.

Karst Works, Inc. was incorporated in 1988 and provides specialized consulting services for the evaluation and management of cave and karst resources. Karst Works, Inc. staff have designed and executed more than 500 tracer tests throughout the US and internationally and include full laboratory services for analysis of fluorescent dyes. Karst Works, Inc was contracted by Stantec Consulting Services to evaluate tracer testing results performed at the TVA New Johnsonville, Tennessee site.

II. REVIEW PROCESS

The following documents specifying details regarding the tracer test field methods and analytical procedures were evaluated for this review:

- 1. Stantec Guidelines on Retrieving and Replacing Dye Detector Packets;
- 2. Stantec TVA Dye Survivability (Bench) Study;
- 3. EWC Quality Assurance Management Plan (QAMP);
- 4. Dye Injection Information;
- 5. Review of the Chain-of-Custody Forms, Sample Receipt Check Lists, Sample-Prep Check Lists, and Instrument Check Lists;
- 6. Laboratory analytical method;
- 7. Analytical Results/Luminance Plots;
- 8. Laboratory Control Sample (LCS) results;
- 9. Field Duplicate, Field Blanks, and Trip Blanks; and,
- 10. Daily Field Activity Logs

III. ASSESSMENT FINDINGS

The following section summarizes the findings of the review of procedures and analytical results.

1. Stantec Guidelines on Retrieving and Replacing Dye Detector Packets – Stantec personnel prepared a nine-page document detailing training requirements; field supplies necessary to perform the study; QA/QC sample description including field duplicates, field blanks and trip blanks; retrieval and replacement techniques for charcoal packets in both surface water and groundwater monitoring wells; and custody transfer of samples to EWC laboratory for analysis.

The methods defined within the Stantec Guidelines are consistent with commonly followed practices for testing background concentrations of dye (prior to the dye injection) and the collection and custody transfer of samples to the EWC laboratory.

2. **Stantec TVA Dye Survivability Study** (Bench Study) – This document defines the methods used to test the compatibility of four different fluorescent dyes with the CCR material. The methods included collection of representative materials, exposure of the CCR material to the four fluorescent dyes for 1, 3, and 9 hours, and analytical results.

The methods defined in the Bench Study are reasonable to test dye compatibility with the matrix. The methods and results were sufficient to allow selection of dyes for the tests.

3. **EWC Quality Assurance Management Plan (QAMP)** – The EWC QAMP is a 33-page document that outlines the methods used for sample processing and analysis. The EWC QAMP documents the credentials and experience of the laboratory analysts; procurement of laboratory materials; handling of documents and records created for the study; analytical instrumentation and operation; sample processing; quality systems, and quality assurance and improvement.

EWC utilized activated carbon for dye detection but in November 2019, EWC changed to an acid-washed carbon to remove potential false fluorescein and false rhodamine peaks. EWC also indicated that the acid-washed carbon was not as sensitive as unwashed carbon but was acceptable

for this study.

The QAMP was found to be consistent with commonly followed practices for the collection, custody transfer, analysis, recording, and reporting of results related to tracer testing.

The QAMP was finalized during the twelfth sampling event in November 2019 and used for successive sampling events. The methods that were employed to collect and analyze samples before formal adoption of the QAMP were consistent with the QAMP. Therefore, the data associated with early samples are representative of conditions at the site and are valid for use in this study.

4. **Dye Injection Information** – Stantec provided the following information on injection of dyes at the Johnsonville Plant.

Dye	Mass	Injection Location	Date
Fluorescein (sodium)	25 lbs (40% dye)	IP-3, IP-4, IP-5	August 14-15, 2019
Sulforhodamine B (SRB)	25 lbs	IP-1 and IP-2	August 13-14, 2019

Dyes were equally divided between the respective injection locations. Initially, 5-10 gallons of water were injected into each direct push boring followed by injection of dyes. After the dye injection, and additional 25-30 gallons of water were injected in each boring location.

The mass of dye and the techniques used in both dye injections was a reasonable amount to inject for the distance to be monitored and unconsolidated material receiving the dye.

5. Review of Chain-of-Custody Forms, Sample Receipt Check Lists, and Spectrofluorophotometer & Sample Analysis Check Lists,

Chain of Custody Forms. EWC provided copies of Chain-of-Custody (CoC) forms for the 19 sampling events and two background sampling events.

Sample Receipt Check List – The Sample Receipt Check List form is an internal document prepared by EWC and is used to determine the condition of samples received from the field.

Spectrofluorophotometer & Sample Analysis Check List – Spectrofluorophotometer Instrument check list form is an internal document prepared by EWC and is used to document that the analytical instrument used for analysis of eluent is functioning properly. The Sample Prep Check List form is an internal document prepared by EWC and is used to document processing of samples including washing and drying of samples and quality control samples for water used in washing samples.

Chain-of-Custody forms for each sampling event were found to be complete with proper signatures and documentation. Sample Receipt Check List, Sample Prep Check List, and Instrument Check List were provided for the October 15, 2019 sampling event and subsequent

events. They were found to be properly completed. Sampling events prior to October 15, 2019 did not have Sample Receipt Check Lists, Sample Prep Check Lists, and Spectrofluorophotometer & Sample Analysis Check Lists. These forms were incorporated at the request of Stantec to document sample and instrument calibration and use.

The absence of these forms does not impact the quality of the data. The forms provide a summary of the information on the documents to assist in the ease of review. The information can be reviewed on the actual documents for accuracy and completeness.

6. **Laboratory Analytical Methods** – **An on-site audit of** the EWC laboratory was not conducted as part of the Data Validation process due to travel restrictions related to the COVID-19 Pandemic. However, EWC provided a PowerPoint presentation detailing the laboratory equipment and processes as well as spectrographs and other supporting materials for analyses.

The EWC PowerPoint and QAMP indicated the methods for recording and processing charcoal samples collected in the field by Stantec personnel. Samples were logged into the EWC data management system and then placed in a dryer to remove moisture for preparation for extraction. The charcoal samples were then placed in an eluent to extract dye and tested for the presence of dye. EWC used the "Smart" solution (5 parts 1-Propanol, 3 parts deionized water, and 2 parts Ammonium Hydroxide). The Smart solution is used by many dye laboratories for the extraction of dyes from charcoal.

EWC provided a spectrofluorometric emission scan for each sample analyzed. The scans are plots of wavelength (X-axis) verses intensity (Y-axis). Nineteen rounds of samples and two background rounds were collected for this study, including field duplicate samples, field blanks, laboratory quality control and trip blanks.

Each spectrofluorometric emission scan included the scan range in nanometers (nm), monochromator slit widths (nm), scan speed, sensitivity, sample information, sample type, project name, and sampling date and round. Each round of samples included Chain-of-Custody forms, quality assurance standards, and field blanks. A Shimadzu RF-530PC spectrofluorometer was used for dye analysis.

The processing and analysis of samples was consistent with the QAMP as well as standard practices for laboratories specializing in testing for fluorescent dyes. More than 650 samples were analyzed for this study. The results for each emission scan were provided and reviewed for this data validation report.

7. Analytical Results/Luminance Plots – EWC provided spectrofluorometric emission plots for each sample analyzed. The graphs plotted fluorescence intensity (y-axis) verses wavelength (x-axis). The scanned wavelength ranged from 460.0 nm to 610.0 nm. Analytical data and spectra were compared to CoC forms to evaluate whether samples were processed. The emission scans were reviewed in preparation of this report. The EWC QAMP defined criteria to determine a positive dye recovery as a peak at the appropriate wavelength for the dye and sample matrix. A deviation of 2 nm from the ideal wavelength was considered acceptable. In addition, a dye detection was considered positive if the scan presented a peak with the appropriate shape, dye was present in samples collected after injection of the dye with an increase in the amplitude of

fluorescence by a value of four, and the dye appeared in a series of samples.

EWC indicated that only samples from monitoring well JOF-104 met the criteria defined above and were considered positive for fluorescein dye. Samples collected at both the top and bottom of well JOF-104 were determined to be positive during round 13 (December 9, 2019) through round 17 (February 3, 2020, respectively). A review of the spectrofluorometric emissions indicated that detections from well JOF-104 were consistent with the presence of fluorescein dye. The emission peaks were in the correct location on the emission spectrum; the height of the peaks were sufficient to be quantified; the shape of the peaks were consistent with the presence of dye; the peaks occurred after the dye injection; and were found in five subsequent sampling events over almost two months.

The detection of fluorescein dye in well JOF-104 was validated based on the location, height, and shape of the peak of the emission spectrum and the detection of dye in five sampling events.

SRB dye was not detected in the charcoal samples during the study.

- 8. **Quality Control Sample Results** EWC preformed laboratory quality control, including laboratory water samples, eluent blanks, and dye standards in eluent. Approximately 10 percent of samples were quality control samples. Laboratory quality control was performed before, during, and after each sampling event. Quality control sample results indicated that the laboratory instrumentation was working properly, and results were acceptable.
- 9. **Field Duplicate, Field Blanks, and Trip Blanks** Field duplicate, field blanks, and trip blanks were collected during each sampling event. Samples were processed and analyzed by EWC. The results for duplicate samples were in agreement with the respective paired samples. Field blanks and trip blank analytical results did not indicate the occurrence of contamination of samples during the collection or transportation of samples.
- 10. **Daily Field Activity Logs** The Daily Field Activity Logs were utilized to document all field activities including personnel present on site, time and date of activities, and documentation of all actions related to the collection of field data and samples. The recording of Daily Field Activity Logs was directed by and followed the Dye Trace Study Sampling and Analysis Plan for the Johnsonville Fossil Plant (December 10, 2018). Document dates provided for this review ranged from the initial placement of equipment and materials for sample collection (dye receptors) on July 29th and 30th, 2019 through completion of field sample collection activities on March 4, 2020. The field forms were reviewed for content and completeness. In addition, copies of field book notes were also reviewed including Background Study (May 6 and 13, 2019), Soil Boring Benchtop Study (April 8, 2019) and Dye Injection (August 12, 2019).

Data collected on the Daily Field Activity Logs included the time and date of the action, the TI No/SOP reference, and a description of daily activities and events. The entries were noted as being complete with revisions highlighted, initialed, and dated. The methods used were documented on the forms and followed the sampling and analysis plan. The Chain of Custody forms associated with each activity log were reviewed to make sure that all samples were

recorded and transferred to the laboratory for analysis or they were noted as missing or damaged in the activity log.

An overview of the activity logs found them to be complete with documentation of the methods used to collect and replace the charcoal samples. There were some limited issues with missing samples or QC samples.

As with any study of this size and complexity, there were some issues with missing, damaged, or mislabeled samples as well as the recovery of duplicate samples. The activity logs do a adequate job in documenting problems with sampling. The limited problems with the recovery of duplicate samples from the field appear to be related to communication between sampling personnel between events. However, the loss of a few duplicate samples over the course of the study did not appear to impact the quality of the findings.

Some of the sampling locations, such as those in the river, could not be secured and were exposed to unauthorized access by the public. This sometimes results in the loss of sample packets by curious fisherman or other boaters. Generally, the loss of a few of these packets over the course of the study does not impact the results. Dye movement, especially in the porous media occurring at the New Johnsonville site, would result in dye discharging over numerous sample collection periods. While the loss of a dye packet is unfortunate, it does not impinge upon the overall quality or findings of the study.

IV. QUALITY ISSUES

Quality control issues related to this study were minimal and did not compromise the findings of the tracer tests. There were no significant issues during the sample collection, transport, or analysis of samples for the study. A limited number of charcoal samples were not recovered in the field – most likely they were removed by fisherman (not an uncommon problem in high traffic areas). However, the loss did not affect the outcome of the test.

Laboratory quality control issues were minimal and did not impact the quality or use of the data. The final laboratory spike sample analytical results were missing for the two background sampling periods. A review of the intensity plots for prior analysis for each of these rounds indicated the instrument was working correctly.

SRB dye was not detected during the sampling period.

Fluorescein dye was detected in charcoal samples collected from both the top and bottom of Well JOF-104 during round 13 (December 9, 2019) through round 17 (February 3, 2020, respectively). A review of the spectrofluorometric emissions indicated that detections from well JOF-104 were consistent with the presence of fluorescein dye. The emission peaks were in the correct location on the emission spectrum; the height of the peaks were sufficient to be quantified; the shape of the peaks were consistent with the presence of dye; the peaks occurred after the dye injection and were found in five subsequent sampling events over almost two months. The study design, quality control, and execution were

adequate to result in a positive tracer test. valid.	. Therefore, the results of the fluoresc	ein dye are considered

Geary M. Schindel, PG Karst Works, Inc. 11310 Whisper Dawn San Antonio, Texas 78230 Phone 210.326.1576 gschindel@karstworks.com

June 2, 2020

Zach Wilder, PE Project Manager Stantec Consulting Services Inc. 3052 Beaumont Centre Circle Lexington, KY 40513-1703

Re: Transmittal of Data Validation Report, New Johnsonville, Tennessee.

Dear Mr. Wilder;

Please find attached, the Data Validation Report for the TVA New Johnsonville, Tennessee facility.

Thank you for the opportunity to work on this project.

Sincerely,

Geary M. Schindel, P.G.

Geary M. Schindel

Appendix H.10 - Technical Evaluation of Water Use Survey

TDEC Commissioner's Order: Environmental Assessment Report Johnsonville Fossil Plant New Johnsonville, Tennessee

February 12, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	September 6, 2023
1	Addresses November 14, 2023 TDEC Review Comments and Issued for TDEC	February 12, 2024

Sign-off Sheet

This document entitled Appendix H.10 - Technical Evaluation of Water Use Survey was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _______

Stu Gross, Senior Project Manager

Reviewed by

John Griggs, Senior Principal

Rebekah Brooks, LG, LHg, Principal Hydrogeologist

Table of Contents

ABB	REVIATIO	ONS	11
1.0	INTRO	DUCTION	1
2.0 2.1	DESKT 2.1.1 2.1.2	R USE SURVEY OP SURVEY Data Sources and Evaluation Hydrogeological Considerations Usable Water Well Identification	1 1 4
3.0	REFER	RENCES	5

LIST OF TABLES

Table H.10-1 – JOF Plant Area Public Water Service Providers

Table H.10-2 – JOF Plant Parcel Data Inside Survey Area

Table H.10-3 – TDEC Well Logs Located Inside Survey Area

Table H.10-4 – Parcels Inside JOF Plant Survey Area with Likely Private Water Source

Table H.10-5 – Parcels Identified for Water Use Survey

LIST OF EXHIBITS

Exhibit H.10-1 - Water Use Survey Area

Exhibit H.10-2 - Parcels in Survey Area with Potential Wells or Springs

Exhibit H.10-3 - Parcels in Area of Interest and Hydrogeologically Downgradient of JOF Plant CCR Management Units

i

(

Abbreviations

JOF Plant Johnsonville Fossil Plant CCR Coal Combustion Residuals

EAR Environmental Assessment Report.
EIP Environmental Investigation Plan
GIS Geographic Information System

NJWD New Johnsonville Water Department

SAP Sampling and Analysis Plan
Stantec Stantec Consulting Services Inc.

Survey Area ½-mile boundary of JOF CCR management units

the Survey Desktop Survey

TDEC Tennessee Department of Environment and Conservation

TDEC Order Commissioner's Order OGC15-0177

TVA Tennessee Valley Authority
USGS United States Geological Survey

Introduction February 12, 2024

1.0 INTRODUCTION

Stantec Environmental Consulting Services, Inc (Stantec), on behalf of the Tennessee Valley Authority (TVA), has prepared this technical evaluation appendix to summarize applicable historical and recent water use survey information in the area surrounding TVA's Johnsonville Fossil Plant (JOF Plant) in New Johnsonville, Tennessee. This technical appendix provides a detailed evaluation of this information for the Environmental Assessment Report (EAR) in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order OGC15-0177 (TDEC Order) Program (TDEC 2015).

2.0 WATER USE SURVEY

As part of the Environmental Investigation Plan (EIP) (TVA 2018), TVA developed a Water Use Survey Sampling and Analysis Plan (SAP). The objectives of the Water Use Survey SAP were to identify and sample usable private water supply wells and surface water sources being used for domestic purposes within ½-mile of the of the boundary of the JOF Plant Coal Combustion Residuals (CCR) Management Units. This area is referred to herein as the Survey Area and is illustrated on Exhibit H.10-1.

TVA defines a usable water well to be one that will house a pump (even if a pump is not currently present) and does not contain an obstruction or defective construction that would prevent the insertion or operation of a pump.

The initial tasks of the Water Use Survey are presented in this appendix. These tasks included a desktop survey to identify potentially usable water wells and springs within the Survey Area. A description of the desktop survey, its results, and parcels of land that will be included in future survey efforts are provided in the following sections. The remaining Water Use Survey tasks are ongoing and will be presented in a future revision of the EAR.

2.1 DESKTOP SURVEY

The first step of the Water Use Survey was a desktop survey (the Survey) to identify potentially usable private wells and springs. The Survey included: reviewing well logs obtained from TDEC, historical hydrogeologic reports provided by TVA and aerial photographs; and contacting public water supply providers in the vicinity of the JOF Plant. The goal of the Survey was to identify potential and known wells or springs within the Survey Area. Details of the Survey are provided in the following sections.

2.1.1 Data Sources and Evaluation

The following information and historical reports were obtained and reviewed:

 TVA Engineering Laboratory - Johnsonville Groundwater Assessment Report (TVA 1995) (herein referred to as the "1995 TVA Report")

Water Use Survey February 12, 2024

- TVA Engineering Laboratory Hydrogeology of Rail Loop Dredged Ash Stacking Area Report (TVA 1997) (herein referred to as the "1997 TVA Report")
- United State Geological Survey (USGS) Public Water-Supply Systems and Associated Water Use in Tennessee, 2005 (Robinson and Brooks 2010)
- April 2015 Aerial Photographs (Google Earth© 2021)
- USGS National Water Information System online mapping database (USGS 2019)
- Parcel data received as geographic information system (GIS)-ready electronic data from Humphreys County (Humphreys County 2019)
- Well construction information received from Luke Ewing, TDEC Division of Water Resources, Drinking Water Unit (Ewing 2019)
- Local Public Water Supply Information
 - Interview Brandy Vann City of New Johnsonville (Vann 2019)
 - o Interview John Beasley Camden Water Department (Beasley 2019).

2.1.1.1 Desktop Survey Results

The findings from the main data sources reviewed as part of this Survey are presented below.

Public Water Service Providers

The nearest source of public potable water is the New Johnsonville Water Department (NJWD) located in the city of New Johnsonville (Robinson & Brooks 2010 and USGS 2019). NJWD obtains their water supply from the Tennessee River at river mile marker 101.8R located approximately one mile south (upstream) of the Survey Area and provides potable water to New Johnsonville and the entire area within ½-mile of JOF (Vann 2019). The City of Camden's, potable water supply system does not service the Survey Area or areas east of the Tennessee River however the water system also obtains water from the Tennessee River with the water intake located within the Survey Area near where Interstate Highway 70 crosses the River. Table H.10-1 summarizes the identified public water suppliers.

Humphreys County Parcel Information

Stantec obtained the complete parcel information set from Humphreys County in electronic format and assimilated the information into Stantec's GIS database for the JOF Plant. Stantec used these data to populate Table H.10-2 including only those parcels partially or fully within the Survey Area, which totaled 359 parcels. The parcel information included the following water supply classifications:

- Individual (1 parcel)
- Private (1 parcel)

Water Use Survey February 12, 2024

- None (6 parcels)
- Public (351 parcels).

The eight parcels identified as having an "individual", "private", "none" water supply are parcels that have no known connection to a municipal water supply. The remaining 351 parcels identified as having a "public" water supply are served by a municipal water supply.

TDEC Water Well Logs

TDEC provided an electronic list of the recorded water well logs within and near the Survey Area (Ewing 2019). Some well logs included the well depth and other well construction details. Stantec geo-referenced the listed latitude/longitude of each well log using GIS to plot the well locations on a map. The provided coordinates were imported into GIS "as is" without modification. Table H.10-3 summarizes the only TDEC-documented well log located on a parcel within the Survey Area, and the well location is shown on Exhibit H.10-2.

Historical Reports

1995 and 1997 TVA Report Findings

Although the 1995 TVA Report summarized hydrogeological conditions surrounding JOF, a formal survey of wells or springs was not conducted as part of this effort. However, 1995 TVA report identified "offsite well locations". The 1997 TVA Report identified the approximate locations of "water supply wells" near the JOF Plant. The 1997 TVA Report also summarizes a survey of non-public water supply wells and springs near the JOF Plant that was conducted by TVA. The wells identified are consistent in both reports. Five non-public water supply wells (labeled PH, 5W1, 5W2, 6W, and JERA) were identified in the reports. No springs were identified. The water supply wells and springs identified in the historical reports within the Survey Area are shown on Exhibit H.10-2.

Recent Aerial Photograph Review

Stantec reviewed the December 2015 Google Earth© aerial photograph (most recent photograph available) to identify buildings or structures (i.e., residences, businesses) in the Survey Area that are likely to require a potable water source. If a parcel was identified by Humphreys County as having an "individual" water source and a building was present, then it was assumed that a private well used for domestic or business purposes was present at the parcel. Alternatively, if a parcel was identified with an "individual" listing but no evidence of recent or current buildings or structures was observed, then it was considered unlikely for a private well to be present or currently in use at the parcel. Two parcels with likely residential structures and an "individual" or "private" water source were identified in the Survey Area as part of the aerial photograph review with their locations shown on Exhibit H.10-2.

2.1.1.2 Summary of Desktop Survey Findings

Based on the records reviewed, the private well information obtained from these data sources as it relates to the Survey Area are summarized in Table H.10-4.

Water Use Survey February 12, 2024

Table H.10-2 provides a complete list of parcels in the Survey Area and includes data presented in Table H.10-3. Exhibit H.10-2 illustrates potential water supply wells and springs identified during the Survey and highlights those parcels in the Survey Area where one or more potential well(s) or spring(s) were identified based on the data reviewed.

Based on the results of the Survey, four parcels (highlighted on Exhibit H.10-2) were identified in the Survey Area that may contain up to five wells potentially used for domestic or business purposes. No springs were identified in the Survey Area.

2.1.2 Hydrogeological Considerations

In addition to conducting the Survey, the current JOF Plant Water Use Survey SAP outlines a process to identify locations where groundwater or surface water has the potential to be affected by JOF Plant coal combustion residuals (CCR) management units using results of investigative activities required as part of the EIP. This process includes consideration of geologic and hydrogeologic conditions (i.e. hydraulic barriers [rivers/streams], topography, groundwater flow direction, and watershed boundaries). Relevant hydrogeologic information presented in the EAR Section 5 is discussed below as it relates to identifying usable water wells and surface water sources being used for domestic purposes with the potential to be affected by JOF Plant CCR management units.

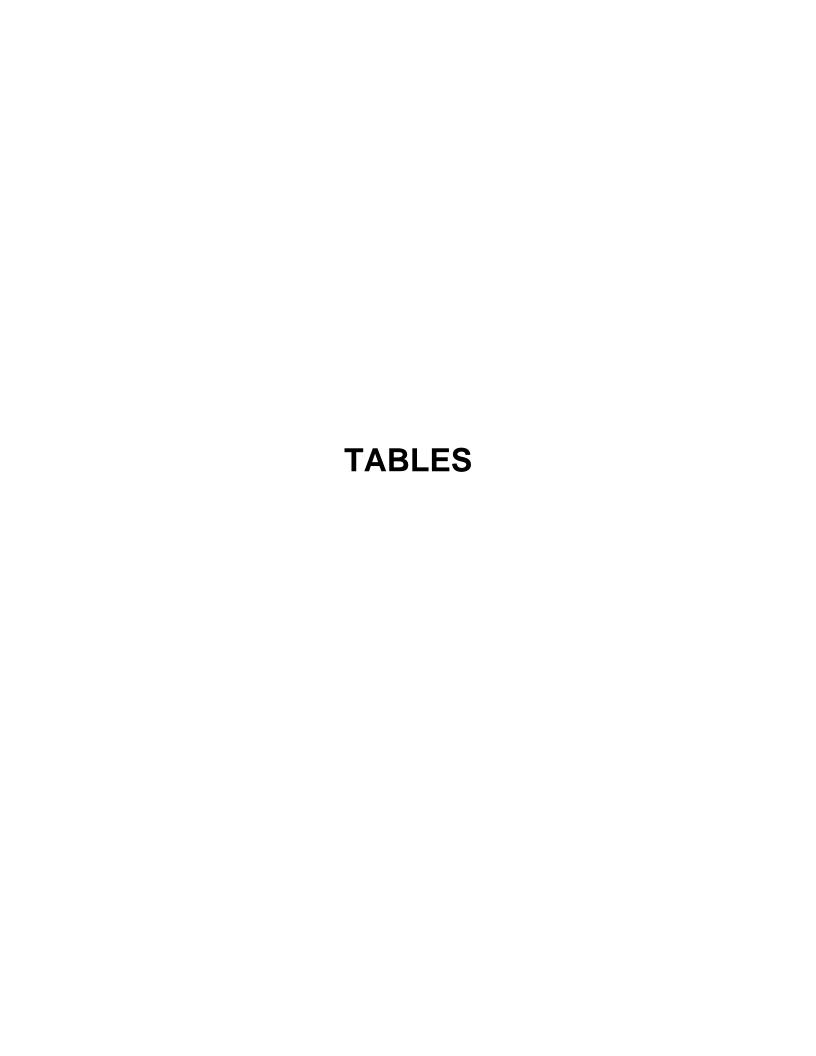
- The stratigraphy of the JOF Plant area is comprised of the following units listed in order of increasing depth (except for the CCR material): fill, native unconsolidated materials (alluvial deposits), and residuum. Unconsolidated materials at the CCR management units consist of fill, residuum, or alluvium deposited within the Tennessee Western Valley Watershed. Residuum is formed from the weathering of the underlying bedrock. Alluvium refers to native materials (i.e., clay, silt, sand, or gravel) that are deposited by moving water. The unconsolidated materials range in thickness from a few feet to over 70 feet
- Alluvial deposits in the Tennessee River flood plain were observed to be poorly sorted and
 unconsolidated and consist of clay, silt, sand, and gravel. The finer grained material is usually
 near the surface and the coarser grained material is more common at depth.
- The JOF Plant adjoins the eastern shore of the Tennessee River. A key characteristic of the setting is that the JOF Plant is situated in a low-lying area along the Tennessee River with a higher elevation ridge to the east of the plant. Mimicking topography, groundwater flows west/southwest across the JOF Plant area towards the Tennessee River as shown in Exhibit H.10-3. In general, groundwater elevation contours follow surface topography, and groundwater flows from areas of higher elevation towards Tennessee River. The key hydraulic barrier (Tennessee River) is illustrated on Exhibit H.10-3.

Based on geologic and hydrogeologic conditions present at and in the vicinity of the JOF Plant, parcels containing a well or spring located west of the JOF Plant would have the greatest likelihood of being downgradient of the JOF Plant CCR management units. Potable water wells screened in overburden or bedrock located east, north, and south of the JOF Plant CCR management units would have a low

References February 12, 2024

likelihood of being impacted from groundwater associated with JOF Plant CCR management units based on the current groundwater flow pattern.

2.1.3 Usable Water Well Identification


Considering geologic and hydrogeologic conditions within the Survey Area resulted in an Area of Interest where next steps of the Water Use Survey process would be implemented. Therefore, the next steps of the Water Use Survey, being initiated through delivery of letters and postcards to landowners, will be limited to parcels in this Area of Interest, as outlined on Exhibit H.10-3, and listed in Table H.10-5.

Planned efforts to contact parcel owners listed in Table H.10-5 will determine if additional wells or springs are present. These efforts will be initiated immediately upon TDEC's concurrence with the approach and parcels identified.

3.0 REFERENCES

- Beasley, John (Camden Water Department). (2019). Email to Christopher Hatfield (Stantec), March 20, 2019.
- Ewing, Luke (Tennessee Department of Environmental and Conservation [TDEC] Division of Water Resources, Drinking Water Unit). (2019). Email to Christopher Hatfield (Stantec). June 20, 2019.
- Google Earth. (2021). December 2015 Aerial Photographs of New Johnsonville, Tennessee, Retrieved February 23, 2021.
- Humphreys County, 2019. GIS-ready Electronic Parcel Data of Humphreys County, June 2019.
- Robinson, J.A., and Brooks, J.M. (2010). Public Water-Supply Systems and Associated Water Use in Tennessee, 2005: U.S. Geological Survey Open-File Report 2010–1226.
- TVA Engineering Laboratory. (1995). *Johnsonville Groundwater Assessment*, Report No. WR28-1-30-111-104, March 1995.
- TVA Engineering Laboratory. (1997). *Hydrogeology of Rail Loop Dredged Ash Stacking Area TVA New Johnsonville Fossil Plant*, Report No. WR97-2-30-113, September 1997.
- Vann, Brandy (City of New Johnsonville). (2019). Emails to Christopher Hatfield (Stantec), June 28 and July 29, 2019.
- United States Geological Survey. (2019). National Water Information System online mapping database, Retrieved June, 2019, from https://maps.waterdata.usgs.gov/mapper/index.html.

Table H.10-1 - JOF Plant Area Public Water Service Providers

Public Water Supply Provider	Service Area in Relation to JOF Plant	Does Service Area Extend into Survey Area (Yes/No)	Water Source/Intake Location	Distance of Source/Intake from JOF Plant Survey Area
New Johnsonville Water Department	Entire survey area	Yes	Tennessee River / mile marker 101.8R	1 mile south (downstream)
	Provides potable water west of the Survey Area	No	Tennessee River / intersection of Interstate Highway 70 with Tennessee River	Within Survey Area (southwest portion)

ASSIGNED WELL ID	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	TDEC WELL LOG WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	THE CHEMOURS COMPANY LLC	DUPONT RD 1950	088 001.00	PUBLIC	many buildings/structures associated with DuPont			1997 TVA report - SW, SW1, & SW2 (industrial use wells) 1997 TVA report - PH, JERA (potable water well)
	KRECZMER & SHELTON PROP	CARMAN AVE 466	091G A 037.00	PRIVATE	residential structure			
	NICHOLS MICHELLE ETVIR	ASHE AVE 460	091G B 003.02	INDIVIDUAL	likely residential structure			
	CONTINENTAL GRAIN CO	TVA 104	091 031.04	PUBLIC	multiple grain silos and three small buildings	TDEC Well Log Record (no ID #)	no information	
	L & N RAILROAD	COUNTY	064 403.00	NONE				
	NEW JOHNSONVILLE CITY OF	BROADWAY AVE	088 042.00	PUBLIC	New Johnsonville water tower			
	PEEK SHERRY C TRUSTEE	BROADWAY AVE 700	091 001.00	PUBLIC				
	MERIWETHER LEWIS ELECTRIC	DUPONT ACCESS RD	091 001.01	NONE				
	LUCAS LYNDA TRUSTEE	HWY 70 W	091 001.02	PUBLIC				
	KANJARIA DENISH L & AMIT KUMAR PATEL	BROADWAY AVE	091 001.03	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 608	091 001.04	PUBLIC				
	VEGA JUAN S REVELES ETUX	BROADWAY AVE 616	091 001.05	PUBLIC				
	CROWELL KAYE R	BROADWAY AVE	091 001.07	PUBLIC				
	NEW JOHNSONVILLE CITY OF	LONG ST	091 001.08	PUBLIC				
	RODGERS CATHY T	BROADWAY AVE	091 001.09	PUBLIC				
	WERFEL LARRY G	CHARLES WEBB DR 812	091 003.00	PUBLIC				
	STEWART DUSTIN B ETUX	CHARLES WEBB DR 806	091 004.00	PUBLIC				
	DUCK RIVER MILLS INC	CHARLES WEBB DR 802	091 005.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	CHARLES WEBB DR	091 006.00	PUBLIC				
	LUCAS LYNDA TRUSTEE VOLUNTEER READY MIX LLC	LONG ST LONG ST	091 007.00 091 007.01	PUBLIC PUBLIC				
	TVA	LONG ST	091 031.02	PUBLIC				
	LUCAS LYNDA TRUSTEE	LONG ST	091 031.03	PUBLIC				
	SANDGRAVL CO INC	HERBERT RD	091 403.03	PUBLIC				
	MEDLING WAYNE ETUX JULIA	BROADWAY AVE 404	091B A 001.00	PUBLIC				
	WHEELER BLAKE ALAN	CARMAN AVE 403	091B A 002.00	PUBLIC				
	OXIER CHARLES EDWARD ETUX CHRYSPIN DEA		091B A 003.00	PUBLIC				
	MALONE ALBERT JOE ETUX	CARMAN AVE 419	091B A 004.00	PUBLIC				
	DODD ROBERT WAYNE SR ETUX	CARMAN AVE 427	091B A 005.00	PUBLIC				
	LOVELESS LANCE ETUX	CARMAN AVE 435	091B A 006.00	PUBLIC				
	LOVELESS LANCE ETUX CYNTHIA	CARMAN AVE 447	091B A 007.00	PUBLIC				
	INDEPENDENT PROPERTY	CARMAN AVE 451	091B A 008.00	PUBLIC				
	FELTS CLYDE B III	CARMAN AVE 453	091B A 009.00	PUBLIC				
	BURLISON JOANN RICE	CARMAN AVE 455	091B A 010.00	PUBLIC				
	PICKENS JAMES H ETUX	CARMAN AVE 459	091B A 011.00	PUBLIC				
	GRIFFITH JESSICA W	CARMAN AVE 463	091B A 012.00	PUBLIC				
	LANE MARION ETUX RUTH	CARMAN AVE 469	091B A 013.00	PUBLIC				
	ANDERSON GLEN E ETUX COLLEEN	CARMAN AVE 471	091B A 014.00	PUBLIC				
	BOWMAN VICTORIA	CARMAN AVE 475	091B A 015.00	PUBLIC				
	WYATT HOWARD D ETUX JANICE	CARMAN AVE 479	091B A 016.00	PUBLIC				
	CURTIS PHILLIP CRAIG	CARMAN AVE 481	091B A 017.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	CARMAN AVE	091B A 018.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	CARMAN AVE	091B A 019.00	PUBLIC				
	CURTIS ROYCE W ETUX	CARMAN AVE 478	091B A 020.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	CARMAN AVE	091B A 021.00	PUBLIC				
	MOSLEY OACIE L ETUX L/E	CARMAN AVE 495	091B A 022.00	PUBLIC				
	WHITSETT TURNER F II L/E	WYLY DR 116	091B A 023.00	PUBLIC				
	AMONETTE MELISSA ETVIR ANTHONY &	WYLY DR 112	091B A 024.00	PUBLIC				

			_					
ASSIGNED WELL	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	TDEC WELL LOG WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	LUCAS LYNDA TRUSTEE	WYLY DR 106	091B A 025.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 494	091B A 026.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE	091B A 027.00	PUBLIC				
	NEW JOHNSONVILLE CITY OF	BROADWAY AVE 478	091B A 028.00	NONE				
	BARBER NANCY L ETAL	BROADWAY AVE	091B A 029.00	NONE				
	SMITH REBECCA ANN	BROADWAY AVE 470	091B A 030.00	NONE				
	CHUNN KIMBERLY	BROADWAY AVE 478	091B A 032.00	PUBLIC				
	BAKER EDDIE R ETUX	BROADWAY AVE 478	091B A 033.00	PUBLIC				
	PITCHFORD AGNES B L/E	BROADWAY AVE 454	091B A 034.00	PUBLIC				
	MOORE JESSICA	BROADWAY AVE 450	091B A 035.00	PUBLIC				
	BRYANT DONNA A	BROADWAY AVE 446	091B A 036.00	PUBLIC				
	CALIXTRO NATIVIDAD A	BROADWAY AVE 440	091B A 037.00	PUBLIC				
	DAVIS MICHAEL D ETUX	BROADWAY AVE 438	091B A 038.00	PUBLIC				
		BROADWAY AVE 434	091B A 039.00	PUBLIC				
	DRAKE LOIS A L/E		091B A 040.00					
	WILSON DALE A &	BROADWAY AVE 430		PUBLIC				
	INDEPENDENT PROPERTY	BROADWAY AVE 426	091B A 041.00	PUBLIC				
	JOHNSON CONLEY O ETUX MAI EDEN RICHARD L AND	BROADWAY AVE 422 BROADWAY AVE 418	091B A 042.00 091B A 043.00	PUBLIC PUBLIC				
	FERRELL CARROLL CLAYTON	BROADWAY AVE 414	091B A 044.00	PUBLIC				
	MEDLING MARK C	BROADWAY AVE 414	091B A 044.00	PUBLIC				
		BROADWAY AVE 410						
	BAKER EDDIE ETUX SANDRA LUCAS LYNDA TRUSTEE	WYLY DR 105	091B A 046.00 091B B 001.00	PUBLIC				
	CASSININO GLENDA & LORETTA BROWN &	WYLY DR 103 WYLY DR 113	091B B 001.00	PUBLIC PUBLIC				
	ABRAMSON EVELYN H L/E	WYLY DR 113 WYLY DR 117	091B B 002.00	PUBLIC				
	·							
	HARRIS PATRICIA ANN	CARMAN AVE 511	091B B 004.00	PUBLIC				
	HARRINGTON PATRICIA A	CARMAN AVE 515	091B B 005.00 091B B 006.00	PUBLIC PUBLIC				
	BOSWELL HARRY K ETUX MITCHELL JACK C	CARMAN AVE 519 CARMAN AVE 523	091B B 000.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 556	091B B 007.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE	091B B 009.00	PUBLIC				
	FIRST FEDERAL BANK	BROADWAY AVE 509	091B B 009.00	PUBLIC				
	TERRY BRENDA L	BROADWAY AVE 550	091B B 010.00	PUBLIC				
	NEW JOHNSONVILLE CITY OF	BROADWAY AVE 528	091B B 010.00	PUBLIC				
	TUCKER MILDRED PIRTLE	CARMAN AVE 527	091B B 010.01	PUBLIC				
	LUCAS RACHEL P	CARMAN AVE	091B B 010.02	PUBLIC				
	CASEY'S MARKETING COMPANY	BROADWAY AVE 540	091B B 010.03	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 522	091B B 010.04	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 522	091B B 012.00	PUBLIC				
	NEW JOHNSONVILLE CITY OF	BROADWAY AVE 604	091B C 001.00	PUBLIC				
	HAMPTON WILLIS	LONG ST 113	091B C 002.00	PUBLIC				
	HUMPHREYS CO TELEPHONE	LONG ST	091B C 003.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	LONG ST	091B C 003.01	PUBLIC				
	JOHNSONVILLE TVA EMPLOYEES	LONG ST 213	091B C 004.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	LONG ST 223	091B C 005.00	PUBLIC				
	HUMPHREYS CO UTILITY	LONG ST	091B C 006.00	PUBLIC				
	PATTON THOMAS EARL	CARMAN AVE 506	091B D 001.00	PUBLIC				
	PRINCE TODD ETUX JODI	WYLY DR 207	091B D 002.00	PUBLIC				
	BROWN KAREN L	WYLY DR 213	091B D 003.00	PUBLIC				
	JONES RYAN M	WYLY DR 217	091B D 003.00	PUBLIC				
	KING GLENDA O'DANIEL	ASHE AVE 511	091B D 005.00	PUBLIC				
	FLOWERS SHARON L	ASHE AVE 515	091B D 006.00	PUBLIC				
	WYATT HOWARD D ETUX JANICE	ASHE AVE 519	091B D 007.00	PUBLIC				
	WYATT HOWARD D ETUX	ASHE AVE 523	091B D 008.00	PUBLIC				
	BONE NIKI DALE	ASHE AVE 527	091B D 009.00	PUBLIC				

				LILIMDUDEVO COLUETA CIO			TDEC WELL LOG	
ASSIGNED WELL ID	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	KESLINGER CODY K	ASHE AVE 531	091B D 010.00	PUBLIC				
	SPEARS SHANE STEPHEN ETUX MARY ANN	ASHE AVE 535	091B D 011.00	PUBLIC				
	JOHNSON JOSHUA HEATH ETUX	ASHE AVE 539	091B D 012.00	PUBLIC				
	SMITH SHERRY L	ASHE AVE 543	091B D 013.00	PUBLIC				
	SCURLOCK SHEILA W	ASHE AVE 547	091B D 014.00	PUBLIC				
	PICKENS JAMES H ETUX DESSIE M	ASHE AVE 551	091B D 015.00	PUBLIC				
	PURCELL SANDI N FLOWERS & MICHAEL WAYN	II ASHE AVE 555	091B D 016.00	PUBLIC				
	TAYLOR VELMA L/E	ASHE AVE 559	091B D 017.00	PUBLIC				
	MILLER CARL A ETUX	ASHE AVE 563	091B D 018.00	PUBLIC				
	PAPOW SANDRA AND	ASHE AVE 567	091B D 019.00	PUBLIC				
	TYLER RICHARD W	ASHE AVE 571	091B D 020.00	PUBLIC				
	HUMPHREYS COUNTY COMMUNITY	LONG ST 224	091B D 021.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	LONG ST 214	091B D 022.00	PUBLIC				
	CHURCH OF CHRIST	CARMAN AVE 565	091B D 023.00	PUBLIC				
	KING JOANNIE LYNN	CARMAN AVE 558	091B D 024.00	PUBLIC				
	HATLER DONALD M ETUX	CARMAN AVE 554	091B D 025.00	PUBLIC				
	MULLINAX TIMOTHY & KAYLA MULLINAX	CARMAN AVE 550	091B D 026.00	PUBLIC				
	GERALDI AURELIO L	CARMAN AVE 546	091B D 027.00	PUBLIC				
	WORK ERNEST T	CARMAN AVE 542	091B D 028.00	PUBLIC				
	RHODES ROBBIE L/E	CARMAN AVE 538	091B D 029.00	PUBLIC				
	BROWN RONALD E ETUX KELLY M	CARMAN AVE 534	091B D 030.00	PUBLIC				
	ASKINS PHILLIP A	CARMAN AVE 530	091B D 031.00	PUBLIC				
	MALLARD G W ETUX	CARMAN AVE 526	091B D 032.00	PUBLIC				
	HATLEY RICHARD &	CARMAN AVE 522	091B D 033.00	PUBLIC				
	BETTY AUSTIN N ETUX KATIE	CARMAN AVE 518	091B D 034.00	PUBLIC				
	BONER LLOYD E ETUX	CARMAN AVE 514	091B D 035.00	PUBLIC				
	PECK GINA	CARMAN AVE 510	091B D 036.00	PUBLIC				
	NEW JOHNSONVILLE CITY OF	LONG ST	091F A 001.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	LONG ST	091F A 001.01	PUBLIC				
	MOSLEY RUTH E L/E	CARMAN AVE 402	091G A 001.00	PUBLIC				
	CLAIBORNE DORIS & NIKI DALE BONE	FISH HOOK DR 207	091G A 002.00	PUBLIC				
	TYLER CALVIN ZANE SR	FISH HOOK DR 213	091G A 003.00	PUBLIC				
	CLAIBORNE DORIS & NIKI DALE BONE	ASHE AVE 403	091G A 004.00	PUBLIC				
	CLAIBORNE DORIS & NIKI DALE BONE	ASHE AVE 415	091G A 006.00	PUBLIC				
	BREEDEN MADALYNN	ASHE AVE 423	091G A 008.00	PUBLIC				
	BROWN CLYDE A &	ASHE AVE 427	091G A 009.00	PUBLIC				
	OWEN PAULA MAE SHELTON	ASHE AVE 431	091G A 010.00	PUBLIC				
	MARTIN LINDA J	ASHE AVE 435	091G A 011.00	PUBLIC				
	BRUMMITT STEPHEN M & J BRADLEY BRUMMI		091G A 012.00	PUBLIC				
	WILSON JACQUELINE ETVIR	ASHE AVE 443	091G A 013.00	PUBLIC				
	BATES ASHLEY D	ASHE AVE 447	091G A 014.00	PUBLIC				
	WARSTLER MARGARET A	ASHE AVE 451	091G A 015.00	PUBLIC				
	ABRAMS DAVID L	ASHE AVE 455	091G A 016.00	PUBLIC				
	JOHNSON TERRI SCHNEIDER	ASHE AVE 459	091G A 017.00	PUBLIC				
	HIMES JAMES R ETUX	ASHE AVE 463	091G A 018.00	PUBLIC				
	JAMES PAUL W ETUX	ASHE AVE	091G A 019.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	ASHE AVE	091G A 023.00	PUBLIC				
	MCCRACKEN NEIL LEON AND	ASHE AVE 491	091G A 024.00	PUBLIC				
	REEVES JUDY A	ASHE AVE 495	091G A 025.00	PUBLIC				
	PHILPOTT CHAD	ASHE AVE 499	091G A 026.00 091G A 027.00	PUBLIC				
	WHITE GARLAND J ETUX	WYLY DR 214	091G A 027.00 091G A 028.00	PUBLIC PUBLIC				
	SCURLOCK BECKY E AND	WYLY DR 208						
	LYTTLE BUNARD C ETUX	CARMAN AVE 498	091G A 029.00	PUBLIC				
	PIRTLE JAMES RAY &	CARMAN AVE 494	091G A 030.00	PUBLIC				

ASSIGNED WELL ID	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	TDEC WELL LOG WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	LUCAS LYNDA TRUSTEE	CARMAN AVE	091G A 031.00	PUBLIC				
	TOMLIN JAMES MICHAEL	CARMAN AVE 478	091G A 035.00	PUBLIC				
	TOMLIN JAMES M	CARMAN AVE 474	091G A 036.00	PUBLIC				
	LOFTON KEVIN J ETUX GINGER	CARMAN AVE 470	091G A 036.01	PUBLIC				
	INDEPENDENT PROPERTY	CARMAN AVE 462	091G A 038.00	PUBLIC				
	KING TONY W	CARMAN AVE 458	091G A 039.00	PUBLIC				
	DOUGLAS DUSTIN	CARMAN AVE	091G A 039.01	PUBLIC				
	DOUGLAS DUSTIN	CARMAN AVE 454	091G A 040.00	PUBLIC				
	DOUGLAS DUSTIN	CARMAN AVE 450	091G A 041.00	PUBLIC				
	DOUGLAS DUSTIN	CARMAN AVE 442	091G A 042.00	PUBLIC				
	CRAWFORD SCOT	CARMAN AVE 434	091G A 043.00	PUBLIC				
	BLAZIER KATHY	CARMAN AVE 426	091G A 044.00	PUBLIC				
	PEELER DAVID G	CARMAN AVE 418	091G A 045.00	PUBLIC				
	JOHNSON TERRI SCHEIDER	CARMAN AVE 410	091G A 046.00	PUBLIC				
	JACKSON BRIDGET KELLY ETVIR JOSHUA L	ASHE AVE 414	091G B 002.00	PUBLIC				
	DODD HOUSTON	ASHE AVE 440	091G B 003.00	PUBLIC				
	CULP JONATHAN D	ASHE AVE 450	091G B 003.03	PUBLIC				
	LUCAS LYNDA TRUSTEE	ASHE AVE	091G B 004.00	PUBLIC				
	BRUCE DAVID W	LEADER DR 304	091G B 005.00	PUBLIC				
	ROSS TAMMY L	LEADER DR 308	091G B 006.00	PUBLIC				
	JOYNER DANNIE R ETUX	LEADER DR 312	091G B 007.00	PUBLIC				
	ATKINSON MICHELLE ETAL	LEADER DR 316	091G B 008.00	PUBLIC				
	AULIDGE CAROLYN SUE	LEADER DR 320	091G B 009.00	PUBLIC				
	FINCH GREGORY A ETUX	LEADER DR 324	091G B 010.00	PUBLIC				
	OELKA LEE JOHN ETUX	LEADER DR 332	091G B 012.00	PUBLIC				
	CHITTENDEN LEON H ET UX	LEADER DR 336	091G B 013.00	PUBLIC				
	JACKSON RONALD A	LEADER DR 340	091G B 014.00	PUBLIC				
	WOODS NATHAN WAYNE	LEADER DR 344	091G B 014.00	PUBLIC				
	SLOAN WILLIAM C ETUX ETTA R	LEADER DR 348	091G B 015.00	PUBLIC				
	BAKER EDDIE R ETUX	LEADER DR 352	091G B 016.00	PUBLIC				
	THOMPSON PHILLIP LAIN	LEADER DR 352	091G B 017.00	PUBLIC				
	THOMPSON PHILLIP LAIN THOMPSON HUEY F	LEADER DR 360	091G B 018.00	PUBLIC				
	PHY JASON H ETUX DEANNA	LEADER DR 364	091G B 020.00	PUBLIC				
	WILLIAMS ROY D	LEADER DR 368	091G B 021.00	PUBLIC				
	WILEMAN BENJAMIN THEODORE	LEADER DR 372	091G B 022.00	PUBLIC				
	PHILPOTT CHAD	LEADER DR 376	091G B 023.00	PUBLIC				
	ONEAL PAUL VERNON	LEADER DR 380	091G B 024.00	PUBLIC				
	MASHAW PHYLLIS KAY	LEADER DR 384	091G B 025.00	PUBLIC				
	WAGONER SUSAN D	LEADER DR 388	091G B 026.00	PUBLIC				
	HIMES BILLY R ETUX MARTHA	LEADER DR 392	091G B 027.00	PUBLIC				
	DANIEL TIMOTHY SCOTT	LEADER DR 396	091G B 028.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	ASHE AVE	091G B 029.00	PUBLIC				
	CAGLE TIMOTHY C	ASHE AVE 490	091G C 001.00	PUBLIC				
	LOGAN DONNA	LEADER DR 305	091G C 002.00	PUBLIC				
	LOGAN VALORIE	LEADER DR 309	091G C 003.00	PUBLIC				
	LUCAS LYNDA L	LEADER DR 313	091G C 004.00	PUBLIC				
	RHODES TIM FRANKLIN	LEADER DR 317	091G C 005.00	PUBLIC				
	BRANDON BRENDA A	LEADER DR 321	091G C 006.00	PUBLIC				
	INGRAM JAMES D	LEADER DR 325	091G C 007.00	PUBLIC				
	COOK THOMAS EDWARD JR	LEADER DR 333	091G C 009.00	PUBLIC				
	MULLINAX EDWIN G ETUX	LEADER DR 337	091G C 010.00	PUBLIC				
	LANE MARION W &	LEADER DR 341	091G C 011.00	PUBLIC				
	DANIEL TIMOTHY WADE ETUX	LEADER DR 347	091G C 012.00	PUBLIC				
	FLOWERS RICHARD COLT	LEADER DR 355	091G C 013.00	PUBLIC				

							TDEC WELL LOG	
ASSIGNED WELL ID	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	PICKARD RICHARD C	LEADER DR 363	091G C 014.00	PUBLIC				
	BERGERON LAURA K	LEADER DR 371	091G C 015.00	PUBLIC				
	LEE DANIEL W &	LEADER DR 381	091G C 016.00	PUBLIC				
	LUCAS LYNDA LYNNE	LEADER DR	091G C 017.01	NONE				
	NEWTON FRED ETUX SANDRA	ASHE AVE	091G C 018.00	PUBLIC				
	NEWTON FRED ETUX SANDRA	ASHE AVE	091G C 019.00	PUBLIC				
	CHAPMAN TRACY A	ASHE AVE 530	091G C 020.00	PUBLIC				
	DAVIS DONALD E ETUX	ASHE AVE 524	091G C 021.00	PUBLIC				
	PHILLIPS MICHAEL LAMONT	ASHE AVE 518	091G C 022.00	PUBLIC				
	PIRTLE WM EARL	ASHE AVE 512	091G C 023.00	PUBLIC				
	BEARD JASON L ETUX	ASHE AVE 506	091G C 024.00	PUBLIC				
	DICKINSON SANDRA M	ASHE AVE 502	091G C 025.00	PUBLIC				
	LADD BARRETT ETUX	ASHE AVE 498	091G C 026.00	PUBLIC				
	PARK JOHN CARTER	ASHE AVE 494	091G C 027.00	PUBLIC				
	MODI MAHENDRA ETUX	BROADWAY AVE 116	091H A 001.00	PUBLIC				
	SULLIVAN LAURA B ETVIR RALPH B	HARBOR CIR 132	091H A 002.01	PUBLIC				
	REASONS TAMMY C	HARBOR CIR 130	091H A 002.02	PUBLIC				
	SULLIVAN JAMES R	HARBOR CIR 140	091H A 003.00	PUBLIC				
	MOORE WANDA MRS L/E	HARBOR CIR 142	091H A 004.00	PUBLIC				
	TUBBS E GRANVILLE TRUST	HARBOR CIR 150	091H A 005.00	PUBLIC				
	TUBBS E GRANVILLE TRUST	HARBOR CIR 146	091H A 005.01	PUBLIC				
	PLANT HILTON LEE	HARBOR CIR 154	091H A 006.00	PUBLIC				
	TIDWELL JOHN C ETUX	HARBOR CIR 158	091H A 007.00	PUBLIC				
	KESLINGER CODY K	HARBOR CIR 162	091H A 008.00	PUBLIC				
	WYATT HOWARD D ETUX JANICE	HARBOR CIR 164	091H A 008.01	PUBLIC				
	RAMSEY DONNA JEAN	HARBOR CIR 170	091H A 009.00	PUBLIC				
	RAMSEY DONNA JEAN	HARBOR CIR 169	091H A 009.01	PUBLIC				
	KESLINGER CODY	HARBOR CIR 174	091H A 010.00	PUBLIC				
	ARNOLD KEITH ETUX	HARBOR CIR 174	091H A 011.00	PUBLIC				
	BAGGETT MICHAEL S	HARBOR CIR 182	091H A 012.00	PUBLIC				
	BLACKBURN DELANA C	HARBOR CIR 117	091H B 001.00	PUBLIC				
	MANGRUM DOUGLAS W	HARBOR CIR 129	091H B 002.00	PUBLIC				
	POLK THERESA	HARBOR CIR 133	091H B 003.00	PUBLIC				
	TIDWELL NICOLE T	HARBOR CIR 141	091H B 004.00	PUBLIC				
	SULLIVAN RALPH ETUX	HARBOR CIR 145	091H B 005.00	PUBLIC				
	SULLIVAN RALPH ETUX	HARBOR CIR 149	091H B 006.00	PUBLIC				
	BLEDSOE JEFFREY K ETUX ANDREA N &	PERCH ALLEY 110	091H B 007.00	PUBLIC				
	BURKETT THOMAS	PERCH ALLEY 106	091H B 007.01	PUBLIC				
	FIDO PROPERTIES	HARBOR CIR 105	091H C 001.00	PUBLIC				
	SPENCE KYLE L	HARBOR CIR 109	091H C 002.00	PUBLIC				
	SPENCER BRENDA F	HARBOR CIR 113	091H C 003.00	PUBLIC				
	WYATT HOWARD D ETUX JAN	PERCH ALLEY 109	091H C 004.00	PUBLIC				
	WARREN CHARLES ETUX NANCY	PERCH ALLEY 101	091H C 004.01	PUBLIC				
	TUBBS ERNEST G JR	PERCH ALLEY 105	091H C 004.02	PUBLIC				
	BAKER EDDIE R ETUX SANDRA G	PERCH ALLEY 113	091H C 005.00	PUBLIC				
	TIDWELL JOHN C ETUX	PERCH ALLEY 117	091H C 006.00	PUBLIC				
	HATLEY TONY LEE &	HARBOR CIR 173	091H C 008.00	PUBLIC				
	KESLINGER CODY K	HARBOR CIR 177	091H C 009.00	PUBLIC				
	BROGDON STEPHEN A ETUX	HARBOR CIR 181	091H C 010.00	PUBLIC				
	BLAZIER SHARNA LOUISE	HARBOR CIR 185	091H C 011.00	PUBLIC				
	BISHOP BRIAN	LANKFORD DR 128	091H C 011.01	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 208	091H D 001.00	PUBLIC				
	HAACK JOHN	BROADWAY AVE 212	091H D 001.01	PUBLIC				
	KESLINGER PROPERTIES LLC	DROAD WAT AVE 212	091H D 002.00	PUBLIC				

ASSIGNED WELL ID	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	TDEC WELL LOG WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	MILLER JOHN ETUX	HARBOR CIR 125	091H D 003.00	PUBLIC				
	LOCKHART WALDO C ETUX	LANKFORD DR 129	091H D 004.00	PUBLIC				
	KING DALLAS F W JR	LANKFORD DR 133	091H D 005.00	PUBLIC				
	LASHLEE MARVIN P JR	LANKFORD DR 137	091H D 006.00	PUBLIC				
	SCHNEIDER LEONARD RAYMOND	LANKFORD DR 141	091H D 007.00	PUBLIC				
	GRAY GLEN WAYNE ETUX	LANKFORD DR 145	091H D 008.00	PUBLIC				
	MCCLUNG ANDREA M	LANKFORD DR 149	091H D 009.00	PUBLIC				
	CARTER JULIA A & VICKIE WEAVER	LANKFORD DR 153	091H D 010.00	PUBLIC				
	WHITE ROBERT J	LANKFORD DR 157	091H D 011.00	PUBLIC				
	ROOS ERNEST D &	LANKFORD DR 161	091H D 012.00	PUBLIC				
	PLANT RACHEL	INDIAN CK DR 210	091H D 013.00	PUBLIC				
	PIRTLE JERRY W L/E	INDIAN CK DR 206	091H D 014.00	PUBLIC				
	FRANCIS NICHOLAS R	INDIAN CK DR 202	091H D 015.00	PUBLIC				
	DEWITT ROGER L ETUX	PARK CIRCLE DR 156	091H D 016.00	PUBLIC				
	UMSTEAD PATRICIA A ETVIR	PARK CIRCLE DR 144	091H D 018.00	PUBLIC				
	KUFALK BECKY JO ETVIR	PARK CIRCLE DR 140	091H D 019.00	PUBLIC				
	NETTERVILLE JEFFERY P ETUX	PARK CIRCLE DR 140	091H D 020.00	PUBLIC				
			091H D 022.00	PUBLIC				
	TENNESSEE VALLEY AUTHORITY	BROADWAY AVE 202						
	KIMBRO BROTHERS EQUITIES	BROADWAY AVE 302	091H E 001.00	PUBLIC				
	MEALER MARTHA LYNN	INDIAN CK DR 113	091H E 002.00	PUBLIC				
	WYATT HOWARD D ETUX JANICE	CARMAN AVE 303	091H E 003.00	PUBLIC				
	CRICHTON RANDY & SASHA CRICHTON	CARMAN AVE 307	091H E 004.00	PUBLIC				
	PIRTLE JERRY W L/E	CARMAN AVE 311	091H E 005.00	PUBLIC				
	TIDWELL SAMMY ETUX	CARMAN AVE 315	091H E 005.01	PUBLIC				
	MADILL DONALD ETUX	CARMAN AVE 319	091H E 006.00	PUBLIC				
	BARNETT KEVIN FRANKLIN & TERRY BARNETT	CARMAN AVE 323	091H E 007.00	PUBLIC				
	BROWN MICHAEL LYNN ETUX	CARMAN AVE 331	091H E 008.00	PUBLIC				
	NEBLETT JESSICA	FISH HOOK DR 112	091H E 008.01	PUBLIC				
	GARNER GREGORY L ETUX	CARMAN AVE 327	091H E 008.02	PUBLIC				
	EDEN BRENDA	CARMAN AVE 337	091H E 009.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 3	091H E 010.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 356	091H E 011.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 348	091H E 012.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 340	091H E 013.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 332	091H E 014.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 328	091H E 015.00	PUBLIC				
	LUCAS LYNDA TRUSTEE	BROADWAY AVE 310	091H E 016.00	PUBLIC				
	HUNT ROBIN & JEREMY SHANE BATES	INDIAN CK DR 220	091H F 001.00	PUBLIC				
	TURNER PATSY SUE &	INDIAN CK DR 224	091H F 002.00	PUBLIC				
	MCKINNEY MATTHEW P ETUX BRITTA	INDIAN CK DR 228	091H F 003.00	PUBLIC				
	PLANT JODIE P ETUX	INDIAN CK DR 232	091H F 004.00	PUBLIC				
	GOSS DIANA BREEDEN	INDIAN CK DR 236	091H F 005.00	PUBLIC				
	DEANGELIS ROGER J ETUX	INDIAN CK DR 240	091H F 006.00	PUBLIC				
	TURNER ROBIN S	INDIAN CK DR 244	091H F 007.00	PUBLIC				
	GIDDEN-MORAN CYNTHIA L	INDIAN CK DR 248	091H F 008.00	PUBLIC				
	ALLEN TAMELA L	INDIAN CK DR 252	091H F 009.00	PUBLIC				
	PHILLIPS ROBERT H	INDIAN CK DR 253	091H F 010.00	PUBLIC				
	BARBER BOBBY O L/E	INDIAN CK DR 249	091H F 011.00	PUBLIC				
	BARD SHIRLEY ANN &	INDIAN CK DR 245	091H F 012.00	PUBLIC				
	TERRY RAYMOND M JR ETUX	INDIAN CK DR 241	091H F 013.00	PUBLIC				
	AMMONS ODESSIA	INDIAN CK DR 237	091H F 014.00	PUBLIC				
	ADKINS JONATHAN	INDIAN CK DR 233	091H F 015.00	PUBLIC				
	LONG CAROLYN L/E	INDIAN CK DR 225	091H F 016.00	PUBLIC				
	LONG CAROLYN L/E	INDIAN CK DR 229	091H F 016.01	PUBLIC				

ASSIGNED WELL ID	OWNER	PARCEL ADDRESS	PARCEL ID	HUMPHREYS COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	TDEC WELL LOG NUMBER	TDEC WELL LOG WELL DEPTH (feet below ground surface)	TVA/LAW ENGINEERING REPORT WELL ID
	LONG CAROLYN L/E	INDIAN CK DR 221	091H F 017.00	PUBLIC				
	VINE LARRY K	INDIAN CK DR 217	091H F 018.00	PUBLIC				
	COWELL VICKIE ETAL	INDIAN CK DR 213	091H F 019.00	PUBLIC				
	FRAZIER ODELL ETUX NORMA	INDIAN CK DR 209	091H F 020.00	PUBLIC				
	FRAZIER ODELL ETUX NORMA	INDIAN CK DR 205	091H F 021.00	PUBLIC				
	FRAZIER ODELL ETUX	INDIAN CK DR 201	091H F 022.00	PUBLIC				
	PIRTLE JERRY W L/E	CARMAN AVE 308	091H F 023.00	PUBLIC				
	NEW JOHNSONVILLE COMMUNITY	CARMAN AVE	091H F 024.00	PUBLIC				
	BRODSKY GLADYS J	CARMAN AVE 338	091H F 026.00	PUBLIC				
	HOOPER TAMELA F	FISH HOOK DR 210	091H F 028.00	PUBLIC				
	HASKIN MALCOLM &	FISH HOOK DR 214	091H F 029.01	PUBLIC				
	BLUE RICHIE A	FISH HOOK DR 218	091H F 030.00	PUBLIC				
	HENDERSON ALICE L ETVIR HERBERT R	SUNSET DR 204	091H G 001.00	PUBLIC				
	BRYANT DONNA ANN HARRIS	SUNSET DR 208	091H G 002.00	PUBLIC				
	BRYANT RICHARD ETUX DONNA	SUNSET DR 212	091H G 003.00	PUBLIC				
	HARRISON LINDA B	SUNSET DR	091H G 003.01	PUBLIC				
	MAY ROBERT E ETUX	SUNSET DR 216	091H G 004.00	PUBLIC				
	KIMMONS KASSIE L	SUNSET DR 220	091H G 005.00	PUBLIC				
	CLAY CHARLES W ETUX DORIS	SUNSET DR 228	091H G 006.00	PUBLIC				
	WISER BARBARA GAYLE ROBBINS	SUNSET DR 232	091H G 007.00	PUBLIC				
	WYATT HOWARD ETUX JAN	SUNSET DR 235	091H G 008.00	PUBLIC				
	WYATT HOWARD D	SUNSET DR 231	091H G 009.00	PUBLIC				
	HILLMAN ROGER ETUX CAROL	SUNSET DR 229	091H G 009.01	PUBLIC				
	BEARD ROLLIE H JR &	SUNSET DR 223	091H G 010.00	PUBLIC				
	SHANNON NOEL W	SUNSET DR 219	091H G 011.00	PUBLIC				
	BEARD ROLLIE H ETUX DEBBY C	LAKEVIEW DR 306	091H G 012.00	PUBLIC				
	WYATT HOWARD DWAYNE ETUX JAN	LAKEVIEW DR 310	091H G 012.01	PUBLIC				
	SCHNEIDER LEONARD RAYMOND	LAKEVIEW DR 314	091H G 013.00	PUBLIC				
	BARD SHIRLEY ANN &	LAKEVIEW DR 322	091H G 014.00	PUBLIC				
	BIRCKHEAD FRANCES	LAKEVIEW DR 325	091H G 015.00	PUBLIC				
	CRAIG LARRY D ETUX	LAKEVIEW DR 321	091H G 016.00	PUBLIC				
	BARD SHIRLEY ANN &	LAKEVIEW DR 317	091H G 017.00	PUBLIC				
	LAUGHLIN GEORGE W ETUX	LAKEVIEW DR 313	091H G 018.00	PUBLIC				
	BEAL ANGELIA M & DOUGLAS MANCUSO	LAKEVIEW DR 309	091H G 019.00	PUBLIC				
	SIMOES ROUL S ETUX	LAKEVIEW DR 305	091H G 020.00	PUBLIC				
	POTTER BAXTER G	SUNSET DR 215	091H G 021.00	PUBLIC				
	THOMLINSON WILLIAM T AND	SUNSET DR 211	091H G 022.00	PUBLIC				
	PLANT LARRY W	SUNSET DR 207	091H G 023.00	PUBLIC				
	QUALLS HAROLD D ETUX	SUNSET DR 203	091H G 024.00	PUBLIC				
	HUTCHISON CHARLENE	LANKFORD DR 148	091H G 025.00	PUBLIC				
	TENNESSEE VALLEY AUTHORITY	TENN RIVER	112 001.00	PUBLIC				

Table H.10-3 – TDEC Well Logs Located Inside Survey Area Johnsonville Fossil Plant

Parcel Identification Number	TDEC Well Log Number(s)	Comments
	TDEC Well Log	
091 031.04	Record (no ID #)	no additional information provided in TDEC Well Log Record

Table H.10-4 – Parcels Inside JOF Plant Survey Area with Likely Private Water Source Johnsonville Fossil Plant

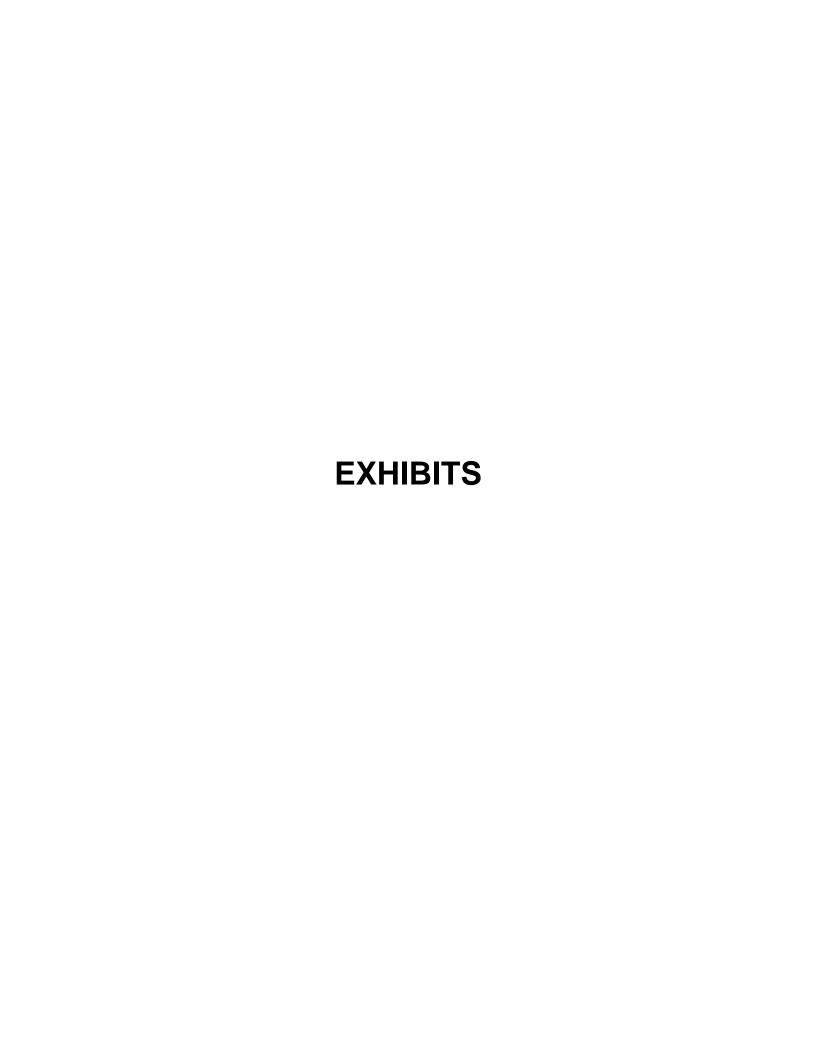
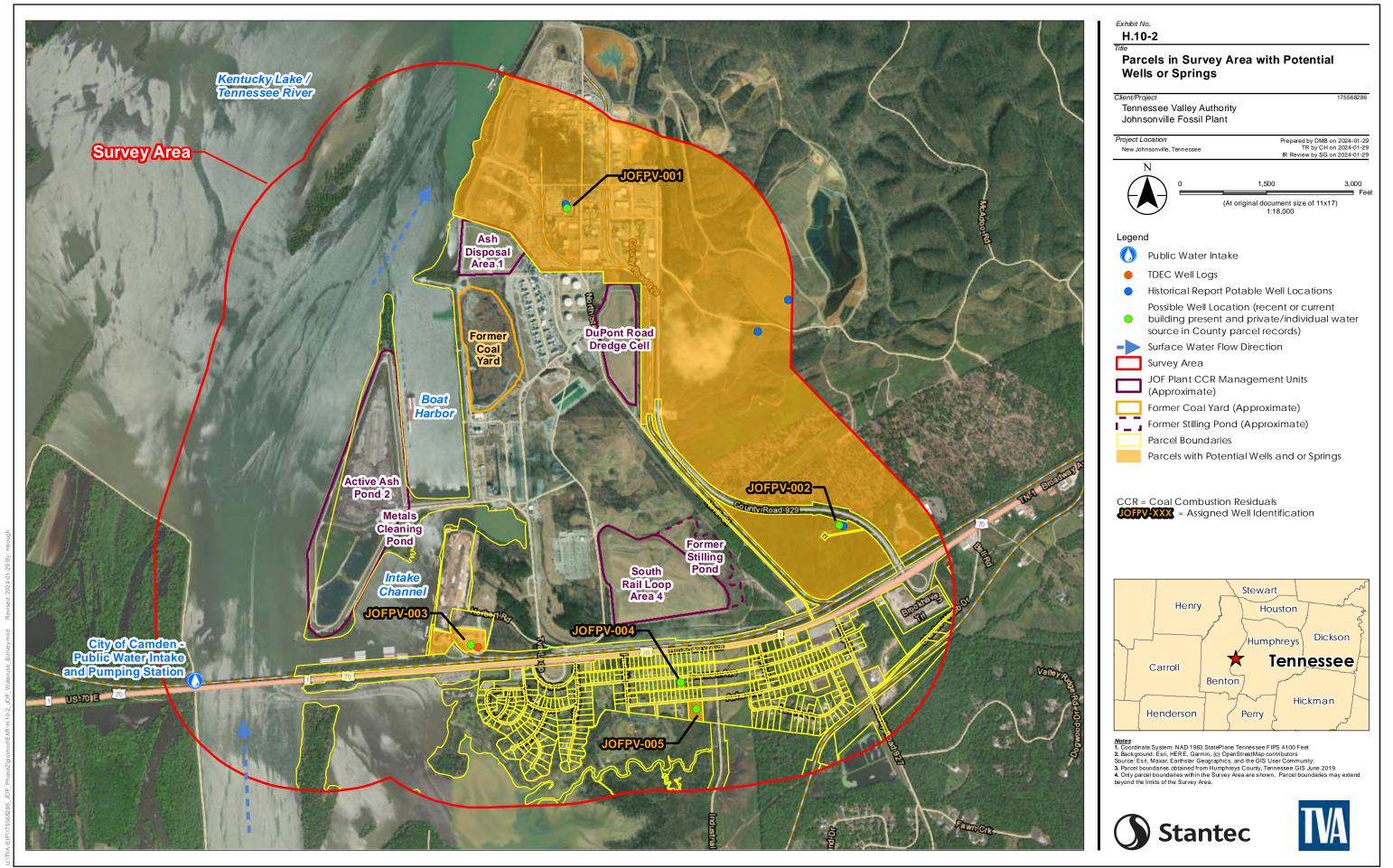
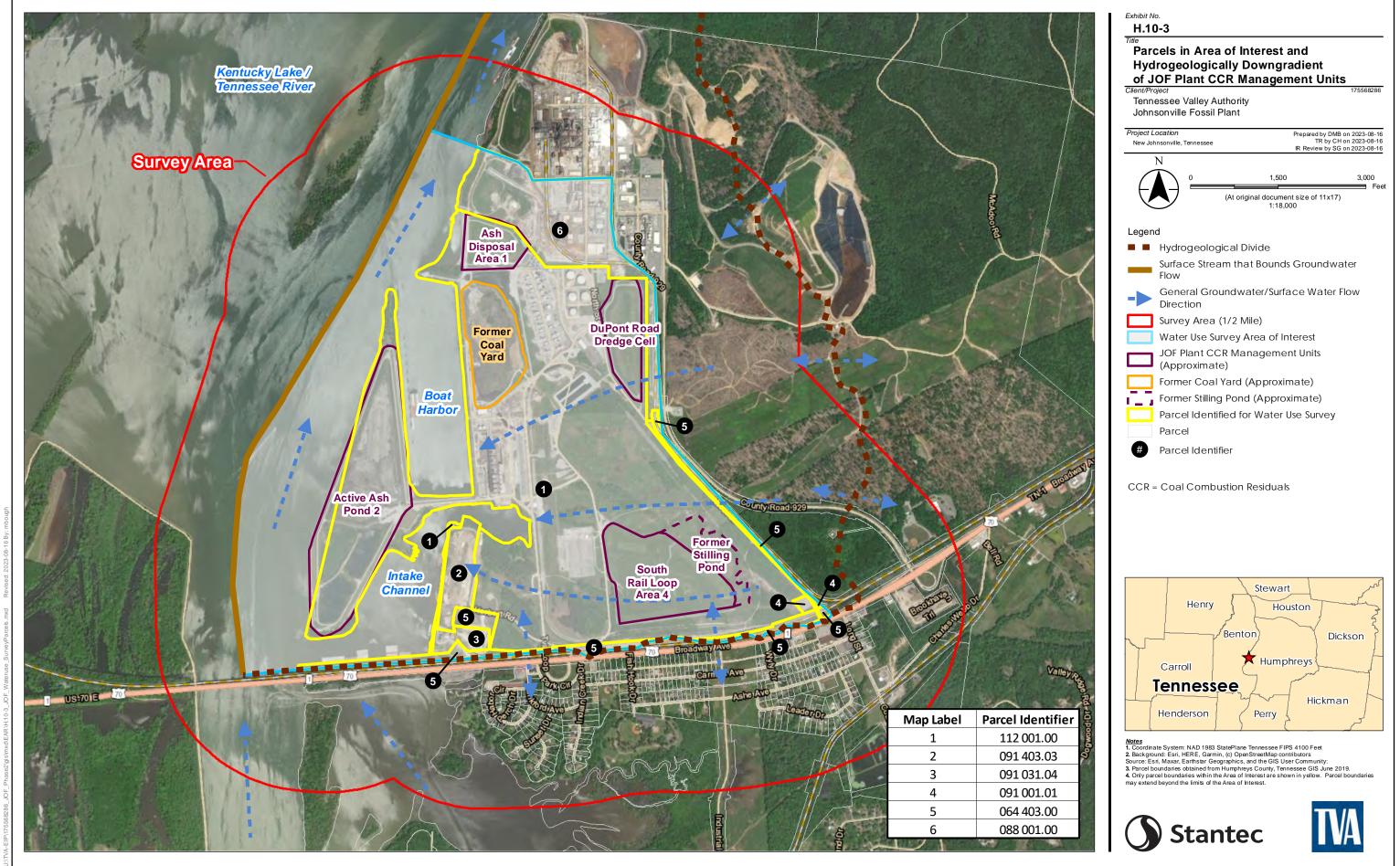

Parcel ID	Potential Private Wells/Springs on Parcel and Inside Study Area	TDEC Well Log Number	TVA or Law Engineering Report Well ID	Water Source Listing	Recent Aerial Photograph Review Notes
088 001.00	2		,		many buildings/structures associated with DuPont
091 031.04	1	TDEC Well Log Record (no ID #)			multiple grain silos and three small buildings
091G A 037.00	1				residential structure residential structure
	088 001.00 091 031.04	Parcel ID Wells/Springs on Parcel and Inside Study Area 088 001.00 2 091 031.04 1 091G A 037.00 1	Parcel ID Wells/Springs on Parcel and Inside Study Area TDEC Well Log Number 088 001.00 2 TDEC Well Log Record (no ID #) 091 031.04 1 Record (no ID #) 091 G A 037.00 1	Parcel ID Wells/Springs on Parcel and Inside Study Area TDEC Well Log Number TVA or Law Engineering Report Well ID 1997 TVA report SW, SW1, & SW2 (industrial use wells) PH, JERA (potable water well) TDEC Well Log Record (no ID #) 1997 TVA report SW, SW1, & SW2 (industrial use wells) PH, JERA (potable water well)	Parcel ID Wells/Springs on Parcel and Inside Study Area TDEC Well Log Number TVA or Law Engineering Report Well ID Water Source Listing 1997 TVA report SW, SW1, & SW2 (industrial use wells) PH, JERA (potable water well) PUBLIC TDEC Well Log Record (no ID #) PUBLIC PRIVATE



Table H.10-5 – Parcels Identified for Water Use Survey Johnsonville Fossil Plant


Exhibit H.10-3 Map Label	Parcel ID	Owner	Parcel Address	Potential Private Wells/Springs Identified	
1	112 001.00	Tennessee Valley Authority	Tenn River	0	
2	091 403.03	Sandgravl Co Inc.	Herbert Road	0	
3	091 031.04	Continental Grain Co.	TVA 104	1	
4	091 001.01	Meriwether Lewis Electric	DuPont Access Road	0	
5	064 403.00	L&N Railroad	County	0	
6	088 001.00	The Chemours Company	DuPont Road 1950	2	



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stanlec has not verifying the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stanlec has not verifying the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.