APPENDIX E – STATISTICAL ANALYSES

Appendix E.1 – Statistical Analysis of Background Soil Data

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix E.1 – Statistical Analysis of Background Soil Data was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Chris La Londe, Risk Assessor

Reviewed by

Matt Pontier, Staff Engineer

Approved by

Carole M. Farr, PG, Senior Principal Geologist

Table of Contents

ABB	REVIATION	S	II
1.0	INTRODU	JCTION	1
2.0	METHOD	PS	2
2.1	EXPLORA	ATORY DATA ANALYSIS	3
	2.1.1	Summary Statistics	
	2.1.2	Exploratory Data Plots	
	2.1.3	Outlier Screening	
2.2	ESTIMATI	ES OF BACKGROUND CONDITIONS	4
	2.2.1	Tests for Normality of Background Data	
	2.2.2	Parametric UTLs	
	2.2.3	Non-parametric UTLs	
3.0 3.1	SUMMAR SCREENI	S AND DISCUSSION RY STATISTICS, EXPLORATORY DATA PLOTS, AND OUTLIER ING	6
3.2	ESTIMATI	ES OF BACKGROUND CONDITIONS	6
4.0	REFEREN	NCES	6
_	OF TABLES		
Table	e E.1-1 – CC	CR Parameters Evaluated in Statistical Analysis	2
LIST	OF ATTACH	HMENTS	
ATTA	ACHMENT E	E.1-A SUMMARY STATISTICS TABLE	
ATTA	ACHMENT E	E.1-B BOX PLOTS	

i

Abbreviations

BGS Background Soil

BTVs Background Threshold Values

CASRN Chemical Abstracts Service Registry Number

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic

constituents included in Appendix I of Tennessee Rule 0400-11-01-.04

CCR Rule Title 40, Code of Federal Regulations, Part 257

EAR Environmental Assessment Report

El Environmental Investigation ft bgs Feet Below Ground Surface

IQR Interquartile Range NA Not Available

% Percent

QA/QC Quality Assurance and Quality Control

SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TVA Tennessee Valley Authority
UTLs Upper Tolerance Limits
WBF Plant Watts Bar Fossil Plant

March 31, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) prepared this statistical analysis report on behalf of the Tennessee Valley Authority (TVA) to summarize the statistical analyses performed on background soil (BGS) data to support evaluations conducted for the Environmental Assessment Report (EAR) at the Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee. The BGS samples were collected as part of the Tennessee Department of Environment and Conservation (TDEC) Order Environmental Investigation (EI) on June 6 and July 8, 2019 from two background monitoring well borings, and between September 4 and 17, 2019 in the vicinity of the WBF Plant from locations where naturally occurring, *in situ*, native soils unaffected by Coal Combustion Residual (CCR) materials were present. Further details regarding the BGS sampling program and results are available in the Watts Bar Fossil Plant (*WBF Plant*) *BGS Investigation Sampling and Analysis Report* (SAR) (Appendix F.1), including the BGS investigation boring locations (Exhibit A.2), and a list of the BGS investigation borings and associated soil samples and analyses (Table B.1).

Twelve samples were excluded from the statistical analysis datasets for being collected in the saturated zone. The Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-01-.04 (CCR Parameters) included in the analysis are presented below in Table E.1-1.

March 31, 2024

Table E.1-1 - CCR Parameters Evaluated in Statistical Analysis

Parameter	CASRN
CCR Rule Appendix III Parameters	
Boron	7440-42-8
Calcium	7440-70-2
Chloride	16887-00-6
Fluoride ¹ (also Appendix IV)	16984-48-8
pH	Not Available (NA)
Sulfate	14808-79-8
TDS	NA
CCR Rule Appendix IV Parameters	
Antimony	7440-36-0
Arsenic	7440-38-2
Barium	7440-39-3
Beryllium	7440-41-7
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Lead	7439-92-1
Lithium	7439-93-2
Mercury	7439-97-6
Molybdenum	7439-98-7
Radium-226+228	13982-63-3/ 15262-20-1
Selenium	7782-49-2
Thallium	7440-28-0
TDEC Appendix I Parameters	
Copper	7440-50-8
Nickel	7440-02-0
Silver	7440-22-4
Vanadium	7440-62-2
Zinc	7440-66-6
Other	
% Ash	NA

Notes: CASRN - Chemical Abstracts Service Registry Number; CCR Rule - Title 40, Code of Federal Regulations, Part 257; NA - Not available

The following sections present the methods and results from general exploratory data analysis using summary statistics, data plots, outlier screening methods and the calculation of Background Threshold Values (BTVs).

2.0 METHODS

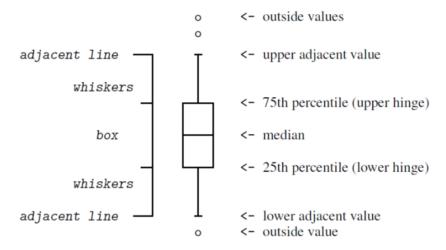
The statistical evaluation for the BGS data collected at the WBF Plant for the EI was conducted in two parts: 1) exploratory data analysis and 2) calculation of site-specific BTVs. The analyses relied on available background soil data collected as part of the BGS EI. Quality assurance and quality control (QA/QC) samples (e.g. field duplicates) were excluded from the statistical analysis.

¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV parameter. In this table, and in the results presented herein, fluoride has been grouped with the Appendix III parameters only to avoid duplication.

March 31, 2024

2.1 EXPLORATORY DATA ANALYSIS

Exploratory data analysis is the initial step of statistical analysis. It utilizes simple summary statistics (e.g. mean, median, standard deviation, and percentiles) and graphical representations to identify important characteristics of an analytical dataset, such as the center of the data (mean, median), variation, distribution, spatial patterns, presence of outliers, and randomness.


For the EI, surficial soil samples were typically collected at depths ranging from 0.0 to approximately 0.5 feet below ground surface (ft bgs). In addition to the CCR Parameters (Table E.1-1), these samples were analyzed for the presence of CCR Material (percent [%] Ash). Along with surficial samples, the field sampling personnel collected approximately two feet of soil from each 5-foot soil run (one foot in both directions from the midpoint of the 5-foot interval) for the total depth of the boring. For the statistical analysis, soil depths were aggregated into the following depth intervals: surficial (0 to approximately 0.5 ft bgs), approximately 0.5 to less than or equal to 10 ft bgs, and greater than 10 ft bgs.

2.1.1 Summary Statistics

Summary statistics were calculated for each CCR Parameter grouped by depth interval and the entire set of BGS samples (including all depth intervals and boring locations). Summary statistics include information such as the total numbers of available samples, the frequencies of detection, ranges of reporting limits, minimum and maximum detected concentrations, mean concentrations, standard deviations, median concentrations, and the 95th percentile concentrations. A summary statistics table is presented in Attachment E.1-A.

2.1.2 Exploratory Data Plots

Exploratory data plots (box plots) were constructed to support a visual review of the data. Box plots identify the center of the data, distribution, variability, and to visually identify potential outliers. The diagram below graphically depicts the basics of the construction of the box plots (StataCorp LLC 2017).

March 31, 2024

The box portion of the plot is the interquartile range (IQR), which represents the middle 50% of data, with the bottom of the box being the 25th percentile and the top of the box being the 75th percentile. The line inside the box is the median concentration. The top of the upper "whisker" represents the first observed concentration above the 75th percentile, whereas the bottom of the lower "whisker" represents the first observed concentration below the 25th percentile (upper adjacent value and lower adjacent value, respectively). Values that lie outside of the adjacent values represent outside concentrations (i.e. concentrations at the upper and lower ends of the distribution of the data). The method detection limit was used as the reported value in order to construct the box plot when analytical results were reported as non-detects.

Two sets of side-by-side box plots were constructed for the BGS CCR Parameter data: 1) results by depth interval and 2) results by BGS boring location. These box plots were useful in identifying differences in CCR Parameter concentrations between depth intervals and between boring locations and were especially useful for visually identifying potential outliers. Box plots for CCR Parameters aggregated by depth interval and by boring location are provided in Attachment E.1-B.

2.1.3 Outlier Screening

Outliers are data points that are abnormally high or low as compared to the rest of the measurements and may represent anomalous data or data errors but may also represent natural variation of CCR Parameter concentrations in environmental systems. Screening for outliers is a critical step because outliers can bias statistical estimates, statistical testing results, and inferences. The size of the datasets for each depth interval (a minimum of 10 samples) were sufficiently large to capture natural variation commonly seen in environmental datasets.

Outlier values were initially screened visually using the side-by-side box plots. If suspected visual outliers were identified, then Tukey's procedure was used to identify extreme outliers (Tukey 1977). This method relies on the IQR, which is defined as the 75th percentile value minus the 25th percentile value.

Values were identified as potential outliers as follows:

- Lower extreme outliers are less than the 25th percentile minus 3 x IQR
- **Upper extreme outliers** are greater than the 75th percentile plus 3 x IQR.

Multiple potential outliers were identified using Tukey's procedure as indicated in the Summary Statistics Tables in Attachment E.1-A; these values were flagged as potential outliers in the dataset. However, given the heterogeneity of naturally occurring inorganic compounds in soils, statistical outliers were not removed from the datasets prior to statistical analysis, but may be reevaluated if BTVs are used to inform future corrective actions.

2.2 ESTIMATES OF BACKGROUND CONDITIONS

BTVs were calculated as conservative estimates of CCR Parameter concentrations in BGS. Specifically, 95% upper tolerance limits (UTLs) with 95% coverage were calculated for each parameter at each soil depth interval defined for the statistical datasets and with all depths combined to establish conservative

March 31, 2024

estimates of background soil concentrations. The UTL represents the upper bound of a pre-specified proportion of the underlying data population with a specified level of confidence. For example, for a "95% UTL with 95% coverage", there is 95% confidence that, on average, 95% of the data are below the UTL. The upper one-sided UTL is commonly used in environmental monitoring and is constructed using background data (Ofungwu 2014). In the case of pH, 95% tolerance intervals with 95% coverage were calculated to bound the range of pH values. BTVs aggregated by soil depth interval and with all depths combined are presented in Attachment E.1-A.

2.2.1 Tests for Normality of Background Data

Prior to the calculation of UTLs, the data were evaluated for normality. Parametric methods to establish background conditions (UTLs) can be applied to data that are normally distributed or to data that fit another defined statistical distribution (e.g., gamma distribution), or to data that can be transformed to normal using mathematical transformations (e.g., lognormal transformation). Testing data for normality was done using formal statistical methods, known as goodness-of-fit-testing (e.g., Shapiro-Wilk or Lilliefors tests). If the data did not fit a defined statistical distribution or could not be transformed to normal, then non-parametric methods were used.

2.2.2 Parametric UTLs

Parametric UTLs were used when the background data were normally distributed, gamma distributed or transformed using the lognormal transformation. A background sample size or dataset consisting of at least eight observations was required to generate an adequate tolerance limit.

The calculation of the UTL is straightforward:

$$UTL = \overline{x} + \tau s$$

Where:

 \overline{x} = mean CCR parameter concentration in the background dataset

s = standard deviation of CCR parameter in the background dataset

 τ = multiplier based on size of dataset, confidence (95%) and desired coverage (95%).

2.2.3 Non-parametric UTLs

When the background data do not fit the normal or gamma distribution or cannot be normalized via the lognormal transformation, non-parametric UTLs were used. The non-parametric UTL is an order statistic, typically the maximum or the second largest observed concentration in the background dataset. Unlike parametric methods, the desired coverage and confidence interval cannot be pre-specified for non-parametric tolerance limits. In the case of non-parametric methods, the level of confidence increases with increasing sample size. If non-parametric methods were used, the approximate level of confidence was reported.

March 31, 2024

UTLs, especially non-parametric UTLs, are sensitive to outliers and are biased high in the presence of outliers. For this initial analysis, no suspect outliers were removed from the data set. If the UTLs presented in this report are going to be used to inform corrective actions, then additional analysis to account for the presence of outliers is warranted.

3.0 RESULTS AND DISCUSSION

3.1 SUMMARY STATISTICS, EXPLORATORY DATA PLOTS, AND OUTLIER SCREENING

Summary statistics for each CCR Parameter are provided in Attachment E.1-A, with results aggregated by depth interval and with all depths combined. Summary statistics are sorted by CCR Parameter type (i.e., CCR Rule Appendix III Parameters, CCR Rule Appendix IV Parameters, TDEC Appendix I Parameters, and Other). Box plots for each CCR Parameter aggregated by depth and boring location are provided in Attachment E.1-B.

The number of values identified as potential outliers using Tukey's procedure for each depth interval and with all depths combined is identified in Attachment E.1-A. For these potential outliers, no definitive reasons were identified for the outlier values and the values identified were assumed to be representative of natural conditions and natural variation within native soil. These values were flagged as statistical outliers in the dataset and retained for subsequent calculations and analysis if needed for future evaluations (see columns labelled "Number of Statistical Outliers" and "Number of Outliers Removed" in Attachment E.1-A).

3.2 ESTIMATES OF BACKGROUND CONDITIONS

BTVs for the BGS investigation at the WBF Plant were calculated using UTLs (and Tolerance Intervals in the case of pH). The resulting BTV concentrations and the statistical distribution and methods used to calculate the UTLs are identified for each CCR Parameter aggregated by depth interval and with all depths combined in Attachment E.1-A.

4.0 REFERENCES

- Ofungwu, J. (2014). Statistical Applications for Environmental Analysis and Risk Assessment. Hoboken, New Jersey: John Wiley and Sons, Inc.
- StataCorp. (2017). Stata Graphics Reference Manual Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC.

Tukey, J.W. (1977). Exploratory data analysis. Reading, Massachusetts: Addison-Wesley, 1977.

ATTACHMENT E.1-A SUMMARY STATISTICS TABLES

						Sı	ummary Sta	tistics - Back	ground Soil Ir	nvestigation				
							Watts Bar F	Fossil Plant -	Spring City, 1	Tennessee				
Parameter	Soil Depth	Frequency	Range of	% Non		ics using Data Only					Statisti	cs using Detect	s & Non-Detects	ş.
	(ft bgs)	of Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile	Number of Statistical Outliers	Number of Outliers Removed	Background Threshold Value	Statistical Distribution & Method
								Percer	nt Ash	1				
Ash	Surficial	7/10	(1.0 - 1.0)	30.0%	1.0	3.0	1.4	0.66	1.0	2.6	0	0	NA	NA
		,	, , ,		1		CCR	Rule Append	ix IV Paramet	ters				
	Surficial	10/10		0.0%	1.93	3.81	2.97	0.545	2.98	3.69			4.56	95% UTL (Normal) 95% Coverage
	0.5' to 10'	17/20	(1.46 - 1.78)	15.0%	1.75	55.9	5.51	11.7	2.59	11.7		_	55.9	95% UTL (NP-64.2%) 95% Coverage
Boron	>10'	19/27	(1.71 - 1.88)	29.6%	1.62	3.17	2.14	0.493	1.97	2.88	2	0	3.25	95% UTL (Normal) 95% Coverage
	All Depth	46/57	(1.46 - 1.88)	19.3%	1.62	55.9	3.46	7.10	2.41	3.90			9.32	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	997	33,900	5,680	10,200	1,730	22,900			68,600	95% (Lognormal) 95% Coverage
Calaires	0.5' to 10'	20/20		0.0%	31.8	14,700	2,650	4,540	1,030	14,200	5	0	34,700	95% (Lognormal) 95% Coverage
Calcium	>10'	27/27		0.0%	22.0	3,320	1,080	816	834	2,710	5	U	3,990	95% WH Approximate Gamma UTL 95% Coverage
	All Depth	57/57		0.0%	22.0	33,900	2,440	5,180	1,030	10,700			14,700	95% UTL (NP-78.5%) 95% Coverage
	Surficial	3/10	(4.43 - 4.86)	70.0%	5.02	5.81	4.72	0.478	4.68	5.61			5.81	95% UTL (NP-40.1%) 95% Coverage
Chloride	0.5' to 10'	7/20	(4.17 - 4.87)	65.0%	4.76	10.3	4.88	1.42	4.69	6.91	5	0	10.3	95% UTL (NP-64.2%) 95% Coverage
Chloride	>10'	10/27	(4.78 - 5.32)	63.0%	4.51	19.8	6.00	3.49	5.02	13.5	3	U	19.8	95% UTL (NP-75%) 95% Coverage
	All Depth	20/57	(4.17 - 5.32)	64.9%	4.51	19.8	5.25	2.67	4.87	10.3			14.8	95% UTL (NP-78.5%) 95% Coverage
	Surficial	7/10	(0.777 - 0.799)	30.0%	0.905	4.01	1.72	0.962	1.74	3.23			4.52	95% UTL (Normal) 95% Coverage
Fluoride	0.5' to 10'	7/20	(0.759 - 0.853)	65.0%	0.912	14.6	2.11	3.32	0.832	8.63	7	0	9.17	95% WH Approximate Gamma UTL 95% Coverage
riuoriue	>10'	18/27	(0.768 - 0.914)	33.3%	1.04	15.4	3.20	4.11	1.17	12.0			15.4	95% UTL (NP-75%) 95% Coverage
	All Depth	32/57	(0.759 - 0.914)	43.9%	0.905	15.4	2.56	3.52	1.05	10.8			14.6	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	6.0	7.8	6.5	0.640	6.3	7.7			(6.0-7.8)	95% Tolerance Interval (NP-40.1%) 95% Coverage
pH (lab)	0.5' to 10'	20/20		0.0%	4.9	8.4	6.2	0.930	5.9	8.2	0	0	(3.7-8.7)	95% Tolerance Interval (Gamma) 95% Coverage
pri (lab)	>10'	27/27		0.0%	4.9	8.3	6.4	0.940	6.2	8.0	Ü	· ·	(4.1-8.6)	95% Tolerance Interval (Normal) 95% Coverage
	All Depth	57/57		0.0%	4.9	8.4	6.3	0.880	6.2	8.1			(4.9-8.3)	95% Tolerance Interval (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	5.22	7.55	6.23	0.703	6.21	7.33			(3.94-8.52)	95% Tolerance Interval (Normal) 95% Coverage
pH (field)	0.5' to 10'	20/20		0.0%	4.19	8.41	5.78	1.08	5.60	7.45	0	0	(3.00-8.56)	95% Tolerance Interval (Normal) 95% Coverage
pri (iicia)	>10'	27/27		0.0%	4.34	7.68	6.05	0.959	5.91	7.57	J	Ü	(3.75-8.36)	95% Tolerance Interval (Normal) 95% Coverage
	All Depth	57/57		0.0%	4.19	8.41	5.99	0.964	5.90	7.57			(3.95-8.03)	95% Tolerance Interval (Normal) 95% Coverage
	Surficial	7/10	(7.98 - 8.51)	30.0%	10.1	16.8	11.2	2.92	10.8	16.0			19.7	95% UTL (Normal) 95% Coverage
Sulfate	0.5' to 10'	18/20	(7.58 - 7.82)	10.0%	9.19	269	51.1	61.6	25.1	137	1	0	228	95% WH Approximate Gamma UTL 95% Coverage
	>10'	22/27	(8.44 - 8.82)	18.5%	9.97	138	37.4	34.4	21.6	96.9	_	_	184	95% UTL (NP-62.3%) 95% Coverage
	All Depth	47/57	(7.58 - 8.82)	17.5%	9.19	269	37.5	45.7	20.9	128			138	95% KM UTL (Lognormal) 95% Coverage
									ix IV Paramet					-
	Surficial	10/10		0.0%	0.108	0.198	0.153	0.0321	0.157	0.193			0.246	95% UTL (Normal) 95% Coverage
Antimony	0.5' to 10'	15/20	(0.0694 - 0.0779)	25.0%	0.0712	8.89	0.541	1.92	0.0947	0.602	1	0	8.89	95% UTL (NP-64.2%) 95% Coverage
,	>10'	19/27	(0.07 - 0.0826)	29.6%	0.0875	0.229	0.105	0.0366	0.0969	0.171			0.194	95% WH Approximate Gamma UTL 95% Coverage
	All Depth	44/57	(0.0694 - 0.0826)	22.8%	0.0712	8.89	0.267	1.15	0.108	0.189			0.229	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	2.53	5.63	4.00	1.02	3.88	5.53			6.96	95% UTL (Normal) 95% Coverage
Arsenic	0.5' to 10'	20/20		0.0%	2.06	12.7	4.16	2.21	3.86	6.19	2	0	9.52	95% (Lognormal) 95% Coverage
	>10'	27/27 57/57		0.0%	1.27 1.27	9.18 12.7	4.00 4.05	1.60 1.74	3.60 3.79	6.58 6.22			7.61 7.91	95% UTL (Normal) 95% Coverage
	All Depth													95% (Lognormal) 95% Coverage
	Surficial	10/10		0.0%	50.4 34.9	194	119	49.4	126	181			263	95% UTL (Normal) 95% Coverage
Barium	0.5' to 10' >10'	20/20 27/27		0.0%	34.9	755 381	174 137	164 73.4	120 116	375 266	2	0	640 328	95% WH Approximate Gamma UTL 95% Coverage 95% WH Approximate Gamma UTL 95% Coverage
	All Depth	57/57		0.0%	39.2	755	147	112	116	309	1		411	95% WH Approximate Gamma OTL 95% Coverage 95% (Lognormal) 95% Coverage
	Surficial	10/10		0.0%	0.345	1.48	1.06	0.392	1.27	1.42	-		2.20	95% UTL (Normal) 95% Coverage
	0.5' to 10'	20/20		0.0%	0.343	4.50	1.06	0.392	1.27	2.03	1		4.50	95% UTL (NOrmal) 95% Coverage
Beryllium	>10'	27/27		0.0%	0.562	2.27	1.25	0.433	1.18	2.03	1	0	2.23	95% UTL (Normal) 95% Coverage
	All Depth	57/57		0.0%	0.302	4.50	1.22	0.433	1.10	2.11	1		2.27	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	0.0353	0.362	0.167	0.114	0.132	0.327			0.499	95% UTL (Normal) 95% Coverage
	0.5' to 10'	15/20	(0.0184 - 0.0224)	25.0%	0.0305	3.29	0.107	0.704	0.0500	0.327	1		1.16	95% KM UTL (Lognormal) 95% Coverage
Cadmium	>10'	24/27	(0.0192 - 0.0236)	11.1%	0.0214	0.346	0.112	0.0808	0.0933	0.234	1	0	0.295	95% UTL (Normal) 95% Coverage
	All Depth	49/57	(0.0184 - 0.0236)	14.0%	0.0214	3.29	0.165	0.427	0.0811	0.296	1		0.633	95% KM UTL (Lognormal) 95% Coverage
		.,.	,											1 10 - 1,1-1 - 10-

	Summary Statistics - Background Soil Investigation Watts Bar Fossil Plant - Spring City, Tennessee													
Statistics using Soil Depth Frequency Range of % Non Detected Data Only						3								
Parameter	(ft bgs)	of Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile	Number of Statistical Outliers	Number of Outliers Removed	Background Threshold Value	Statistical Distribution & Method
	Surficial	10/10		0.0%	10.2	18.9	16.1	2.63	16.9	18.7			23.8	95% UTL (Normal) 95% Coverage
Chromium	0.5' to 10'	20/20		0.0%	9.96	43.1	21.3	8.46	20.0	41.1	3	0	44.8	95% WH Approximate Gamma UTL 95% Coverage
Cilionilani	>10'	27/27		0.0%	14.1	43.7	21.0	5.88	19.6	30.6	3	U	43.7	95% UTL (NP-75%) 95% Coverage
	All Depth	57/57		0.0%	9.96	43.7	20.3	6.72	18.9	33.3			43.1	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	3.76	13.2	9.20	2.78	9.84	12.4			17.3	95% UTL (Normal) 95% Coverage
C-1-14	0.5' to 10'	20/20		0.0%	1.38	39.1	12.5	8.56	11.8	28.8	2	0	40.1	95% WH Approximate Gamma UTL 95% Coverage
Cobalt	>10'	27/27		0.0%	3.72	19.8	11.1	3.64	10.8	16.2	2	U	19.3	95% UTL (Normal) 95% Coverage
	All Depth	57/57		0.0%	1.38	39.1	11.3	5.80	10.8	19.8			28.2	95% UTL (NP-78.5%) 95% Coverage
	Surficial	7/10	(0.777 - 0.799)	30.0%	0.905	4.01	1.72	0.962	1.74	3.23			4.52	95% UTL (Normal) 95% Coverage
EL	0.5' to 10'	7/20	(0.759 - 0.853)	65.0%	0.912	14.6	2.11	3.32	0.832	8.63	1 _		9.17	95% WH Approximate Gamma UTL 95% Coverage
Fluoride	>10'	18/27	(0.768 - 0.914)	33.3%	1.04	15.4	3.20	4.11	1.17	12.0	7	0	15.4	95% UTL (NP-75%) 95% Coverage
	All Depth	32/57	(0.759 - 0.914)	43.9%	0.905	15.4	2.56	3.52	1.050	10.8	1		14.6	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	9.35	22.3	15.7	3.79	15.5	21.2		0	26.7	95% UTL (Normal) 95% Coverage
	0.5' to 10'	20/20		0.0%	3.79	28.1	13.4	5.39	13.5	20.2	1 _		26.3	95% UTL (Normal) 95% Coverage
Lead	>10'	27/27		0.0%	3.43	19.0	12.4	3.77	12.8	16.9	0		20.9	95% UTL (Normal) 95% Coverage
	All Depth	57/57		0.0%	3.43	28.1	13.3	4.49	13.6	19.8	1		22.5	95% UTL (Normal) 95% Coverage
	Surficial	10/10		0.0%	4.99	20.2	12.5	4.30	13.1	18.3			25.1	95% UTL (Normal) 95% Coverage
	0.5' to 10'	20/20		0.0%	6.03	27.9	17.2	6.39	17.2	25.9	1 _	_	32.5	95% UTL (Normal) 95% Coverage
Lithium	>10'	27/27		0.0%	2.89	27.7	16.6	5.99	16.8	26.2	0	0	30.1	95% UTL (Normal) 95% Coverage
	All Depth	57/57		0.0%	2.89	27.9	16.1	6.03	15.9	26.0	1		28.3	95% UTL (Normal) 95% Coverage
	Surficial	10/10		0.0%	0.0215	0.0766	0.0381	0.0157	0.0332	0.0649			0.0837	95% UTL (Normal) 95% Coverage
	0.5' to 10'	16/20	(0.0146 - 0.0163)	20.0%	0.0214	0.0799	0.0336	0.0167	0.0307	0.0681	1 .	_	0.0827	95% WH Approximate Gamma UTL 95% Coverage
Mercury	>10'	23/27	(0.0142 - 0.0197)	14.8%	0.0207	0.302	0.0404	0.0526	0.0320	0.0548	1	0	0.302	95% UTL (NP-75%) 95% Coverage
	All Depth	49/57	(0.0142 - 0.0197)	14.0%	0.0207	0.302	0.0376	0.0382	0.0320	0.0693	1		0.0799	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10		0.0%	0.494	1.09	0.704	0.160	0.687	0.955			1.17	95% UTL (Normal) 95% Coverage
	0.5' to 10'	18/20	(0.182 - 0.187)	10.0%	0.287	4.41	0.780	0.871	0.544	1.16			3.03	95% KM UTL (Lognormal) 95% Coverage
Molybdenum	>10'	26/27	(0.184 - 0.184)	3.7%	0.351	1.25	0.660	0.206	0.634	0.949	1	0	1.13	95% UTL (Normal) 95% Coverage
	All Depth	54/57	(0.182 - 0.187)	5.3%	0.287	4.41	0.710	0.542	0.659	1.01			1.67	95% KM UTL (Lognormal) 95% Coverage
	Surficial	10/10		0.0%	2.05	4.27	2.78	0.645	2.70	3.78			4.66	95% UTL (Normal) 95% Coverage
	0.5' to 10'	20/20		0.0%	1.68	4.29	3.07	0.602	3.08	4.20	1 .		4.51	95% UTL (Normal) 95% Coverage
Radium-226+228	>10'	27/27		0.0%	1.41	4.62	2.98	0.692	2.93	3.94	0	0	4.54	95% UTL (Normal) 95% Coverage
	All Depth	57/57		0.0%	1.41	4.62	2.98	0.649	2.96	4.21	1		4.29	95% UTL (Normal) 95% Coverage
	Surficial	10/10		0.0%	0.405	1.30	0.812	0.319	0.678	1.29	 		1.74	95% UTL (Normal) 95% Coverage
	0.5' to 10'	20/20		0.0%	0.195	6.58	0.971	1.35	0.641	1.77	1		3.57	95% (Lognormal) 95% Coverage
Selenium	>10'	26/27	(0.138 - 0.138)	3.7%	0.219	0.972	0.587	0.232	0.563	0.936	1	0	1.11	95% UTL (Normal) 95% Coverage
	All Depth	56/57	(0.138 - 0.138)	1.8%	0.195	6.58	0.761	0.825	0.641	1.28	1		1.93	95% KM UTL (Lognormal) 95% Coverage
	All Deptil	30/3/	(5.130 0.130)	1.070	0.155	0.50	0.701	0.023	0.071	1.20			1.55	3375 Mil. 3.2 (Edgilorinal) 3376 Coverage

0.295

0.614

0.272

0.396

0.527

6.91

0.439

6.91

0.112

1.49

0.0769

0.876

0.267

0.250

0.298

0.275

0.490

0.852

0.370

0.513

1

0

0.622

6.91

0.446

0.533

95% UTL (Normal) 95% Coverage

95% UTL (Normal) 95% Coverage

95% UTL (NP-78.5%) 95% Coverage

95% UTL (NP-64.2%) 95% Coverage

Surficial

0.5' to 10'

>10'

All Depth

Thallium

10/10

20/20

24/27

54/57

0.0%

0.0%

11.1%

5.3%

(0.321 - 0.355)

(0.321 - 0.355)

0.139

0.120

0.0892

0.0892

	Summary Statistics - Background Soil Investigation Watts Bar Fossil Plant - Spring City, Tennessee													
Davamatav	Soil Depth	Frequency	Range of	% Non		cs using Data Only					Statisti	cs using Detec	ts & Non-Detects	
Parameter	(ft bgs)	of Detection	Reporting Limits	Detect	Minimum Maximum M		Mean	Standard Deviation	50 th Percentile	95 th Percentile	Number of Statistical Outliers	Number of Outliers Removed	Background Threshold Value	Statistical Distribution & Method
							TE	EC Appendix	(I Parameter	s				
	Surficial	10/10	-	0.0%	4.17	23.2	12.0	5.16	11.4	20.1			27.0	95% UTL (Normal) 95% Coverage
Copper	0.5' to 10'	20/20	-	0.0%	2.45	27.6	14.3	6.23	14.9	23.6	0	0	29.2	95% UTL (Normal) 95% Coverage
Сорреі	>10'	27/27		0.0%	4.66	27.0	14.9	4.36	14.5	21.4	Ŭ	U	24.7	95% UTL (Normal) 95% Coverage
	All Depth	57/57	-	0.0%	2.45	27.6	14.2	5.23	14.3	23.2			24.8	95% UTL (Normal) 95% Coverage
	Surficial	10/10		0.0%	4.41	17.3	12.3	3.89	13.4	16.3			23.7	95% UTL (Normal) 95% Coverage
Nickel	0.5' to 10'	20/20		0.0%	2.95	49.4	17.5	11.5	15.4	42.8	3	0	54.5	95% WH Approximate Gamma UTL 95% Coverage
HICKEI	>10'	27/27		0.0%	5.44	49.8	17.7	8.12	17.5	26.4]	Ü	38.1	95% WH Approximate Gamma UTL 95% Coverage
	All Depth	57/57	-	0.0%	2.95	49.8	16.7	9.05	15.1	30.5			49.4	95% UTL (NP-78.5%) 95% Coverage
	Surficial	5/10	(0.0316 - 0.0354)	50.0%	0.0345	0.0552	0.0368	0.00725	0.0350	0.0495			0.0579	95% UTL (Normal) 95% Coverage
Silver	0.5' to 10'	5/20	(0.0292 - 0.0356)	75.0%	0.0307	8.68	0.466	1.88	0.0323	0.503	5	0	8.68	95% UTL (NP-64.2%) 95% Coverage
Silvei	>10'	6/27	(0.0305 - 0.0375)	77.8%	0.0373	0.0996	0.0351	0.0134	0.0352	0.0461		U	0.0996	95% UTL (NP-75%) 95% Coverage
	All Depth	16/57	(0.0292 - 0.0375)	71.9%	0.0307	8.68	0.186	1.14	0.0342	0.0586			0.0996	95% UTL (NP-78.5%) 95% Coverage
	Surficial	10/10	-	0.0%	14.7	27.4	22.4	3.70	23.6	26.6			33.2	95% UTL (Normal) 95% Coverage
Vanadium	0.5' to 10'	20/20		0.0%	16.4	42.2	26.2	6.77	25.7	35.8	0	0	42.4	95% UTL (Normal) 95% Coverage
Variaciani	>10'	27/27	-	0.0%	16.6	43.7	26.9	6.52	25.5	37.8	ľ	Ü	41.6	95% UTL (Normal) 95% Coverage
	All Depth	57/57		0.0%	14.7	43.7	25.9	6.34	24.6	37.5			39.9	95% WH Approximate Gamma UTL 95% Coverage
	Surficial	10/10	-	0.0%	22.5	74.8	50.8	17.2	56.2	73.3	l		101	95% UTL (Normal) 95% Coverage
Zinc	0.5' to 10'	20/20		0.0%	7.80	73.2	50.0	18.6	55.4	72.4	1	. 0	94.6	95% UTL (Normal) 95% Coverage
ZIIIC	>10'	27/27		0.0%	18.0	127	54.9	20.1	53.2	73.3	1 1		100	95% UTL (Normal) 95% Coverage
	All Depth	57/57	-	0.0%	7.80	127	52.5	18.9	55.0	73.3			90.8	95% UTL (Normal) 95% Coverage

Notes:

CCR Rule - Title 40, Code of Federal Regulations, Part 257

ft bgs - feet below ground surface

KM - Kaplan-Meier, For Parameters with non-detects reported at the method detection limit, the mean, standard deviation, and background threshold values were calculated using Kaplan-Meier methods

'--' / NA - Not Applicable

NP-% - Non-parametric method and associated confidence level of the estimate

TDEC - Tennessee Department of Environment and Conservation

UTL - Upper Tolerance Limit

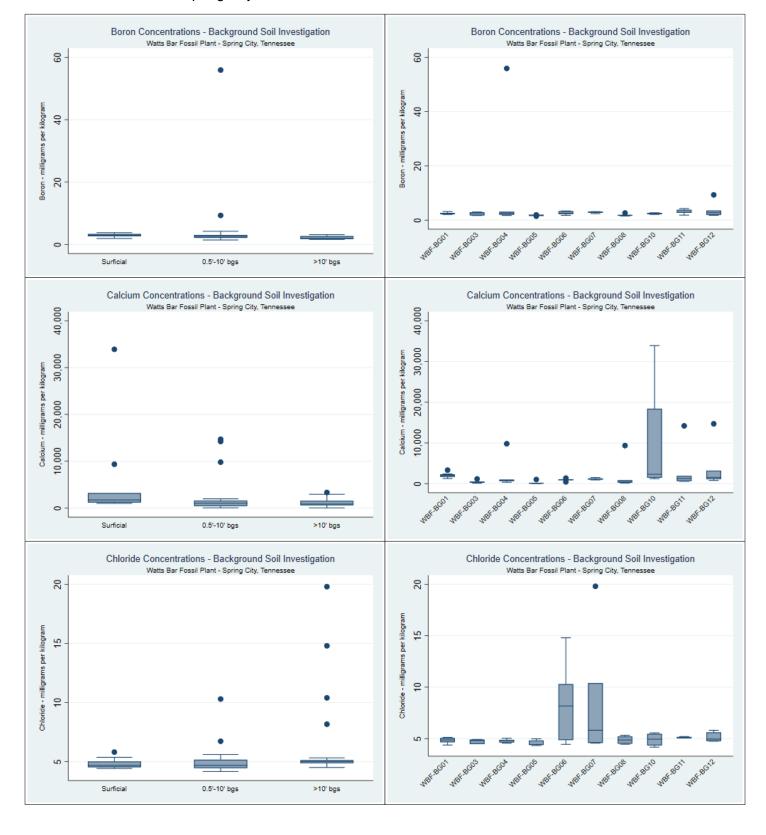
WH - Background Threshold Limits based on the gamma distribution utilize Wilson Hiferty (WH) estimates

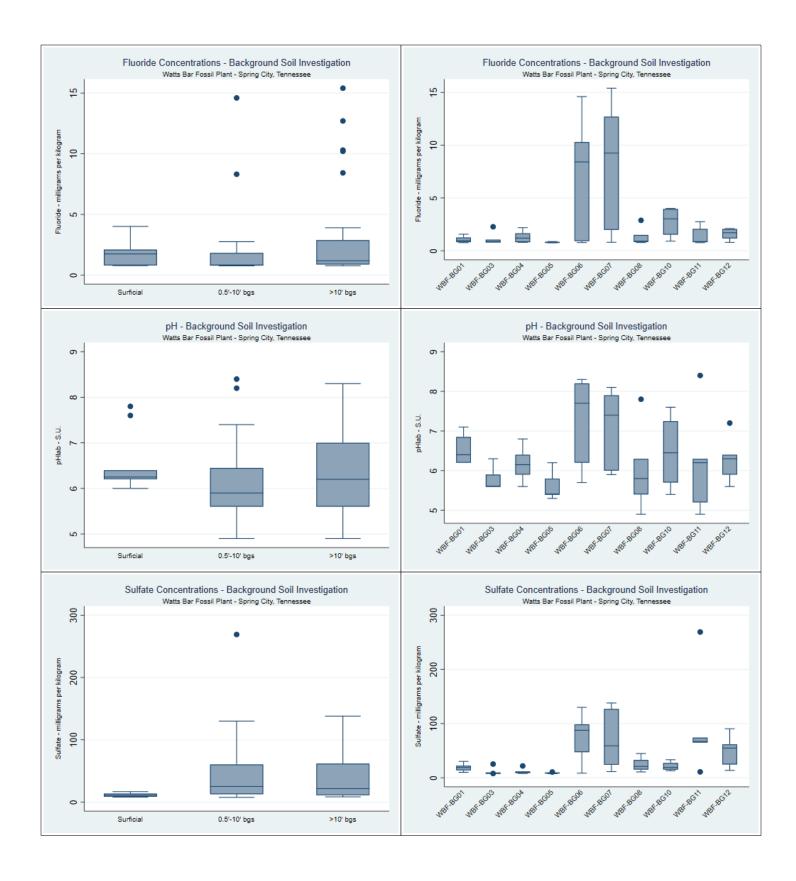
% - Percent

Except for Ash, pH & Radium 226 + 228, all units milligrams per kilogram (mg/kg)

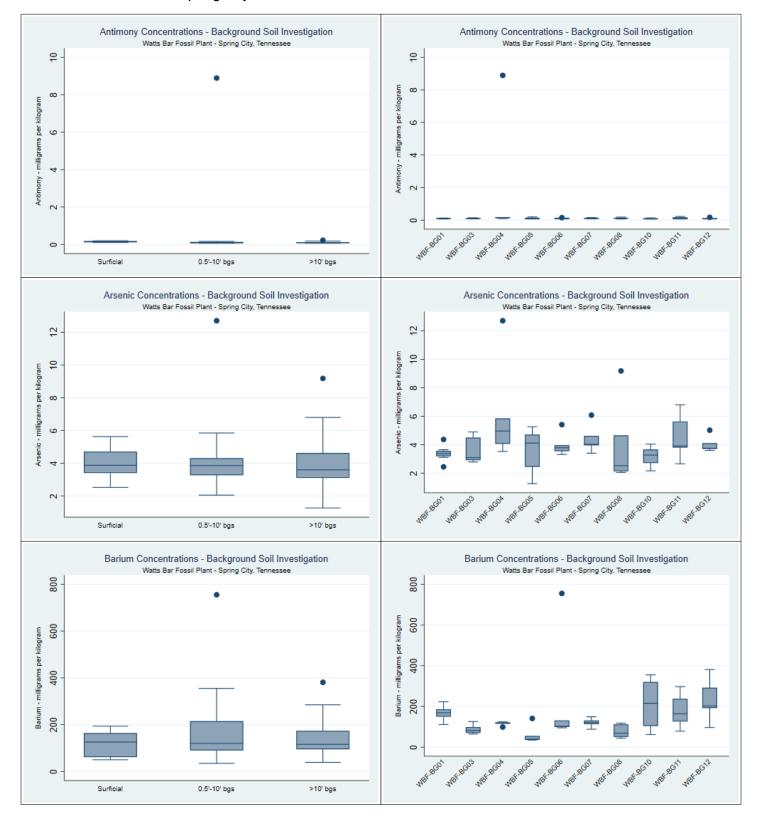
Units for Ash are percent (%)

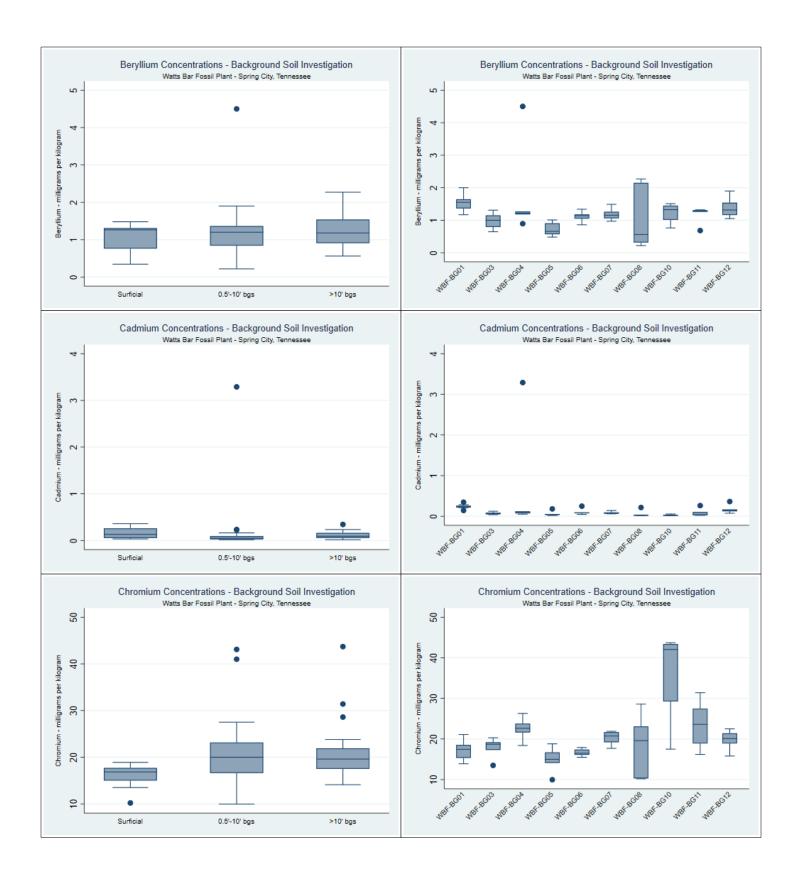
Units for pH are Standard Units (S.U.)

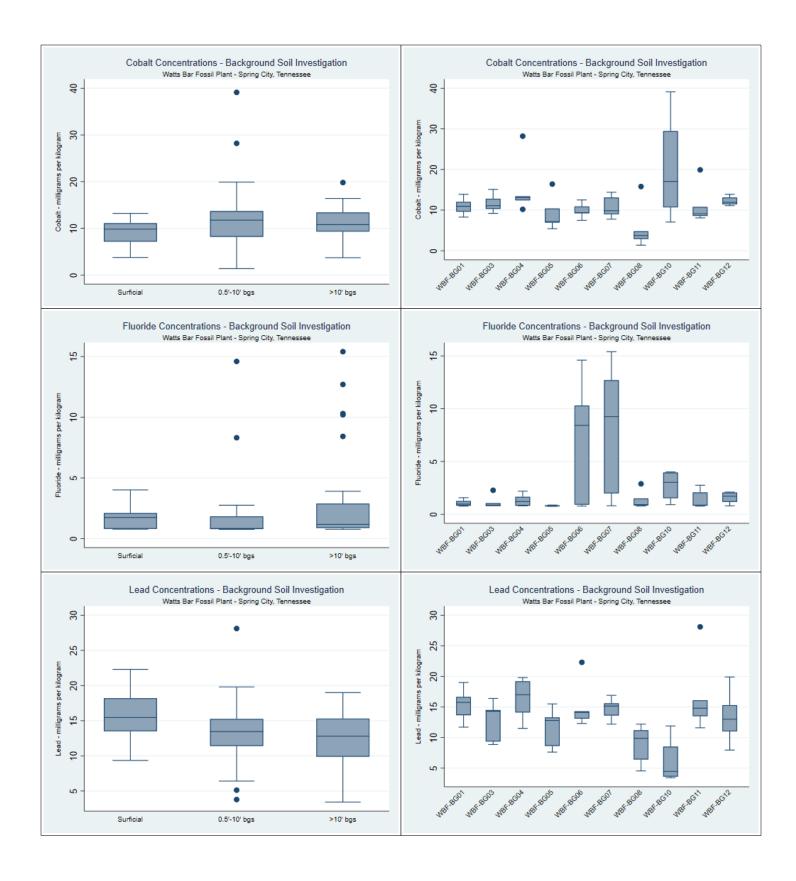

Units for Radium 226+228 are picocuries per gram (pCi/g)

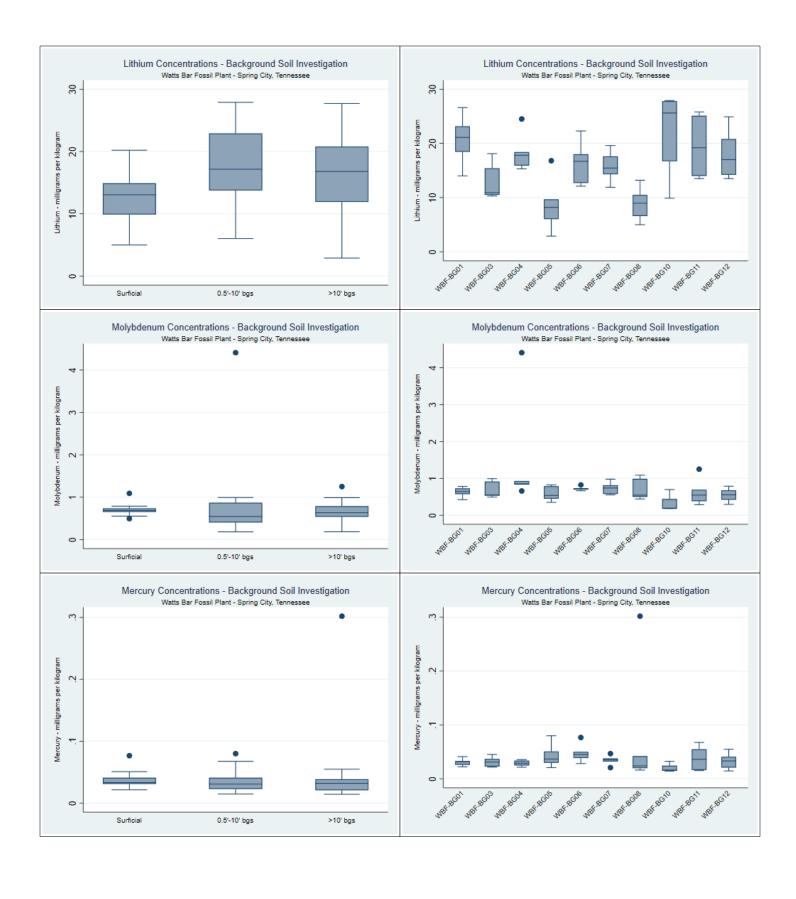

All non-detects reported at the laboratory reporting limit

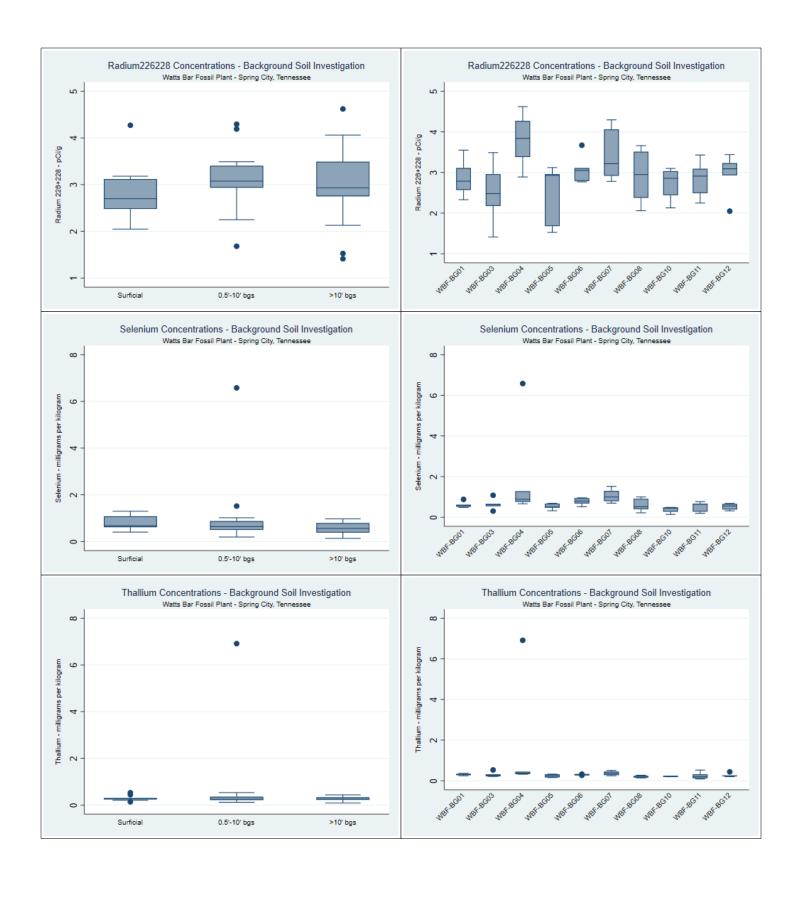
Surficial soil samples were collected in 0 to 0.5 feet below ground surface (bgs) soil depth interval $\frac{1}{2}$

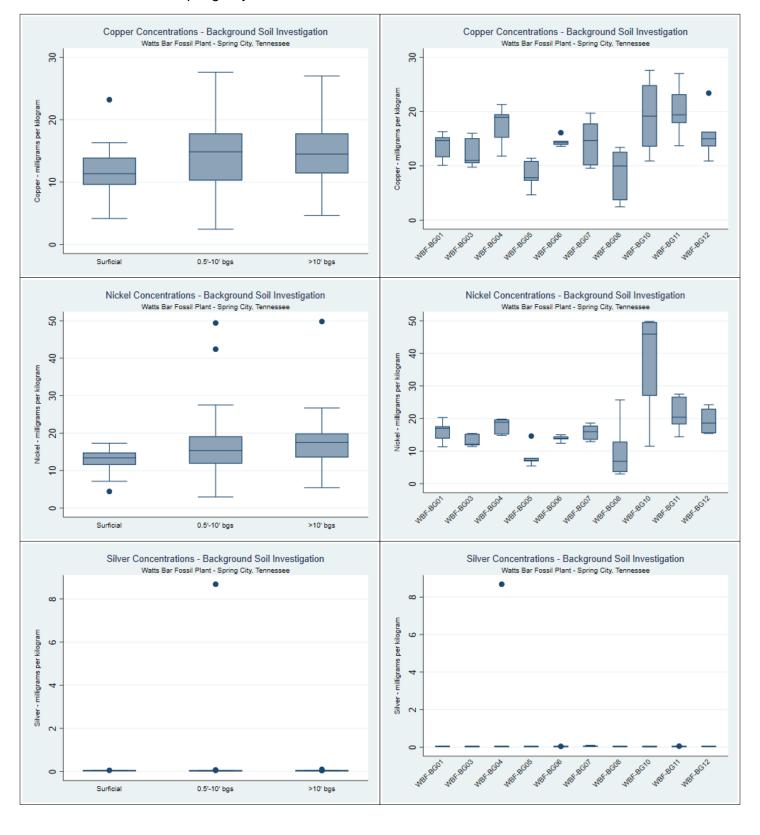

ATTACHMENT E.1-B BOX PLOTS

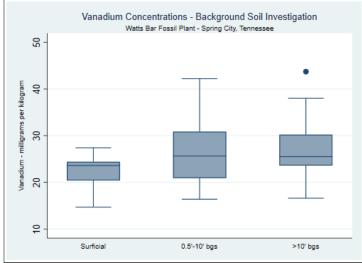

Box Plots CCR Rule Appendix III Parameters Background Soil Investigation Watts Bar Fossil Plant - Spring City, Tennessee

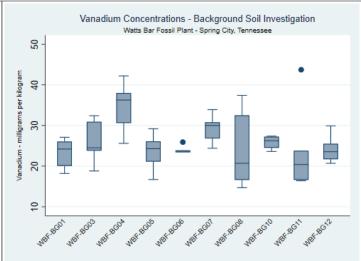


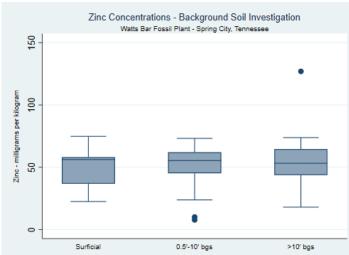


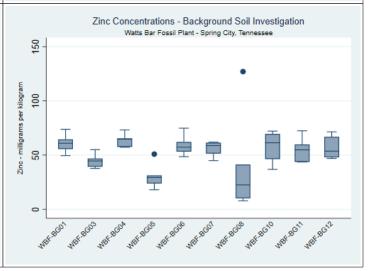

Box Plots - CCR Rule Appendix IV Parameters CCR Rule Appendix IV Parameters Background Soil Investigation Watts Bar Fossil Plant - Spring City, Tennessee










Box Plots - TDEC Appendix I Parameters TDEC Appendix I Parameters Background Soil Investigation Watts Bar Fossil Plant - Spring City, Tennessee

APPENDIX E.2

STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

Appendix E.2 - Statistical Analysis of CCR Material Characteristics Data

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

APPENDIX E.2 - STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

Revision Log

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix E.2 - Statistical Analysis of CCR Material Characteristics Data was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Chris La Londe, Senior Risk Assessor

Reviewed by

Matt Pontier, Staff Engineer

Approved by

Rebekah Brooks, PG, Senior Principal Hydrogeologist

APPENDIX E.2 - STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

Table of Contents

ABBF	REVIATIONS		II			
1.0	INTRODUCTION		1			
2.0 2.1	EXPLORATORY DATA 2.1.1 Summary 2.1.2 Explorator	TA ANALYSISStatisticsry Data Plotsreening	3 .3 .3			
2.2	REGRESSION ANAL	YSIS	5			
3.0 3.1 3.2	SUMMARY STATIST SCREENING	CUSSIONCICS, EXPLORATORY DATA PLOTS, AND OUTLIER	5			
4.0	OF TABLES		Ū			
Table	E.2-1 – CCR Material	Characteristics Sample Locations - WBF Planters Evaluated in Statistical Analysis	1			
LIST	OF ATTACHMENTS					
ATTA	CHMENT E.2-A	SUMMARY STATISTICS				
ATTA	CHMENT E.2-B	BOX PLOTS				
ATTA	TTACHMENT E.2-C SCATTER PLOTS AND REGRESSION					

i

APPENDIX E.2 - STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

Abbreviations

CASRN Chemical Abstracts Service Registry Number

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR

257 and five inorganic constituents included in Appendix I

of Tennessee Rule 0400-11-01-.04

CCR Rule Title 40, Code of Federal Regulations, Part 257

EAR Environmental Assessment Report

IQR Interquartile Range
NA Not Available

% Percent

SPLP Synthetic Precipitate Leaching Procedure

Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TVA Tennessee Valley Authority WBF Plant Watts Bar Fossil Plant

March 31, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) prepared this appendix on behalf of the Tennessee Valley Authority (TVA) to document the statistical analyses performed on data collected to characterize coal combustion residual (CCR) materials to support evaluations conducted for the Environmental Assessment Report (EAR) at the Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee. The CCR material characterization samples were collected in July 2019 within the CCR management units at the WBF Plant. Further details regarding the CCR material sampling and laboratory data results are presented in the WBF Plant *CCR Material Characteristics Sampling and Analysis Report* (Appendix G.5).

For the Environmental Investigation, CCR material and pore water samples were collected for characterization related to the leachability of constituents listed in Appendices III and IV of 40 CFR 257 and five additional inorganic constituents included in Appendix I of Tennessee Rule 0400-11-01-.04 (CCR Parameters) from material within two WBF Plant CCR management units: the Ash Pond and Slag Disposal Area. The Synthetic Precipitate Leaching Procedure (SPLP) was used to characterize leachability of CCR Parameters in CCR material. Temporary well/boring locations and the number of samples collected in each WBF Plant CCR management unit are presented in Table E.2-1. Table E.2-2 presents the list of CCR Parameters evaluated in this statistical evaluation.

Table E.2-1 – CCR Material Characteristics Sample Locations - WBF Plant

WBF Plant CCR		Number of Samples			
Management Unit	Temporary Well/Boring Location	CCR Material/SPLP	Pore Water		
Ash Pond	WBF-TW01; WBF-TW02	8	0		
Slag Disposal Area	WBF-TW03; WBF-TW-04; WBF-TW05	13	3		

APPENDIX E.2 - STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

March 31, 2024

Table E.2-2 - CCR Parameters Evaluated in Statistical Analysis

CCR Parameter	CASRN
CCR Rule Appendix III Parameters	
Boron	7440-42-8
Calcium	7440-70-2
Chloride	16887-00-6
Fluoride ¹ (also Appendix IV)	16984-48-8
рН	NA
Sulfate	14808-79-8
Total Dissolved Solids	NA
CCR Rule Appendix IV Parameters	
Antimony	7440-36-0
Arsenic	7440-38-2
Barium	7440-39-3
Beryllium	7440-41-7
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Lead	7439-92-1
Lithium	7439-93-2
Mercury	7439-97-6
Molybdenum	7439-98-7
Radium-226+228	13982-63-3/ 15262-20-1
Selenium	7782-49-2
Thallium	7440-28-0
Additional TDEC Appendix I Parameters	
Copper	7440-50-8
Nickel	7440-02-0
Silver	7440-22-4
Vanadium	7440-62-2
Zinc	7440-66-6
Other	
Iron	7439-89-6
Manganese	7439-96-5
Total Organic Carbon	NA
Notes:	

Notes:

CASRN: Chemical Abstracts Service Registry Number; CCR Rule - Title 40, Code of Federal Regulations, Part 257; NA – Not Available; TDEC - Tennessee Department of Environment and Conservation

The following sections present the methods and results used to evaluate the CCR material and pore water data, including: 1) general exploratory data analysis (summary statistics, data plots and outlier screening), 2) a regression analysis to evaluate correlation between SPLP results to CCR Parameter concentrations in CCR material, and 3) a comparison of SPLP results to pore water concentrations.

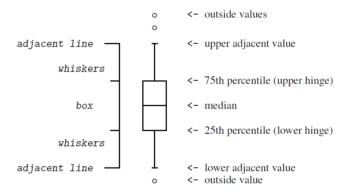
¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV CCR parameter. In this table, and in the results figures and tables for this report, fluoride has been grouped with the Appendix III CCR parameters only to avoid duplication.

March 31, 2024

2.0 METHODS

The statistical evaluation was conducted in three parts: 1) exploratory data analysis, 2) regression analysis, and 3) comparison of SPLP results to CCR Parameter concentrations in pore water.

2.1 EXPLORATORY DATA ANALYSIS


Exploratory data analysis is the initial step of statistical analysis. It utilizes simple summary statistics (e.g. mean, median, standard deviation and percentiles) and graphical representations to identify characteristics of an analytical dataset, such as the center of the data (mean, median), variation, distribution, patterns, presence of outliers, and randomness.

2.1.1 Summary Statistics

Summary statistics were calculated for CCR material, SPLP, and pore water for each CCR Parameter grouped by WBF Plant CCR management unit. Summary statistics include information such as the total numbers of available samples, the frequencies of detection, ranges of reporting limits, minimum and maximum detected concentrations, mean concentrations, standard deviations, median concentrations, and the 95th percentile concentrations. Summary statistics were also calculated for total metal and dissolved metal concentrations in pore water. Summary statistics tables are presented in Attachment E.2-A.

2.1.2 Exploratory Data Plots

Box plots were constructed of CCR Parameter concentrations in CCR material to support a visual review of the data. Box plots were used to identify the center of the data, distribution, variability, and to visually identify potential outliers. The diagram below graphically depicts the basics of the construction of the box plots (StataCorp LLC 2017).

The box portion of the plot is the interquartile range (IQR), which represents the middle 50 percent (%) of data, with the bottom of the box being the 25th percentile and the top of the box being the 75th percentile. The line inside the box is the median concentration. The top of the upper "whisker" represents the first observed concentration above the 75th percentile, whereas the bottom of the lower "whisker" represents

APPENDIX E.2 - STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

March 31, 2024

the first observed concentration below the 25th percentile (upper adjacent value and lower adjacent value, respectively). Values that lie outside of the adjacent values represent outside (potential outliers) concentrations (i.e. concentrations at the upper and lower ends of the distribution of the data). The method detection limit was used as the reported value in order to construct the box plot when analytical results were reported as non-detects.

Side-by-side box plots were constructed for the CCR materials data and aggregated by temporary well/boring location and WBF Plant CCR management unit. These box plots were useful in identifying differences in CCR Parameter concentrations between each WBF Plant CCR management unit and are especially useful for visually identifying potential outliers. Box plots are presented in Attachment E.2-B.

2.1.3 Outlier Screening

Outliers are data points that are abnormally high or low as compared to other measurements and may represent anomalous data or data errors. Outliers may also represent natural variation of CCR Parameter concentrations in environmental systems. Screening for outliers is a critical step because outliers can bias statistical estimates, statistical testing results, and inferences.

Outlier values were initially screened visually using side-by-side box plots. If suspected visual outliers were identified, then Tukey's procedure was used to identify extreme outliers (Tukey 1977). This method relies on the IQR, which is defined as the 75th percentile value minus the 25th percentile value. Values were identified as potential outliers as follows:

- Lower extreme outliers are less than the 25th percentile minus 3 x IQR
- **Upper extreme outliers** are greater than the 75th percentile plus 3 x IQR.

Finally, when the potential outlier(s) were identified visually and by Tukey's procedure, then statistical testing for outliers (Dixon or Rosner's Test) was conducted to determine if the data points were statistically significant outliers.

Following confirmation of the outliers as statistically significant, a desktop evaluation was conducted to verify that the data points were not errors (e.g., laboratory or transcriptional error). Field forms, data validation reports, and other variables in the dataset that could influence analytical results were also evaluated. If a verifiable error was discovered, the outlier was removed and, if possible, replaced with a corrected value.

In the absence of a verifiable error, additional lines of evidence were reviewed to determine final outlier disposition (e.g., frequency of detection, spatial and temporal variability). If an outlier was identified as suitable for removal from further statistical analysis, a clear and defensible rationale based on multiple lines of evidence was provided. In addition, values that were identified as outliers and removed from further evaluation in the present statistical analysis were retained in the historical database and will be reevaluated for inclusion or exclusion in future statistical analyses of this dataset. The results of the outlier screening for the WBF Plant CCR material dataset are provided in Section 3.1.

March 31, 2024

2.2 REGRESSION ANALYSIS

The linear relationship between the concentrations of CCR Parameters in SPLP results and concentrations in CCR material was evaluated using regression analysis. Scatter plots were constructed to compare SPLP and CCR material results for the CCR Parameters. Using linear regression, the Pearson's correlation coefficient was estimated, and a regression line was fit to the data and added to the scatter plots. As part of the analysis, the SPLP results for the CCR Parameters were compared to the range of pore water concentrations from the Slag Disposal Area (pore water was not collected and analyzed at the Ash Pond). Analyses were conducted on data where CCR parameters were detected in greater than 50% of the samples in both the SPLP and CCR material datasets. Scatter plots, regression results, and range of pore water concentrations are presented in Attachment E.2-C.

3.0 RESULTS AND DISCUSSION

3.1 SUMMARY STATISTICS, EXPLORATORY DATA PLOTS, AND OUTLIER SCREENING

Summary statistics tables are presented in Attachment E.2-A, and box plots are presented in Attachment E.2-B.

No outliers were identified in the CCR material or SPLP datasets. The pore water dataset was not screened for outliers due to the small size of the dataset.

3.2 REGRESSION ANALYSIS

The purpose of the regression analysis was to evaluate whether the total concentrations of metals in CCR material could be used as a reliable predictor of leachable concentrations as represented by SPLP concentrations. Scatter plots, regression results, and range of pore water concentrations are presented in Attachment E.2-C. The correlation coefficient (R-squared) is a numerical measure that measures the strength of association between two variables (in this case, between total concentration and SPLP results for CCR material). Correlation coefficients range from zero to one; a high correlation coefficient (closer to one) demonstrates a strong relationship between the two variables, whereas a low correlation coefficient (closer to zero) demonstrates a weak relationship. The slope of the regression line indicates the direction of correlation. A positive slope indicates that SPLP concentrations increased as CCR Parameter concentrations in CCR material increased. Conversely, a negative slope indicates that as CCR Parameter concentrations increased, the SPLP concentrations decreased.

The statistical relationships between SPLP concentrations and CCR material concentrations were inconsistent and highly variable. One would expect SPLP concentrations to increase with increasing CCR constituent concentrations in CCR material (e.g. regression line with a positive slope). However, this relationship was inconsistent between different CCR constituents and between WBF Plant CCR management units. In some cases, even when there was a statistically significant correlation (e.g., arsenic in the Slag Disposal Area), the wide range of variability around the regression line limits the

APPENDIX E.2 - STATISTICAL ANALYSIS OF CCR MATERIAL CHARACTERISTICS DATA

March 31, 2024

predictive value of the relationship. In addition, the relationship between the CCR parameter concentrations in SPLP and CCR parameter concentrations directly measured in pore water were inconsistent and variable.

The results indicate that the total concentrations of metals in CCR material is not a reliable predictor of the magnitude of the potentially leached concentrations measured using SPLP and that direct measurement of pore water concentrations is the most accurate way of characterizing potential leachability from CCR material.

4.0 REFERENCES

StataCorp. (2017). Stata Graphics Reference Manual Stata: Release 15. Statistical Software. College Station, Texas: StataCorp LLC.

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley. 1977.

ATTACHMENT E.2-A SUMMARY STATISTICS

			mary Statistics - CCF tts Barr Fossil Plant							
Parameter	Soil Depth	Frequency	Range of	% Non Detect	Statistics using Detected Data Only		Statistics using Detects & Non-Detects			
		of Detection	Reporting Limits		Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile
			CCR Rule Append	dix III Paran	neters					
Doron	Ash Pond	8/8		0%	38.4	117	70.8	28.7	67.9	111
Boron	Slag Disposal Area	13/13		0%	2.01	300	63.1	81.8	35.1	190
Calairea	Ash Pond	8/8		0%	4,030	27,600	8,900	7,760	6,500	21,300
Calcium	Slag Disposal Area	13/13		0%	387	18,400	4,780	4,880	3,010	12,700
Chlorido	Ash Pond	2/8	(4.53 - 5.95)	75.0%	6.17	30.8	8.02	8.63	5.12	22.2
Chloride	Slag Disposal Area	4/13	(4.15 - 5.64)	69.2%	6.74	11.2	5.60	2.37	4.97	10.3
et	Ash Pond	8/8		0%	1.92	5.85	4.39	1.18	4.46	5.66
Fluoride	Slag Disposal Area	8/13	(0.730 - 0.934)	38.5%	1.11	6.80	2.23	2.14	1.24	6.27
	Ash Pond	8/8		0%	7.40	9.90	8.20	0.949	7.85	9.76
pH (lab)	Slag Disposal Area	13/13		0%	4.40	10.2	6.79	1.83	7.00	9.72
Culfata	Ash Pond	8/8		0%	113	1580	594	498	458	1340
Sulfate	Slag Disposal Area	13/13		0%	23.3	1050	327	333	175	879
			CCR Rule Append	dix IV Paran	neters					
Antimony	Ash Pond	8/8		0%	1.80	3.52	2.59	0.636	2.47	3.40
Antimony	Slag Disposal Area	12/13	(0.0819 - 0.0819)	7.69%	0.104	6.71	1.91	1.94	0.754	4.83
Arsenic	Ash Pond	8/8		0%	68.5	258	138	64.2	129	234
Arsenic	Slag Disposal Area	13/13		0%	5.81	205	84.0	71.7	109	185
Dorium	Ash Pond	8/8		0%	161	313	216	49.9	208	294
Barium	Slag Disposal Area	13/13		0%	69.4	337	194	68.0	186	285
Beryllium	Ash Pond	8/8		0%	1.85	6.06	3.25	1.34	3.26	5.24
berymum	Slag Disposal Area	13/13		0%	0.411	5.74	2.35	1.51	1.76	4.51
Cadmium	Ash Pond	8/8		0%	1.21	3.35	1.90	0.715	1.70	2.98
Caumum	Slag Disposal Area	12/13	(0.0224 - 0.0224)	7.69%	0.0283	5.64	1.36	1.71	0.208	4.68
Chromium	Ash Pond	8/8		0%	28.9	59.1	40.0	10.9	37.6	55.0
Chromium	Slag Disposal Area	13/13		0%	4.58	75.8	44.6	19.2	44.9	69.7
Cobalt	Ash Pond	8/8		0%	9.60	20.9	13.7	3.33	13.5	18.7
Condit	Slag Disposal Area	13/13		0%	7.67	18.3	12.6	3.18	12.4	17.2
Lead	Ash Pond	8/8		0%	28.9	63.4	46.1	12.3	47.5	61.00
Leau	Slag Disposal Area	13/13		0%	5.06	92.6	32.4	26.2	24.1	70.1
Lithium	Ash Pond	8/8		0%	20.9	39.2	29.1	7.21	28.3	38.6
Littiiuiii	Slag Disposal Area	13/13		0%	3.29	37.8	25.2	9.77	29.2	37.3
Mercury	Ash Pond	8/8		0%	0.206	0.698	0.451	0.192	0.408	0.693
ivici cui y	Slag Disposal Area	10/13	(0.0156 - 0.140)	23.1%	0.0209	1.13	0.306	0.311	0.230	0.818

			mary Statistics - CCF tts Barr Fossil Plant								
Parameter	Soil Depth	Frequency	Range of	% Non Detect	Statistics using Detected Data Only		Statistics using Detects & Non-Detects				
		of Detection	Reporting Limits		Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile	
Malub dan um	Ash Pond	8/8		0%	8.75	16.3	11.2	2.39	10.3	15.0	
Molybdenum	Slag Disposal Area	13/13		0%	0.489	14.9	6.50	4.41	6.12	12.9	
D- di 226 : 226	Ash Pond	8/8		0%	4.50	6.89	5.59	0.896	5.65	6.81	
Radium-226+228	Slag Disposal Area	13/13		0%	0.945	9.09	4.90	2.31	5.16	8.86	
Calanium	Ash Pond	8/8		0%	3.32	9.23	6.00	2.43	6.06	8.81	
Selenium	Slag Disposal Area	12/13	(0.812 - 0.812)	7.69%	1.06	11.5	4.99	3.84	4.58	10.7	
The allinous	Ash Pond	8/8		0%	2.65	9.30	5.07	2.31	4.730	8.61	
Thallium	Slag Disposal Area	13/13		0%	0.243	10.9	3.99	3.56	4.48	9.50	
	•	-	TDEC Appendi	x I Paramet	ers	•		•		•	
Caman	Ash Pond	8/8		0%	29.4	65.4	44.4	13.7	45.3	62.8	
Copper	Slag Disposal Area	13/13		0%	16.7	111	40.9	27.3	46.1	83.5	
Nistral	Ash Pond	8/8		0%	23.8	57.8	35.4	11.4	37.2	51.4	
Nickel	Slag Disposal Area	13/13		0%	15.3	57.0	30.4	13.1	25.8	50.6	
C'I	Ash Pond	8/8		0%	0.0745	0.243	0.144	0.0567	0.155	0.220	
Silver	Slag Disposal Area	10/13	(0.0299 - 0.0357)	23.1%	0.0309	0.201	0.0975	0.0628	0.0757	0.187	
\	Ash Pond	8/8		0%	50.5	121	75.5	23.3	73.0	109	
Vanadium	Slag Disposal Area	13/13		0%	7.55	226	78.0	61.1	49.2	181	
7 '	Ash Pond	8/8		0%	111	264	157	52.3	146	236	
Zinc	Slag Disposal Area	13/13		0%	6.95	423	119	119	66.1	296	
			Additional	Parameters				•			
lvan	Ash Pond	8/8		0%	28,000	42,100	33,500	5,520	32,700	41,800	
Iron	Slag Disposal Area	13/13		0%	28,300	106,000	53,700	20,100	51,600	87,400	
Manganasa	Ash Pond	8/8		0%	118	687	306	199	254	627	
Manganese	Slag Disposal Area	13/13		0%	35.5	1180	311	332	161	883	
TOC	Ash Pond	8/8		0%	30500	137,000	77,300	40,900	75,000	132,000	
TOC	Slag Disposal Area	12/13	(948 - 948)	7.69%	4100	312,000	60,400	82,400	25,500	207,000	

CCR Rule - Title 40, Code of Federal Regulations, Part 257

TDEC - Tennessee Department of Environment and Conservation

% - percent

"--": Not Applicable

TOC - Total Organic Carbon

Except for pH & Radium 226 + 228, all units are milligrams per kilogram (mg/kg).

Units for pH are Standard Units (S.U.).

Units for Radium 226+228 are picocuries per gram (pCi/g).

All non-detects reported at the method detection limit.

	Summary S		erial Characteristics etts Bar Fossil Plant	-	-	_	cedure (SPL	.P)						
Parameter	CCR Unit	Frequency	Range of	% Non Detect	Statistics using Detected Data Only		Statistics using Detects and Non-Detects							
		of Detection	Reporting Limits		Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile				
	CCR Rule Appendix III Parameters													
Daran	Ash Pond	8/8		0%	178	807	457	217	400	760				
Boron	Slag Disposal Area	13/13		0%	47.0	1120	291	311	194	884				
Calsium	Ash Pond	8/8		0%	9,170	45,900	23,400	13,000	19,800	43,900				
Calcium	Slag Disposal Area	13/13		0%	878	49,300	15,500	12,600	14,800	33,500				
			CCR Rule Append	lix IV Paran	neters									
Antimony	Ash Pond	8/8		0%	1.93	6.37	4.93	1.44	5.35	6.21				
Antimony	Slag Disposal Area	12/13	(0.378 - 0.378)	7.69%	0.416	15.6	4.72	5.59	1.52	14.6				
Arconic	Ash Pond	8/8		0%	6.72	101	47.3	30.8	42.3	90.3				
Arsenic	Slag Disposal Area	13/13		0%	0.428	95.7	19.7	28.9	2.86	70.2				
Darium	Ash Pond	8/8		0%	2.87	31.0	13.7	11.2	8.83	29.7				
Barium	Slag Disposal Area	11/13	(1.49 - 1.60)	15.4%	5.18	146	32.6	37.1	17.6	90.1				
Popullium	Ash Pond	1/8	(0.155 - 0.245)	87.5%	0.234	0.234	0.166	0.0276	0.184	0.241				
Beryllium	Slag Disposal Area	3/13	(0.155 - 0.182)	76.9%	0.319	0.356	0.198	0.0796	0.182	0.355				
Cadmium	Ash Pond	0/8	(0.125 - 0.125)	100%					0.125	0.125				
Cadmium	Slag Disposal Area	1/13	(0.125 - 0.125)	92.3%	1.70	1.70	0.246	0.420	0.125	0.755				
Chromium	Ash Pond	1/8	(1.53 - 1.53)	87.5%	2.86	2.86	1.7	0.440	1.53	2.40				
Chromium	Slag Disposal Area	2/13	(1.53 - 5.40)	84.6%	1.56	1.65	1.57	0.0492	2.20	4.37				
Cobalt	Ash Pond	2/8	(0.075 - 0.256)	75.0%	0.196	0.356	0.128	0.096	0.158	0.321				
Cobait	Slag Disposal Area	9/13	(0.0750 - 0.0750)	30.8%	0.088	163	16.6	43.2	0.152	80.9				
Load	Ash Pond	6/8	(0.128 - 0.128)	25.0%	0.241	1.31	0.494	0.383	0.402	1.16				
Lead	Slag Disposal Area	9/13	(0.128 - 0.128)	30.8%	0.144	27.3	2.36	7.21	0.220	11.6				
Lithium	Ash Pond	2/8	(3.14 - 3.14)	75.0%	6.00	14.8	4.96	3.84	3.14	11.7				
Lithium	Slag Disposal Area	7/13	(3.14 - 3.39)	46.2%	4.09	17.1	5.07	3.68	4.09	11.5				
Maraum	Ash Pond	0/8	(0.101 - 0.101)	100%					0.101	0.101				
Mercury	Slag Disposal Area	0/13	(0.101 - 0.101)	100%			-		0.101	0.101				
Malyhdar	Ash Pond	8/8		0%	6.89	283	94.2	88.1	62.5	232				
Molybdenum	Slag Disposal Area	7/13	(0.610 - 0.610)	46.2%	2.75	87.6	17.6	24.6	2.75	57.7				
Radium-226+228	Ash Pond	0/8	(0 - 0.216)	100%					0.0398	0.17				
Naululli-220+228	Slag Disposal Area	1/13	(0 - 0.337)	92.3%	0.52	0.52	0.04	0.139	0.141	0.41				

	Summary S	tatistics - CCR Mate Wa	erial Characteristics tts Bar Fossil Plant	-	-	_	cedure (SPL	.P)				
Parameter	CCR Unit	Frequency	Range of	% Non		cs using Data Only	Statistics using Detects and Non-Detects					
		of Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile		
Calanium	Ash Pond	5/8	(2.62 - 2.62)	37.5%	5.91	28.8	9.86	8.89	6.26	25.5		
Selenium	Slag Disposal Area	7/13	(1.51 - 2.62)	46.2%	2.76	56.5	9.98	15.6	2.76	40.5		
Thallium	Ash Pond	2/8	(0.128 - 0.375)	75.0%	0.401	1.25	0.302	0.369	0.163	0.953		
mailium	Slag Disposal Area	7/13	(0.128 - 0.148)	46.2%	0.19	13.2	1.19	3.47	0.190	5.51		
TDEC Appendix I Parameters												
Caman	Ash Pond	7/8	(0.627 - 0.627)	12.5%	0.855	23.7	5.32	7.45	1.89	18.8		
Copper	Slag Disposal Area	5/13	(0.627 - 1.46)	61.5%	0.916	35.8	3.81	9.29	1.13	17.1		
Niekel	Ash Pond	1/8	(0.423 - 1.81)	87.5%	8.72	8.72	1.46	2.74	1.21	6.30		
Nickel	Slag Disposal Area	8/13	(0.336 - 0.849)	38.5%	0.354	308	31.3	82.3	0.849	169		
Silver	Ash Pond	0/8	(0.121 - 0.121)	100%					0.121	0.121		
Silver	Slag Disposal Area	0/13	(0.121 - 0.177)	100%					0.177	0.177		
Vanadium	Ash Pond	8/8		0%	3.08	130	44.8	40.8	46.1	105		
Vanadium	Slag Disposal Area	11/13	(0.991 - 0.991)	15.4%	0.978	150	27.4	42.3	2.49	99.0		
7:	Ash Pond	6/8	(3.22 - 3.22)	25.0%	3.36	29.4	11.0	9.72	6.42	27.7		
Zinc	Slag Disposal Area	5/13	(3.22 - 3.22)	61.5%	3.58	33.6	7.40	8.90	3.22	26.0		
			Additional	Parameters								
l no no	Ash Pond	6/8	(14.1 - 14.1)	25.0%	54.5	727	207	215	197	558		
Iron	Slag Disposal Area	10/13	(19.5 - 19.5)	23.1%	20.8	20,900	1,760	5,540	31.8	9,150		
N.4	Ash Pond	6/8	(1.35 - 1.35)	25.0%	4.16	18.4	6.19	5.13	4.62	14.9		
Manganese	Slag Disposal Area	11/13	(1.35 - 1.35)	15.4%	1.95	2,540	252	669	9.19	1,250		

CCR Rule - Title 40, Code of Federal Regulations, Part 257

TDEC - Tennessee Department of Environment and Conservation

% - percent

"--": Not Applicable

Except for Radium 226 + 228, all units are micrograms per liter (µg/L).

Units for Radium 226+228 are picocuries per liter (pCi/L).

All non-detects reported at the method detection limit.

Summary Statistics - CCR Material Characteristics - Pore Water - Total Metals												
	Watts Bar Fossil Plant - Spring City, Tennessee											
Parameter	CCR Unit	Frequency	Range of	% Non		cs using Data Only	Sta	atistics using	g Detects & No	on-Detects		
		of Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile		
			CCR Rule A	Appendix III	Parameters							
Boron	Slag Disposal Area	3/3		0%	269	6,220	4,160	3,370	6,000	6,200		
Calcium	Slag Disposal Area	3/3		0%	470,000	484,000	479,000	7,570	482,000	484,000		
Chloride	Slag Disposal Area	3/3		0%	6,690	10,600	8,850	1,990	9,260	10,500		
Fluoride	Slag Disposal Area	2/3	(65.8 - 65.8)	33.3%	76.6	137	93.1	31.3	76.6	131		
pH (field)	Slag Disposal Area	3/3		0%	5.90	9.41	7.37	1.83	6.79	9.15		
Sulfate	Slag Disposal Area	3/3		0%	913,000	1,430,000	1,170,000	259,000	1,160,000	1,400,000		
TDS	Slag Disposal Area	3/3		0%	1,840,000	2,490,000	2,080,000	359,000	1,900,000	2,430,000		
CCR Rule Appendix IV Parameters												
Antimony	Slag Disposal Area	0/3	(0.378 - 4.15)	100%					0.378	3.77		
Arsenic	Slag Disposal Area	3/3		0%	17.4	71.6	49.2	28.3	58.7	70.3		
Barium	Slag Disposal Area	3/3		0%	37.6	165	82.6	71.4	45.3	153		
Beryllium	Slag Disposal Area	0/3	(0.620 - 0.976)	100%					0.942	0.973		
Cadmium	Slag Disposal Area	1/3	(0.125 - 0.125)	66.7%	0.466	0.466	0.239	0.161	0.125	0.432		
Chromium	Slag Disposal Area	1/3	(1.53 - 1.53)	66.7%	2.58	2.58	1.88	0.495	1.53	2.48		
Cobalt	Slag Disposal Area	2/3	(0.369 - 0.369)	33.3%	1.15	3.93	1.82	1.53	1.150	3.65		
Lead	Slag Disposal Area	1/3	(0.165 - 0.391)	66.7%	1.76	1.76	0.697	0.752	0.391	1.62		
Lithium	Slag Disposal Area	2/3	(50.4 - 50.4)	33.3%	124	245	140	80.2	124	233		
Mercury	Slag Disposal Area	0/3	(0.101 - 0.101)	100%					0.101	0.101		
Molybdenum	Slag Disposal Area	2/3	(0.791 - 0.791)	33.3%	135	1360	499	612	135	1240		
Radium-226+228	Slag Disposal Area	2/3	(0.337 - 0.337)	33.3%	0.848	1.01	0.73	0.285	0.848	0.99		
Selenium	Slag Disposal Area	1/3	(1.51 - 1.51)	66.7%	3.68	3.68	2.23	1.02	1.51	3.46		
Thallium	Slag Disposal Area	0/3	(0.148 - 0.791)	100%					0.148	0.727		
			TDEC Ap	pendix I Pa	rameters							
Copper	Slag Disposal Area	0/3	(1.15 - 2.58)	100%					1.82	2.50		
Nickel	Slag Disposal Area	2/3	(4.34 - 4.34)	33.3%	3.09	9.25	5.14	2.90	4.34	8.76		
Silver	Slag Disposal Area	0/3	(0.177 - 0.177)	100%					0.177	0.177		
Vanadium	Slag Disposal Area	1/3	(0.991 - 0.991)	66.7%	84.5	84.5	28.8	39.4	0.991	76.2		
Zinc	Slag Disposal Area	1/3	(9.01 - 13.4)	66.7%	23.6	23.6	13.9	6.88	13.4	22.6		

	Summary Statistics - CCR Material Characteristics - Pore Water - Total Metals Watts Bar Fossil Plant - Spring City, Tennessee												
Parameter	CCR Unit	Frequency of Detection	Range of Reporting Limits	% Non		cs using Data Only	Statistics using Detects & Non-Detects						
				Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile			
			Additional V	Vater Qualit	ty Paramete	rs							
Iron	Slag Disposal Area	3/3	-	0%	488	94,900	47,200	47,200	46,200	90,000			
Manganese	Slag Disposal Area	3/3		0%	61.6	31,600	12,200	17,000	4,990	28,900			
TOC	Slag Disposal Area	3/3		0%	837	1,810	1,270	497	1,150	1,740			

CCR Rule - Title 40, Code of Federal Regulations, Part 257

TDEC - Tennessee Department of Environment and Conservation

% - percent

TDS: Total Dissolved Solids TOC: Total Organic Carbon "--" - Not Applicable

Except for pH & Radium 226 + 228, all units micrograms per liter (µg/L).

Units for pH are Standard Units (S.U.).

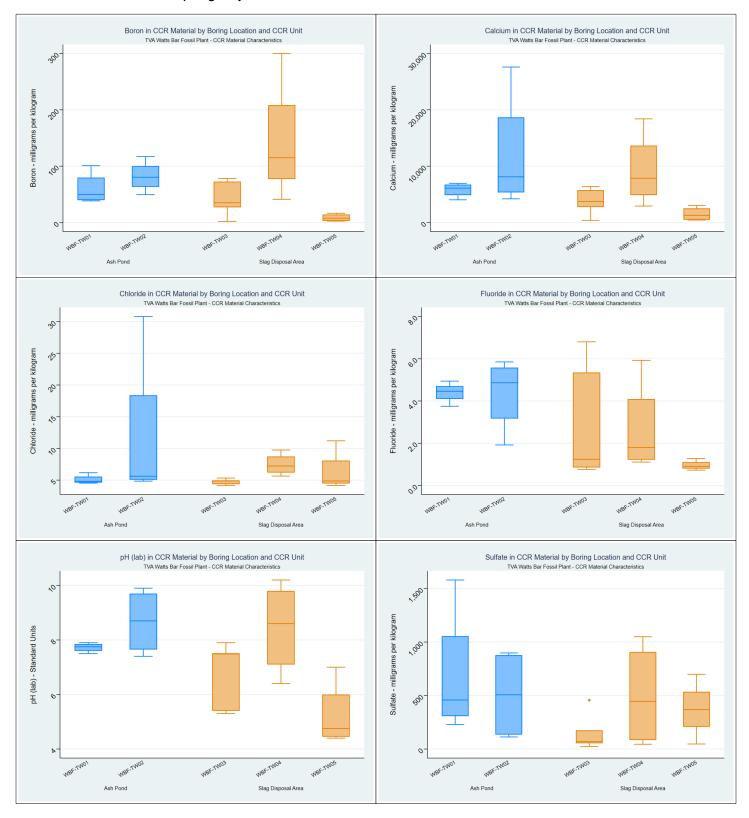
Units for Radium 226+228 are picocuries per liter (pCi/L).

All non-detects reported at the laboratory detection limit.

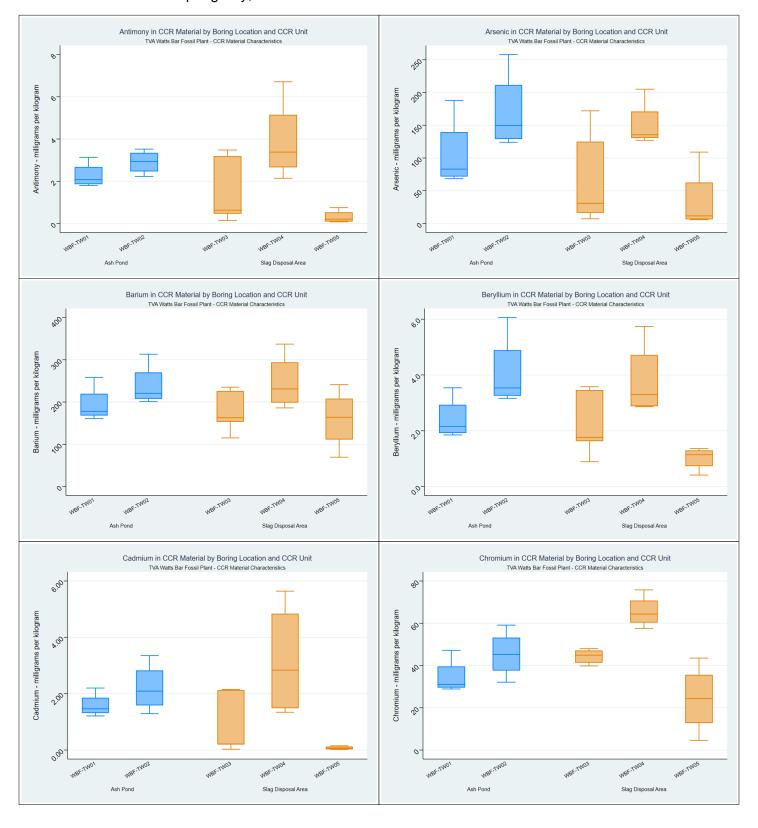
		Summary St	atistics - CCR N	/laterial Characteris	tics - Pore V	Vater - Disso	lved Metals				
			Watts Ba	r Fossil Plant - Spri	ng City, Ten	nessee					
Parameter	Chemical Abstracts Service Registry	Soil Depth	Frequency	Range of	% Non		cs using Data Only	Statistics using Detects & Non-Detect			
	Number (CASRN)		of Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile
			CC	R Rule Appendix III	Parameters	,					
Boron	7440-42-8	Slag Disposal Area	3/3		0%	260	6,420	4,210	3,430	5,940	6,370
Calcium	7440-70-2	Slag Disposal Area	3/3		0%	477,000	504,000	490,000	13,500	490,000	503,000
	•	•	CC	R Rule Appendix IV	Parameters		•		•	•	•
Antimony	7440-36-0	Slag Disposal Area	0/3	(0.378 - 4.28)	100%			1		0.634	3.92
Arsenic	7440-38-2	Slag Disposal Area	3/3		0%	18.9	71.9	47.7	26.8	52.2	69.9
Barium	7440-39-3	Slag Disposal Area	3/3		0%	39.7	158	81.0	66.7	45.4	147
Beryllium	7440-41-7	Slag Disposal Area	0/3	(0.356 - 0.853)	100%					0.474	0.815
Cadmium	7440-43-9	Slag Disposal Area	1/3	(0.125 - 0.125)	66.7%	0.227	0.227	0.159	0.0481	0.125	0.217
Chromium	7440-47-3	Slag Disposal Area	0/3	(1.53 - 1.53)	100%					1.53	1.53
Cobalt	7440-48-4	Slag Disposal Area	2/3	(0.131 - 0.131)	33.3%	1.07	4.04	1.75	1.67	1.07	3.74
Lead	7439-92-1	Slag Disposal Area	0/3	(0.128 - 0.186)	100%					0.128	0.18
Lithium	7439-93-2	Slag Disposal Area	2/3	(54.9 - 54.9)	33.3%	119	235	136	74.5	119	223
Mercury	7439-97-6	Slag Disposal Area	0/3	(0.101 - 0.101)	100%					0.101	0.101
Molybdenum	7439-98-7	Slag Disposal Area	3/3		0%	0.920	1340	493	737	139	1220
Selenium	7782-49-2	Slag Disposal Area	1/3	(1.51 - 1.51)	66.7%	4.82	4.82	2.61	1.56	1.51	4.49
Thallium	7440-28-0	Slag Disposal Area	0/3	(0.148 - 0.768)	100%					0.148	0.706
				TDEC Appendix I Pa	rameters						
Copper	7440-50-8	Slag Disposal Area	1/3	(1.08 - 1.34)	66.7%	1.11	1.11	1.10	0.0150	1.11	1.32
Nickel	7440-02-0	Slag Disposal Area	1/3	(0.686 - 4.95)	66.7%	10.7	10.7	4.02	4.72	4.95	10.1
Silver	7440-22-4	Slag Disposal Area	0/3	(0.177 - 0.177)	100%			1		0.177	0.177
Vanadium	7440-62-2	Slag Disposal Area	1/3	(0.991 - 0.991)	66.7%	75.3	75.3	25.8	35.0	0.991	67.9
Zinc	7440-66-6	Slag Disposal Area	1/3	(3.57 - 13.1)	66.7%	25.0	25.0	10.7	10.1	13.1	23.8
			Addi	itional Water Qualit	ty Paramete	rs					
Iron	7440-42-8	Slag Disposal Area	3/3		0%	50.4	101,000	49,500	50,500	47,400	95,600
Manganese	7440-70-2	Slag Disposal Area	3/3		0%	52.7	32,800	12,700	17,600	5,300	30,100

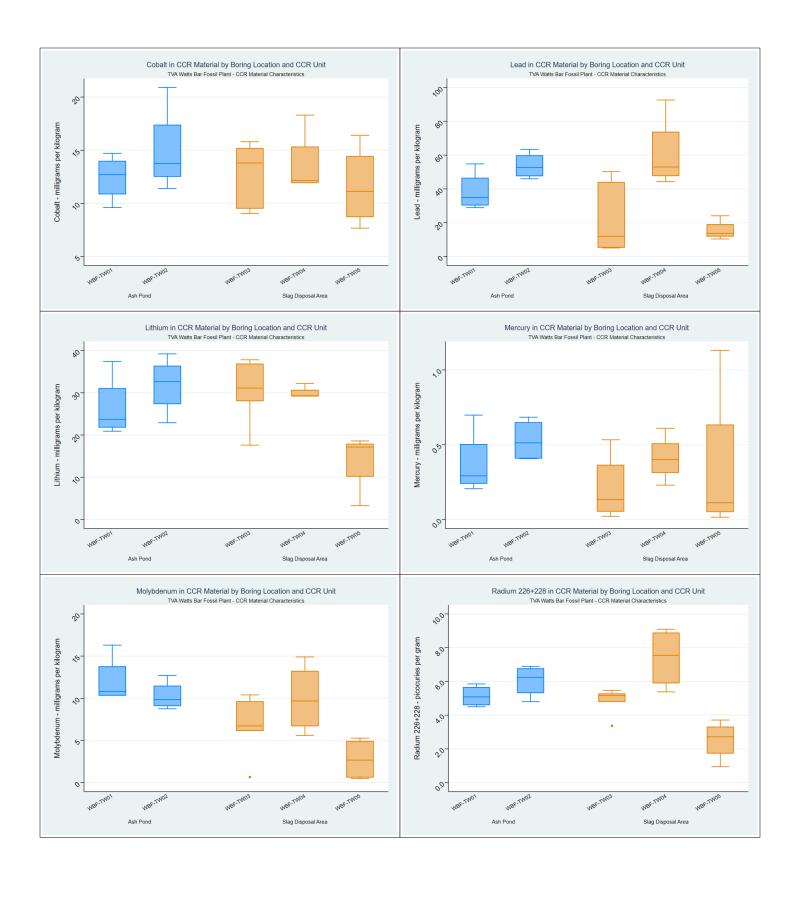
CCR Rule - Title 40, Code of Federal Regulations, Part 257

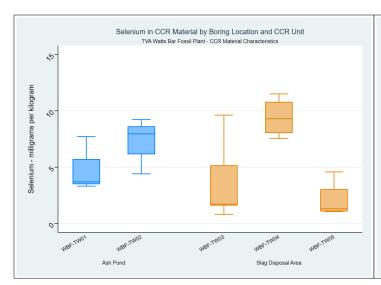
TDEC - Tennessee Department of Environment and Conservation

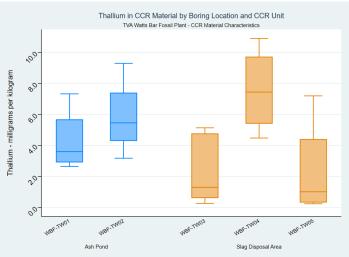

% - percent

"--" : Not Applicable

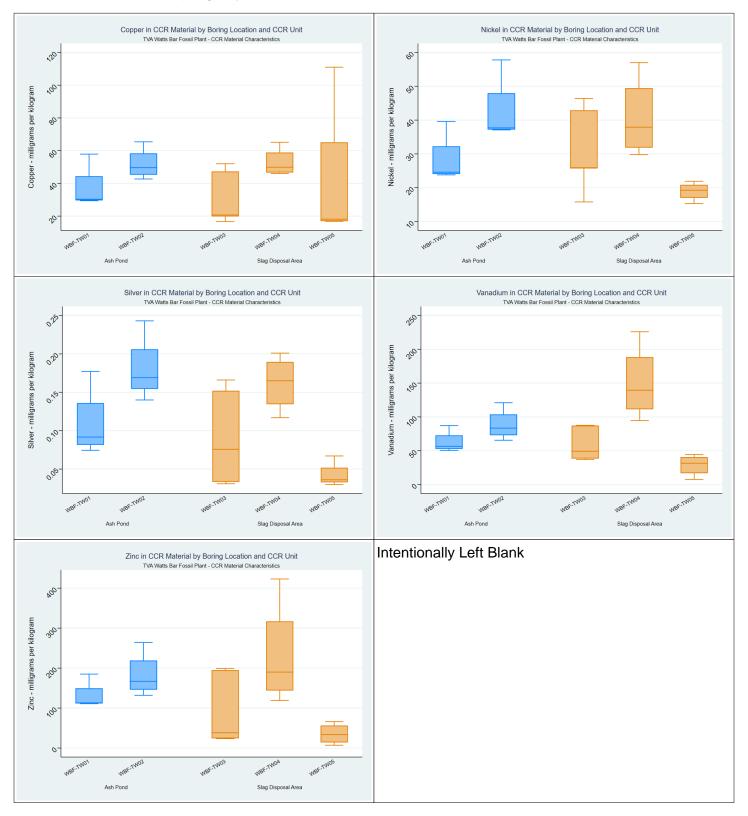

All non-detects reported at the laboratory detection limit

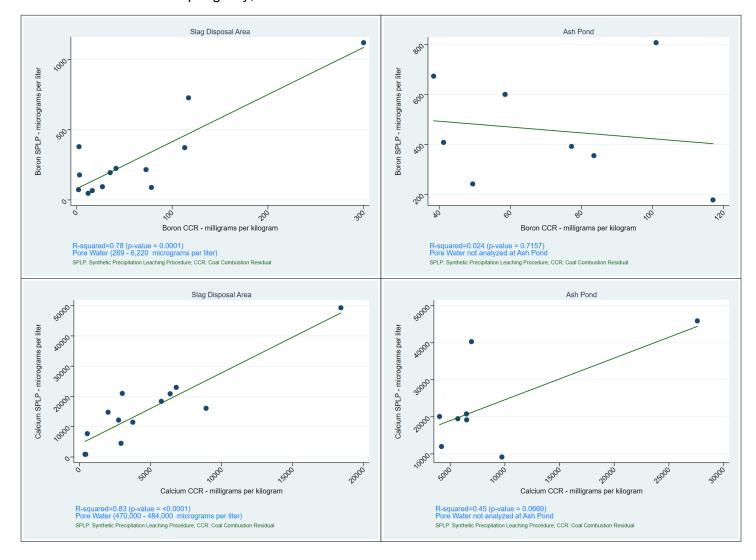

ATTACHMENT E.2-B BOX PLOTS


Box Plots CCR Rule Appendix III Parameters CCR Material Characteristics Investigation Watts Bar Fossil Plant - Spring City, Tennessee

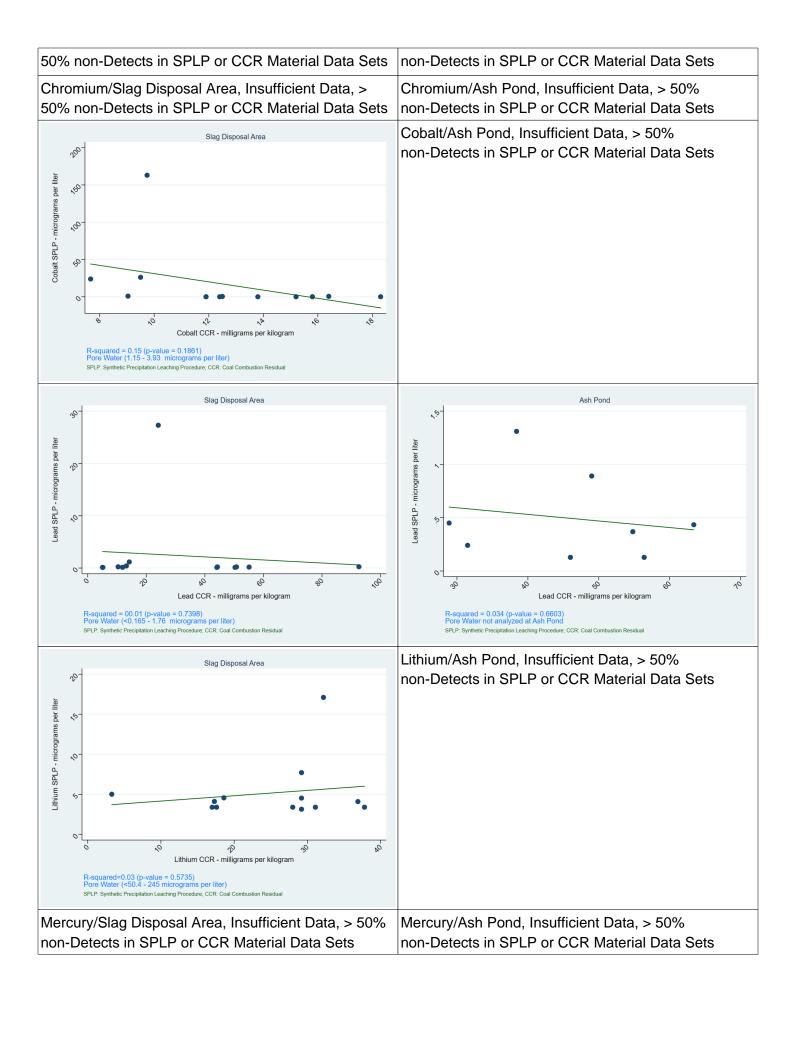


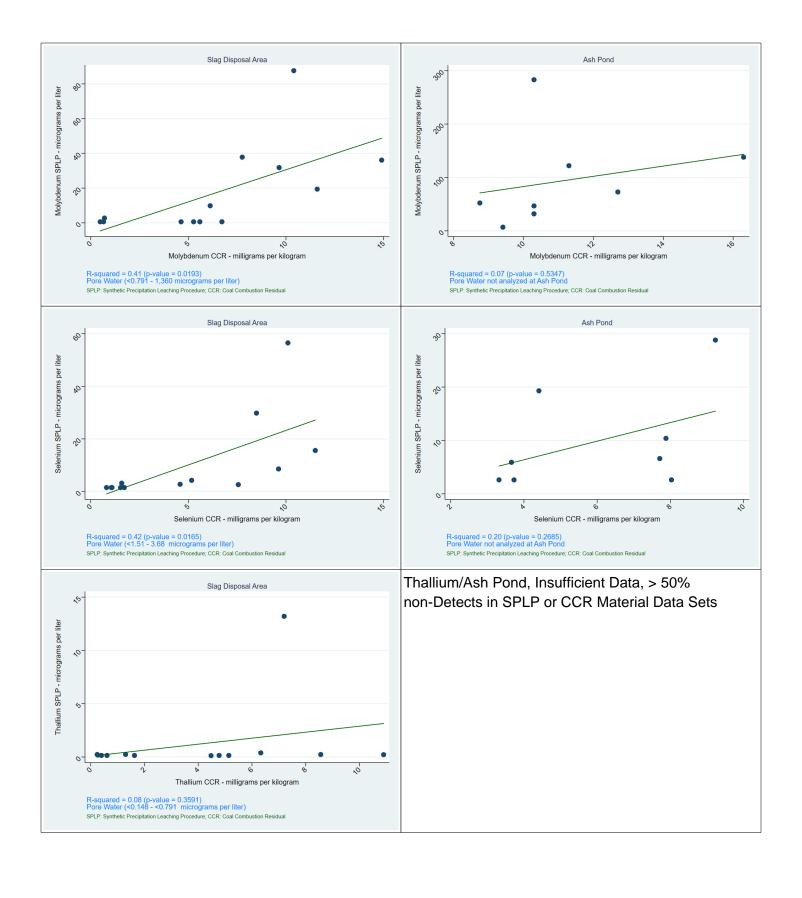
Box Plots CCR Rule Appendix IV Parameters CCR Material Characteristics Investigation Watts Bar Fossil Plant - Spring City, Tennessee



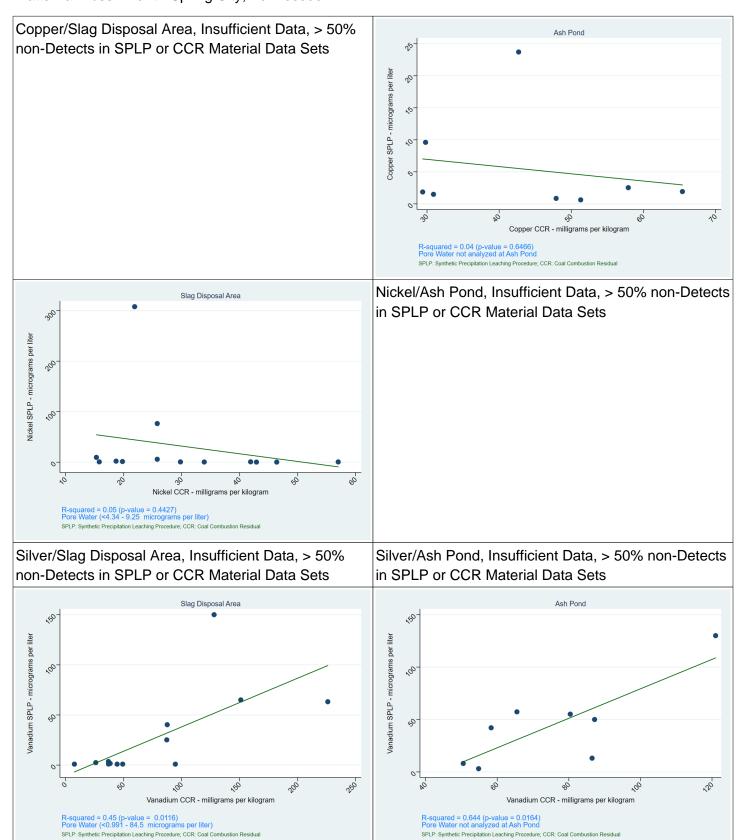


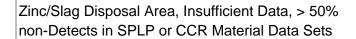

Box Plots
TDEC Appendix I Parameters
CCR Material Characteristics Investigation
Watts Bar Fossil Plant - Spring City, Tennessee

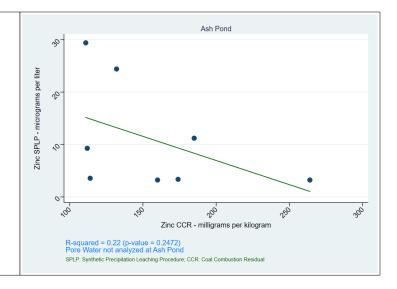



ATTACHMENT E.2-C SCATTER PLOTS AND REGRESSION

Scatter Plots (SPLP and CCR Material) CCR Rule Appendix III Parameters CCR Material Characteristics Investigation Watts Bar Fossil Plant - Spring City, Tennessee







Scatter Plots (SPLP and CCR Material)
TDEC Appendix I Parameters
CCR Material Characteristics Investigation
Watts Bar Fossil Plant - Spring City, Tennessee

Appendix E.3 - Statistical Analysis of Groundwater Analytical Results

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix E.3 - Statistical Analysis of Groundwater Analytical Results was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Melissa Whitfield Aslund, PhD, Environmental Scientist

Which

Reviewed by

Chris LaLonde, Risk Assessor

Approved by

Rebekah Brooks, PG, Senior Principal Hydrogeologist

Table of Contents

ABBR	EVIATIONS	.II
1.0	INTRODUCTION	. 1
2.0	METHODS	. 4
2.1	EXPLORATORY DATA ANALYSIS	
2.2	COMPARISON OF GROUNDWATER QUALITY DATA TO GROUNDWATER	
	SCREENING LEVELS	. 4
	2.2.1 Linear Regression Trend Analysis and Confidence Interval/	
	Confidence Band Evaluation	5
	2.2.2 Evaluation for Well-Constituent Pairs Using Point-by-Point Method	10
3.0	RESULTS AND DISCUSSION	
3.1	EXPLORATORY DATA ANALYSIS	10
3.2	COMPARISON OF GROUNDWATER QUALITY DATA TO APPROVED	
	GROUNDWATER SCREENING LEVELS	10
4.0	REFERENCES	13
LICT	DE TARLES	
	DF TABLES	_
	E.3-1 – CCR Parameters Evaluated in Statistical Analysis	. 2
rabie	E.3-2 - Groundwater Monitoring Wells and Parameters Included in Statistical Analysis	•
Table	E.3-3 – Summary of Statistically Significant Concentrations/Values	
	E.3-4 – Summary of Statistically Significant Concentrations Greater than the GSL	
LIST C	OF FIGURES	
Figure	E.3-1 – Flow chart summarizing linear regression trend analysis and confidence	
_	interval/ confidence band evaluation	. 7
Figure	E.3-2 – Examples of well-constituent pairs classified as 'Red' for constituents	
	other than pH (A) in the presence of a statistically significant linear trend	_
T: a	(p<0.05) and (B) in the absence of a statistically significant linear trend (p≥0.05)	. 8
rigure	E.3-3 - Examples of well-constituent pairs classified as 'Red' for pH (A, B) in the	
	presence of a statistically significant linear trend (p<0.05) and (C, D) in the absence of a statistically significant linear trend (p≥0.05)	c
	absorbed of a statistically significant linear trend (p=0.00)	. :

LIST OF ATTACHMENTS

ATTACHMENT E.3-A SUMMARY STATISTICS

ATTACHMENT E.3-B BOX PLOTS

i

ATTACHMENT E.3-C TIME SERIES PLOTS

ATTACHMENT E.3-D LINEAR REGRESSION PLOTS

ATTACHMENT E.3-E LINEAR REGRESSION RESULTS

Abbreviations

CASRN Chemical Abstracts Service Registry Number

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of Title 40, Code of Federal

Regulations, Part 257 and five inorganic constituents included in Appendix I of

Tennessee Rule 0400-11-01-.04

CCR Rule Title 40, Code of Federal Regulations, Part 257

EAR Environmental Assessment Report

El Environmental Investigation
GSL Groundwater Screening Level

μg/L Micrograms Per Liter

NA Not Available % Percent

RCRA Resource Conservation and Recovery Act

Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TDS Total Dissolved Solids
TVA Tennessee Valley Authority

Unified Guidance Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified

Guidance

USEPA United States Environmental Protection Agency

WBF Plant Watts Bar Fossil Plant

March 31, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) prepared this appendix on behalf of the Tennessee Valley Authority (TVA) to summarize the statistical analyses performed on groundwater quality data to support evaluations conducted for the Environmental Assessment Report (EAR) at the Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee. These statistical analyses include an evaluation of groundwater quality data collected at the WBF Plant for the Tennessee Department of Environment and Conservation (TDEC) Order Environmental Investigation (EI) and in compliance with the TDEC groundwater monitoring program for the Ash Pond coal combustion residuals (CCR) management unit. The statistical analysis in this appendix focused on the parameters listed in Appendices III and IV of Title 40, Code of Federal Regulations, Part 257 (CCR Rule) and five additional inorganic constituents included in Appendix I of Tennessee Rule 0400-11-01-.04 (CCR Parameters) (see Table E.3-1). The wells included in this statistical analysis are listed in Table E.3-2.

The dataset compiled for statistical analysis includes available analytical data for groundwater samples collected from the wells listed in Table E.3-2 between October 2014 and October 2022, although the specific start date and frequency of sampling may vary between wells based on date of well installation and the applicable monitoring program. This time period was selected because it includes the data that met the data quality objectives of the EI.

The complete groundwater quality results for the dataset compiled for statistical analysis are reported in Appendix H.1.

March 31, 2024

Table E.3-1 – CCR Parameters Evaluated in Statistical Analysis

Parameter	CASRN
CCR Rule Appendix III Parameters	
Boron	7440-42-8
Calcium	7440-70-2
Chloride	16887-00-6
Fluoride ¹ (also Appendix IV)	16984-48-8
pH	NA
Sulfate	14808-79-8
TDS	NA
CCR Rule Appendix IV Parameters	
Antimony	7440-36-0
Arsenic	7440-38-2
Barium	7440-39-3
Beryllium	7440-41-7
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Lead	7439-92-1
Lithium	7439-93-2
Mercury	7439-97-6
Molybdenum	7439-98-7
Radium-226+228	13982-63-3/ 15262-20-1
Selenium	7782-49-2
Thallium	7440-28-0
Additional TDEC Appendix I Paramete	rs
Copper	7440-50-8
Nickel	7440-02-0
Silver	7440-22-4
Vanadium	7440-62-2
Zinc	7440-66-6

Notes: CASRN - Chemical Abstracts Service Registry Number; CCR - Coal Combustion Residuals; NA - Not available; TDS - Total dissolved solids

¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table and in the results figures and tables for this report, fluoride has been grouped with the Appendix III constituents only to avoid duplication.

March 31, 2024

Table E.3-2 - Groundwater Monitoring Wells and Parameters Included in Statistical Analysis

		Prog	gram	Parameters Included in Statistical Analysis				
Well Location	Well	El Wells	TDEC Non- Registered Site Wells ¹	CCR Rule Appendix III	CCR Rule Appendix IV	TDEC Appendix I		
Background	WBF-103	Х	-	X	X	Х		
Ŭ.	MW-1	-	X	X	X	Х		
Upgradient	WBF-100	-	X	Х	X	Х		
	WBF-102	X	-	Х	X	X		
	MW-2	-	X	Х	X	X		
Ash Pond	MW-3	-	X	X	X	X		
	WBF-101	X	-	X	X	X		
	WBF-104	X	-	X	X	X		
Slag Disposal Area	WBF-105	X	-	X	X	X		
	WBF-106	Х	-	Χ	Χ	X		

Notes:

For each well, the program to which the well belongs as well as the parameters evaluated in this statistical analysis are identified with an 'X' and highlighted gray. Programs or parameters that are not applicable to that well are indicated with a dash (-).

¹TDEC Non-Registered Site Wells support the TDEC groundwater monitoring program for the Ash Pond coal combustion residuals (CCR) management unit.

March 31, 2024

2.0 METHODS

2.1 EXPLORATORY DATA ANALYSIS

The initial step of statistical analysis was the exploratory data analysis. The process of the exploratory data analysis utilizes simple summary statistics (e.g., mean, median, standard deviation, and percentiles) and graphical representations to identify important characteristics of an analytical dataset, such as the center of the data (i.e., mean, median), variation, distribution, patterns, presence of outliers, and randomness.

Summary statistics were calculated for each well-constituent pair. These summary statistics include information such as total number of available samples, frequency of detection, and maximum detected values and detected concentrations for each well-constituent pair. Exploratory data plots for each well-constituent pair (i.e., box plots and time series plots) were also constructed to support a visual review of the data and identify potential outliers.

Outliers are data points that are abnormally high or low as compared to other measurements and may represent anomalous data or data errors. Outliers may also represent natural variation of concentrations in environmental systems. Therefore, where potential outliers were visually identified in box plots or time-series plots, secondary statistical screening was completed using Tukey's procedure to identify extreme outliers (Tukey 1977) followed by statistical testing for outliers (Dixon or Rosner's test, α =0.05). Following confirmation of the outliers as statistically significant, a desktop evaluation was conducted to verify that the data points were not errors (e.g., laboratory or transcriptional error). Field forms, data validation reports, and other variables in the dataset that could influence analytical results were also evaluated. If a verifiable error was discovered, the outlier was removed and, if possible, replaced with a corrected value.

In the absence of a verifiable error, additional lines of evidence were reviewed to determine final outlier disposition (e.g., frequency of detection, spatial and temporal variability). If an outlier was identified as suitable for removal from further statistical analysis, a clear and defensible rationale based on multiple lines of evidence was provided. In addition, values that were identified as outliers and removed from further evaluation in the present statistical analysis were retained in the historical database and will be reevaluated for inclusion or exclusion in future statistical analyses of this dataset.

2.2 COMPARISON OF GROUNDWATER QUALITY DATA TO GROUNDWATER SCREENING LEVELS

The United States Environmental Protection Agency (USEPA) document "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance" (USEPA 2009; hereafter referred to as the Unified Guidance) describes statistical methods for comparing groundwater concentrations to fixed standards such as the TDEC-approved groundwater screening levels (GSLs) identified in Appendix A.2. In the Unified Guidance, a confidence interval approach is recommended for comparing groundwater monitoring data to a fixed numerical limit. If the underlying population is stable (i.e., no trend is present), then the Unified Guidance indicates that comparison to a fixed standard can be made based on a

March 31, 2024

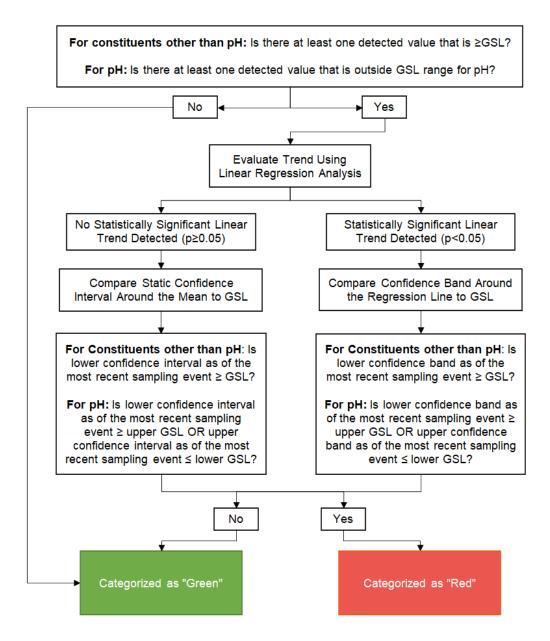
confidence interval around the mean. However, the Unified Guidance indicates that "where the data exhibit a trend over time the interval will incorporate not only the natural variability in the underlying population, but also additional variation induced by the trend itself. The net result is a confidence interval that can be much wider than expected for a given confidence level and sample size (n)." Therefore, in the presence of a statistically significant trend, the Unified Guidance recommends constructing a confidence band around a trend line, where the comparison is made to the fixed standard based on the confidence band as of the most recent evaluated sampling event, rather than a static confidence interval around the mean.

For the groundwater data reviewed herein, these approaches were applied to identify well-constituent pairs where the available data indicate a statistically significant concentration above or equal to the GSL for constituents other than pH, or statistically significant values outside the GSL range for pH. For this dataset, the null hypothesis was that the groundwater concentrations were less than the GSL for constituents other than pH and that levels were within the GSL range for pH. In accordance with the methods described in the Unified Guidance, constituent concentrations were determined to represent a statistically significant concentration above or equal to a GSL for constituents other than pH, only when there were sufficient data to support statistical confidence band or interval evaluation and the applicable lower confidence band or interval was greater than or equal to the GSL as of the most recent sampling event included in the statistical analysis. For pH, which has both an upper and lower GSL, a statistical difference was identified if there were sufficient data to support statistical analysis, and either the applicable lower confidence band or interval was greater than or equal to the upper GSL or the applicable upper confidence band or interval was less than or equal to the lower GSL as of the most recent sampling event included in the statistical analysis. Whether comparison should be made using a confidence band or confidence interval was determined for each well-constituent pair based on the results of a linear regression trend analysis for each well-constituent pair. If no significant linear trend was detected (p≥0.05 for the regression slope), comparison to the GSLs was completed based on a static confidence interval around the mean. If a statistically significant linear trend was present (p<0.05 for the regression slope), comparison to the GSLs was completed based on a confidence band around the linear regression trend line at the most recent evaluated sampling event. In both cases, the confidence band or intervals were constructed with 98 percent (%) confidence, which correspond to a lower confidence limit with 99% confidence.

Additional details regarding the methods used to compare groundwater quality data to groundwater screening levels are provided below. As described below, the approach adopted for this comparison was dependent on the number of samples available and the proportion of detected concentrations for each well-constituent pair.

2.2.1 Linear Regression Trend Analysis and Confidence Interval/ Confidence Band Evaluation

For well-constituent pairs with five or more samples and at least four detected values, groundwater quality data were compared to GSLs using a linear regression trend analysis and confidence interval/ confidence band evaluation summarized in **Figure E.3-1** (below) and described in more detail in this section.


March 31, 2024

First, data were screened to identify if there were reported individual values greater than or equal to the GSL for constituents other than pH or outside the GSL range for pH. In the absence of such a value, well-constituent pairs were classified as 'Green'. If such a value was observed, then linear regression analysis was completed to identify well-constituent pairs with a statistically significant linear trend (p<0.05) over the analyzed time period. As noted above, if no statistically significant linear trend was detected (p≥0.05), a static confidence interval around the mean was used for comparison to the GSLs. If a statistically significant linear trend was present (p<0.05), a confidence band around the linear regression trend line at the most recent evaluated sampling event was used for comparison to the GSLs. In both cases, 98% confidence intervals were constructed, which correspond to a lower confidence limit with 99% confidence. Non-detect values were conservatively represented at the reported detection limit.

The resulting confidence intervals and confidence bands were then compared to the GSL for the analyzed well-constituent pairs as of the most recent sampling event included in the statistical analysis. For constituents other than pH, well-constituent pairs were classified as 'Red', indicating a statistically significant concentration above or equal to the GSL at a 99% confidence level only if the applicable lower confidence band or interval was greater than or equal to the GSL as of the most recent sampling event included in the statistical analysis (see examples in Figure E.3-2 below). For pH, well-constituent pairs were classified as 'Red', indicating a statistically significant difference from the GSL range at a 99% confidence level, if the applicable lower confidence band or interval was greater than or equal to the upper GSL or if the applicable upper confidence interval was less than or equal to the lower GSL as of the most recent sampling event included in the statistical analysis (see examples in Figure E.3-3 below). The remaining well-constituent pairs with five or more samples and at least four detected values that were not classified as 'Red' using the linear regression trend analysis and confidence interval/ confidence band evaluation described above were classified as 'Green'. The 'Green' category indicates that as of the most recent sampling event included in the analysis, constituent levels were not statistically significantly greater than or equal to the GSL (for constituents other than pH) and not statistically greater than or equal to the upper GSL or less than or equal to the lower GSL for pH at a 99% confidence level.

March 31, 2024

Note: GSL = TDEC-approved Groundwater Screening Level (see Appendix A.2)

Figure E.3-1 – Flow chart summarizing linear regression trend analysis and confidence interval/confidence band evaluation

March 31, 2024

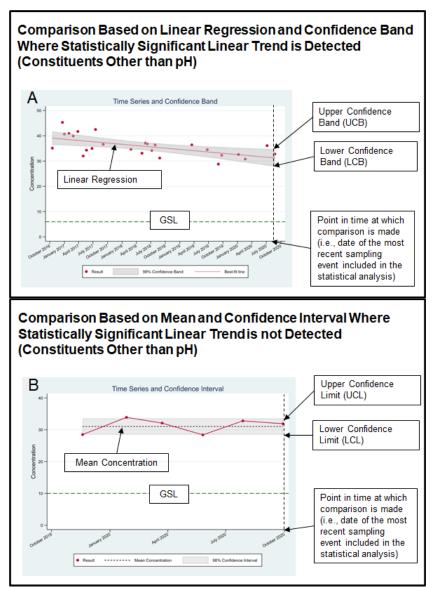


Figure E.3-2 – Examples of well-constituent pairs classified as 'Red' for constituents other than pH (A) in the presence of a statistically significant linear trend (p<0.05) and (B) in the absence of a statistically significant linear trend (p≥0.05)

March 31, 2024

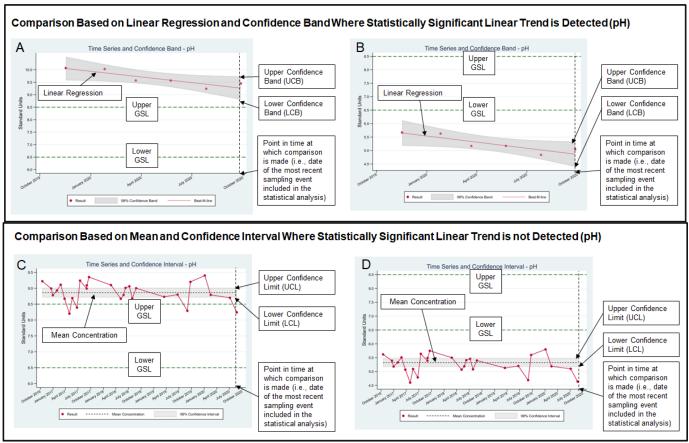


Figure E.3-3 - Examples of well-constituent pairs classified as 'Red' for pH (A, B) in the presence of a statistically significant linear trend (p<0.05) and (C, D) in the absence of a statistically significant linear trend (p≥0.05)

March 31, 2024

2.2.2 Evaluation for Well-Constituent Pairs Using Point-by-Point Method

Well-constituent pairs with less than five samples in the dataset or less than four detected results were not well suited to a linear regression trend analysis and confidence band or interval evaluation. Therefore, an alternate evaluation was completed for these well-constituent pairs based on a point-by-point comparison of the reported concentration for each sample to the applicable GSL. In this approach, well-constituent pairs were classified as 'Green*,' if there were no detected values that were greater than or equal to the GSL for constituents other than pH, or there were no detected values outside the GSL range for pH. However, if there was a limited dataset (i.e., less than five samples in the dataset or less than four detected results), and at least one value was greater than or equal to the GSL for constituents other than pH or there were detected values outside the GSL range for pH, this triggered further data review and an alternate evaluation of that well-constituent pair. For these well-constituent pairs, the available data were reviewed and alternate statistical approaches were considered (e.g., completing a statistical evaluation resulting in a 'Red' or 'Green' classification as described in Section 2.2.1 using the limited dataset). If such an alternate evaluation was required, then this was clearly identified and additional rationale provided in the applicable sub-sections of Section 3.0.

3.0 RESULTS AND DISCUSSION

3.1 EXPLORATORY DATA ANALYSIS

Summary statistics for each evaluated well-constituent pair are provided in Attachment E.3-A, with results grouped by well and sorted by constituent type. Exploratory data analysis plots for each well-constituent pair (i.e., box plots and time-series plots) are provided in Attachments E.3-B and E.3-C. These plots were reviewed to identify potential outliers and provide a qualitative evaluation of data distribution. The plots also provide a preliminary comparison of the results from individual sampling events to the applicable GSLs. There were no outliers removed from further statistical analysis based on this evaluation.

3.2 COMPARISON OF GROUNDWATER QUALITY DATA TO APPROVED GROUNDWATER SCREENING LEVELS

A summary of the results comparing groundwater quality data to GSLs is provided in Table E.3-3. The confidence bands or confidence intervals generated to support this comparison are provided in Attachment E.3-D, and the statistical results of the regression analyses are reported in Attachment E.3-E. Further discussion is provided below.

For most well-constituent pairs that were evaluated by linear regression, no statistically significant trend over time was observed based on the linear regression analyses. Comparison to the GSLs for these well-constituent pairs was completed based on a static confidence interval around the mean as shown in Attachment E.3-D. However, there were two well-constituent pairs where a statistically significant decreasing trend was detected and three well-constituent pairs where a statistically significant increasing trend was detected, as indicated in Attachment E.3-E. Comparison to the GSLs for these well-constituent pairs was completed based on a confidence band around the trend line as shown in Attachment E.3-D.

March 31, 2024

Table E.3-3 – Summary of Statistically Significant Concentrations/Values

Parameter	Background		Upgradi	ent		Ash Pond	1	Slag Disposal Area			
	WBF-103	MW-1	WBF-100	WBF-102	MW-2	MW-3	WBF-101	WBF-104	WBF-105	WBF-106	
CCR Rule Appendix III Paramete	ers				•		•				
Boron	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	
Chloride	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	
Fluoride ¹ (also Appendix IV)	Green	Green	Green	Green	Green	Green	Green	Green*	Green	Green	
pH (field)	Red	Red	Red	Green	Red	Red	Green	Red	Green	Red	
Sulfate	Green	Green	Green	Green	Green	Green	Green	Red	Red	Red	
Total Dissolved Solids	Green	Green	Red	Green	Green	Green	Green	Red	Red	Red	
CCR Rule Appendix IV Paramete	ers										
Antimony	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Arsenic	Green*	Green	Green	Green	Green*	Green	Green	Green	Green	Green	
Barium	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	
Beryllium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green*	Green*	
Cadmium	Green*	Green*	Green*	Green*	Green*	Green*	Green	Red	Green*	Green	
Chromium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Cobalt	Green	Red	Green*	Green ²	Green*	Green	Green	Red	Green*	Red	
Lead	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Lithium	Green*	Green	Green	Green*	Green	Green	Green*	Green	Green*	Green	
Mercury	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Molybdenum	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*	
Radium-226+228	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Selenium	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*	
Thallium	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*	
Additional TDEC Appendix I Par	ameters	_					-				
Copper	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Nickel	Green	Green	Green	Green*	Green	Green	Green	Green	Green*	Green	
Silver	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	
Vanadium	Green*	Green	Green*	Green*	Green	Green	Green*	Green*	Green*	Green*	
Zinc	Green*	Green	Green*	Green*	Green*	Green*	Green	Green	Green*	Green	

Notes:

Green - No statistically significant concentration greater than or equal to the GSL for constituents other than pH and no statistically significant difference outside the GSL range for pH. Green* - Limited dataset (sample size <5 or <4 detected values), but none of the available results are greater than or equal to the GSL or outside the GSL range for pH. Red - Statistically significant concentration greater than or equal to the GSL for constituents other than pH or a statistically significant difference outside the GSL range for pH. Bold colors are used to represent CCR Rule Appendix IV Parameter and TDEC Appendix I Parameter results; subdued colors represent CCR Rule Appendix III Parameter results. ¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table, fluoride has been grouped only with the Appendix III constituents to avoid duplication of results.

²For Cobalt at WBF-102, a detected concentration of 11.1 μg/L, which was greater than the GSL (6 μg/L), was observed for a single sampling event in August, 2019. Since that sampling event, cobalt at WBF-102 has been analyzed for an additional eight sampling events that took place between October 2019 and April 2022. The cobalt concentration at WBF-102 has been less than the GSL for cobalt for all eight subsequent sampling events and has been non-detect with a reported detection limit of ≤0.261 for the last seven sampling events. Because there were only two detected values (both from 2019), this well-constituent pair was not initially categorized for analysis by linear regression and confidence band/confidence interval. However, due to the single exceedance of the GSL, a confidence interval was generated for this well-constituent pair based on a replacement of the non-detect values with the full detection limit. The results of this confidence interval analysis are shown in Appendix E.3-D.

March 31, 2024

In total, 11 well-constituent pairs were identified with CCR Parameters at statistically significant concentrations greater than or equal to the GSL for constituents other than pH. There were also seven wells where a statistically significant difference from the GSL range for pH was observed. The well-constituent pairs with statistically significant concentrations greater than or equal to the GSL or outside the GSL range for pH (i.e., categorized as 'Red' in Table E.3-3) are summarized in Table E.3-4.

Table E.3-4 – Summary of Statistically Significant Concentrations Greater than the GSL

			Appendix III	Appendix IV			
Well Location	Well	pH (field)	Sulfate	Total Dissolved Solids	Cadmium	Cobalt	
Background	WBF-103	X	-	-	-	-	
Upgradient	MW-1	X	-	-	-	X	
	WBF-100	Х	-	Х	-	-	
Ask Dand	MW-2	Х	-	-	-	-	
Ash Pond	MW-3	Х	-	-	-	-	
Slag Disposal Area	WBF-104	Х	Х	X	Х	X	
	WBF-105	-	Х	Х	-	-	
	WBF-106	Х	Х	Х	-	Х	

Notes

Well-constituent pairs with CCR Parameters at statistically significant concentrations greater than or equal to the GSL for constituents other than pH or outside the GSL range for pH are identified with an 'X' and highlighted gray.

Dash (-) indicates the absence of a statistically significant concentration greater than or equal to the GSL or outside the GSL range for pH for that well-constituent pair.

March 31, 2024

4.0 REFERENCES

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley. 1977.

United States Environmental Protection Agency. (2009). *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance.* EPA 530/R-09-007, 884 pp.

ATTACHMENT E.3-A SUMMARY STATISTICS

				oundwater Inve							
		Watts E	Bar Fossil Plant -								
	Frequency of	Range of		_	Detected Data	Statistics using Detects & Non-Detects					
Parameter	Detection	Reporting Limits	% Non Detect	Minimum	Maximum		Standard		I		
	Detection	neporting Linnes		Detect	Detect	Mean	Deviation	50 th Percentile	95 th Percentile		
Well: WBF-103	ļ.	Į.		Betett	Beteet		Deviation	1			
CCR Rule Appendix III Parameters											
Boron	5/10	(38.6 - 82.7)	50.0%	41.8	79.5	52.09	13.47	59.45	81.58		
Calcium	10/10		0.0%	12,800	44,200	24,820	11,232	21,100	42,400		
Chloride	10/10		0.0%	4,410	6,680	5,223	697.6	5,280	6,208		
Fluoride ¹ (also Appendix IV)	4/10	(26 - 66.9)	60.0%	27.6	56.2	32.59	9.172	40.25	62.09		
рН	9/9		0.0%	5.15	5.83	5.509	0.233	5.48	5.814		
Sulfate	10/10		0.0%	32,900	102,000	65,210	22,298	64,500	95,070		
TDS	10/10		0.0%	97,000	230,000	168,300	43,955	172,500	226,850		
CCR Rule Appendix IV Parameters	,			,	,	*	,	,	,		
Antimony	0/10	(0.378 - 0.506)	100.0%					0.378	0.506		
Arsenic	2/10	(0.282 - 0.781)	80.0%	0.324	0.373	0.297	0.03	0.313	0.597		
Barium	10/10		0.0%	65.8	155	87.47	28.08	76.25	139.3		
Beryllium	0/10	(0.182 - 0.274)	100.0%					0.182	0.274		
Cadmium	0/10	(0.125 - 0.217)	100.0%					0.217	0.217		
Chromium	1/10	(1.53 - 2.04)	90.0%	1.55	1.55	1.532	0.00629	1.53	1.82		
Cobalt	9/10	(0.903 - 0.903)	10.0%	0.317	4.44	1.257	1.192	0.904	3.495		
Lead	1/10	(0.128 - 0.167)	90.0%	6.21	6.21	0.736	1.825	0.128	3.491		
Lithium	0/10	(0.831 - 4.97)	100.0%					3.39	4.259		
Mercury	0/10	(0.101 - 0.13)	100.0%					0.13	0.13		
Molybdenum	0/10	(0.61 - 0.61)	100.0%					0.61	0.61		
Radium-226+228	0/10	(0 - 0.845)	100.0%					0.568	0.835		
Selenium	1/10	(0.739 - 1.51)	90.0%	0.93	0.93	0.835	0.0955	1.51	1.51		
Thallium	1/10	(0.148 - 0.649)	90.0%	0.172	0.172	0.151	0.0084	0.148	0.569		
TDEC Appendix I Parameters											
Copper	1/10	(0.627 - 1.22)	90.0%	2.92	2.92	0.856	0.688	0.627	2.155		
Nickel	7/10	(1.38 - 3.4)	30.0%	1.14	3.16	1.707	0.679	1.56	3.292		
Silver	0/10	(0.177 - 0.223)	100.0%					0.177	0.223		
Vanadium	1/10	(0.776 - 1.22)	90.0%	0.999	0.999	0.801	0.0701	0.991	1.121		
Zinc	3/10	(2.88 - 8.94)	70.0%	4.66	9.38	4.244	2.145	3.94	9.182		
Well: MW-1											
CCR Rule Appendix III Parameters											
Boron	17/17		0.0%	679	1320	863.5	141.4	834	1055		
Calcium	17/17		0.0%	56,500	79,400	69,465	6,537	69,800	79,160		
Chloride	17/17		0.0%	6,600	8,520	7,360	558.4	7,350	8,184		
Fluoride ¹ (also Appendix IV)	7/21	(25 - 100)	66.7%	23	42.2	32.51	7.032	100	100		
рН	11/11		0.0%	5.54	6.34	5.869	0.204	5.87	6.17		
Sulfate	17/17		0.0%	76,900	102,000	85,412	6,956	84,700	96,640		
TDS	17/17		0.0%	234,000	432,000	292,941	42,130	287,000	340,800		
CCR Rule Appendix IV Parameters	0/04	(0.074.0)	100.00/						_		
Antimony	0/21	(0.071 - 2)	100.0%					2	2		
Arsenic	6/21	(0.313 - 2)	71.4%	0.1	0.487	0.229	0.108	1 12.1	2		
Barium	21/21	(0.066-3)	0.0%	37.7	53	43.31	4.031	43.1	48.8		
Beryllium	2/21	(0.066 - 2)	90.5%	0.054	0.076	0.0613	0.0104	1	2		
Cadmium	3/21 2/21	(0.084 - 1) (0.26 - 5)	85.7%	0.061 0.29	0.071	0.0657	0.00411 0.402	2	2.12		
Chromium	21/21	(0.26 - 5)	90.5%	6.27	2.12 15.5	0.367 10.2	2.199	9.8	14.1		
Cobalt	1/21	(0.037 - 2)	95.2%	0.045	0.045	0.0397	0.00377	9.8	2		
Lead Lithium	17/17	(0.037 - 2)	0.0%	6.85	12.7	10.16	1.851	10.1	12.54		
Mercury	0/21	(0.07 - 0.2)	100.0%					0.2	0.2		
Molybdenum	0/21	(0.07 - 0.2)	100.0%				-	0.61	5		
Radium-226+228	3/17	(0.0202 - 0.883)	82.4%	0.394	1.876	0.218	0.455	0.426	1.082		
Selenium	0/21	(0.0202 - 0.883)	100.0%		1.870			2	5		
Thallium	0/21	(0.041 - 2)	100.0%				-	1	2		
TDEC Appendix I Parameters	5/21	(0.041 - 2)	100.070		_	-		-			
Copper	1/21	(0.33 - 10)	95.2%	69.1	69.1	3.605	14.65	2	10		
Nickel	20/21	(10 - 10)	4.8%	5.4	11.6	7.255	1.534	6.9	10.5		
Silver	0/21	(0.077 - 5)	100.0%			7.233		1	2		
Vanadium	5/21	(0.16 - 4)	76.2%	2.1	5.71	0.935	1.498	1.44	4		
Zinc	8/21	(3.22 - 50)	61.9%	0.0758	10.8	4.205	3.179	8.3	25		

Attachment E.3-A Page 1 of 5

			ry Statistics - Gro								
		watts i	Bar Fossil Plant -		Detected Data						
	Frequency of	Range of		1	nly	Statistics using Detects & Non-Detects					
Parameter	Detection	Reporting Limits	% Non Detect	Minimum	Maximum		Standard	1			
	2000000	neporting zimito		Detect	Detect	Mean	Deviation	50 th Percentile	95 th Percentile		
Well: WBF-100					20.00.		200.00.00	<u> </u>	L		
CCR Rule Appendix III Parameters											
Boron	14/14		0.0%	1,560	2,650	1,799	278.5	1,680	2,247		
Calcium	14/14		0.0%	141,000	178,000	155,571	10,839	151,500	174,100		
Chloride	14/14		0.0%	6,390	9,900	7,873	1,245	7,550	9,900		
Fluoride ¹ (also Appendix IV)	8/13	(100 - 100)	38.5%	25	54.3	35.93	9.205	45.9	100		
рН	9/9		0.0%	6.01	6.39	6.304	0.12	6.36	6.39		
Sulfate	14/14		0.0%	169,000	266,000	217,786	28,146	219,000	263,400		
TDS	14/14		0.0%	488,000	725,000	578,786	58,442	568,500	665,200		
CCR Rule Appendix IV Parameters											
Antimony	1/13	(0.071 - 2)	92.3%	0.088	0.088	0.0744	0.0068	0.378	2		
Arsenic	5/13	(0.083 - 1)	61.5%	0.13	0.475	0.204	0.136	0.389	1		
Barium	13/13		0.0%	40.2	108	62.67	19.95	63.4	101.2		
Beryllium	0/13	(0.032 - 1)	100.0%					0.182	1		
Cadmium	1/13	(0.016 - 1)	92.3%	0.029	0.029	0.0225	0.0065	0.217	1		
Chromium	0/13	(0.47 - 2.09)	100.0%					1.53	2.036		
Cobalt	2/13	(0.081 - 0.5)	84.6%	0.109	0.12	0.0922	0.0161	0.134	0.5		
Lead	3/13	(0.043 - 1)	76.9%	0.061	0.541	0.149	0.173	0.541	1		
Lithium	8/14	(5 - 5)	42.9%	1.6	3.65	2.425	0.912	3.63	5		
Mercury	0/13	(0.07 - 0.2)	100.0%					0.101	0.2		
Molybdenum	0/14	(0.081 - 5)	100.0%					0.61	5		
Radium-226+228	1/14	(0.116 - 0.814)	92.9%	0.519	0.519	0.156	0.121	0.349	0.783		
Selenium	2/13	(0.14 - 5)	84.6%	0.089	0.13	0.11	0.0205	1.51	5		
Thallium	0/13	(0.026 - 1)	100.0%					0.386	1		
TDEC Appendix I Parameters	2/42	(0.42.2)	76.00/	0.460	0.677	0.400	0.0074	0.65			
Copper	3/13	(0.43 - 2)	76.9%	0.468	0.677	0.498	0.0971	0.65	2		
Nickel	8/13 0/13	(1 - 1.1) (0.077 - 1)	38.5% 100.0%	0.53	1.03	0.711	0.155	0.926 0.177	1.058		
Silver	2/13	(0.077 - 1)	84.6%	0.32	1.22	0.285	0.302	0.177	1.458		
Vanadium	3/13	(2 - 8.3)	76.9%	4.4	24.1	4.355	5.835	5	1.438		
Zinc Well: WBF-102	3/13	(2 - 8.3)	70.576	4.4	24.1	4.333	3.833]]	14.02		
CCR Rule Appendix III Parameters											
Boron	7/9	(71.2 - 105)	22.2%	42	90.8	66.13	16.02	71.2	99.32		
Calcium	9/9		0.0%	89,300	309,000	158,833	73,750	131,000	273,400		
Chloride	9/9		0.0%	4,150	37,800	15,188	11,404	12,200	33,000		
Fluoride ¹ (also Appendix IV)	5/9	(41.5 - 126)	44.4%	43.9	98.9	59.69	19.34	62.9	115.2		
рН	8/8		0.0%	6.52	6.98	6.771	0.175	6.79	6.966		
Sulfate	9/9		0.0%	90,200	664,000	281,800	213,084	179,000	616,400		
TDS	9/9		0.0%	386,000	1,280,000	704,222	347,094	562,000	1,224,000		
CCR Rule Appendix IV Parameters					_,,	,	,		_, ,,,,,,,		
Antimony	0/9	(0.378 - 0.506)	100.0%					0.378	0.455		
Arsenic	5/9	(0.313 - 0.866)	44.4%	0.369	0.495	0.398	0.0713	0.464	0.718		
Barium	9/9		0.0%	23.7	61.5	43.57	13.92	42.9	61.14		
Beryllium	0/9	(0.182 - 0.486)	100.0%					0.182	0.401		
Cadmium	2/9	(0.217 - 0.217)	77.8%	0.127	0.178	0.153	0.0255	0.217	0.217		
Chromium	3/9	(1.53 - 2.74)	66.7%	1.91	2.39	1.738	0.299	1.53	2.6		
Cobalt	2/9	(0.134 - 0.261)	77.8%	1.15	11.1	1.465	3.421	0.134	7.12		
Lead	1/9	(0.128 - 0.128)	88.9%	0.199	0.199	0.136	0.0223	0.128	0.171		
Lithium	1/9	(0.831 - 5.63)	88.9%	4.23	4.23	1.256	1.124	3.39	5.07		
Mercury	3/9	(0.101 - 0.13)	66.7%	0.543	1.23	0.327	0.369	0.13	0.964		
Molybdenum	5/9	(0.61 - 1.62)	44.4%	0.648	4.32	1.296	1.274	0.656	3.736		
Radium-226+228	0/9	(0.15 - 1.394)	100.0%					0.6	1.216		
Selenium	5/9	(1.51 - 1.51)	44.4%	1.89	5.48	2.281	1.194	1.89	4.28		
Thallium	4/9	(0.148 - 0.148)	55.6%	0.23	0.589	0.229	0.135	0.148	0.459		
TDEC Appendix I Parameters											
Copper	2/9	(0.627 - 2.06)	77.8%	0.67	1.02	0.701	0.143	0.804	1.92		
Nickel	2/9	(0.336 - 1.31)	77.8%	0.397	2.21	0.558	0.585	0.517	1.85		
Silver	0/9	(0.177 - 0.223)	100.0%					0.177	0.205		
Vanadium	2/9	(0.776 - 0.991)	77.8%	1.57	1.68	0.965	0.354	0.991	1.636		
Zinc	2/9	(3.22 - 7.24)	77.8%	3.07	4.14	3.223	0.374	3.22	6.844		

Attachment E.3-A Page 2 of 5

Frequency of Detection	Range of Reporting Limits	3ar Fossil Plant - % Non Detect	Statistics using O	nnessee Detected Data	Sta	atistics using D	etects & Non-De	tects
Detection		% Non Detect	Oi		Sta	atistics using D	etects & Non-Det	tects
Detection		% Non Detect		,				
	neperting 2ts		Minimum	Maximum		Standard		
17/17			Detect	Detect	Mean	Deviation	50 th Percentile	95 th Percentile
17/17							L	
17/17								
/		0.0%	86.6	1740	355.5	525.8	125	1636
17/17		0.0%	25,800	70,400	38,382	13,061	34,600	69,840
17/17		0.0%	1,300	9,370	3,057	2,437	1,900	7,674
7/21	(60 - 100)	66.7%	53	84	62.76	8.789	100	100
11/11		0.0%	5.89	6.33	6.205	0.147	6.28	6.33
17/17		0.0%	19,900	73,000	35,588	13,088	33,800	57,960
17/17		0.0%	86,000	299,000	163,294	58,909	148,000	297,400
0/21	(0.071 - 2)	100.0%					2	2
1/21	(0.083 - 2)	95.2%	0.332	0.332	0.114	0.0823	1	2
21/21		0.0%	31.3	83.1	49.37	16.09	43.6	78.2
0/21	(0.032 - 2)	100.0%					1	2
2/21	(0.018 - 1)	90.5%	0.04	0.065	0.0318	0.0187	1	1
1/21	(0.2 - 5)	95.2%	2.97	2.97	0.339	0.604	2	2.97
2/21	(0.081 - 2)	90.5%	0.079	0.65	0.127	0.158	0.5	2
0/21	(0.028 - 2)						1	2
	, ,							14
								0.2
								5
								0.678
								5
0/21	(0.026 - 2)	100.0%					1	2
2/24	(0.22.40)	00.5%	0.50	0.016	0.420	0.472	2	
								2
								2.15
								5.61
								25
1/21	(1.9 - 30)	93.276	2.3	2.3	1.56	0.10	6.3	23
16/16		0.0%	147	2 030	749 6	494 4	600	1,490
								72,300
· · · · · · · · · · · · · · · · · · ·					•	,		6,253
	(100 - 100)							100
	` ,							6.259
								102.175
			,	,				316,750
-5, -5				2 10,000		01,101		020,100
0/21	(0.071 - 2)	100.0%					2	2
5/21	(0.14 - 2)	76.2%	0.099	0.38	0.149	0.0884	1	2
21/21		0.0%	34.7	132	91.05	25.2	94.3	120
0/21	(0.032 - 2)	100.0%					1	2
1/21	(0.016 - 1)	95.2%	0.12	0.12	0.0368	0.0416	1	1
2/21	(0.64 - 5)	90.5%	1.4	2.74	0.889	0.518	2	2.74
4/21	(0.081 - 2)	81.0%	0.264	0.87	0.249	0.256	0.687	2
1/21	(0.028 - 2)	95.2%	0.138	0.138	0.0437	0.0385	1	2
5/16	(2.56 - 50)	68.8%	0.55	0.8	0.64	0.108	3.39	16.25
0/21	(0.07 - 0.2)	100.0%					0.2	0.2
2/16	(0.08 - 5)	87.5%	0.089	0.13	0.0936	0.0186	0.61	5
3/16	(0.0834 - 0.794)	81.3%	0.16	0.68	0.171	0.183	0.403	0.787
3/21	(0.14 - 10)	85.7%	0.075	0.2	0.115		2	5
0/21	(0.026 - 2)	100.0%					1	2
2/21	(0.42 - 10)	90.5%	0.405	1.7	0.567	0.428	2	2
			0.44			0.367		2
	, ,							2
								4.29 25
	11/11 17/17 17/17 17/17 17/17 0/21 1/21 21/21 0/21 2/21 1/21 0/21 0/	11/11 17/17 17/11 (0.081 - 2) 17/11 (0.032 - 2) 17/11 (0.015 - 1) 17/11 (0.015 - 5) 17/11 (0.015 - 0.713) 17/11 (0.015 - 0.713) 17/11 (0.015 - 0.713) 17/11 (0.015 - 0.713) 17/11 (0.015 - 0.713) 17/11 (0.016 - 1) 17/11 (0.077 - 5) 17/11 (0.077 - 5) 17/11 (0.077 - 5) 17/11 (0.077 - 5) 17/11 (0.077 - 5) 17/11 (0.071 - 2) 17/11 (0.071 - 2) 17/11 (0.016 - 1) 17/11 (0.016 -	11/11 0.0% 17/17 0.0% 17/17 0.0% 17/17 0.0% 0/21 (0.071 - 2) 100.0% 1/21 (0.083 - 2) 95.2% 21/21 0.0% 0/21 (0.018 - 1) 90.5% 1/21 (0.2 - 5) 95.2% 2/21 (0.081 - 2) 90.5% 0/21 (0.028 - 2) 100.0% 0/21 (0.028 - 2) 100.0% 0/21 (0.07 - 0.2) 100.0% 0/21 (0.07 - 0.2) 100.0% 0/21 (0.081 - 5) 100.0% 0/21 (0.07 - 0.2) 100.0% 0/21 (0.07 - 0.2) 100.0% 0/21 (0.081 - 5) 100.0% 0/21 (0.081 - 5) 100.0% 0/21 (0.081 - 10) 100.0% 0/21 (0.026 - 2) 100.0% 1/21 (0.18 - 10) 81.0% 1/21 <td>11/11 0.0% 5.89 17/17 0.0% 19,900 17/17 0.0% 86,000 17/17 0.0% 86,000 0/21 (0.031-2) 100.0% 1/21 (0.083-2) 95.2% 0.332 21/21 (0.018-1) 90.5% 0.04 1/21 (0.2-5) 95.2% 2.97 2/21 (0.081-2) 90.5% 0.04 1/21 (0.2-5) 95.2% 2.97 2/21 (0.081-2) 90.5% 0.079 0/21 (0.028-2) 100.0% 5/17 (2.56-50) 70.6% 0.42 0/21 (0.07-0.2) 100.0% 0/21 (0.07-0.2) 100.0% 0/21 (0.067-10) 100.0% 10/21 (0.067-10) 100.0% 2/21 (0.33-10) 90.5% 0.59 4/21</td> <td>11/11 0.0% 5.89 6.33 17/17 0.0% 19,900 73,000 17/17 0.0% 86,000 299,000 0/21 (0.071-2) 100.0% 1/21 (0.083-2) 95.2% 0.332 0.332 2/21 (0.018-1) 90.5% 0.04 0.065 1/21 (0.2-5) 95.2% 2.97 2.97 2/21 (0.081-2) 90.5% 0.04 0.065 0/21 (0.028-2) 100.0% 5/17 (2.56-50) 70.6% 0.42 0.59 0/21 (0.07-0.2) 100.0% 0/21 (0.07-0.2) 100.0% 0/21 (0.067-10) 100.0% 0/21 (0.067-10) 10.0% 0/21 (0.067-10) 10.0% 0/21 (0.0</td> <td> 11/11</td> <td> 11/11</td> <td> 11/11</td>	11/11 0.0% 5.89 17/17 0.0% 19,900 17/17 0.0% 86,000 17/17 0.0% 86,000 0/21 (0.031-2) 100.0% 1/21 (0.083-2) 95.2% 0.332 21/21 (0.018-1) 90.5% 0.04 1/21 (0.2-5) 95.2% 2.97 2/21 (0.081-2) 90.5% 0.04 1/21 (0.2-5) 95.2% 2.97 2/21 (0.081-2) 90.5% 0.079 0/21 (0.028-2) 100.0% 5/17 (2.56-50) 70.6% 0.42 0/21 (0.07-0.2) 100.0% 0/21 (0.07-0.2) 100.0% 0/21 (0.067-10) 100.0% 10/21 (0.067-10) 100.0% 2/21 (0.33-10) 90.5% 0.59 4/21	11/11 0.0% 5.89 6.33 17/17 0.0% 19,900 73,000 17/17 0.0% 86,000 299,000 0/21 (0.071-2) 100.0% 1/21 (0.083-2) 95.2% 0.332 0.332 2/21 (0.018-1) 90.5% 0.04 0.065 1/21 (0.2-5) 95.2% 2.97 2.97 2/21 (0.081-2) 90.5% 0.04 0.065 0/21 (0.028-2) 100.0% 5/17 (2.56-50) 70.6% 0.42 0.59 0/21 (0.07-0.2) 100.0% 0/21 (0.07-0.2) 100.0% 0/21 (0.067-10) 100.0% 0/21 (0.067-10) 10.0% 0/21 (0.067-10) 10.0% 0/21 (0.0	11/11	11/11	11/11

Attachment E.3-A Page 3 of 5

Parameter			Summar	y Statistics - Gro	oundwater Inve	stigation					
Prequency Company Co			Watts E	Bar Fossil Plant -	Spring City, Te	nnessee					
Parameters	_	Frequency of	Range of		_		Statistics using Detects & Non-Detects				
West Work 1-10 1-	Parameter		_	% Non Detect	Minimum	Maximum	Mean		50 th Percentile	95 th Percentile	
Color	Well: WBF-101				Detect	Detect		Deviation			
Decom											
Chloride		7/10	(38.6 - 76.4)	30.0%	42.5	2,030	503.4	674	83.4	1,783	
FlaceInfel (place Appendix IV)	Calcium	10/10		0.0%	105,000	302,000	164,400	66,029	145,000	279,050	
Suffage		10/10		0.0%	4,600	9,960	6,656	1,480	6,575	8,781	
Description	Fluoride ¹ (also Appendix IV)	6/10	(60.2 - 110)	40.0%	39.6	128	62.12	23.29	62	119.9	
Sulfate 10/10	nH									6.742	
TOS				0.0%	158,000	884,000	406,800	249,260	349,000	844,850	
Ansternory		10/10		0.0%	425,000	1,340,000	740,900	332,465	640,500	1,317,500	
Assenic 8/10 (1.19-2.18) 20.0% 0.644 1.94 1.121 0.456 1.25 Barlum 10/10 0.0% 29.9 466 20.2 137.5 169.5 169.5 Beryllium 2/10 (1.018-0.317) 80.00% 0.223 0.338 0.202 0.00466 0.198 C.Combium 4/10 (1.0125-0.414) 60.00% 0.668 3.76 0.821 1.179 0.316 Chromium 0/10 (1.25-1.51) 100.00% 1.53 C.Cobitt 1.10/10 0.0% 0.668 3.76 0.821 1.179 0.316 0.338 0.202 0.00466 0.198 C.Cobitt 1.10/10 0.0% 0.668 3.76 0.821 1.179 0.316 0.318 0.202 0.00466 0.198 0.0046 0.108 0.0046 0.00	CCR Rule Appendix IV Parameters										
Assenic 8/10 (1.19-2.18) 20.0% 0.644 1.94 1.121 0.456 1.25 Beryllium 10/10 0.0% 259 466 20.24 157.5 169.5 169.5 Seryllium 2/10 (0.182-0.317) 80.0% 0.213 0.338 0.202 0.0466 0.198 Cadmium 4/10 (0.125-0.414) 60.0% 0.658 3.76 0.821 1.179 0.316 0.100 0.	• • • • • • • • • • • • • • • • • • • •	0/10	(0.378 - 1.07)	100.0%					0.378	0.816	
		8/10	(1.19 - 2.18)	20.0%	0.644	1.94	1.121	0.456	1.25	2.072	
		10/10		0.0%	29.9	466	204.2	157.5	169.5	443.5	
Cadmium		2/10	(0.182 - 0.317)	80.0%	0.213	0.338	0.202	0.0466	0.198	0.329	
Cabalit		4/10	(0.125 - 0.414)	60.0%	0.668	3.76	0.821	1.179	0.316	3.121	
Lead	Chromium	0/10	(1.53 - 1.53)	100.0%					1.53	1.53	
Lithium	Cobalt	10/10		0.0%	0.462	297	72.7	111.4	4.045	275	
Nercury		1/10	(0.128 - 0.167)	90.0%	0.238	0.238	0.139	0.033	0.128	0.206	
Mohybdreum	Lithium	3/10	(0.831 - 3.39)	70.0%	2.24	4.23	2.031	1.179	3.39	4.037	
Radium-226+228	Mercury	1/10	(0.101 - 0.13)	90.0%	0.16	0.16	0.107	0.0177	0.13	0.147	
Selenium	Molybdenum	0/10	(0.61 - 0.61)	100.0%					0.61	0.61	
Thaillum	Radium-226+228	1/10	(0 - 1.159)	90.0%	0.948	0.948	0.105	0.298	0.705	1.064	
TDEC Appendix Parameters	Selenium	0/10	(0.739 - 1.51)	100.0%					1.51	1.51	
Copper	Thallium	1/10	(0.148 - 0.692)	90.0%	0.19	0.19	0.155	0.0157	0.169	0.593	
Nickel	TDEC Appendix I Parameters										
Silver	Copper	0/10	(0.627 - 4.36)	100.0%					0.627	2.911	
Vanadium	Nickel	4/10	(0.336 - 1.72)	60.0%	10.5	47.3	11.82	17.04	1.126	44.15	
Zinc 6/10 (2.88 - 3.88) 40.0% 8.02 145 38.52 51.83 8.815	Silver	0/10	(0.177 - 0.223)	100.0%					0.177	0.223	
Well: WBF-104 CCR Rule Appendix III Parameters Interest of the parameters Intere	Vanadium	0/10	(0.776 - 0.991)	100.0%					0.991	0.991	
CCR Rule Appendix III Parameters	Zinc	6/10	(2.88 - 3.88)	40.0%	8.02	145	38.52	51.83	8.815	137.4	
Boron 10/10	Well: WBF-104										
Calcium 10/10 0.0% 208,000 604,000 487,000 113,641 509,500 Chloride 10/10 0.0% 2,950 11,100 6,410 2,116 6,220 Fluoride¹ (also Appendix IV) 2/10 (32.8 - 149) 80.0% 36.8 77.7 39.57 13.61 65 pH 10/10 0.0% 5.32 5.78 5.464 0.137 5.48 Sulfate 10/10 0.0% 726,000 1,970,000 1,550,600 359,610 1,640,000 TOS 10/10 0.0% 1,050,000 2,810,000 2,993,000 573,257 2,225,000 CCR Rule Appendix IV Parameters 0.378 0.731 0.44 0.538 0.388 0.701 0.451 0.14 0.538 0.378 0.701 0.451 0.14 0.538 0.285 0.285 0.285 0.222 0.255	CCR Rule Appendix III Parameters										
Chloride										5,244	
Fluoride (also Appendix IV)										593,650	
DH		10/10		0.0%	2,950		6,410	2,116	6,220	9,480	
Sulfate 10/10 0.0% 726,000 1,970,000 1,550,600 359,610 1,640,000 TDS 10/10 0.0% 1,050,000 2,810,000 2,93,000 573,257 2,225,000 CCR Rule Appendix IV Parameters 0.378 Antimony 0/10 (0.382 - 0.872) 50.0% 0.318 0.701 0.451 0.14 0.538 Barium 10/10 0.0% 19.7 43.4 27.13 8.436 22.85 Beryllium 5/10 (0.182 - 0.274) 50.0% 0.182 0.309 0.214 0.0395 0.227 Cadmium 10/10 0.0% 6.08 10.9 8.47 1.576 8.37 Chromium 0/10 (1.53 - 1.7) 100.0% 1.53 Cobalt 10/10 0.0% 1.67 598 404.8 149.7 408 <td>Fluoride¹ (also Appendix IV)</td> <td>2/10</td> <td>(32.8 - 149)</td> <td>80.0%</td> <td>36.8</td> <td>77.7</td> <td>39.57</td> <td>13.61</td> <td>65</td> <td>116.9</td>	Fluoride ¹ (also Appendix IV)	2/10	(32.8 - 149)	80.0%	36.8	77.7	39.57	13.61	65	116.9	
TDS	рН	,		0.0%	5.32			0.137	5.48	5.672	
CCR Rule Appendix IV Parameters O/10 (0.378 - 0.506) 100.0% 0.378 Arsenic 5/10 (0.282 - 0.872) 50.0% 0.318 0.701 0.451 0.14 0.538 Barium 10/10 0.0% 19.7 43.4 27.13 8.436 22.85 Beryllium 5/10 (0.182 - 0.274) 50.0% 0.182 0.309 0.214 0.0395 0.227 Cadmium 10/10 0.0% 6.08 10.9 8.47 1.576 8.37 Chromium 0/10 (1.53 - 1.7) 100.0% 1.53 Cobalt 10/10 0.0% 167 598 404.8 149.7 408 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.101 - 0.13) 100.0%	Sulfate									1,920,500	
Antimony 0/10 (0.378 - 0.506) 100.0% 0.378 Arsenic 5/10 (0.282 - 0.872) 50.0% 0.318 0.701 0.451 0.14 0.538 Barium 10/10 0.0% 19.7 43.4 27.13 8.436 22.85 Beryllium 5/10 (0.182 - 0.274) 50.0% 0.182 0.309 0.214 0.0395 0.227 Cadmium 10/10 0.0% 6.08 10.9 8.47 1.576 8.37 Chromium 0/10 (1.53 - 1.7) 100.0% 1.53 Cobalt 10/10 0.0% 167 598 404.8 149.7 408 Lead 2/10 (0.128 - 0.218) 80.0% 0.178 0.232 0.145 0.0335 0.167 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565	TDS	10/10		0.0%	1,050,000	2,810,000	2,093,000	573,257	2,225,000	2,769,500	
Arsenic 5/10 (0.282 - 0.872) 50.0% 0.318 0.701 0.451 0.14 0.538 Barium 10/10 0.0% 19.7 43.4 27.13 8.436 22.85 Beryllium 5/10 (0.182 - 0.274) 50.0% 0.182 0.309 0.214 0.0395 0.227 Cadmium 10/10 0.0% 6.08 10.9 8.47 1.576 8.37 Chromium 0/10 (1.53 - 1.7) 100.0% 1.53 Cobalt 10/10 0.0% 167 598 404.8 149.7 408 Lead 2/10 (0.128 - 0.218) 80.0% 0.178 0.232 0.145 0.0335 0.167 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.61 - 0.61) 100.0%	CCR Rule Appendix IV Parameters										
Barium										0.506	
Beryllium										0.795	
Cadmium 10/10 0.0% 6.08 10.9 8.47 1.576 8.37 Chromium 0/10 (1.53 - 1.7) 100.0% 1.53 Cobalt 10/10 0.0% 167 598 404.8 149.7 408 Lead 2/10 (0.128 - 0.218) 80.0% 0.178 0.232 0.145 0.0335 0.167 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.101 - 0.13) 100.0% 0.13 Molybdenum 0/10 (0.61 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0%	Barium									41.11	
Chromium 0/10 (1.53 - 1.7) 100.0% 1.53 Cobalt 10/10 0.0% 167 598 404.8 149.7 408 Lead 2/10 (0.128 - 0.218) 80.0% 0.178 0.232 0.145 0.0335 0.167 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.101 - 0.13) 100.0% 0.13 Molybdenum 0/10 (0.61 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 <t< td=""><td></td><td></td><td>(0.182 - 0.274)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.293</td></t<>			(0.182 - 0.274)							0.293	
Cobalt 10/10 0.0% 167 598 404.8 149.7 408 Lead 2/10 (0.128 - 0.218) 80.0% 0.178 0.232 0.145 0.0335 0.167 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.101 - 0.13) 100.0% 0.13 Molybdenum 0/10 (0.61 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 0.153 TEC Appendix I Parameters<										10.72	
Lead 2/10 (0.128 - 0.218) 80.0% 0.178 0.232 0.145 0.0335 0.167 Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.101 - 0.13) 100.0% 0.13 Molybdenum 0/10 (0.64 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 0.153 TEC Appendix I Parameters Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0										1.624	
Lithium 4/10 (3.39 - 7.07) 60.0% 3.54 4.06 3.584 0.248 3.565 Mercury 0/10 (0.101 - 0.13) 100.0% 0.13 Molybdenum 0/10 (0.61 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.15 0.00373 0.153 TDEC Appendix I Parameters 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 10.0% -				1						597.1	
Mercury 0/10 (0.101 - 0.13) 100.0% 0.13 Molybdenum 0/10 (0.61 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 0.153 TDEC Appendix I Parameters Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 10.0% 0.177 Vanadium 1/10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.226</td>										0.226	
Molybdenum 0/10 (0.61 - 0.61) 100.0% 0.61 Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 0.153 TDEC Appendix I Parameters Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 10.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991				1			3.584	U.248		6.58	
Radium-226+228 3/10 (0.0847 - 1.002) 70.0% 0.758 1.366 0.403 0.463 0.739 Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 0.153 TDEC Appendix I Parameters Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991										0.13	
Selenium 0/10 (0.739 - 1.51) 100.0% 1.51 Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.158 0.15 0.00373 0.153 TDEC Appendix I Parameters Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991	,									0.61	
Thallium 1/10 (0.148 - 0.472) 90.0% 0.158 0.15 0.00373 0.153 TDEC Appendix I Parameters Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991			, ,					U.463		1.202	
TDEC Appendix I Parameters 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991										1.51	
Copper 1/10 (0.627 - 2.1) 90.0% 1.06 1.06 0.689 0.152 0.753 Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991		1/10	(0.148 - 0.472)	90.0%	0.158	0.158	0.15	0.00373	0.153	0.472	
Nickel 10/10 0.0% 32.2 105 70.71 23.25 67.2 Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991	• • • • • • • • • • • • • • • • • • • •	1/10	(0.637, 3.4)	00.00/	1.00	1.00	0.600	0.453	0.753	1.000	
Silver 0/10 (0.177 - 0.223) 100.0% 0.177 Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991										1.668	
Vanadium 1/10 (0.776 - 1.18) 90.0% 1.02 1.02 0.803 0.0767 0.991										102.3	
										0.223	
										1.108	
Zinc - U.U% 48 241 131.2 56.41 119	Zinc	10/10		0.0%	48	241	131.2	56.41	119	215.8	

Attachment E.3-A Page 4 of 5

		Summar	y Statistics - Gro	oundwater Inve	estigation					
		Watts E	Bar Fossil Plant -	Spring City, Te	nnessee					
				Statistics using	g Detected Data	Statistics using Detects & Non-Detects				
Parameter	Frequency of	Range of	% Non Detect	Only		30	atistics using D	Detects & Non-Detects		
T drameter	Detection	Reporting Limits	76 Non Beteet	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile	
Well: WBF-105										
CCR Rule Appendix III Parameters										
Boron	5/10	(38.6 - 114)	50.0%	47.8	64.5	48.2	8.119	51	91.73	
Calcium	10/10		0.0%	127,000	140,000	133,300	4,322	133,000	139,550	
Chloride	10/10		0.0%	4,240	7,860	5,710	898.6	5,570	7,032	
Fluoride ¹ (also Appendix IV)	5/10	(74.1 - 139)	50.0%	53	79.3	68.09	10.1	79.15	135.9	
pH	10/10		0.0%	6.51	6.73	6.618	0.091	6.635	6.721	
Sulfate	10/10		0.0%	326,000	354,000	341,600	9,192	342,500	352,200	
TDS	10/10		0.0%	640,000	716,000	680,300	26,411	678,500	713,300	
CCR Rule Appendix IV Parameters										
Antimony	1/10	(0.378 - 0.563)	90.0%	0.584	0.584	0.399	0.0618	0.378	0.575	
Arsenic	7/10	(1.27 - 1.7)	30.0%	1.22	1.54	1.317	0.0972	1.32	1.628	
Barium	10/10		0.0%	92	112	100.1	6.377	98.3	111.1	
Beryllium	0/10	(0.182 - 0.347)	100.0%					0.182	0.314	
Cadmium	0/10	(0.125 - 0.217)	100.0%					0.217	0.217	
Chromium	0/10	(1.53 - 10.9)	100.0%					1.53	6.913	
Cobalt	2/10	(0.134 - 0.262)	80.0%	0.113	0.151	0.119	0.0142	0.143	0.262	
Lead	0/10	(0.128 - 0.167)	100.0%	1.10				0.128	0.167	
Lithium	1/10	(0.831 - 6.41)	90.0%	1.16	1.16	0.996	0.165	3.39	5.983	
Mercury	0/10 2/10	(0.101 - 0.13)	100.0% 80.0%	0.615	1.4	0.69	0.237	0.13 0.61	0.13 1.047	
Molybdenum	3/10	(0.61 - 0.61)	70.0%		1.512	0.69	0.237	0.764	1.423	
Radium-226+228	0/10	(0.438 - 0.939)	100.0%	1.236	1.512	0.713	0.424	1.51	1.423	
Selenium		(0.739 - 1.51)		0.294	0.294	0.169	0.0511		0.472	
Thallium	1/10	(0.148 - 0.472)	90.0%	0.294	0.294	0.169	0.0511	0.148	0.472	
TDEC Appendix I Parameters	1/10	(0.627 - 1.14)	90.0%	0.93	0.93	0.67	0.106	0.682	1.14	
Copper	0/10	(0.336 - 0.865)	100.0%	0.93	0.95		0.106	0.882	0.708	
Nickel Silver	0/10	(0.177 - 0.223)	100.0%					0.330	0.708	
Vanadium	2/10	(0.776 - 0.991)	80.0%	1.01	1.4	0.862	0.192	0.991	1.225	
Zinc	2/10	(2.88 - 4.51)	80.0%	3.05	4.39	3.123	0.455	3.22	4.456	
Well: WBF-106	2/10	(2.00 4.51)	00.070	3.03	4.55	3.123	0.433	3.22	4.430	
CCR Rule Appendix III Parameters			I	I	1		Γ	I	I	
Boron	7/10	(57.7 - 252)	30.0%	66.4	260	168.2	78.81	206	256.4	
Calcium	10/10		0.0%	132,000	163,000	152,300	11,870	159,000	162,550	
Chloride	10/10		0.0%	3,300	7,790	4,936	1,438	4,690	7,484	
Fluoride ¹ (also Appendix IV)	6/10	(77.8 - 133)	40.0%	26.7	89.9	53.69	20.57	71	132.6	
pH	10/10		0.0%	5.46	6.32	5.738	0.311	5.6	6.235	
Sulfate	10/10		0.0%	427,000	550,000	485,500	41,674	482,500	539,650	
TDS	10/10		0.0%	636,000	891,000	794,300	84,782	792,000	888,300	
CCR Rule Appendix IV Parameters										
Antimony	0/10	(0.378 - 0.506)	100.0%					0.378	0.506	
Arsenic	5/10	(0.282 - 1.66)	50.0%	0.382	1.7	0.57	0.4	0.732	1.682	
Barium	10/10		0.0%	17.6	51.4	31.58	10.32	31.7	47.22	
Beryllium	2/10	(0.182 - 0.642)	80.0%	0.186	0.198	0.185	0.00554	0.184	0.476	
Cadmium	8/10	(0.125 - 0.217)	20.0%	0.218	0.98	0.519	0.307	0.495	0.97	
Chromium	0/10	(1.53 - 1.76)	100.0%					1.53	1.657	
Cobalt	10/10		0.0%	2.19	80.7	52.54	28.75	64.15	79.67	
Lead	2/10	(0.128 - 0.223)	80.0%	0.137	0.251	0.142	0.0365	0.138	0.238	
Lithium	4/10	(3.39 - 3.81)	60.0%	2.1	3.93	2.524	0.683	3.39	3.885	
Mercury	0/10	(0.101 - 0.13)	100.0%					0.13	0.13	
Molybdenum	0/10	(0.61 - 0.61)	100.0%					0.61	0.61	
Radium-226+228	2/10	(0.0967 - 1.334)	80.0%	0.659	1.785	0.338	0.517	0.626	1.582	
Selenium	0/10	(0.739 - 1.51)	100.0%					1.51	1.51	
Thallium	0/10	(0.148 - 0.57)	100.0%					0.151	0.526	
TDEC Appendix I Parameters	0/40	(0.6373.00)	100.00/					0.637	2.000	
Copper	0/10	(0.627 - 3.89)	100.0%		 16 F	10.12	 F 7F1	0.627	2.909	
Nickel	9/10	(1.79 - 1.79)	10.0%	0.359	16.5	10.12	5.751	12.75	16.19	
Silver	0/10	(0.177 - 0.223) (0.776 - 0.991)	100.0%	1.01	1.01	0.700	0.0702	0.177	0.223	
Vanadium	1/10	,	90.0%	1.01	1.01	0.799	0.0702	0.991	1.001	
Zinc	9/10	(5.44 - 5.44)	10.0%	6.09	42.1	25.53	12.53	30.2	39.13	

CCR Rule - Title 40, Code of Federal Regulations, Part 257

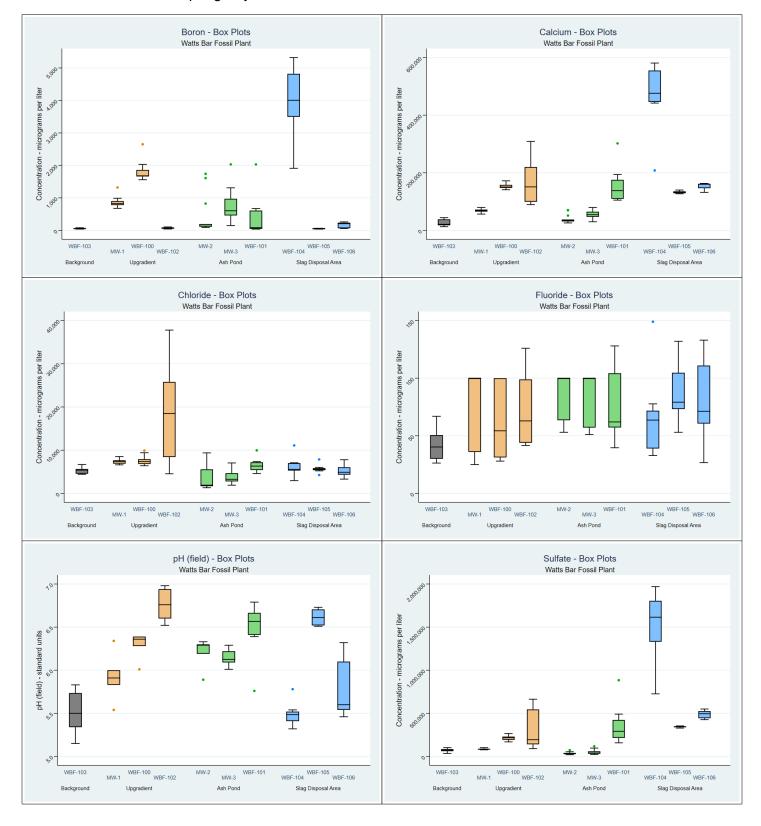
TDEC - Tennessee Department of Environment and Conservation
"--" - Not Applicable

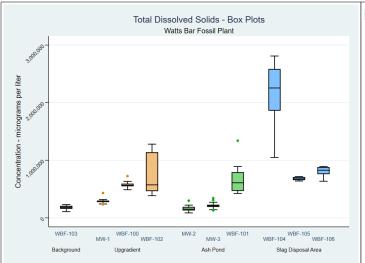
Except for Radium-226 + 228, and pH, all units micrograms per liter (μ g/L).

Units for Radium 226+228 are picocuries per liter (pCi/L).

Units for pH are standard units (SU).

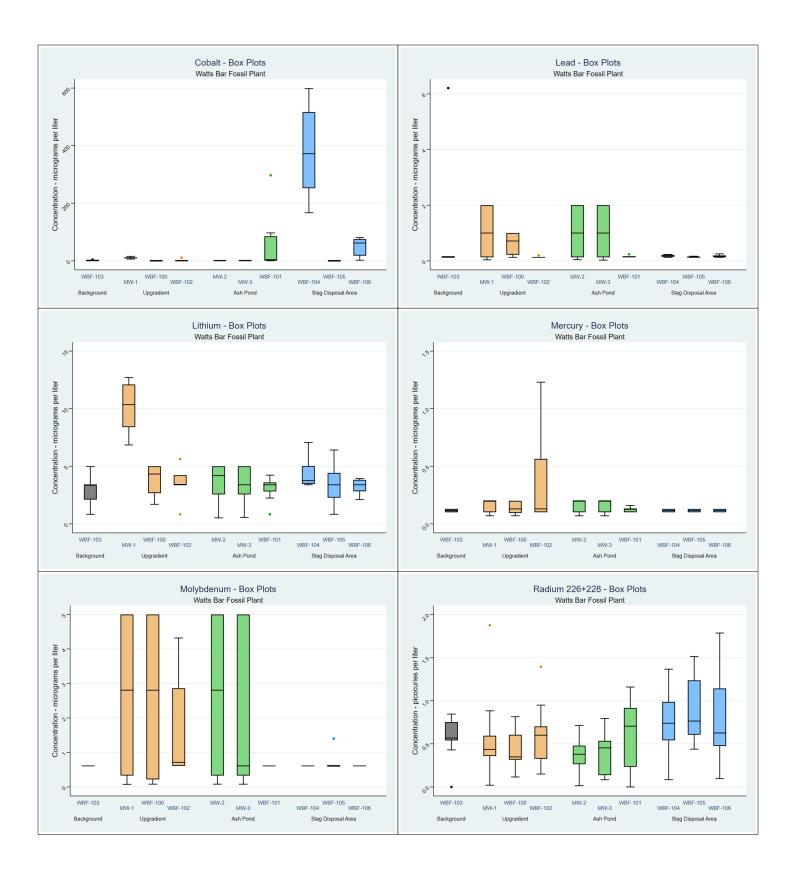
Mean and Standard Deviation are Kaplan Meier (KM) Mean and Standard Deviation for data with reported non-detect values.

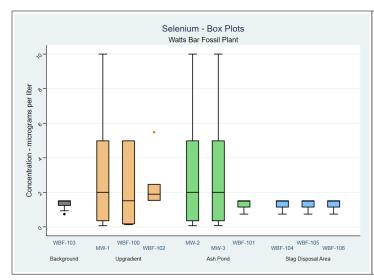

All non-detects reported at the laboratory reporting limit

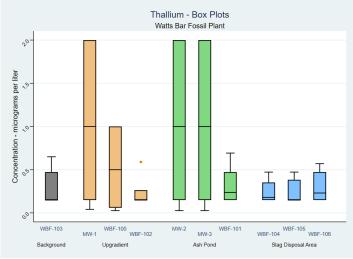

¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table, fluoride has been grouped with the Appendix III constituents only to avoid duplication of results.

Attachment E.3-A Page 5 of 5

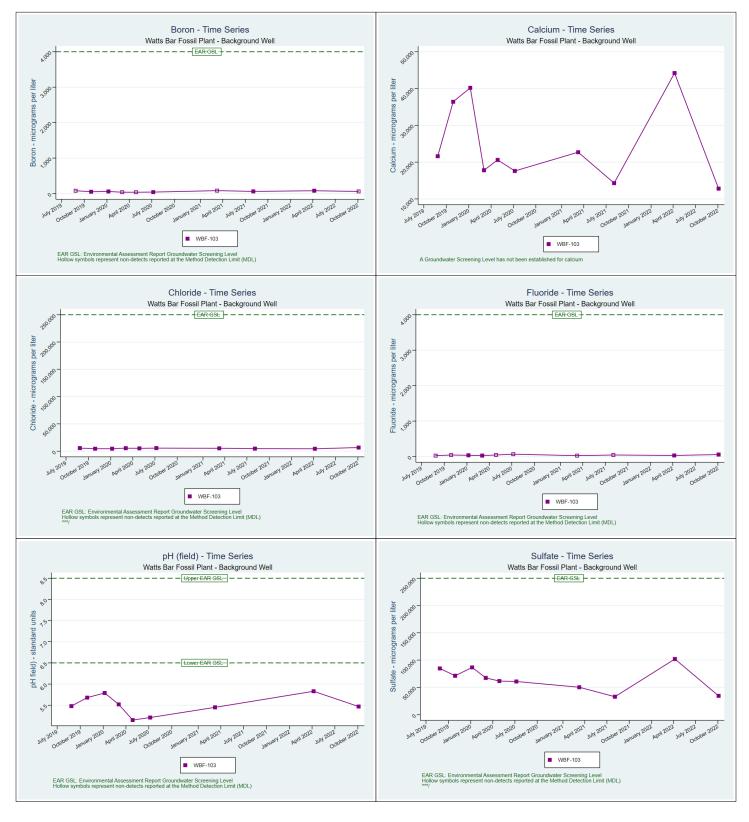
ATTACHMENT E.3-B BOX PLOTS


Box Plots CCR Rule Appendix III Parameters Watts Bar Fossil Plant - Spring City, Tennessee

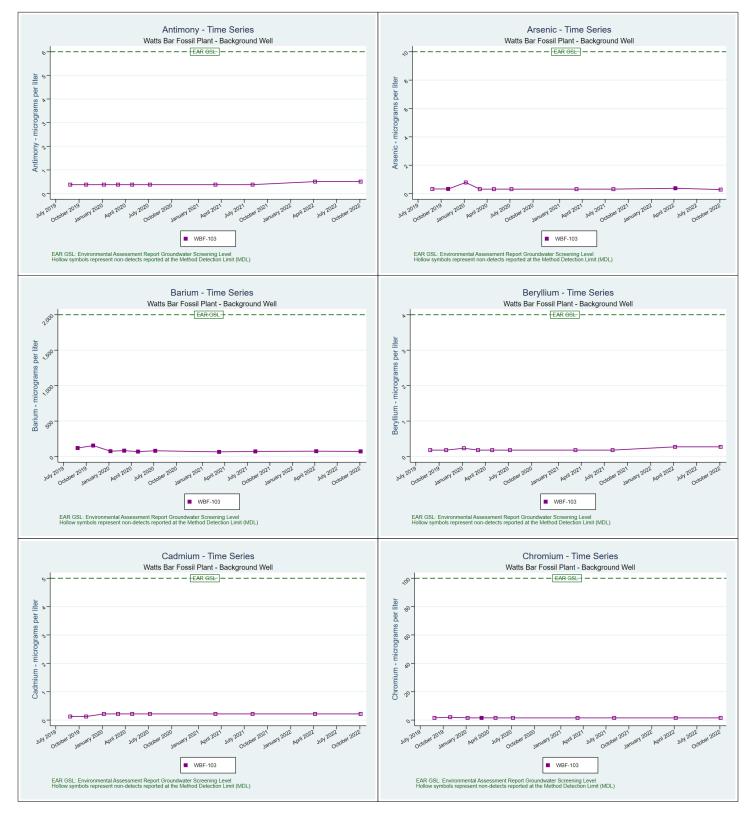


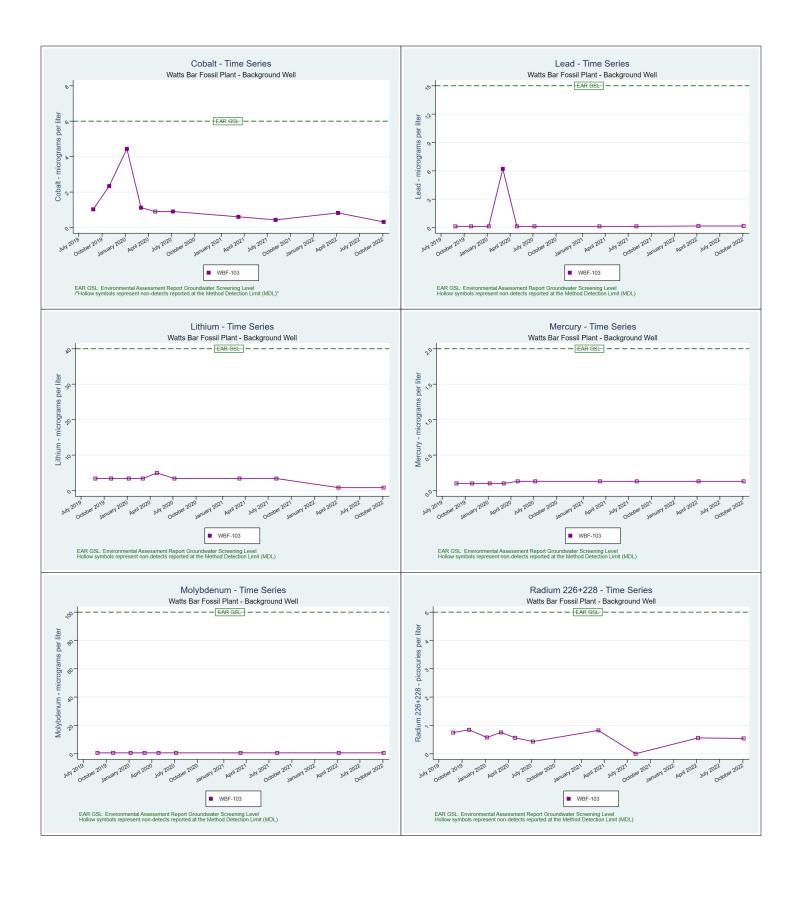


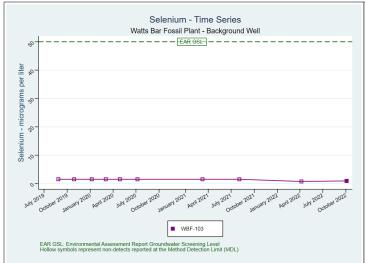
Box Plots CCR Rule Appendix IV Parameters Watts Bar Fossil Plant - Spring City, Tennessee

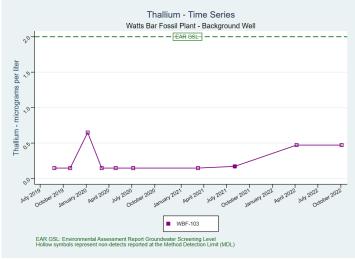


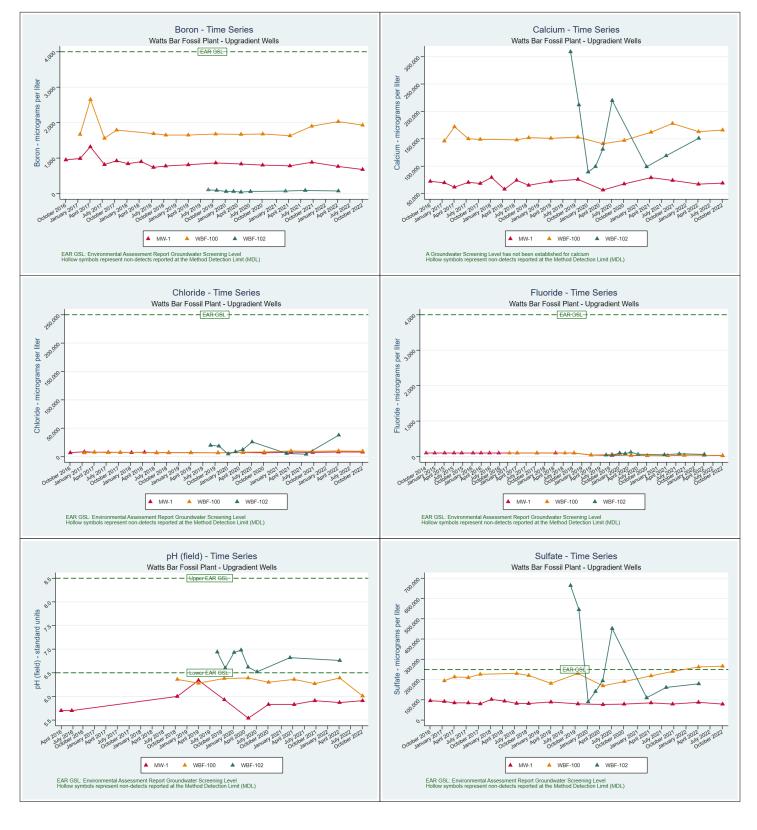


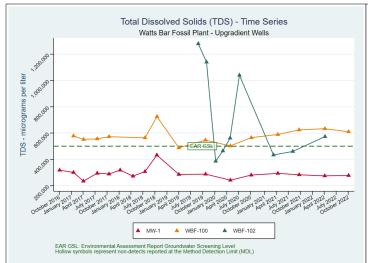

Box Plots
TDEC Appendix I Parameters
Watts Bar Fossil Plant - Spring City, Tennessee

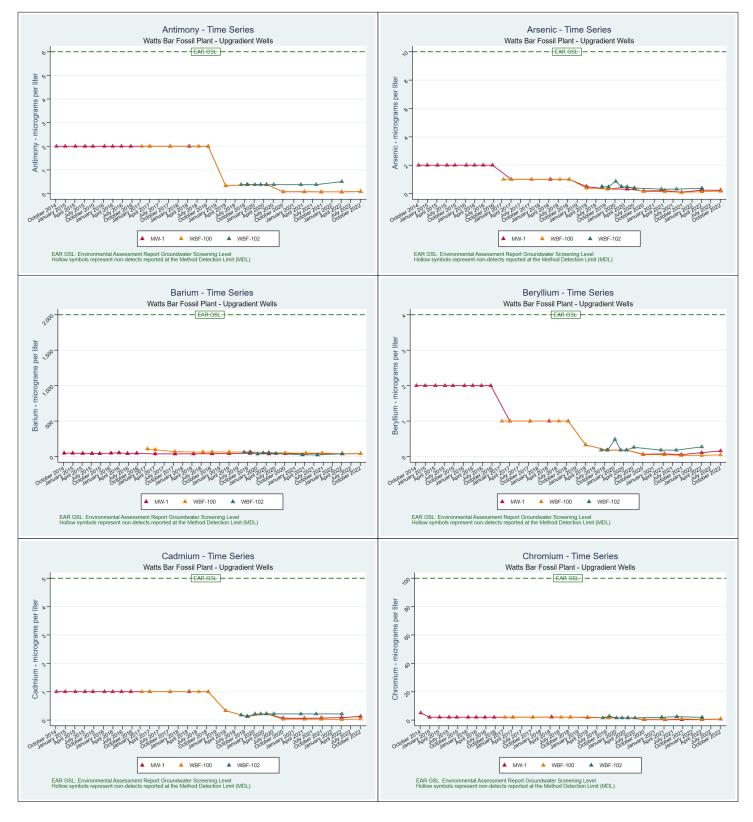


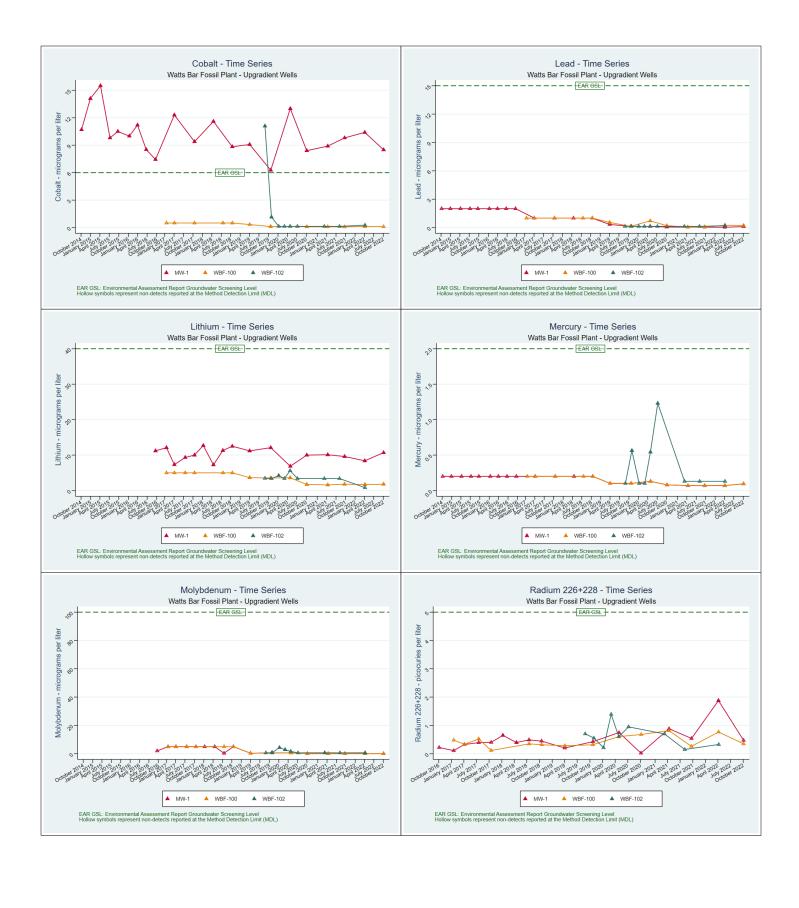

ATTACHMENT E.3-C TIME SERIES PLOTS

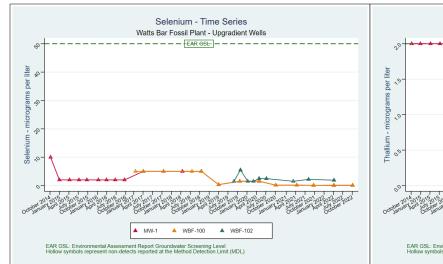


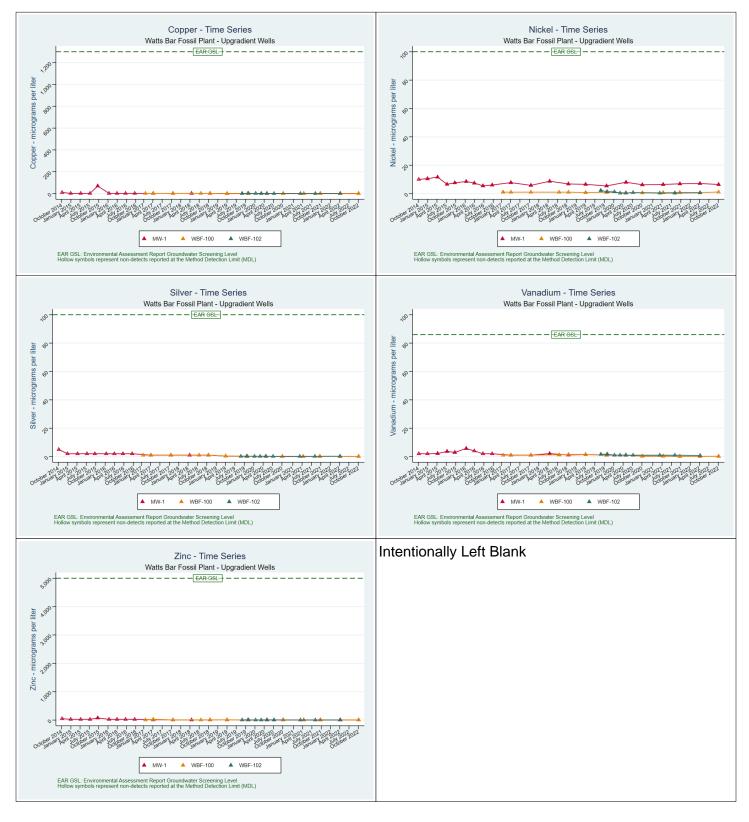


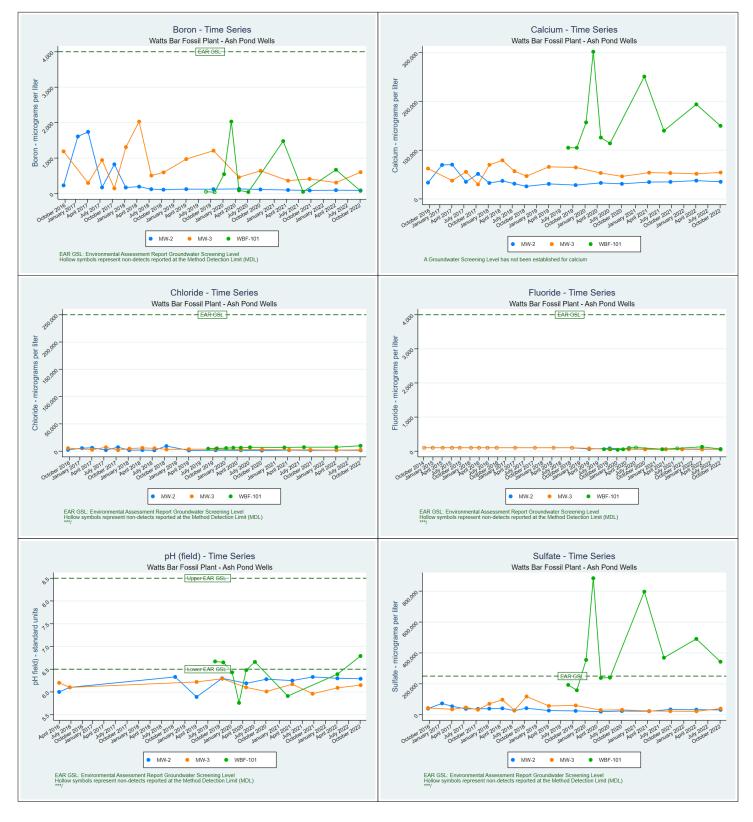


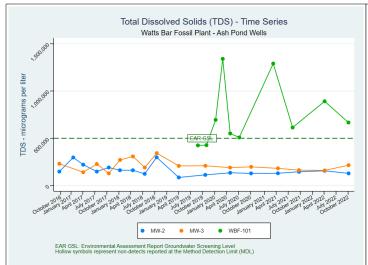


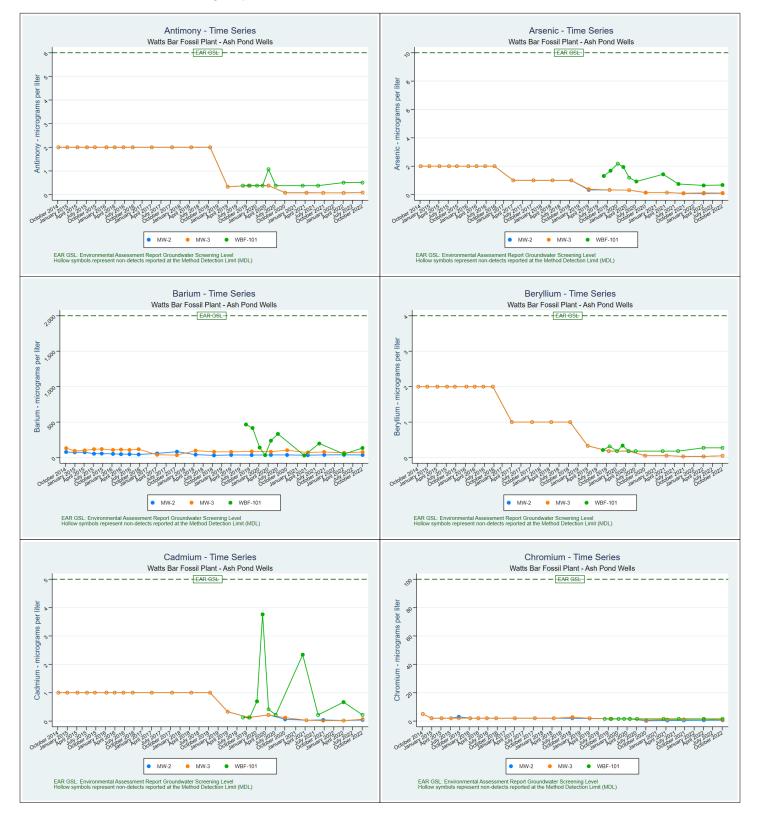


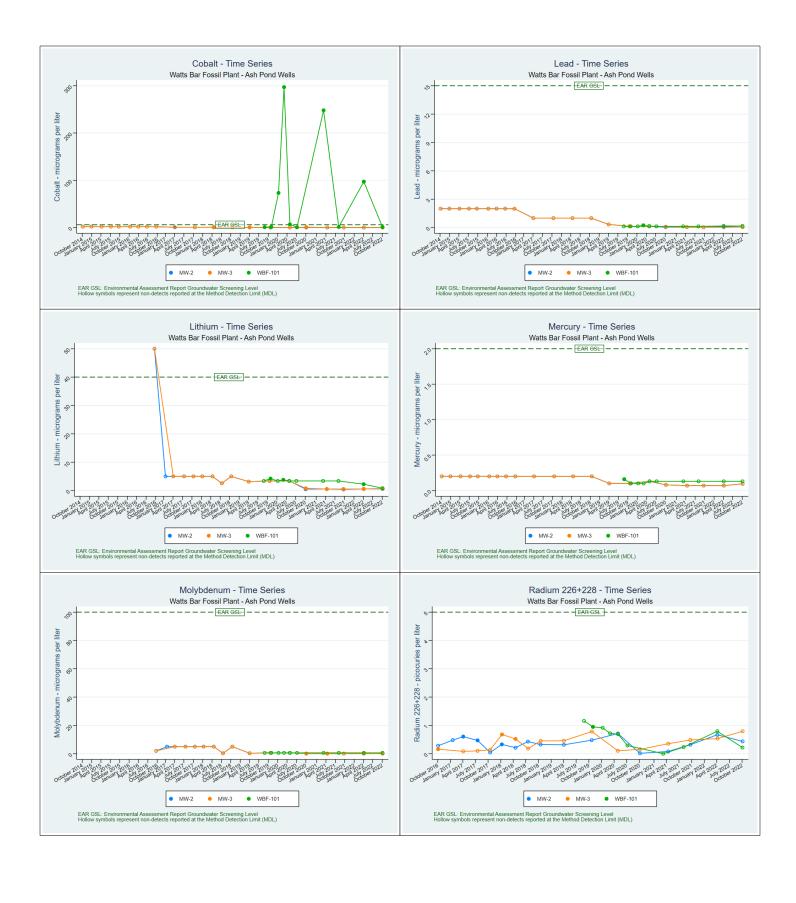




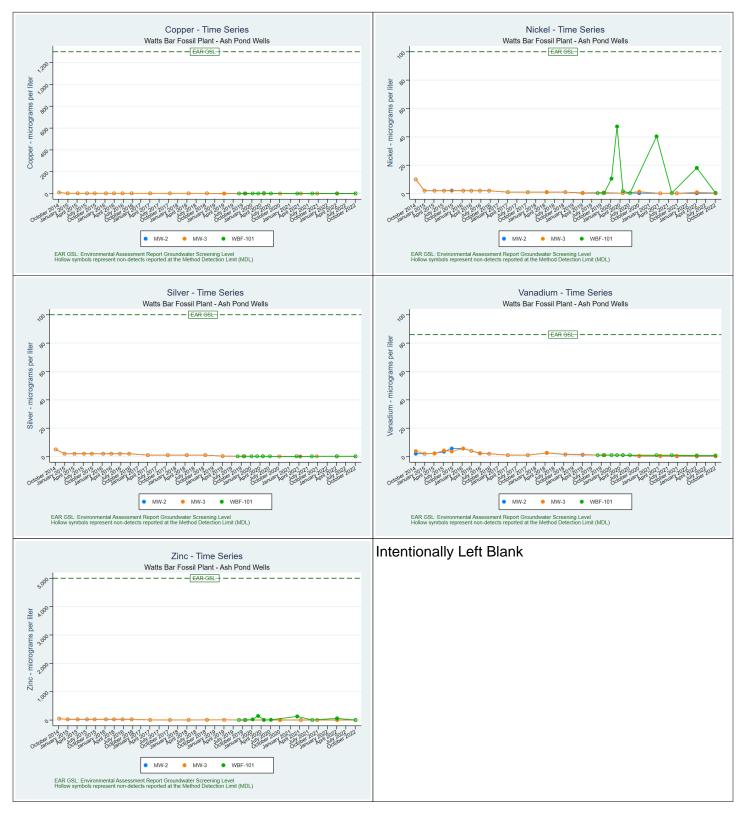


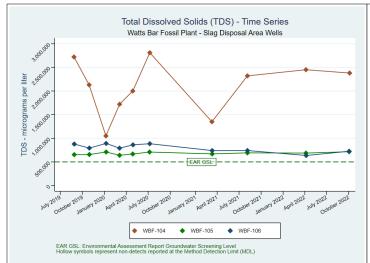


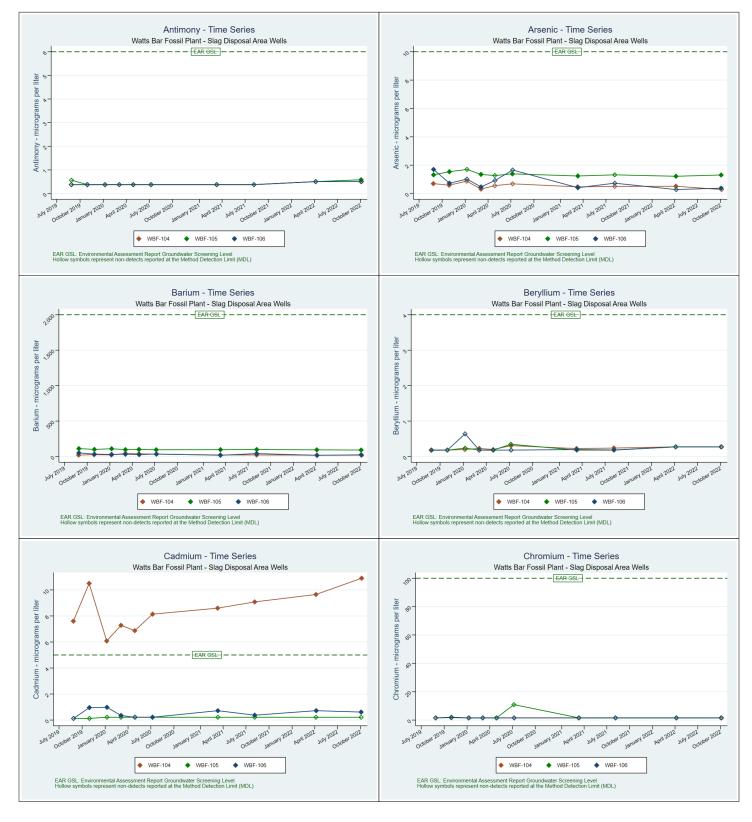


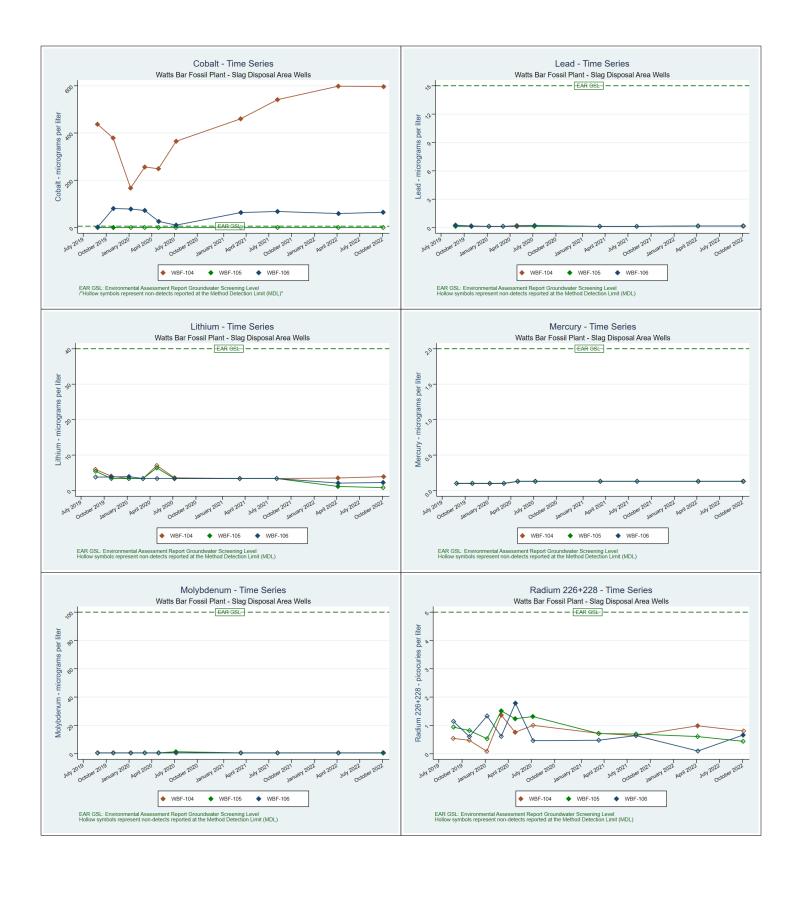


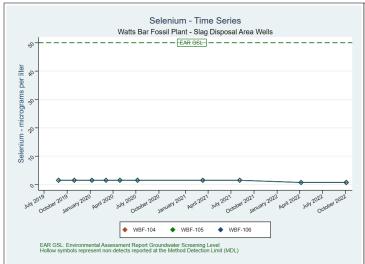
Time Series Plots
Ash Pond Wells
CCR Rule Appendix III Parameters
Watts Bar Fossil Plant - Spring City, Tennessee



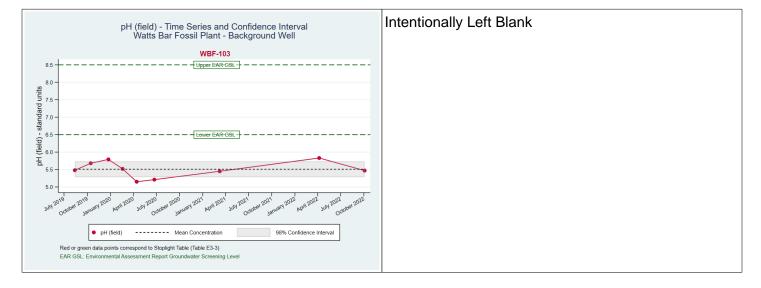


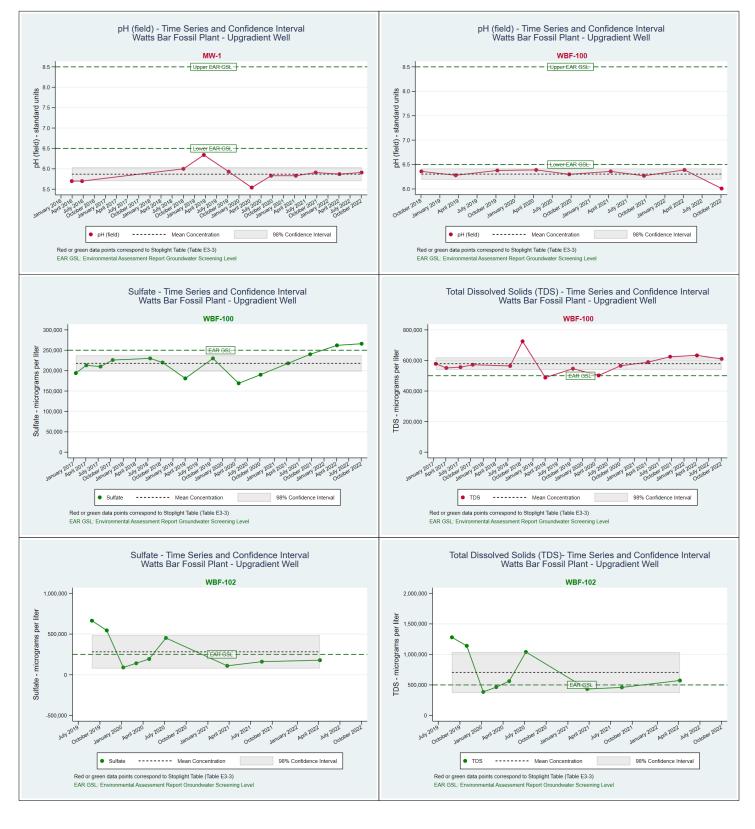

Time Series Plots
Ash Pond Wells
TDEC Appendix I Parameters
Watts Bar Fossil Plant - Spring City, Tennessee

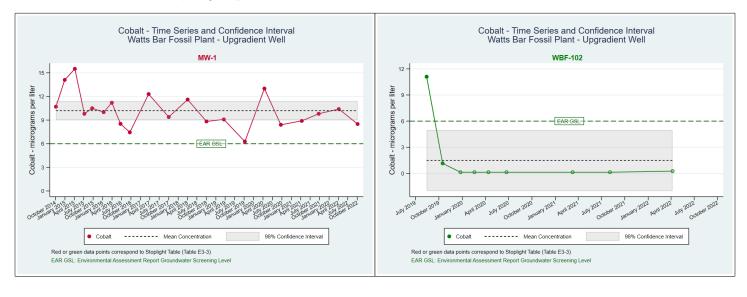


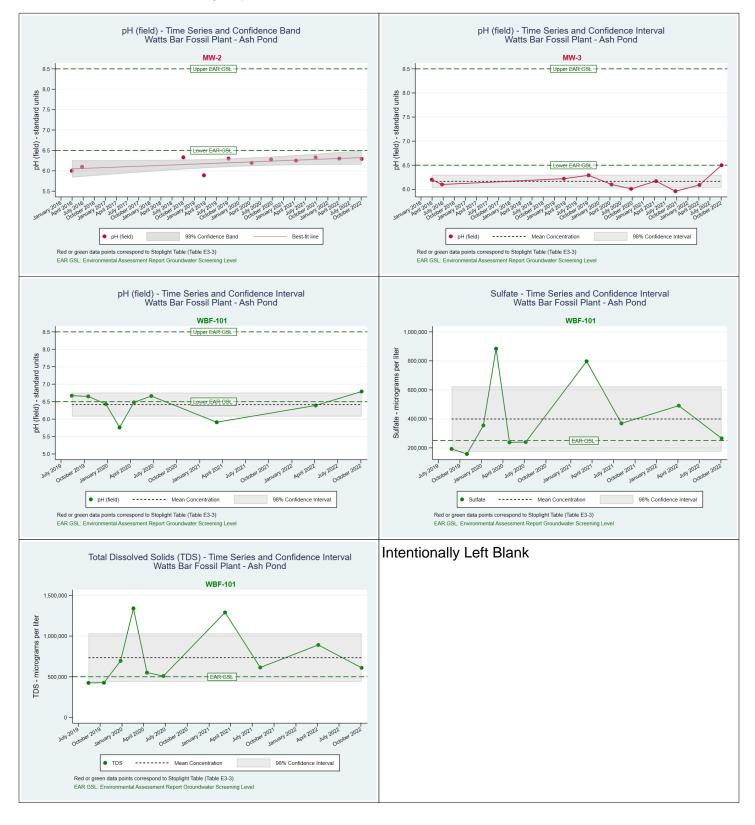


Intentionally Left Blank



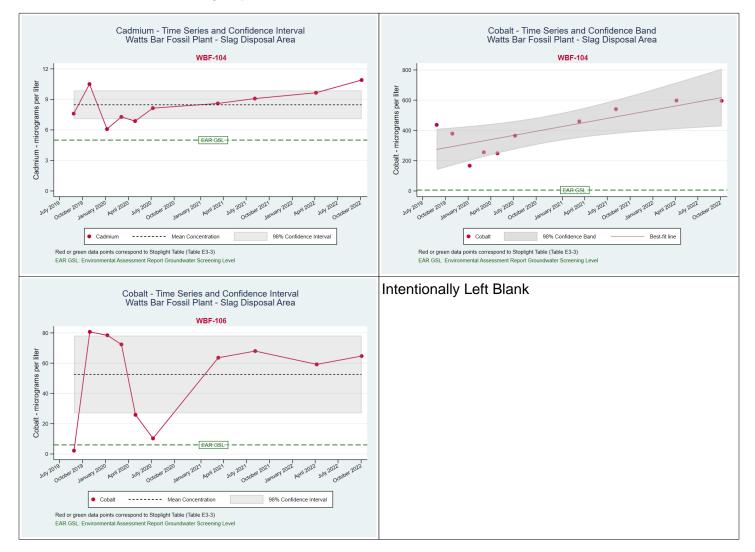



ATTACHMENT E.3-D LINEAR REGRESSION PLOTS

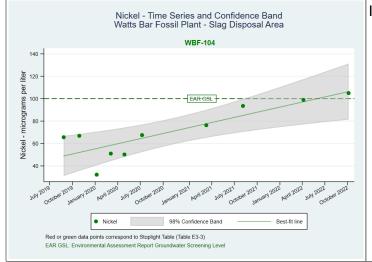

Regression Plots Background Well CCR Rule Appendix III Parameters Watts Bar Fossil Plant - Spring City, Tennessee

Regression Plots Upgradient Wells CCR Rule Appendix IV Parameters Watts Bar Fossil Plant - Spring City, Tennessee

Regression Plots Ash Pond CCR Rule Appendix IV Parameters Watts Bar Fossil Plant - Spring City, Tennessee



Intentionally Left Blank



Regression Plots Slag Disposal Area CCR Rule Appendix IV Parameters Watts Bar Fossil Plant - Spring City, Tennessee

Regression Plots Slag Disposal Area TDEC Appendix I Parameters Watts Bar Fossil Plant - Spring City, Tennessee

Intentionally Left Blank

ATTACHMENT E.3-E LINEAR REGRESSION RESULTS

Attachment E.3-E - Linear Regression Results Groundwater Investigation - Watts Bar Fossil Plant - Spring City, Tennessee

Well	Constituent Type	Constituent	p-value	Trend summary ¹
WBF-103	CCR Rule Appendix III Parameters	pH (field)	0.7349	No trend detected
MW-1	CCR Rule Appendix III Parameters	pH (field)	0.6425	No trend detected
	CCR Rule Appendix IV Parameters	Cobalt	0.0765	No trend detected
WBF-100	CCR Rule Appendix III Parameters	pH (field)	0.1745	No trend detected
		Sulfate	0.0941	No trend detected
		Total dissolved solids	0.4268	No trend detected
WBF-102	CCR Rule Appendix III Parameters	Sulfate	0.1548	No trend detected
		Total dissolved solids	0.1784	No trend detected
	CCR Rule Appendix IV Parameters	Cobalt	0.2431	No trend detected
MW-2	CCR Rule Appendix III Parameters	pH (field)	0.0405	Increasing
MW-3	CCR Rule Appendix III Parameters	pH (field)	0.7873	No trend detected
WBF-101	CCR Rule Appendix III Parameters	pH (field)	0.8232	No trend detected
		Sulfate	0.7076	No trend detected
		Total dissolved solids	0.6272	No trend detected
	CCR Rule Appendix IV Parameters	Cobalt	0.941	No trend detected
WBF-104	CCR Rule Appendix III Parameters	Boron	0.0757	No trend detected
		pH (field)	0.1694	No trend detected
		Sulfate	0.2552	No trend detected
		Total dissolved solids	0.5816	No trend detected
	CCR Rule Appendix IV Parameters	Cadmium	0.0525	No trend detected
		Cobalt	0.0063	Increasing
	TDEC Appendix I Paramters	Nickel	0.0016	Increasing
WBF-105	CCR Rule Appendix III Parameters	Sulfate	0.5959	No trend detected
		Total dissolved solids	0.1088	No trend detected
WBF-106	CCR Rule Appendix III Parameters	pH (field)	0.1891	No trend detected
		Sulfate	0.0035	Decreasing
		Total dissolved solids	0.005	Decreasing
	CCR Rule Appendix IV Parameters	Cobalt	0.4628	No trend detected

Notes

CCR Rule - Title 40, Code of Federal Regulations, Part 257

- 1. Trend evaluated using linear regression. Slope considered significant when p<0.05.
- 2. Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table, fluoride has been grouped with the Appendix III constituents only to avoid duplication of results.

Attachment E.3-E Page 1 of 1

APPENDIX E.4

STATISTICAL ANALYSIS OF SEEP INVESTIGATION

Originally Published as Appendix D of the Seep Sampling and Analysis Report

Appendix D – Statistical Analysis of Water Quality Parameters

Watts Bar Fossil Plant Seep Investigation

May 21, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TVA	May 21, 2021

Sign-off Sheet

This document entitled Appendix D – Statistical Analysis of Water Quality Parameters was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by ___

Chris LaLonde, Associate Senior Statistician/Risk Assessor

Reviewed by

Rebekah Brooks, Principal Hydrogeologist

Approved by

Carole M. Farr, Senior Principal Geologist

Table of Contents

ABBF	REVIATION	S	II
1.0	INTRODU	JCTION	1
2.0	OBJECTI	VE	2
3.0	DATASE	rs	3
4.0	STATIST	ICAL ANALYSIS METHODS	4
4.1		ATORY DATA ANALYSIS/OUTLIER SCREENING	
4.2	TEST OF	STATISTICAL ASSUMPTIONS	5
4.3	FORMAL	HYPOTHESIS TESTING	6
4.4	TOLERAN	NCE INTERVALS	8
4.5	ADDITION	NAL STATISTICAL ANALYSIS TO IDENTIFY POTENTIAL AOIS	9
5.0	STATIST	ICAL ANALYSIS RESULTS	11
5.1	HYPOTH	ESIS TESTING RESULTS: ADJACENT AND UPSTREAM	
	MEASUR	EMENT COMPARISONS AT WBF-HSA1-5	11
5.2		L TESTING RESULTS: INTERMEDIATE AREA COMPARISON TO	
		AM CONTROL AREAS	11
5.3	_	NAL INTERVAL TESTING RESULTS: INDIVIDUAL LOCATION	
	COMPAR	ISON TO UPSTREAM LOCATIONS WITHIN WBF-HSA1-5	12
6.0	REFERE	NCES	13
LIST	OF TABLES	S	
	Table D.1 Table D.2	Summary of Water Quality Parameter Measurement Locations Tests of Normality & Equality of Variances between Adjacent & Upstream MorResults	nitoring
	Table D.3 Table D.4 Table D.5	Summary of Statistical Hypothesis Testing Summary of Intermediate Area Statistical Testing	

LIST OF ATTACHMENTS

Attachment D.1 Measurement Results and Box Plots

Attachment D.2 Summary of Descriptive Statistics

Attachment D.3 Normal Q-Q Plots

Attachment D.4 Measurement Results Plots, Tolerance Limits, and Areas of Interest

i

Abbreviations

α alpha

AOC Area of Concern
AOI Area of Interest

CCR Coal Combustion Residuals

DO Dissolved Oxygen

Ha Alternative hypothesis

H_o Null hypothesis

μS/cm MicroSiemens per Centimeter

mg/L Milligrams per Liter
Q-Q Plot Quantile-Quantile plot

SAP Sampling and Analysis Plan
SAR Sampling and Analysis Report
Stantec Stantec Consulting Services Inc.

USEPA United States Environmental Protection Agency

UTL Upper Tolerance Level
WBF Watts Bar Fossil Plant

May 21, 2021

1.0 INTRODUCTION

A statistical analysis of water quality parameter data collected in the Tennessee River adjacent to the Watts Bar Fossil Plant (WBF Plant) was conducted as part of the seep investigation. The statistical analysis was used to evaluate whether there are statistically significant differences between monitoring results collected "adjacent" to and "upstream" of the historical seep and identified AOI locations and between intermediate and upstream control areas for four water quality parameters (i.e., dissolved oxygen [DO], pH, specific conductance and temperature). This appendix to the WBF Plant Seep Sampling and Analysis Report (SAR) presents the statistical approach and methods used for this analysis and the analysis results.

May 21, 2021

2.0 OBJECTIVE

The objective of the statistical analysis is to identify statistically significant differences between four water quality parameter results (i.e., DO, pH, specific conductance, and temperature) measured "adjacent" to historical seep/AOI locations and results measured "upstream" of these location. As described in Section 3.2.1 of this SAR, six historical seep locations and the two identified AOIs adjacent to the Tennessee River were targeted for monitoring at the WBF Plant for the seep investigation. These locations were combined (or clustered) for data analyses because of their close proximity (WBF-HSA1-5). The historical seep /AOI locations included in this statistical analysis are listed in Table D.1 and shown on Exhibits A.1, A.2, and A.3 (Appendix A).

Additional Areas of Interest (AOIs) will be identified only when statistically significant evidence indicates that: 1) water quality parameter results collected "adjacent" to the historical seep/AOI cluster are different than water quality parameter results collected "upstream" of these locations for all four parameters or 2) water quality parameter results collected adjacent to intermediate areas differ significantly from the upstream control area for all four parameters.

May 21, 2021

3.0 DATASETS

In accordance with the Seep Sampling and Analysis Plan (SAP), datasets were generated consisting of water quality parameter measurements for each of the four field parameters (i.e., DO, pH, specific conductance, and temperature) for the historical seep/AOI locations identified by Tennessee Valley Authority for evaluation. The data used in the statistical analysis were obtained in spreadsheet format from the "Seep Investigation/ Surface Stream Field Parameter Measurement Forms", which were prepared in real time as the field investigation was being conducted. Statistical datasets for the water quality parameter results measured downstream, adjacent to, and upstream of the historical seep locations (Seeps A, #1-#5) and two AOIs identified during the accessible area inspection were aggregated (or "clustered") for the statistical analysis based on their close proximity (WBF-HSA1-5). A summary of the measurement location identifications and the number of measurements is provided in Table D.1.

Parameter measurements were also collected in intermediate areas, or inaccessible areas covered with riprap located upstream and downstream of WBF-HSA1-5. The distance between each measurement was typically 200 feet. Overall, this resulted in the collection of a total of eight measurements (four downstream and four upsteam of WBF-HSA1-5) in the intermediate areas.

Finally, data were also collected from an upstream control area. A total of 21 measurements were collected from the upstream control area. The distance between measurement locations was approximately five feet. The measurement locations are shown in Exhibit A.1 (Appendix A) and provided on Table B.1 (Appendix B).

May 21, 2021

4.0 STATISTICAL ANALYSIS METHODS

In accordance with the Seep SAP, the following statistical analysis methods were used to evaluate the water quality parameter measurement results:

- Formal hypothesis testing was used to identify statistically significant differences between adjacent and upstream monitoring data for clustered historical seep/AOI locations, WBF-HSA1-5, by comparison of mean/median parameter measurements between the datasets using parametric or non-parametric statistical methods
- Tolerance interval methods were utilized to assess significant differences between parameter measurements collected adjacent to the intermediate area and the upstream control area.
- Since statistically significant differences were identified for WBF-HSA1-5 for all four water quality parameters, tolerance interval methods were used to identify specific areas within WBF-HSA1-5 that may warrant additional investigation.

The statistical analysis was conducted in three phases: 1) exploratory data analysis/outlier screening, 2) testing of statistical assumptions, and 3) formal hypothesis testing. These phases are discussed below. Analyses were conducted using United States Environmental Protection Agency (USEPA) ProUCL (version 5.1.002) and STATA Statistics and Data Analysis (version 15.1).

4.1 EXPLORATORY DATA ANALYSIS/OUTLIER SCREENING

Initially, the monitoring data associated with historical seep/AOI locations were plotted on measurement result plots and in side-by-side box plots. Measurement result plots allow for the identification of trends, outliers, and to visually identify differences between water quality parameter measurements that were collected in a downstream to upstream direction. Box plots allow for the identification of outliers and provide a basic sense of the potential underlying statistical distributions. The measurement result and box plots are presented in Attachment D.1. In addition to graphical analysis, descriptive statistics were calculated for each water quality parameter for WBF-HSA1-5, intermediate areas, and the upstream control area. A summary of the descriptive statistics is presented in Attachment D.2.

Outliers are data points that are abnormally high or low as compared to the rest of the measurements and may represent anomalous data and/or data errors. Outliers may also represent natural variation of constituent concentrations in environmental systems. During the seep investigation, water quality parameters were measured at the intermediate areas, the upstream control area and downstream, adjacent and upstream of WBF-HSA1-5. Utilizing the complete set of data to screen for the presence of outliers allowed for evaluation of potential spatial variation in the natural ecosystem. Screening for outliers is a critical step as outliers can bias the statistical testing results.

Outliers were identified graphically using side by side box plots and measurement result plots (Attachment D.1). If suspect visual outliers were identified, then the data were analyzed to determine if they represent extreme outliers. The Tukey's procedure (Tukey 1977) as outlined in the USEPA

May 21, 2021

document: "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance" (USEPA 2009) – (Unified Guidance) can be used to identify extreme outliers. The Tukey's procedure is briefly outlined below:

Lower extreme outlier: The value is less than: 25th percentile – (3 x interquartile range)

or

Upper extreme outlier: The value is greater than: 75th percentile + (3 x interquartile range)

where:

Interquartile Range = 75th percentile value – 25th percentile value

If an outlier was identified visually and considered extreme (Tukey's procedure), then formal statistical testing (Dixon's and/or Rosner tests) was conducted to determine if the data point(s) represents statistically significant outlier(s).

Utilizing the procedures outlined above, no outliers were identified and all water quality parameter measurements were used in the statistical analyses.

4.2 TEST OF STATISTICAL ASSUMPTIONS

In environmental applications, formal hypothesis testing is commonly used to compare mean/median values between two "populations". In the case of the investigation of the clustered historical seep/AOI locations, WBF-HSA1-5, at the WBF Plant, the populations can be defined as monitoring results collected *adjacent* to WBF-HSA1-5 and monitoring results collected immediately *upstream* of WBF-HSA1-5. In the case of the investigation of the intermediate areas, the population can be defined as monitoring results collected *adjacent to the intermediate areas* and monitoring results collected in the *upstream control area*.

Parametric statistical tests must meet statistical assumptions of normality and equality of variance (homoscedasticity) between the populations. If the data fit or could be transformed to fit the normal distribution, two sample t-tests were used to identify statistically significant differences between monitoring data collected adjacent WBF-HSA1-5 and data collected immediately upstream. If the data set could not be transformed to a data set that was normally distributed, then non-parametric (distribution free) statistics were used to identify significant differences between adjacent and upstream measurements.

The assumption of normality was tested visually using Normal Quantile-Quantile (Q-Q) plots and statistically using the Shapiro-Wilks Test (alpha = 0.10). Normal Q-Q plots are presented in Attachment D.3. A data set that is not normally distributed can often be transformed to a data set that is normally distributed using simple mathematical transformations on the data. Ladder of power transformation techniques were used to try to normalize data sets that were originally identified as not-normally distributed. If a suitable transformation was identified, this transformation was applied to the data prior to

May 21, 2021

proceeding with the two-sample t-test. No data sets could be normalized using the ladder of powers methods.

The assumption of homoscedasticity was tested using the F-Test for the Equality of Two-Variances. In instances where variances were not equal, the Satterthwaite's degrees of freedom were used to adjust for unequal variances. The results of the evaluation of normality and equality of variances between the upstream and adjacent measurement locations are presented in Table D.2.

4.3 FORMAL HYPOTHESIS TESTING

The objective of formal hypothesis testing is to determine whether mean/median water quality parameter measurement results for the "adjacent" datasets are statistically different than the results for the "upstream" datasets. Hypothesis tests are standard statistical methods used to decide between two competing alternatives based on available data. Uncertainties arise when sample statistics are used as estimates of "true" but unknown population parameters (mean, standard deviation). Hypothesis testing provides the framework for managing these uncertainties and controlling potential decision errors (Ofungwu 2014).

Hypothesis tests are set up based on two competing alternatives. The null hypothesis (H_o) represents baseline conditions or conditions of no effects/differences. The null hypothesis can be represented mathematically as:

H₀: Mean Adjacent – Mean Upstream = 0; or Mean Adjacent = Mean Upstream

The alternative hypothesis (H_a) is simply the opposite of the null hypothesis and can be written as:

H_a: Mean Adjacent – Mean Upstream ≠ 0

If there is an *a priori* knowledge that a parameter's mean may be greater than or less than the upstream mean, the alternative hypothesis can be written as:

Ha: Mean Adjacent – Mean Upstream < 0 or Mean Adjacent – Mean Upstream > 0

The former alternative hypothesis is considered a two-sided test (e.g., it is unknown if the difference will be higher or lower and therefore, need to account for both possibilities). The later alternative hypotheses are considered a one-sided test (e.g., there is a *priori* knowledge of the direction of change – the parameter measurement is expected to be higher or lower when comparing adjacent to upstream monitoring data).

Appropriate hypothesis tests were established prior to examining the data. Two-sided tests were used to evaluate pH and temperature as there is no *a priori* knowledge that these parameters are expected to be higher or lower when comparing adjacent to upstream monitoring data. However, one-sided tests were used to evaluate DO and specific conductance based on the following assumptions: 1) the DO would be expected to be lower adjacent to an active seep in a similar area as opposed to DO in a surface stream due to aeration of the moving water and 2) the specific conductance would be expected to be higher

May 21, 2021

adjacent to an active seep as opposed to upstream due to expected higher concentrations of metals in water emanating from a Coal Combustion Residuals (CCR) unit.

The null and alternative hypotheses for the seep investigation are presented below:

- DO (milligrams/Liter)
 - H_o: Mean DO_{Adjacent} Mean DO_{Upstream} = 0
 - Ha: Mean DO_{Adjacent} Mean DO_{Upstream} < 0
- pH (Standard Units)
 - Ho: Mean pH_{Adjacent} Mean pH_{Upstream} = 0
 - H_a : Mean $pH_{Adjacent}$ Mean $pH_{Upstream} \neq 0$
- Specific Conductance (microSiemens/centimeter)
 - o H_o: Mean Specific Conductance Adjacent Mean Specific Conductance Upstream = 0
 - Ha: Mean Specific Conductance Adjacent Mean Specific Conductance Upstream > 0
- Temperature (degrees Celsius)
 - o H₀: Mean TemperatureAdjacent Mean TemperatureUpstream = 0
 - o Ha: Mean Temperature Adjacent Mean Temperature Upstream ≠ 0.

Statistical hypothesis tests produce a p-value (probability value). The p-value represents the probability that the mean/median of the adjacent measurements is equal to the mean/median of the upstream measurements. If the p-value of a statistical test is *small* (i.e., below the significance level), the normal procedure is to reject the H_o, accept the H_a, and conclude there is a *statistically significant difference* between adjacent and upstream monitoring results that is unlikely to have occurred by chance.

The statistician establishes the "significance level" (alpha, α), which is typically set between 0.01 and 0.10. This can be thought of as an acceptable false positive rate (e.g., rejecting H₀ when H₀ is true, which is equivalent to finding a statistically significant difference between adjacent and upstream monitoring data, when in fact one does not exist).

The significance level for a single test needs to be adjusted in situations where multiple hypothesis tests are going to be conducted at a site. Conducting multiple statistical tests on a site increases the chances of getting a significant result simply by chance (e.g. false positive statistical test result). For example, four statistical tests were conducted at the WBF Plant to identify differences in adjacent and upstream water quality parameter monitoring data for the seep investigation; if alpha is set at 0.1 and the multiple testing is ignored, then the cumulative error rate can be calculated:

Cumulative error rate = $1-(1-0.1)^4$ = 34% chance of making false positive error

May 21, 2021

The Bonferroni correction was utilized to adjust the significance level to control the site-wide false positive rate described above. This method simply divides the desired overall significance level ($\alpha=0.10$) by the number of hypothesis tests conducted site-wide (4 parameters x 1 clustered historical seep/AOI location = 4 tests). For the WBF Plant, the adjustment yields an individual test significance level of 0.1/4 tests = 0.025. Therefore, to reject H_0 and determine that there is a statistically significant difference between adjacent and upstream monitoring results that is unlikely to have occurred by chance, the p-value of the test needs to be less than 0.025.

4.4 TOLERANCE INTERVALS

Tolerance limits consist of two values expected to contain a pre-specified proportion of the underlying data population with a specified level of confidence. For example, for a 95% tolerance interval with a 95% confidence level, there is 95% confidence that, on average, 95% of the data population is contained within the interval. The one-sided Upper Tolerance Level (UTL) is commonly used in environmental monitoring and is constructed using background data (Ofungwu 2014).

The calculation of the UTL is straightforward:

$$UTL = \overline{x} \pm \tau s$$

Where:

 \overline{x} = mean constituent concentration in background/control dataset

s = standard deviation of constituent in background/control dataset

 τ = tau multiplier - based on size of dataset, confidence (95%) and desired coverage (95%).

Tolerance intervals were calculated in two cases: 1) for comparison of data collected from the upstream control area against data collected adjacent to the intermediate areas, and 2) for comparison of measurements from individual adjacent locations within the HSA1-4 cluster with measurements directly upstream of this area, as described in Section 4.5.

Prior to calculating tolerance intervals, the data were tested for normality and for outliers using methods described previously. If the data set could not be transformed to a data set that was normally distributed, then non-parametric (distribution free) statistics were used to calculate tolerance intervals.

The statistical null hypothesis (H_o) is that mean parameter measurements collected from the intermediate areas lie within the tolerance interval, and the alternate hypothesis (H_a) is that the mean parameter measurements are outside of the tolerance interval. In order to test these hypotheses, 95% confidence intervals around the mean parameter measurements from the intermediate areas were estimated and compared to the upstream control area tolerance intervals.

Prior to calculating confidence intervals, the monitoring data collected adjacent to the intermediate area were tested for normality and for outliers using methods described previously. If the data set could not be

APPENDIX D - STATISTICAL ANALYSIS OF WATER QUALITY PARAMETERS

May 21, 2021

transformed to a data set that was normally distributed, then non-parametric (distribution free) statistics were used to calculate confidence intervals.

Confidence intervals were calculated based on the following equation:

Confidence Interval =
$$\overline{x} \pm t_{1-\alpha/2,n-1} * s/\sqrt{n}$$

Where:

 \overline{x} = mean parameter measurement in intermediate area

s = standard deviation of parameter measurement in intermediate area

n = number of measurements in Intermediate area dataset

 $t_{(1-\alpha/2,n-1)}$ = two tailed t value, with n-1 degrees of freedom (where α = 0.05)

Statistically significant differences were identified if the confidence interval calculated using the intermediate area dataset fell outside of the tolerance interval based on the upstream control area data set.

4.5 ADDITIONAL STATISTICAL ANALYSIS TO IDENTIFY POTENTIAL AOIS

Based on the findings of the analyses described above, statistically significant differences were identified for all four water quality parameters when comparing measurements collected adjacent to and upstream of WBF-HSA1-5. An additional statistical analysis was conducted to limit specific areas where statistically significant differences in water quality measurements may occur and to identify potential additional AOIs within the area covered by WBF-HSA1-5 that may warrant additional investigation.

The analysis was designed to answer the question: Do individual water quality parameter measurements collected at locations adjacent to WBF-HSA1-5 look different (e.g. either higher or lower) than measurements collected immediately upstream of WBF-HSA1-5? To answer this question, tolerance limits were calculated for all four water quality parameters using measurements collected immediately upstream of historical seep locations WBF-HSA1-5. These tolerance limits represent upstream conditions where impacts from a potential inaccessible seep location (i.e. riprap covered) are unlikely. Individual measurement results collected adjacent to WBF-HSA1-5 were then compared to the upstream tolerance limits to identify individual measurement locations where tolerance limits were exceeded.

The measurement result plots (Attachment D.1) provide evidence that there are individual measurement locations adjacent to the WBF-HSA1-5 area with lower measurements for DO and pH as compared to the other individual measurements collected adjacent to WBF-HSA1-5. Also, there are groupings of higher measurements for specific conductance and temperature as compared to other measurements collected adjacent to WBF-HSA1-5.

APPENDIX D - STATISTICAL ANALYSIS OF WATER QUALITY PARAMETERS

May 21, 2021

The distribution of the data for each water quality parameter collected adjacent to WBF-HSA1-5 was also evaluated using side-by-side box plots (Attachment D.1). Based on visual evidence from the side-by-side box plots, the distributions for DO and pH appeared negatively skewed relative to other water quality parameter measurement locations, suggesting lower measurements for DO and pH were predominant in these data distributions. Lower tolerance limits were estimated for DO and pH. Conversely, the data distributions for specific conductance and temperature appeared positively skewed, suggesting that higher measurements for specific conductance and temperature were predominate in the data distribution. Upper tolerance limits were estimated for SC and temperature.

Additional potential AOI(s) were identified when all four water quality parameters measurements at individual locations collected adjacent to WBF-HSA1-5 exceeded their respective tolerance limits.

May 21, 2021

5.0 STATISTICAL ANALYSIS RESULTS

The following sections describe the results of 1) the hypothesis testing comparing the water quality parameter results between the adjacent and upstream measurements at WBF-HSA1-5, 2) the interval testing comparing the water quality parameter results from the intermediate area to the upstream control area, and 3) the tolerance limit testing comparing water quality parameter results from individual adjacent locations within the WBF-HSA1-5 area to water quality measurement data collected immediately upstream of WBF-HSA1-5.

5.1 HYPOTHESIS TESTING RESULTS: ADJACENT AND UPSTREAM MEASUREMENT COMPARISONS AT WBF-HSA1-5

A historical seep is considered an AOI when the mean/median values of all four water quality parameters (DO, pH, specific conductance, and temperature) are found to be statistically different when comparing adjacent to upstream monitoring data. For pH and temperature, the difference between upstream and adjacent measurements may be either positive or negative. Specific conductance would be expected to increase in proximity to an active seep due to higher concentrations of metals in water emanating from a CCR unit, and DO would be expected to decrease as seep water from a similar area would show decreased DO relative to a surface stream. Therefore, only significant increases in specific conductance and significant decreases in DO in the adjacent areas, relative to the upstream areas were evaluated. Table D.3 provides a summary of the hypothesis testing results, including the p-values obtained using procedures described in preceding sections to identify significant differences between adjacent and upstream water quality parameter monitoring data at WBF-HSA1-5. Statistically significant differences were identified for all four parameters at WBF-HSA1-5; therefore, additional AOIs were identified for possible further investigation.

5.2 INTERVAL TESTING RESULTS: INTERMEDIATE AREA COMPARISON TO UPSTREAM CONTROL AREAS

Water quality parameter measurement results collected from the intermediate areas in the Tennesee River were evaluated against monitoring data collected from the upstream control area to identify any potential AOI.

For the intermediate areas to be considered an AOI, the mean values of all four water quality parameters were required to be statistically different when monitoring data collected adjacent to the intermediate areas were compared to data collected in the upstream control area. Table D.4 presents a summary of the interval testing results used to identify significant differences between the intermediate areas and the upstream control area monitoring data. Statistically significant differences were not identified for all four parameters comparing intermediate areas to the upstream control area; therefore, this analysis did not identify any additional AOIs for further investigation.

May 21, 2021

5.3 ADDITIONAL INTERVAL TESTING RESULTS: INDIVIDUAL LOCATION COMPARISON TO UPSTREAM LOCATIONS WITHIN WBF-HSA1-5

An additional statistical analysis was conducted to limit specific areas where statistically significant differences in water quality measurements may occur and to identify potential additional AOIs within the area covered by WBF-HSA1-5 that may warrant additional investigation. Individual water quality parameter measurement results collected adjacent to WBF-HSA1-5 were evaluated against tolerance limits calculated from data collected immediately upstream of WBF-HSA1-5 to identify additional potential AOIs.

Potential additional AOI(s) within the WBF-HSA1-5 cluster area were identified when all four water quality parameters measured at individual locations adjacent to WBF-HSA1-5 exceeded their respective tolerance limits. Based on this analysis, one previously identified AOI (AOI02) was confirmed, and two additional AOIs (AOI03 and AOI04) were identified within the WBF-HSA1-5 cluster area.

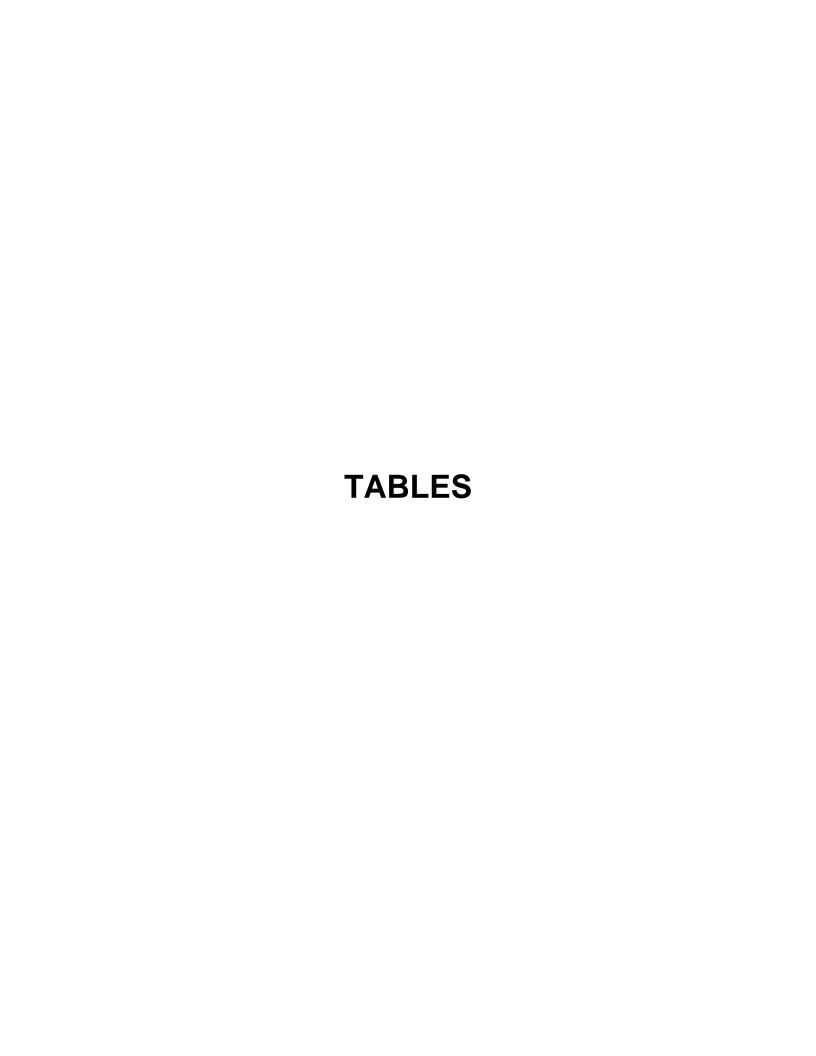
A total of nine individual measurement locations where all four water quality parameters were either above or below their respective tolerance limits were identified. These locations were observed in three distinct areas within the WBF-HSA1-5 cluster area, as listed below:

- AOI02 bracketed by measurement location 35 to measurement location 43
- AOI03 bracketed by measurement location 68 to measurement location 74
- AOI04 bracketed by measurement location 90 to measurement location 92.

Exhibit A.3 provides a map showing these three areas and the individual locations where the water quality parameter measurements exceeded the tolerance limits and the identified AOIs. Attachment D.4 provides measurement result plots, tolerance intervals, with shading indicating the measurement locations that bound the individual AOIs that warrant additional investigation. Table D.5 provides a summary of the statistical testing used to identify AOIs.

APPENDIX D - STATISTICAL ANALYSIS OF WATER QUALITY PARAMETERS

May 21, 2021


6.0 REFERENCES

Ofungwu, J., 2014. *Statistical Applications for Environmental Analysis and Risk Assessment*. Hoboken, New Jersey: John Wiley and Sons, Inc.

Tukey, J.W., 1977. Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesely, 1977

U.S. Environmental Protection Agency, 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance.*

TABLE D.1 – Summary of Water Quality Parameter Measurement Locations Watts Bar Fossil Plant April 2019

Historical Seep/AOI Cluster		Nun	nber of Measurem	ents
	Measurement Location IDs	Downstream	Adjacent	Upstream
Tennessee River				
WBF-HSA1-5	WBF-HSA1-5-D-5 to WBF-HSA1-5-U-111	10	85	12

Notes:

1. Historical Seep (HS) location and measurement location identications (IDs) are shown on Exhibits A.1 through A.3 in Appendix A.

TABLE D.2 – Tests of Normality and Equality of Variances between Adjacent and Upstream Monitoring Results Watts Bar Fossil Plant April 2019

	Historical Seep/AOI Clust	ter
	Tennessee River	
Monitoring Parameters	WBF-HSA1-5	
Number of Samples (Adjacent / Upstream)	85/12	
Dissolved Oxygen	Not Normal	
pH	Not Normal	
Specific Conductance	Not Normal	
Temperature	Not Normal	
	Notes:	
	HS	Historical Seep
	Not Normal	Data Sets (adjacent and upstream) are not normally distributed (alpha=0.01)

TABLE D.3 – Summary of Statistical Hypothesis Testing Watts Bar Fossil Plant April 2019

Historical Seep/AOI			p-v	alue	
Cluster	Number of Samples	DO	рН	Specific Conductance	Temperature
Tennessee River					
	Adjacent / Upstream	mg/L	SU	uS/cm	DEG C
VBF-HSA1-5	85/12	<0.0001	<0.0001	<0.0001	<0.0001

Notes:

DEG C	degrees Celsius
DO	Dissolved Oxygen
HS	Historical Seep
mg/L	milligrams per Liter
SU	Standard Units
SWFPR	site wide false positive rate
uS/cm	microSiemens per centimeter

- 1. The p-value represents the probability that the mean of the adjacent measurements is equal to the mean of the upstream measurements. If a p-value is small (i.e., below the significance level), it is indicative that there is a statistically significant difference between adjacent and upstream monitoring results that is unlikely to have occurred by chance.
- 2. Bonferroni method used to adjust significance level (SWFPR/No. of statistical tests). Adjusted to 0.10/4=0.025 (4 parameters x 1 HS)
- 3. Shaded values indicate a statistically significant difference between measurements collected adjacent and upstream of historical seep/AOI cluster WBF-HSA1-5 (p-value is below adjusted significance level).

Page 1 of 1

TABLE D.4 – Summary of Intermediate Area Statistical Testing Watts Bar Fossil Plant April 2019

	95 % Confidence	Toleranc	e Interval
Parameter	Interval - Intermediate Area	WBF-UC	Significant?
Dissolved Oxygen	(11.1 - 11.6)	(11.1 - 11.6)	NO
pH	(8.10 - 8.29)	(8.19 - 8.41)	NO
Specific Conductance	(154 - 166)	(152 - 156) ^(a)	NO
Temperature	(16.8 - 17.9)	(17.0 - 17.4) ^(a)	NO

Notes:

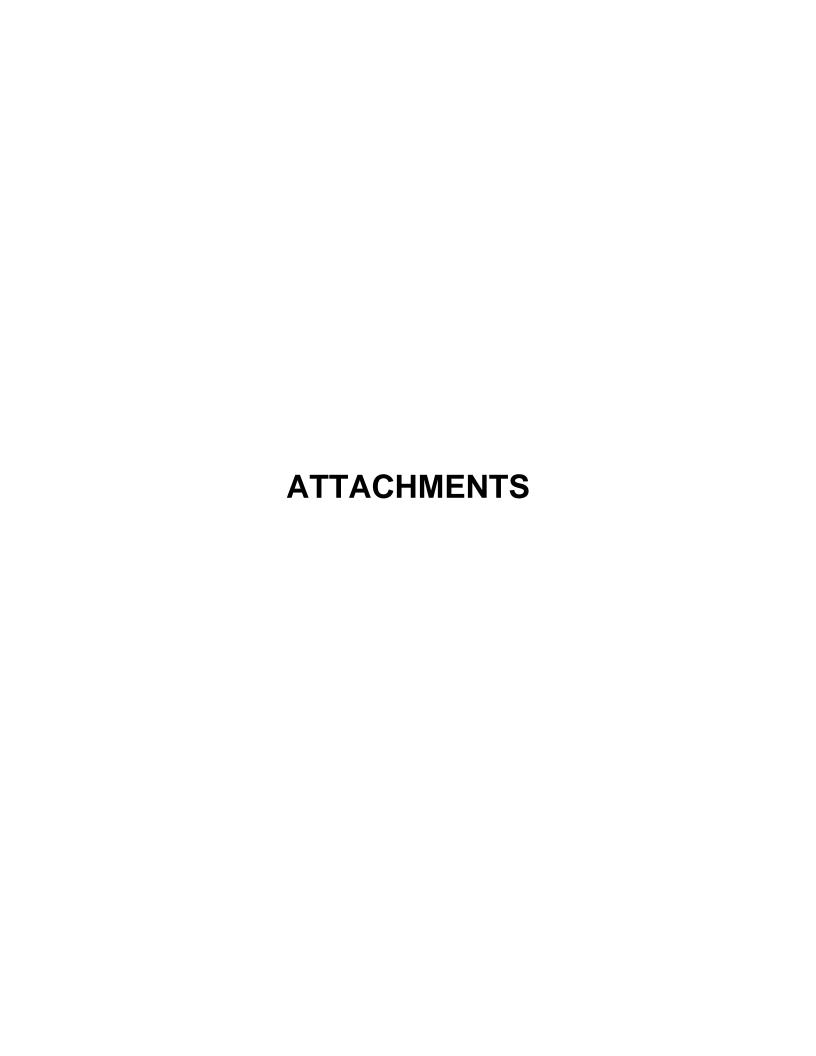
% percent

WBF-UC Upstream Control collected on 4/17/2019 in Tennessee River

- 1. Tolerance Interval: 95% tolerance interval with 95% coverage.
- 2. Shaded values are statistically significant differences if the confidence interval calculated using the intermediate area data set falls outside of the tolerance interval.

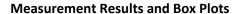
⁽a) Data not normally distributed; reported values are non-parametric upper tolerance limits, reported as the minimum and maximum measurement. Level of confidence (65.9%)

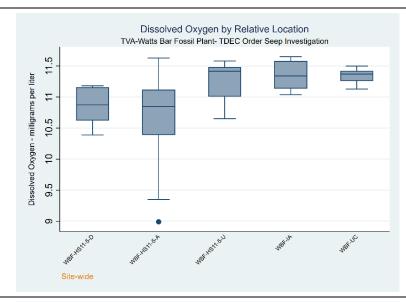
TABLE D.5: Summary of Statistical Testing to Identify Areas of Interest (AOI) Watts Bar Fossil Plant

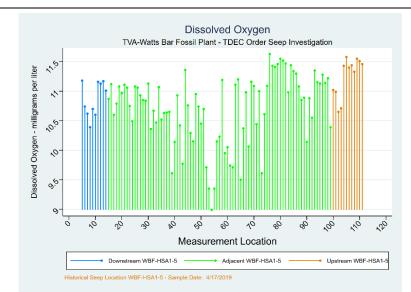

Area of Interest	Measurement ID	Dissolved Oxygen	pH (field)	Specific Conductance (field)	Temperature Water (C)
	Tolerance Limit	LTL < 10.71	LTL < 8.142	UTL > 158.4	UTL > 16.9
	WBF-HSA1-5-A-35	<u>10.52</u>	7.99	<u>177.2</u>	<u>18.9</u>
	WBF-HSA1-5-A-36	<u>10.63</u>	<u>7.91</u>	<u>181.4</u>	16.9
	WBF-HSA1-5-A-37	<u>10.64</u>	<u>7.15</u>	<u>265.9</u>	<u>17.1</u>
	WBF-HSA1-5-A-38	<u>10.65</u>	<u>7.86</u>	<u>177.1</u>	16.9
AOI02	WBF-HSA1-5-A-39	<u>9.61</u>	<u>7.78</u>	<u>196.9</u>	16.9
	WBF-HSA1-5-A-40	<u>10.14</u>	<u>7.55</u>	<u>217.9</u>	<u>17.1</u>
	WBF-HSA1-5-A-41	10.93	<u>7.99</u>	<u>165.6</u>	16.8
	WBF-HSA1-5-A-42	<u>10.42</u>	<u>8.04</u>	<u>171.9</u>	16.9
	WBF-HSA1-5-A-43	<u>9.77</u>	<u>7.96</u>	<u>186.9</u>	<u>17</u>
	WBF-HSA1-5-A-68	<u>10.06</u>	7.97	<u>162.6</u>	<u>17</u>
	WBF-HSA1-5-A-69	11.16	<u>8.06</u>	<u>167.9</u>	<u>17</u>
	WBF-HSA1-5-A-70	11.09	8.11	<u>189.9</u>	<u>17.2</u>
AOI03	WBF-HSA1-5-A-71	10.44	8.17	<u>179.1</u>	<u>17</u>
	WBF-HSA1-5-A-72	11	8.22	<u>168.9</u>	<u>17.1</u>
	WBF-HSA1-5-A-73	<u>9.61</u>	7.97	<u>257.9</u>	<u>17</u>
	WBF-HSA1-5-A-74	<u>10.61</u>	7.97	215.2	<u> 17.5</u>
	WBF-HSA1-5-A-90	<u>10.14</u>	<u>7.4</u>	<u>231</u>	<u>17.1</u>
AOI04	WBF-HSA1-5-A-91	10.88	<u>7.8</u>	<u>178</u>	<u>17</u>
	WBF-HSA1-5-A-92	10.55	7.94	172.9	17.1

Notes:

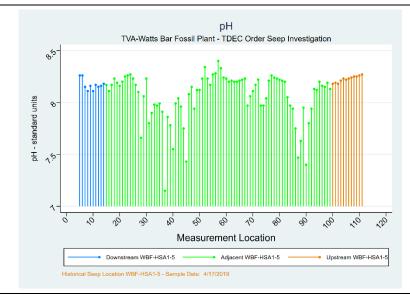
LTL: Lower Tolerance Limit UTL: Upper Tolerance Limit

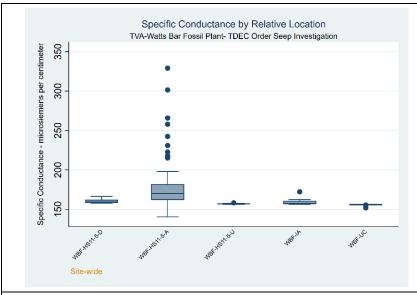

Bold and underlined indicates that individual parameter measurement exceeds its respective LTL or UTL Bold, underlined and shaded indicates that all 4 parameters exceed their respective LTL or UTL

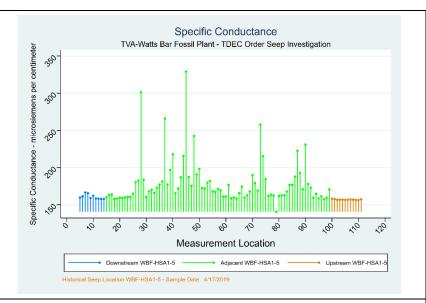


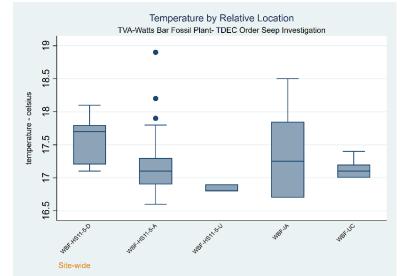


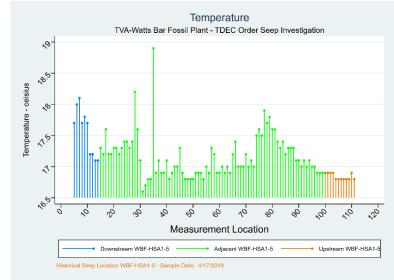
ATTACHMENT D.1

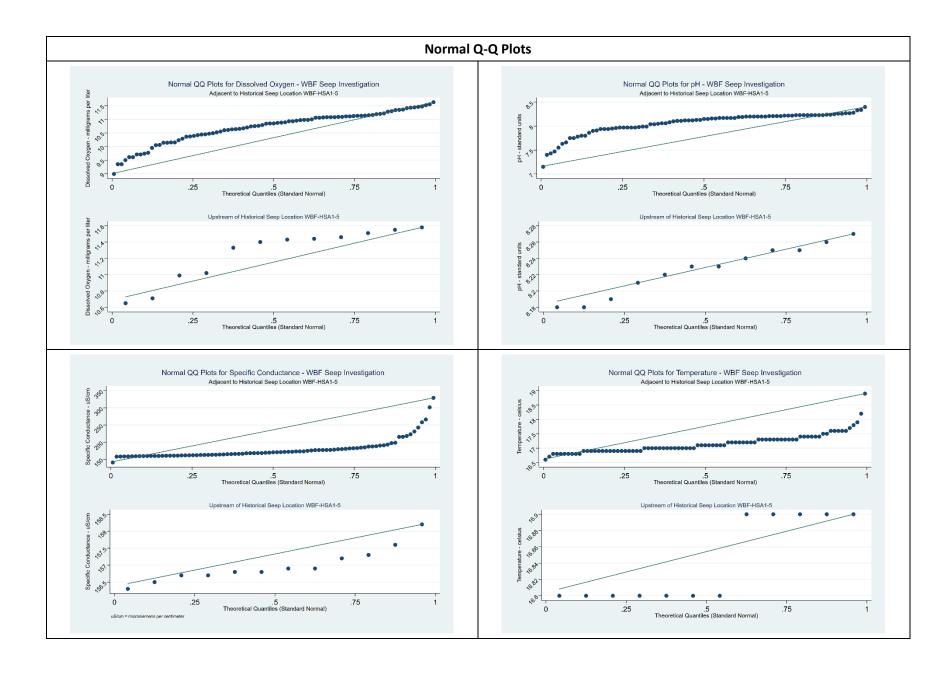

Measurement Results and Box Plots



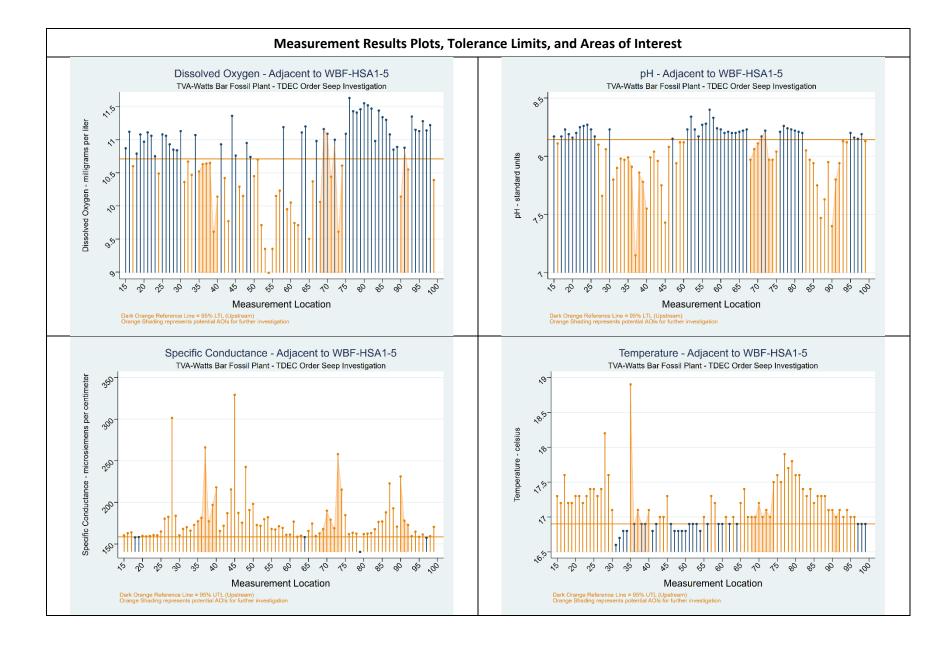







ATTACHMENT D.2

Summary of Descriptive Statistics


Summary of Descriptive Statistics Watts Bar Fossil Plant - Seep Investigation								
Historical Seep	Relative Location to Historical Seep	Number of Samples	Minimum Tennessee	Maximum	Mean	Standard Deviation	Median	95th Percentile
	D			igrams per	Liter)			
WBF-HSA1-5	Downstream Adjacent	10 85	10.39	11.18 11.63	10.87 10.71	0.29 0.59	10.875 10.85	11.18 11.46
WBF-HSA1-5	Upstream	12	10.65	11.58	11.26	0.33	11.415	11.46
Upstream Control		21	11.13	11.5	11.35	0.11	11.37	11.49
Intermediate Areas		8	11.04	11.65	11.35	0.24	11.34	11.65
		p⊦	l (Standard	Units)				
WBF-HSA1-5	Downstream	10	8.11	8.26	8.17	0.05	8.16	8.26
	Adjacent	85	7.15	8.4	8.06	0.23	8.15	8.27
	Upstream	12	8.18	8.27	8.23	0.03	8.23	8.27
Upstream Control		21	8.22	8.37	8.30	0.04	8.31	8.36
Intermediate Areas		8	8	8.32	8.20	0.12	8.25	8.32
			•	iemens per		,		
WBF-HSA1-5	Downstream	10	157.8	166.5	160.63	3.16	159.3	166.5
	Adjacent	85	140.5	329.1	179.29	30.73	170.1	242.5
	Upstream	12	156.3	158.2	156.99	0.52	156.85	158.2
Upstream Control		21	151.9	156.2	155.70	0.89	155.9	156.1
Intermediate Areas		8	156.4	172.3	159.85	5.40	157.6	172.3
		Ten	nperature (Celsius)				
WBF-HSA1-5	Downstream	10	17.1	18.1	17.56	0.38	17.7	18.1
	Adjacent	85	16.6	18.9	17.16	0.35	17.1	17.7
	Upstream	12	16.8	16.9	16.84	0.05	16.8	16.9
Upstream Control		21	17	17.4	17.11	0.12	17.1	17.3
Intermediate Areas		8	16.7	18.5	17.35	0.71	17.25	18.5

ATTACHMENT D.3

Normal Q-Q Plots

ATTACHMENT D.4
Measurement Results Plots, Tolerance Limits, and Areas of Interest

Appendix E.5 - Statistical Analysis of Surface Stream Data

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix E.5 - Statistical Analysis of Surface Stream Data was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Chris La Londe, Senior Risk Assessor

Reviewed by

Matt Pontier, Engineering Staff

Approved by

Carole M. Farr, Senior Principal Geologist

Table of Contents

ABBR	BBREVIATIONSII						
1.0	INTRODUCTION		1				
2.0 2.1 2.2	EXPLORATORY 2.1.1 Summ 2.1.2 Explore 2.1.3 Outlier	DATA ANALYSISary Statisticsatory Data PlotsScreeningScreeningFSURFACE STREAM RESULTS TO ESVS AND SSL	3 3 5				
3.0 3.1	SUMMARY STAT SCREENING	DISCUSSION TISTICS, EXPLORATORY DATA PLOTS, AND OUTLIER	6				
3.2	COMPARISON O	F SURFACE STREAM RESULTS TO ESVS AND SSL _{HH}	9				
4.0	REFERENCES		9				
LIST C	F TABLES						
Table I	E.5-2 – CCR Parar	ream Sample Transect/Locations, WBF Plant meters Evaluated in Statistical Analysis Significant Outliers – WBF Plant, Surface Stream	2				
LIST C	OF ATTACHMENT	S					
ATTA	CHMENT E.5-A	SUMMARY STATISTICS BY WATER BODY					
ATTA	CHMENT E.5-B	BOX PLOTS					
ATTA	CHMENT E.5-C	TRANSECT PLOTS					
ATTA	CHMENT E.5-D	BOX AND TRANSECT PLOTS – STATISTICAL OUTLIERS					

March 31, 2024

Abbreviations

CASRN Chemical Abstracts Service Registry Number

CCR Coal Combustion Residuals

CCR Parameters Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic

constituents included in Appendix I of Tennessee Rule 0400-11-01-.04

CCR Rule Title 40, Code of Federal Regulations, Part 257

EAR Environmental Assessment Report

El Environmental Investigation ESV Ecological Screening Value

ID Identification

IQR Interquartile Range
MDL Method Detection Limit

NA Not Available

PCA Principal Component Analysis

SSL_{HH} Site-specific Human Health Screening Levels

Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TVA Tennessee Valley Authority

μg/L micrograms per Liter
WBF Plant Watts Bar Fossil Plant

March 31, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) prepared this appendix on behalf of the Tennessee Valley Authority (TVA) to summarize the statistical analyses performed on surface stream data to support evaluations conducted for the Environmental Assessment Report (EAR) at the Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee. The surface stream samples were collected between July 2019 and November 2019 in one river body in proximity to the WBF Plant. Further details regarding the surface stream sampling and a summary of the analytical data are presented in Appendix J.1 and the WBF Plant Surface Stream Sampling and Analysis Report (Appendix J.2).

For the Environmental Investigation (EI), surface stream samples were collected from locations along sample transects from the Tennessee River in proximity to the WBF Plant coal combustion residual (CCR) management units. Sample transects/location names, locations relative to WBF Plant CCR management units, and the numbers of samples collected from each water body are presented in Table E.5-1. Fourteen samples were collected from the Discharge Channel; however, these samples were not included in the statistical analysis because conditions in the Discharge Channel are not representative of natural surface stream conditions and the Discharge Channel is regulated under a National Pollutant Discharge Elimination System permit (#TN0005789). The constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-01-.04 (CCR Parameters) included in the statistical analysis are presented in Table E.5-2.

Table E.5-1 - Surface Stream Sample Transect/Locations, WBF Plant

Water Body	Transect/Location Name	Location Relative to CCR Management Units	Number of Samples
	TR01, TR02	Upstream	34
Tennessee River	TR03, TR04, TR05	Adjacent	46
	TR06, TR07	Downstream	33

March 31, 2024

Table E.5-2 – CCR Parameters Evaluated in Statistical Analysis

CCR Parameter	CASRN
CCR Rule Appendix III Parameters	·
Boron	7440-42-8
Calcium	7440-70-2
Chloride	16887-00-6
Fluoride ¹ (also Appendix IV)	16984-48-8
pH	Not Available (NA)
Sulfate	14808-79-8
Total Dissolved Solids	NA
CCR Rule Appendix IV Parameters	·
Antimony	7440-36-0
Arsenic	7440-38-2
Barium	7440-39-3
Beryllium	7440-41-7
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Lead	7439-92-1
Lithium	7439-93-2
Mercury	7439-97-6
Molybdenum	7439-98-7
Radium-226+228	13982-63-3/ 15262-20-1
Selenium	7782-49-2
Thallium	7440-28-0
TDEC Appendix I Parameters	
Copper	7440-50-8
Nickel	7440-02-0
Silver	7440-22-4
Vanadium	7440-62-2
Zinc	7440-66-6
Other	
Hardness	NA
Iron	7439-89-6
Magnesium	7439-95-4
Manganese	7439-96-5
Total Suspended Solids	NA
Notes:	•

CASRN: Chemical Abstracts Service Registry Number

CCR Rule - Title 40, Code of Federal Regulations, Part 257

NA - Not available

TDEC - Tennessee Department of Environment and Conservation

¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV CCR Parameter. In this table, and in the results figures and tables for this report, fluoride has been grouped with the Appendix III CCR Parameters only to avoid duplication.

The following sections present the methods and results from the general exploratory data analysis using summary statistics, data plots, and outlier screening, and a comparison of surface stream results to Sitespecific Ecological Screening Values (ESVs) and Human Health Screening Levels (SSL_{HH}) that were developed for the EAR. The site specific ESVs and SSL_{HH} for surface stream data are provided in Table 1-2 and Appendix A.2.

Additional statistical analyses (principal component analysis [PCA] and hypothesis testing) were performed if the following conditions were satisfied: 1) CCR parameter concentrations were above ESVs

March 31, 2024

or SSL_{HH} and 2) data were collected from transects/locations adjacent and from transects/locations either upstream or downstream to the WBF Plant CCR management units. Since CCR parameter concentrations were not above ESVs or SSL_{HH} in the surface stream datasets, no additional statistical analyses were conducted.

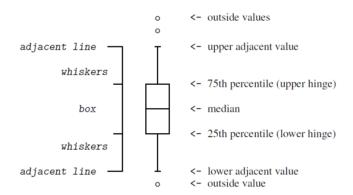
2.0 METHODS

The statistical evaluation for the surface stream data collected at the WBF Plant for the EI was conducted in three parts: 1) exploratory data analysis, 2) comparison of results to site-specific ESVs and to generic SSL_{HH}, and 3) additional statistical analysis, when warranted.

2.1 EXPLORATORY DATA ANALYSIS

Exploratory data analysis is the initial step of statistical analysis. It utilizes simple summary statistics (e.g. mean, median, standard deviation and percentiles) and graphical representations to identify characteristics of an analytical dataset, such as the center of the data (mean, median), variation, distribution, spatial or temporal patterns, presence of outliers, and randomness.

2.1.1 Summary Statistics


Summary statistics were calculated for each CCR Parameter and aggregated by the transect's position relative to the WBF Plant CCR management units (upstream, adjacent and downstream). Summary statistics also were calculated for the following additional water quality parameters: hardness, iron, magnesium, manganese, and total suspended solids. Summary statistics include information such as the total numbers of available samples, the frequencies of detection, ranges of reporting limits, minimum and maximum detected concentrations, mean concentrations, standard deviations, median concentrations and the 95th percentile concentrations. Where applicable, summary statistics were calculated for the results for both total and dissolved metal results. Summary statistics tables are presented in Attachment E.5-A.

2.1.2 Exploratory Data Plots

Exploratory data plots (box plots and transect plots) were constructed using the surface stream results for total metals to support a visual review of the data. Box plots were used to identify the center of the data, distribution, and variability, and to visually identify potential outliers. The diagram below graphically depicts the basics of the construction of the box plots (StataCorp LLC 2017).

March 31, 2024

The box portion of the plot is the interquartile range (IQR), which represents the middle 50 percent of data, with the bottom of the box being the 25th percentile and the top of the box being the 75th percentile. The line inside the box is the median concentration. The top of the upper "whisker" represents the first observed concentration above the 75th percentile, whereas the bottom of the lower "whisker" represents the first observed concentration below the 25th percentile (upper adjacent value and lower adjacent value, respectively). Values that lie outside of the adjacent values represent outside (or outlier) concentrations (i.e. concentrations at the upper and lower ends of the distribution of the data). The method detection limit (MDL) was used as the reported value in order to construct the box plot when analytical results were reported as non-detects.

Box plots were prepared that compared results by transect in the Tennessee River. Transects, ordered by relative location to the WBF Plant CCR management units (upstream, adjacent, downstream), were useful in assessing upstream to downstream patterns within the water body, as well as data distribution, variability, and potential outliers. Box plots for CCR Rule Appendix III, CCR Rule Appendix IV, and TDEC Appendix I CCR Parameters are presented in Attachment E.5-B.

Transect plots were constructed that showed individual sample results aggregated by transect, position relative to the WBF Plant CCR management units (upstream, adjacent, or downstream), and relative position within the water body (right bank, center channel, or left bank).

Tennessee River: Right Bank = Fossil Plant Bank; Left Bank = Opposite Bank

The symbols used in the transect plots indicate whether the reported result is a detected concentration (solid symbol) or a non-detect reported at the MDL (hollow symbol).

Multiple transect plots were constructed for each CCR Parameter. Individual plots were constructed with a reference line for the SSL_{HH} using analytical results collected in the Tennessee River, because the Tennessee River is a potable water source, as described in Appendix J.1. Transect plots with a reference line for the site-specific ESVs were constructed using analytical results collected in the Tennessee River. In many cases, the sample results were much lower than either SSL_{HH} or ESVs, so including the reference lines induced a scaling effect which obscured patterns in the data. A third plot was produced for each CCR Parameter without a reference line in order to better identify patterns.

March 31, 2024

Transect plots provide more detailed information than side-by-side box plots and allow a more rigorous evaluation of the data. These plots are particularly useful in identifying potential patterns in the dataset (trends), frequency of detection, outliers, spatial differences relative to the WBF Plant CCR management units (upstream, adjacent, and downstream), and differences relative to the position in the water body (plant-side bank versus opposite-side bank or center channel). The transect plots are presented in Attachment E.5-C.

2.1.3 Outlier Screening

Outliers are data points that are abnormally high or low as compared to other measurements and may represent anomalous data or data errors. Outliers may also represent natural variations of CCR Parameter concentrations in environmental systems. Screening for outliers is an important step because outliers can bias statistical estimates, statistical testing results, and inferences.

Outlier values were initially screened visually using the side-by-side box plots. If suspected visual outliers were identified, then Tukey's procedure was used to identify extreme outliers (Tukey 1977). This method relies on the IQR, which is defined as the 75th percentile value minus the 25th percentile value. Values were identified as potential outliers as follows:

- Lower extreme outliers are less than the 25th percentile minus 3 x IQR
- **Upper extreme outliers** are greater than the 75th percentile plus 3 x IQR.

Finally, when the potential outliers were identified visually and by Tukey's procedure, then statistical testing for outliers (Rosner's Test) was conducted to determine if those data points were statistically significant outliers.

Following confirmation of the outliers as statistically significant, a desktop evaluation was conducted to verify that the data points were not errors (e.g., laboratory or transcriptional errors). Field forms, data validation reports and other variables in the dataset that could influence analytical results also were evaluated at this point. If a verifiable error was discovered, the outlier was removed and, if possible, replaced with a corrected value.

In the absence of a verifiable error, additional lines of evidence were reviewed to determine final outlier disposition (e.g., frequency of detection, spatial and temporal variability). If an outlier was identified as suitable for removal from further statistical analysis, a clear and defensible rationale based on multiple lines of evidence was provided. In addition, values that were identified as outliers and removed from further evaluation in the present statistical analysis were retained in the historical database and will be reevaluated for inclusion or exclusion in future statistical analyses of this dataset. The results of the outlier screening for the WBF Plant surface stream dataset are provided in Section 3.1.

March 31, 2024

2.2 COMPARISON OF SURFACE STREAM RESULTS TO ESVS AND SSL_{HH}

The analytical results for total metals in the surface stream dataset for all sampled water bodies were compared to water body specific ESVs, as provided in Table 1-2 and Appendix A.2. In addition, surface stream data from the Tennessee River were compared to generic SSL_{HH} values (also provided in Appendix A.2) because it is used as a potable water source. Results were summarized graphically using transect plots and in tabular format in Tables in Appendix J.1.

When an analytical sample result for a CCR Parameter was above the ESV and data were collected from transects/locations adjacent and from transect/locations upstream and/or downstream to the WBF Plant CCR management units, additional statistical evaluation of that CCR parameter was applied in the EAR. This additional evaluation included:

- Formal hypothesis testing to identify differences between upstream, adjacent, and downstream results, and
- PCA to identify the variables and individual samples that explain the greatest proportion of variability (provide the greatest amount of information) in the datasets.

No additional statistical analyses were conducted (PCA and hypothesis testing) for the surface stream datasets as described in Section 3.2.

3.0 RESULTS AND DISCUSSION

3.1 SUMMARY STATISTICS, EXPLORATORY DATA PLOTS, AND OUTLIER SCREENING

Summary statistics tables are presented in Attachment E.5-A, box plots are presented in Attachment E.5-B, and transect plots are presented in Attachment E.5-C. Box plots and transect plots that were used to identify the potential statistical outliers are presented in Attachment E.5-D. The summary statistics and exploratory data plots were aggregated by transect location relative to the WBF Plant CCR management units (upstream, adjacent, downstream) and sample position in the water body (plant-side bank, center channel, and opposite-side bank).

The outlier screening method described in Section 2.1.3 identified one outlier that was determined to be suitable for removal from further statistical analysis (Table E.5-3). This outlier was initially identified using exploratory data plots (see Attachment E.5-D) and confirmed as a statistical outlier using Rosner's Outlier Test (p-value<0.01) and the Tukey's Extreme Outlier Test. Subsequently, additional lines of evidence were reviewed to determine final outlier disposition (e.g., frequency of detection, spatial and temporal variability).

For the outlier identified for exclusion from further statistical analysis in Table E.5-3, this exclusion was supported by a spatial review that compared the magnitude of the outlier result to the distribution of

March 31, 2024

concentrations for that parameter in surface water at the sampled locations in the Tennessee River. This spatial comparison was supported by a visual review of the box-plots and transect plots for these parameters in surface stream samples as presented in Appendix E.5-D. The results of this spatial review indicated that the outlier in Table E.5-3 represents a value that is considerably separated from all other surface stream concentrations for that parameter for samples collected in the vicinity of the WBF Plant from Tennessee River. As such, this result was an outlier not only for the individual sampling location where it was collected, but it was also an outlier in the context of a much larger dataset. Inclusion of outliers that are well-separated from the dominant data in statistical analysis can distort calculated decision statistics, which may in turn lead to incorrect remediation decisions (USEPA 2022). It is preferable to compute environmental statistics based on datasets that represent the main population (USEPA 2022). Therefore, it was determined that inclusion of the outlier in Table E.5-3 in further statistical analysis would obscure statistical interpretation of the available surface stream data and this value was removed from further statistical analysis in the EAR (i.e., excluded from the summary statistics, box-plots, and transect plots presented in Attachments E.5-A, E.5-B, and E.5-C, respectively). However, this outlier remains in the historical dataset and will require reevaluation for inclusion/exclusion if these data are analyzed in future reports.

Furthermore, since the outlier identified in Table E.5-3 was identified in the dissolved fraction of the sample, an additional comparison was done to the total results from the same sample. This comparison revealed that the dissolved fraction result was an order of magnitude higher than the total fraction result (Table E.5-3). This indicates a data error, since the dissolved fraction of a substance cannot, by definition, exceed the total concentration of that substance. Therefore, the outlier result identified in Table E.5-3 was removed from further statistical analysis in the EAR (i.e., excluded from the summary statistics, box-plots, and transect plots presented in Attachments E.5-A, E.5-B, and E.5-C, respectively). However, this outlier remains in the historical dataset and will require reevaluation for inclusion/exclusion if these data are analyzed in future reports.

March 31, 2024

Table E.5-3 - Statistically Significant Outliers - WBF Plant, Surface Stream

CCR Parameter	Water body	Sample Location	Sample ID	Lowest Applicable Ecological Screening Value (ESV) or Human Health Screening Level (SSL _{HH})	Does Outlier Exceed Lowest Applicable ESV or SSL _{HH} ?	Outlier Value (Dissolved)	Total Value
Copper	Tennessee River	TR02 (Upstream of CUF Plant)	WBF-STR-TR02- LB-MID-20190709	7.0 µg/L	Yes	23.7 µg/L	1.12 μg/L

Notes:

ID - identification

μg/L – micrograms per Liter

March 31, 2024

3.2 COMPARISON OF SURFACE STREAM RESULTS TO ESVS AND SSL_{HH}

There were no sample results above chronic ESVs, acute ESVs, or SSL_{HH} from surface stream sampling in the Tennessee River.

4.0 REFERENCES

StataCorp. (2017). Stata Graphics Reference Manual Stata: Release 15. Statistical Software. College Station, TX: StataCorp LLC.

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley. 1977.

United States Environmental Protection Agency (USEPA) (2022). ProUCL Version 5.2.0 Technical Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. Washington DC. USEPA Office of Research and Development.

ATTACHMENT E.5-A - SUMMARY STATISTICS BY WATER BODY

Summary Statistics - Tennessee River
Surface Stream Investigation
Watts Bar Fossil Plant - Spring City, Tennessee

Parameter				V	Vatts Bar Fossil Pla	nt - Spring City,	Tennessee					
Boron	ameter	Gradient	Fraction		_		Data Only		Statistics using Detects & Non-Detects			
Designate				Detection	Reporting Limits				Mean		50 th Percentile	95 th Percentile
Adjacent					CCR Rule App	endix III Parame	eters					
Adjacent	on	Upstream	D	3/34	(30.3 - 38.6)	91.2%	33.4	41	31.1	2.24	34.7	38.6
Downstream			Т	2/34	(30.3 - 38.6)	94.1%	31.7	42.4	30.7	2.06	31	38.6
Downstream		Adjacent		8/46	(30.3 - 38.6)	82.6%	31.9	81.2	33.9	9.67	38.6	50.4
Calcium											38.6	104
Calcium D		Downstream			<u> </u>						38.6	41.3
Adjacent											36.3	39.1
Adjacent	cium	Upstream		-	+		-		-		22,200	23,600
T		Adiocont			+						22,400	23,900
Downstream		Adjacent			-						22,900 22,900	24,100 24,100
Chloride		Downstream		-	†						22,400	24,100
Chloride Aglacent N 34/34 0.0% 3,990 30,400 6,500 6,130 Adjacent N 46/46 0.0% 3,980 6,620 5,190 1,160 Sulfate Upstream N 33/33 0.0% 4,040 6,10 5,160 919 Sulfate Upstream N 34/34 0.0% 8,170 56,400 12,300 11,000 Downstream N 33/33 0.0% 8,100 11,800 9,780 1,090 TDS Upstream N 34/34 0.0% 8,500 12,900 9,780 1,090 TDS Upstream N 34/34 0.0% 8,500 19,000 95,100 9,450 1,090 TDS Upstream D 0/34 (0.378-0.408) 10.0%		Downstream			1						22,500	24,600
Adjacent N	oride	Upstream			†						4,540	14,800
Downstream					+						4,240	6,590
Sulfate					t				•	-	4,740	6,310
Adjacent N	fate										9,380	28,000
Downstream N 33/33 0.0% 8,310 11,200 9,780 1,090 1,090 1,090 1,090 1,090 1,090 1,090 1,000				-							8,780	11,500
Description Description			+	· ·					-		9,860	11,000
Downstream N 33/33 0.0% 79,000 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500 9,420 115,000 94,500	5			-					•	-	93,000	108,000
Antimony Upstream		Adjacent	N	46/46		0.0%	86,000	137,000	101,000	10,600	98,500	121,000
Antimony Continuous		Downstream	N	33/33		0.0%	79,000	115,000	94,500	9,420	92,000	110,000
Adjacent					CCR Rule App	endix IV Parame	eters					
Adjacent	imony	Upstream	D	0/34	(0.378 - 0.408)	100.0%					0.378	0.378
T	,		Т	0/34	(0.378 - 0.378)	100.0%					0.378	0.378
Downstream		Adjacent	D	0/46	(0.378 - 0.378)	100.0%					0.378	0.378
Arsenic Upstream					(0.378 - 0.378)						0.378	0.378
Arsenic Upstream D 25/34 (0.498 - 0.648) 26.5% 0.418 0.907 0.544 0.107 Adjacent D 37/46 (0.512 - 0.768) 19.6% 0.376 0.844 0.565 0.112 Downstream D 33/33 0.0% 0.491 0.927 0.654 0.102 Barium Downstream D 33/33 0.0% 0.491 0.927 0.654 0.102 Barium Upstream D 33/33 0.0% 0.445 0.888 0.529 0.0693 Barium Upstream D 34/34 0.0% 25.6 30.6 28.5 1.16 Adjacent D 46/46 0.0% 25.6 30.6 28.5 1.16 Downstream D 33/33 0.0% 24.8 46.6 28.6 2.98 Beryllium D 33/33 0.0% 24.8 46		Downstream			· · · · · · · · · · · · · · · · · · ·						0.378	0.414
Adjacent					· · · · · · · · · · · · · · · · · · ·						0.378	0.479
Adjacent	enic	Upstream			(0.498 - 0.648)						0.563	0.718
T		A 11			(0.542, 0.760)						0.608	0.78
Downstream D 33/33 0.0% 0.384 0.668 0.525 0.0693 T 33/33 0.0% 0.445 0.888 0.589 0.0889 Barium Upstream D 34/34 0.0% 25 28.6 26.8 0.812 T 34/34 0.0% 25.6 30.6 28.5 1.16 Adjacent D 46/46 0.0% 23.8 29.6 26.1 1.34 T 46/46 0.0% 24.8 46.6 28.6 2.98 Downstream D 33/33 0.0% 24.8 46.6 28.7 25.9 1.7 T 33/33 0.0% 24.3 31.1 28.1 1.89 Beryllium Upstream D 13/34 (0.155 - 0.182) 61.8% 0.182 0.504 0.193 0.0691 Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 Downstream D 3/33 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0472 Downstream D 3/33 (0.155 - 0.324) 90.9% 0.169 0.216 0.159 0.0311 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.000729 Adjacent D 1/46 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.000729		Adjacent			<u> </u>						0.578	0.776
T 33/33 0.0% 0.445 0.888 0.589 0.0812 0.0812 0.085		Downstroom									0.623	0.788
Barium Upstream D 34/34 0.0% 25 28.6 26.8 0.812 Adjacent D 46/46 0.0% 25.6 30.6 28.5 1.16 T 46/46 0.0% 23.8 29.6 26.1 1.34 Downstream D 33/33 0.0% 24.8 46.6 28.6 2.98 Beryllium Upstream D 33/33 0.0% 24.3 31.1 28.1 1.89 Beryllium Upstream D 13/34 (0.155 - 0.182) 61.8% 0.182 0.504 0.193 0.0691 T 13/34 (0.155 - 0.182) 61.8% 0.195 0.431 0.208 0.0758 Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0472 Downstream D 3/33 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0472 <td></td> <td>Downstream</td> <td></td> <td></td> <td>†</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.521 0.583</td> <td>0.658 0.717</td>		Downstream			†						0.521 0.583	0.658 0.717
T 34/34 0.0% 25.6 30.6 28.5 1.16 Adjacent D 46/46 0.0% 23.8 29.6 26.1 1.34 T 46/46 0.0% 24.8 46.6 28.6 2.98 Downstream D 33/33 0.0% 24.8 46.6 28.7 25.9 1.7 T 33/33 0.0% 24.3 31.1 28.1 1.89 Beryllium Upstream D 13/34 (0.155 - 0.182) 61.8% 0.182 0.504 0.193 0.0691 T 13/34 (0.155 - 0.182) 61.8% 0.195 0.431 0.208 0.0758 Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 T 9/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 T 7/33 (0.155 - 0.907) 78.8% 0.359 0.846 0.25 0.181 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072 Adjacent D 1/46 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072	ium	Unstream			1						26.9	28
Adjacent D 46/46 0.0% 23.8 29.6 26.1 1.34 T 46/46 0.0% 24.8 46.6 28.6 2.98 Downstream D 33/33 0.0% 21.6 28.7 25.9 1.7 T 33/33 0.0% 24.3 31.1 28.1 1.89 Beryllium Upstream D 13/34 (0.155 - 0.182) 61.8% 0.182 0.504 0.193 0.0691 T 13/34 (0.155 - 0.182) 61.8% 0.195 0.431 0.208 0.0758 Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 T 9/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 Downstream D 3/33 (0.155 - 0.327) 80.4% 0.17 0.368 0.176 0.0472 Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 T 7/33 (0.155 - 0.907) 78.8% 0.359 0.846 0.25 0.181 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072 Adjacent D 1/46 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072	iuiii	Opstream			†						28.6	30.3
T 46/46 0.0% 24.8 46.6 28.6 2.98		Adjacent			-						26.0	28.4
Downstream D 33/33 0.0% 21.6 28.7 25.9 1.7 T 33/33 0.0% 24.3 31.1 28.1 1.89 Beryllium Upstream D 13/34 (0.155 - 0.182) 61.8% 0.182 0.504 0.193 0.0691 T 13/34 (0.155 - 0.182) 61.8% 0.195 0.431 0.208 0.0758 Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 T 9/46 (0.155 - 0.327) 80.4% 0.17 0.368 0.176 0.0472 Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.12 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072		, ajacent									28.4	30
T 33/33 0.0% 24.3 31.1 28.1 1.89		Downstream	1	The state of the s	+						26.2	28.1
Beryllium Upstream D 13/34 (0.155 - 0.182) 61.8% 0.182 0.504 0.193 0.0691 Adjacent D 7/46 (0.155 - 0.182) 61.8% 0.195 0.431 0.208 0.0758 T 9/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 Downstream D 3/33 (0.155 - 0.32) 80.4% 0.17 0.368 0.176 0.0472 Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 T 7/33 (0.155 - 0.907) 78.8% 0.359 0.846 0.25 0.181 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.17 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.		2.2									28.4	30.6
Adjacent T 13/34 (0.155 - 0.182) 61.8% 0.195 0.431 0.208 0.0758 Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 T 9/46 (0.155 - 0.32) 80.4% 0.17 0.368 0.176 0.0472 Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 T 7/33 (0.155 - 0.907) 78.8% 0.359 0.846 0.25 0.181 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.17 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.00072 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729	yllium	Upstream	D		(0.155 - 0.182)						0.169	0.286
Adjacent D 7/46 (0.155 - 0.327) 84.8% 0.229 0.321 0.174 0.0447 T 9/46 (0.155 - 0.327) 80.4% 0.17 0.368 0.176 0.0472 Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 T 7/33 (0.155 - 0.907) 78.8% 0.359 0.846 0.25 0.181 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.17 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.0027 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729		-									0.155	0.333
Downstream D 3/33 (0.155 - 0.244) 90.9% 0.169 0.216 0.159 0.0131 T 7/33 (0.155 - 0.907) 78.8% 0.359 0.846 0.25 0.181 Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.17 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.0027 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729		Adjacent	D		(0.155 - 0.327)	84.8%	0.229	0.321	0.174	0.0447	0.176	0.3
Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.17 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.0027 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729			Т	9/46	(0.155 - 0.32)	80.4%		0.368	0.176	0.0472	0.182	0.295
Cadmium Upstream D 1/34 (0.125 - 0.125) 97.1% 0.17 0.17 0.126 0.0076 T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.0027 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729		Downstream			(0.155 - 0.244)	90.9%	0.169	0.216	0.159	0.0131	0.169	0.217
T 1/34 (0.125 - 0.125) 97.1% 0.141 0.141 0.125 0.0027 Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729											0.155	0.773
Adjacent D 1/46 (0.125 - 0.125) 97.8% 0.13 0.13 0.125 0.000729	Cadmium	Upstream									0.125	0.125
											0.125	0.125
1 7 1 0/40 1 /0.435 0.435 1 400.00/		Adjacent		1							0.125	0.125
			T	0/46	(0.125 - 0.125)	100.0%					0.125	0.125
Downstream D 0/33 (0.125 - 0.125) 100.0%		Downstream									0.125	0.125
T 2/33 (0.125 - 0.125) 93.9% 0.152 0.153 0.127 0.00656											0.125	0.136
Chromium Upstream D 0/34 (1.53 - 3.1) 100.0%	omium	Upstream		·							1.53	2.1
T 0/34 (1.53 - 2.74) 100.0%		Adionart		· ·							1.53	2.35
Adjacent D 10/46 (1.53 - 5.2) 78.3% 1.67 2.14 1.63 0.19 T 10/46 (1.53 - 2.98) 78.3% 1.84 11.9 1.89 1.52		Adjacent									1.54	2.39
		Downstras									1.53	2.63
Downstream D 0/33 (1.53 - 2.71) 100.0% <th< td=""><td></td><td>Downstream</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.53 1.53</td><td>2.39 3.96</td></th<>		Downstream									1.53 1.53	2.39 3.96

Summary Statistics - Tennessee River Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee

		Statistics using Detected				C+-1,	Statistics using Detects & Non-Detects				
Parameter	Gradient	Fraction	Frequency of Detection	Range of Reporting Limits	% Non Detect	Data	Only	Statis			
						Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile
Cobalt	Upstream	D	13/34	(0.075 - 0.075)	61.8%	0.075	0.169	0.0837	0.0182	0.075	0.111
		T	34/34		0.0%	0.099	0.233	0.149	0.0336	0.142	0.213
	Adjacent	D	15/46	(0.075 - 0.075)	67.4%	0.085	0.143	0.0849	0.0181	0.075	0.132
		T	43/46	(0.139 - 0.151)	6.5%	0.1	0.224	0.15	0.0283	0.145	0.212
	Downstream	D T	5/33	(0.075 - 0.075)	84.9%	0.085	0.106	0.0782	0.00818	0.075	0.1
Fluoride	Upstream	N N	33/33 34/34		0.0%	0.087 51.6	0.272 326	0.134 74.1	0.0359 62.4	0.13 56.8	0.183 161
ridoride	Adjacent	N	46/46		0.0%	52.4	82.4	60.4	6.17	59.2	73.7
	Downstream	N	25/33	(51.5 - 62.2)	24.2%	52.3	81.9	60.3	8.44	58	75.7
Lead	Upstream	D	3/34	(0.128 - 0.131)	91.2%	0.203	1.03	0.161	0.154	0.128	0.233
		Т	28/34	(0.128 - 0.128)	17.7%	0.133	0.31	0.16	0.0331	0.154	0.2
	Adjacent	D	2/46	(0.128 - 0.128)	95.7%	0.155	0.184	0.13	0.00899	0.128	0.128
		T	41/46	(0.128 - 0.218)	10.9%	0.132	0.375	0.185	0.0525	0.178	0.301
	Downstream	D	1/33	(0.128 - 0.128)	97.0%	0.138	0.138	0.128	0.00171	0.128	0.128
		T	21/33	(0.128 - 0.128)	36.4%	0.128	0.244	0.159	0.0347	0.148	0.231
Lithium	Upstream	D	7/34	(3.14 - 3.39)	79.4%	3.38	6.64	3.41	0.739	3.39	4.74
		T	8/34	(3.14 - 3.39)	76.5%	3.57	5.82	3.43	0.651	3.39	4.97
	Adjacent	D T	8/46	(3.14 - 3.39)	82.6%	3.15	5.2	3.29	0.433	3.39	4.25
	Deverstor	T	10/46	(3.14 - 3.39)	78.3%	3.18	4.89	3.31	0.411	3.39	4.32
	Downstream	D T	2/33	(3.14 - 3.39)	93.9%	3.34	3.46	3.16	0.0703	3.34	3.39
Mercury	Unstroam	D D	3/33 0/34	(3.14 - 3.39) (0.101 - 0.101)	90.9% 100.0%	3.51	4.22	3.2	0.206	3.39 0.101	3.54 0.101
iviercury	Upstream	T	0/34	(0.101 - 0.101)	100.0%					0.101	0.101
	Adjacent	D	0/46	(0.101 - 0.101)	100.0%					0.101	0.101
	rajacent	T	0/46	(0.101 - 0.101)	100.0%					0.101	0.101
	Downstream	D	0/33	(0.101 - 0.101)	100.0%					0.101	0.101
		T	0/33	(0.101 - 0.101)	100.0%					0.101	0.101
Molybdenum	Upstream	D	0/34	(0.61 - 0.61)	100.0%					0.61	0.61
		T	2/34	(0.61 - 0.61)	94.1%	0.613	0.659	0.612	0.00828	0.61	0.611
	Adjacent	D	1/46	(0.61 - 0.61)	97.8%	0.703	0.703	0.612	0.0136	0.61	0.61
		Т	0/46	(0.61 - 0.61)	100.0%					0.61	0.61
	Downstream	D	0/33	(0.61 - 0.61)	100.0%					0.61	0.61
		Т	0/33	(0.61 - 0.61)	100.0%					0.61	0.61
Radium-226+228	Upstream	T	2/34	(0.498 - 1.089)	94.1%	0.497	0.746	0.506	0.0454	0.599	0.79
	Adjacent	T	2/46	(0.451 - 1.291)	95.7%	0.589	0.666	0.466	0.0489	0.637	0.998
C 1 :	Downstream	T	3/33	(0.492 - 0.923)	90.9%	0.725	0.755	0.527	0.0856	0.715	0.921
Selenium	Upstream	D T	0/34	(1.51 - 2.62)	100.0%					2.62	2.62
	Adiacont	T D	0/34 0/46	(1.51 - 2.62)	100.0%					2.62	2.62
	Adjacent	T	0/46	(1.51 - 2.62)	100.0%					2.62 2.62	2.62 2.62
	Downstream	D D	0/46	(1.51 - 2.62) (1.51 - 2.62)	100.0%					2.62	2.62
	20	T	0/33	(1.51 - 2.62)	100.0%					2.62	2.62
Thallium	Upstream	D	5/34	(0.128 - 0.148)	85.3%	0.163	0.319	0.141	0.0375	0.138	0.21
	1	T	3/34	(0.128 - 0.148)	91.2%	0.381	0.505	0.156	0.0914	0.128	0.406
	Adjacent	D	1/46	(0.128 - 0.28)	97.8%	0.457	0.457	0.135	0.048	0.128	0.148
		T	2/46	(0.128 - 0.148)	95.7%	0.16	0.221	0.131	0.0142	0.138	0.148
	Downstream	D	2/33	(0.128 - 0.148)	93.9%	0.151	0.226	0.132	0.0171	0.148	0.149
		T	4/33	(0.128 - 0.148)	87.9%	0.152	0.437	0.145	0.0579	0.128	0.229
					ndix I Paramete						
Copper	Upstream	D	20/34	(0.627 - 1.27)	41.2%	0.699	23.7	1.65	3.87	0.911	2.31
		T	34/34		0.0%	0.741	1.48	1.05	0.188	1.06	1.43
	Adjacent	D T	21/46	(0.627 - 1.46)	54.4%	0.706	2.2	0.832	0.253	0.904	1.43
	D	T	43/46	(1.15 - 1.48)	6.5%	0.657	2.45	1.15	0.277	1.14	1.53
	Downstream	D T	25/33	(0.774 - 1.03)	24.2%	0.7	1.83	1.01	0.299	0.898	1.59
Nickol	Unstroom	T D	33/33	 (0.212, 1.42)	0.0%	0.807	1.44 0.341	1.05	0.166	1.02	1.32
Nickel	Upstream	T	4/34 7/34	(0.312 - 1.42) (0.312 - 1.56)	88.2% 79.4%	0.325 0.317	0.341	0.316	0.00869 0.0408	0.335 0.416	1.16 1.35
	Adjacent	D	7/34	(0.312 - 1.56)	84.8%	0.317	0.433	0.339	0.0408	0.416	1.35
	Aujacent	T	23/46	(0.312 - 1.75)	50.0%	0.339	0.431	0.326	0.0298	0.336	1.72
	1	· ' '		(0.011 1.00)	55.070	0.525	5.52	0.000	0.0004	U. 11/	
	Downstream	D	7/33	(0.312 - 1)	78.8%	0.342	0.441	0.325	0.0293	0.336	0.416

Summary Statistics - Tennessee River Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee

Parameter	Gradient	Fraction	Frequency of	Range of	% Non Detect		Statistics using Detected Data Only		Statistics using Detects & Non-Detects				
			Detection	Reporting Limits		Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile		
Silver	Upstream	D	2/34	(0.121 - 0.177)	94.1%	0.211	0.268	0.128	0.0287	0.121	0.189		
		Т	0/34	(0.121 - 0.177)	100.0%					0.121	0.177		
	Adjacent	D	0/46	(0.121 - 0.177)	100.0%					0.121	0.177		
		T	1/46	(0.121 - 0.177)	97.8%	0.27	0.27	0.124	0.0217	0.121	0.177		
	Downstream	D	0/33	(0.121 - 0.177)	100.0%					0.121	0.177		
		T	0/33	(0.121 - 0.177)	100.0%					0.121	0.177		
Vanadium	Upstream	D	14/34	(0.899 - 1.8)	58.8%	1.02	2.09	1.07	0.265	1.07	1.77		
		Т	16/34	(0.995 - 2.04)	52.9%	1	1.4	1.13	0.137	1.26	1.86		
	Adjacent	D	36/46	(0.899 - 1.88)	21.7%	0.917	1.92	1.25	0.219	1.31	1.81		
		Т	30/46	(0.955 - 2.24)	34.8%	1.06	2.4	1.42	0.288	1.56	1.83		
	Downstream	D	18/33	(0.899 - 0.991)	45.5%	0.899	2.16	1.12	0.282	1.02	1.48		
		T	22/33	(0.991 - 2.09)	33.3%	1.05	2.26	1.28	0.292	1.26	2.02		
Zinc	Upstream	D	2/34	(3.22 - 3.22)	94.1%	4.9	14.8	3.61	1.97	3.22	3.81		
		T	3/34	(3.22 - 3.22)	91.2%	3.48	3.68	3.25	0.111	3.22	3.54		
	Adjacent	D	5/46	(3.22 - 3.22)	89.1%	3.59	5.65	3.37	0.478	3.22	4.5		
		Т	18/46	(3.22 - 3.22)	60.9%	3.33	9.55	4.01	1.52	3.22	7.34		
	Downstream	D	0/33	(3.22 - 3.22)	100.0%					3.22	3.22		
		Т	6/33	(3.22 - 3.22)	81.8%	3.56	6.57	3.43	0.62	3.22	4.2		
	·	•	•	Other Anal	zed Constituen	ts	<u> </u>		•	•	Į.		
Hardness	Upstream	N	34/34		0.0%	76,200	86,100	81,400	2,930	81,700	85,300		
	Adjacent	N	46/46		0.0%	75,500	90,500	81,800	3,790	81,700	87,900		
	Downstream	N	33/33		0.0%	72,400	86,900	79,400	3,150	78,500	84,300		
Iron	Upstream	D	5/34	(14.1 - 19.5)	85.3%	15.9	119	19.1	18.5	19.5	35.1		
		Т	34/34		0.0%	73.8	203	128	38.5	129	187		
	Adjacent	D	8/46	(14.1 - 19.5)	82.6%	18.4	77.1	18.5	11.9	19.5	45.2		
	,	Т	46/46		0.0%	69.1	221	139	40.9	142	198		
	Downstream	D	5/33	(14.1 - 19.5)	84.9%	22.1	87.1	20.6	17.4	19.5	60.4		
		T	33/33		0.0%	75.6	323	174	57.9	165	286		
Magnesium	Upstream	D	34/34		0.0%	5,670	7,070	6,270	426	6,110	6,900		
		T	34/34		0.0%	5,760	7,030	6,260	436	6,090	6,950		
	Adjacent	D.	46/46		0.0%	4,970	7,390	6,140	687	6,040	7,170		
	, 10,000110	T	46/46		0.0%	4,880	7,310	6,160	669	6,010	7,240		
	Downstream	D	33/33		0.0%	4,460	6,840	5,510	509	5,740	5,990		
	Downstream	T	33/33		0.0%	4,600	7,090	5,590	582	5,790	6,490		
Manganese	Upstream	D	34/34		0.0%	1.72	54.3	9.57	11.5	5.6	32.6		
	орзасан	T	34/34		0.0%	42.4	103	71.6	23.8	83.2	102		
	Adjacent	D	44/46	(1.35 - 1.35)	4.4%	1.42	55.3	8.2	10.5	4.9	34.4		
	Aujacent	T	46/46	(1.55 - 1.55)	0.0%	41.3	99.7	68.8	21.8	77.4	96.1		
	Downstream	D	30/33	(1.35 - 1.35)	9.1%	1.46	58.6	7.48	13.1	3.19	40		
	Downstream	T	33/33	(1.35 - 1.35)	0.0%	41.3	98.1	68.7	20.1	67.2	96.1		
TCC	Unstroam	N N	34/34		0.0%	2,800	5,500	4,490	523		5,110		
TSS	Upstream							-		4,500			
	Adjacent	N	46/46		0.0%	3,500	5,900	4,570	471	4,500	5,580		
	Downstream	N	33/33		0.0%	2,700	8,200	5,050	1,370	4,700	7,600		

Notes:

CCR Rule - Title 40, Code of Federal Regulations, Part 257

TDEC - Tennessee Department of Environment and Conservation

% - percent

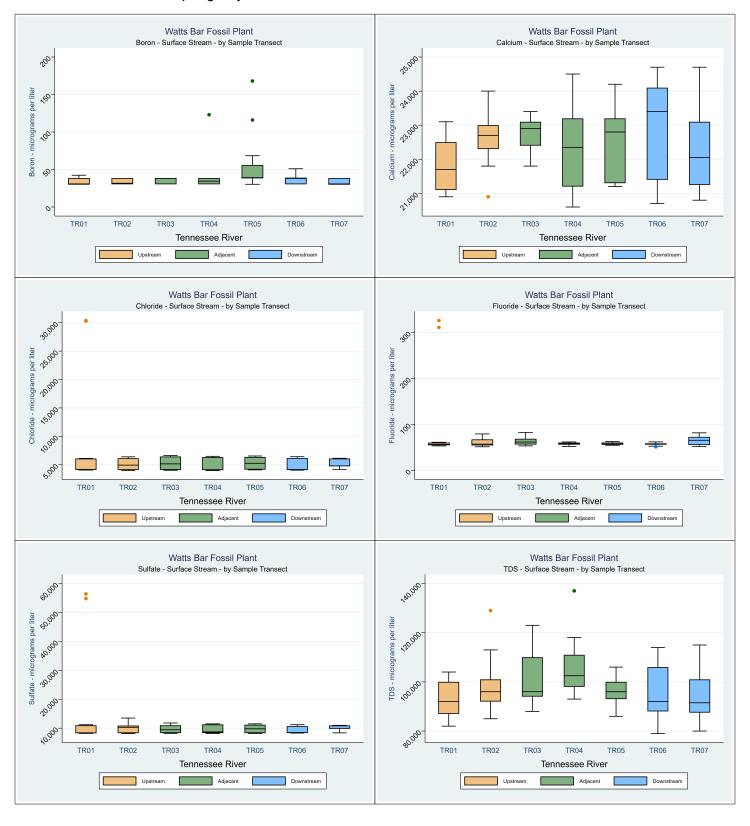
"--" - Not Applicable

TDS - Total Dissolved Solids

TSS - Total Suspended Solids

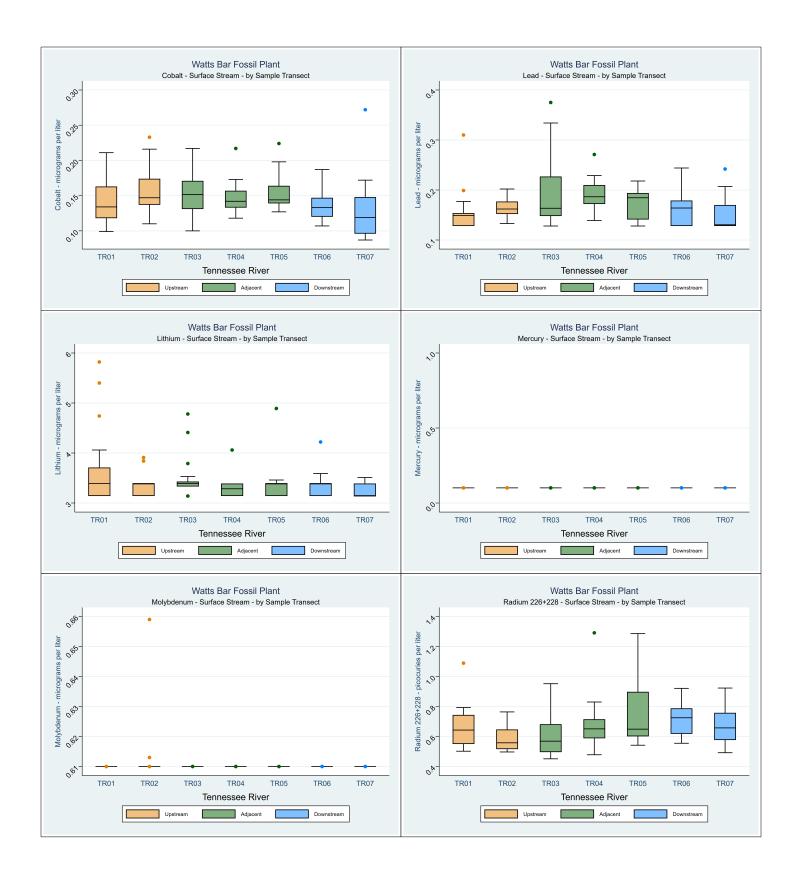
Statistical data sets were aggregated by location of transect relative to the CCR management units (upstream, adjacent downstream) and sample fraction (total, dissolved, or normal) Except for Radium 226 + 228, all units micrograms per liter (µg/L)

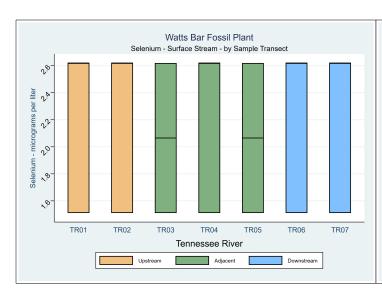
Units for Radium 226+228 are picocuries per liter (pCi/L)

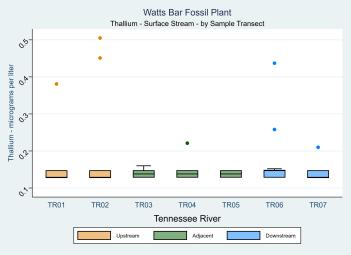

Fractions reported include dissolved (D), total (T), and normal (N)

All non-detects reported at the laboratory reporting limit

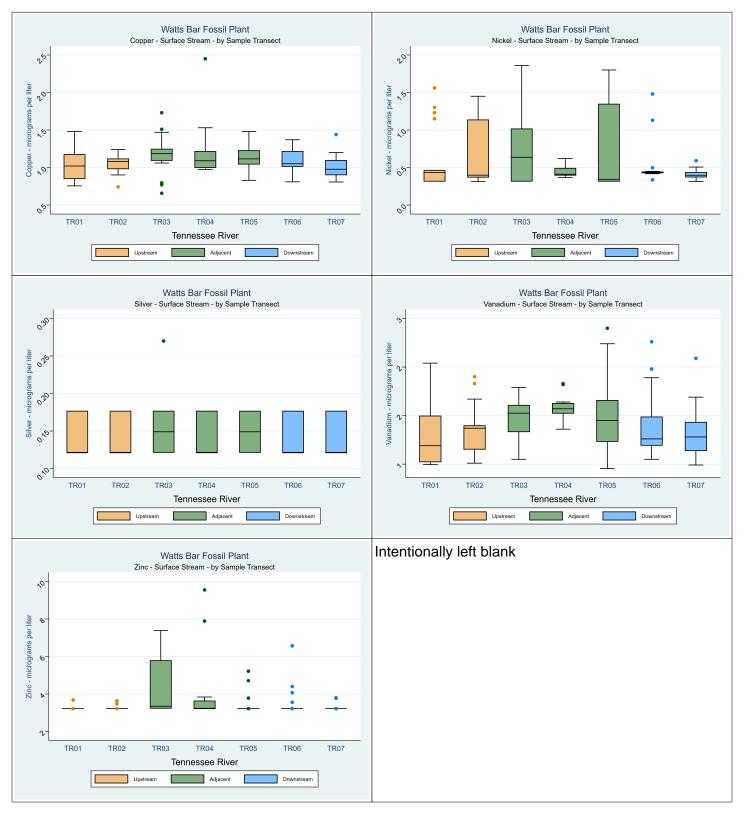
For Parameters with non-detects reported at the method detection limit, the mean and standard deviation were calculated using Kaplan-Meier methods (KM).

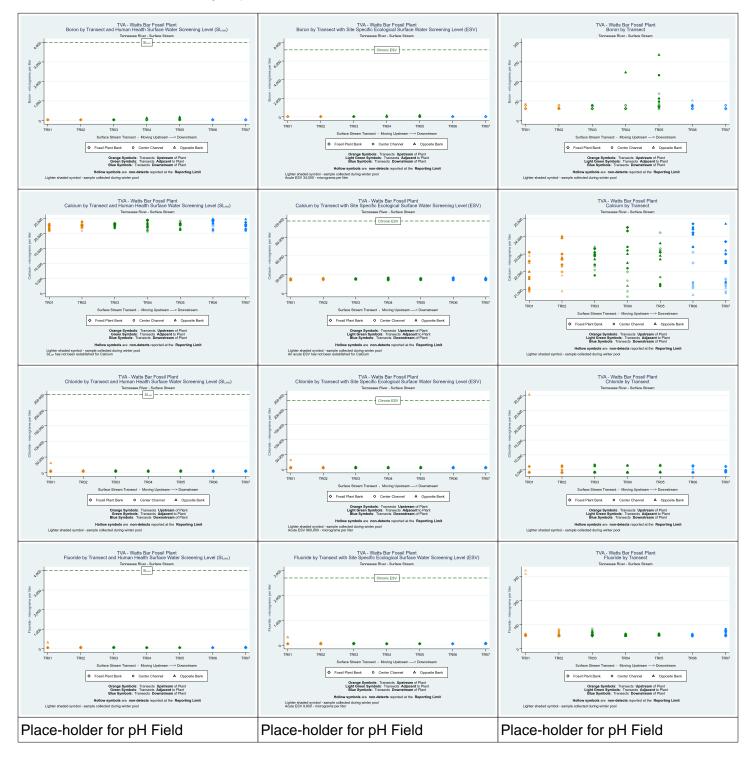


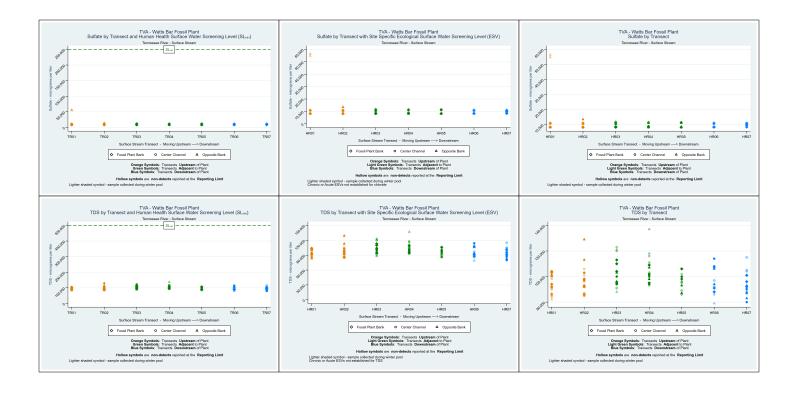

Box Plots CCR Rule Appendix III Parameters Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee

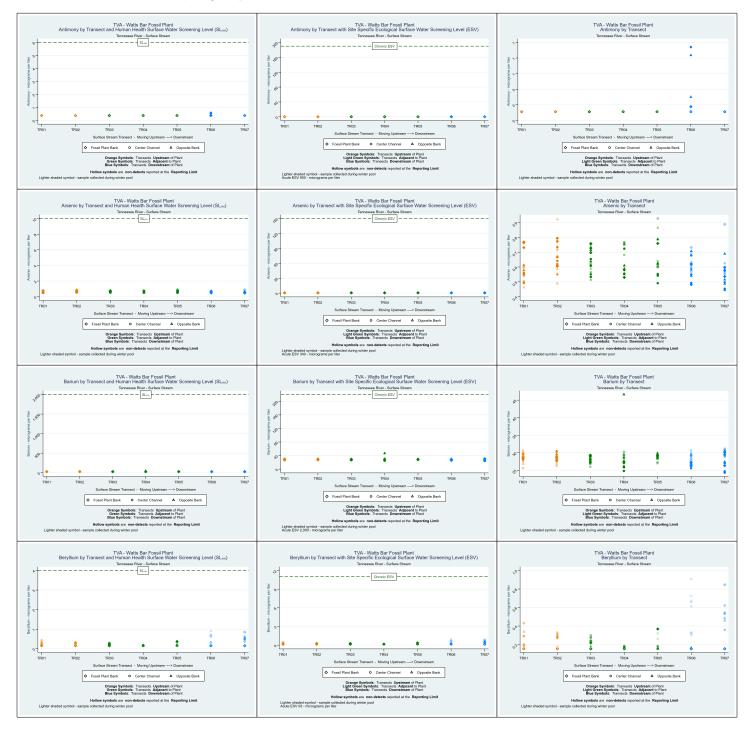


Box Plots CCR Rule Appendix IV Parameters Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee



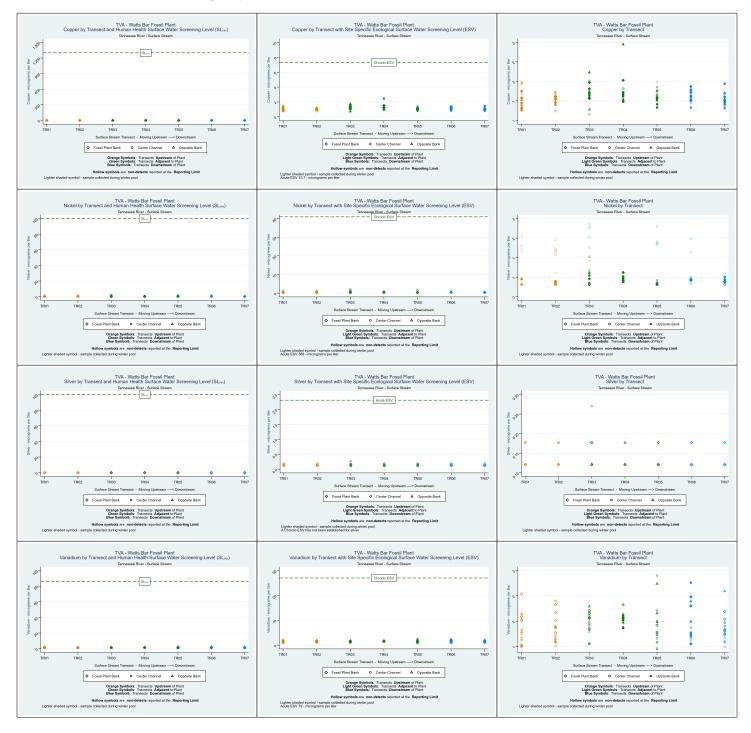


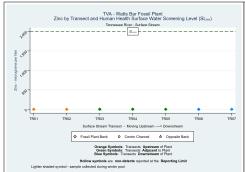

Box Plots
TDEC Appendix I Parameters
Surface Stream Investigation
Watts Bar Fossil Plant - Spring City, Tennessee


ATTACHMENT E.5-C - TRANSECT PLOTS

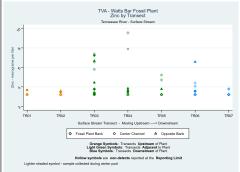
Transect Plots CCR Rule Appendix III Parameters Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee



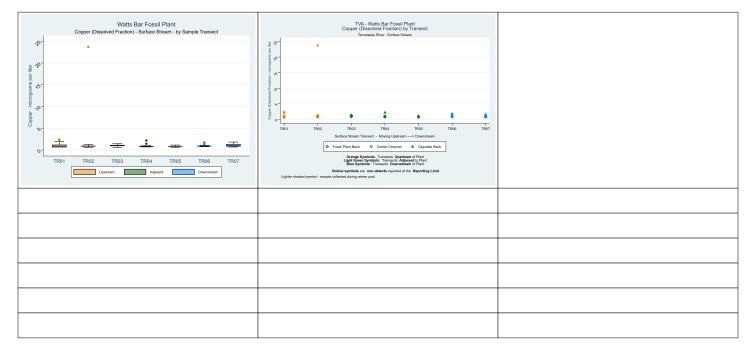

Transect Plots CCR Rule Appendix IV Parameters Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee







Transect Plots TDEC Appendix I Parameters Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee



ATTACHMENT E.5-D - BOX AND TRANSECT PLOTS – STATISTICAL OUTLIER

Box and Transect Plots Tennessee River Surface Stream Investigation Watts Bar Fossil Plant - Spring City, Tennessee

APPENDIX E.6 STATISTICAL ANALYSIS OF SEDIMENT DATA

Appendix E.6 - Statistical Analysis of Sediment Data

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

APPENDIX E.6 - STATISTICAL ANALYSIS OF SEDIMENT DATA

Revision Log

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix E.6 - Statistical Analysis of Sediment Data was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Chris La Londe, Senior Risk Assessor

Reviewed by

Matt Pontier, Staff Engineer

Approved by

Carole M. Farr, PG, Senior Principal Geologist

Nather of ton

APPENDIX E.6 - STATISTICAL ANALYSIS OF SEDIMENT DATA

Table of Contents

ABBRI	EVIATIONS	I	ı
1.0	INTRODUCTION	· · · · · · · · · · · · · · · · · · ·	1
2.0 2.1 2.2	EXPLORATORY DAT 2.1.1 Summary 2.1.2 Explorator 2.1.3 Outlier Scr	Statistics y Data Plots eening EDIMENT RESULTS TO ESVS	3 3 4
3.0 3.1 3.2	SUMMARY STATIST SCREENING	EUSSION	5
4.0	REFERENCES		5
Table E	F TABLES E.6-1 – Sediment Sam E.6-2 – CCR Paramete	ple Transect/Locations ers Evaluated in Statistical Analysis	1
LIST O	F ATTACHMENTS		
	-	SUMMARY STATISTICS TRANSECT PLOTS	

APPENDIX E.6 STATISTICAL ANALYSIS OF SEDIMENT DATA

Abbreviations

CASRN Chemical Abstracts Service Registry Number

CCR Coal Combustion Residuals

CCR Parameters The Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic

constituents included in Appendix I of Tennessee Rule 0400-11-01-.04

CCR Rule Title 40, Code of Federal Regulations, Part 257

EAR Environmental Assessment Report

El Environmental Investigation
ESV Ecological Screening Level

IQR Interquartile Range NA Not Available % Percent

PCA Principal Component Analysis
Stantec Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TVA Tennessee Valley Authority
WBF Plant Watts Bar Fossil Plant

March 31, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) prepared this appendix on behalf of the Tennessee Valley Authority (TVA) to summarize the statistical analyses performed on sediment data to support evaluations conducted for the Environmental Assessment Report (EAR) at the Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee. The sediment samples were collected between March and April 2019 from the Tennessee River in proximity to the WBF Plant. Further details regarding the sediment sampling, and laboratory data results are presented in Appendix J.3 and the WBF Plant Benthic Investigation Sampling and Analysis Report (Appendix J.4).

For the Environmental Investigation (EI), sediment samples were collected from locations along sample transects or individual locations from the Tennessee River in proximity to the WBF Plant coal combustion residual (CCR) management units. Sample transects/location names and locations relative to WBF Plant CCR management units and the numbers of samples collected are presented in Table E.6-1. The constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-01-.04 (CCR Parameters) included in the statistical analysis are presented in Table E.6-2.

Table E.6-1 – Sediment Sample Transect/Locations

Water body	Transect/Location Name	Location Relative to WBF Plant CCR Management Units	Number of Samples
Tonnoccoo Divor	TR04, TR05, TR05.5	Adjacent	3
Tennessee River	TR06, TR06.75, TR07	Downstream	4

APPENDIX E.6 STATISTICAL ANALYSIS OF SEDIMENT DATA

March 31, 2024

Table E.6-2 – CCR Parameters Evaluated in Statistical Analysis

CCR Parameter	CASRN
CCR Rule Appendix III Parameters	
Boron	7440-42-8
Calcium	7440-70-2
Chloride	16887-00-6
Fluoride ¹ (also Appendix IV)	16984-48-8
pH	NA
Sulfate	14808-79-8
CCR Rule Appendix IV Parameters	
Antimony	7440-36-0
Arsenic	7440-38-2
Barium	7440-39-3
Beryllium	7440-41-7
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Lead	7439-92-1
Lithium	7439-93-2
Mercury	7439-97-6
Molybdenum	7439-98-7
Radium-226+228	13982-63-3/ 15262-20-1
Selenium	7782-49-2
Thallium	7440-28-0
TDEC Appendix I Parameters	
Copper	7440-50-8
Nickel	7440-02-0
Silver	7440-22-4
Vanadium	7440-62-2
Zinc	7440-66-6
Other	
% Ash	NA
Strontium	7440-24-6

Notes: CASRN - Chemical Abstracts Service Registry Number; CCR Rule - Title 40, Code of Federal Regulations, Part 257; NA – Not available; TDEC - Tennessee Department of Environment and Conservation

The following sections present the methods and results from the general exploratory data analysis using summary statistics, data plots, and outlier screening, and a comparison of sediment results to Ecological Screening Levels (ESVs) that were developed for the EAR. The ESVs for the sediment data are provided in Table 1-3 and Appendix A.2.

Additional statistical analyses (principal component analysis [PCA] and hypothesis testing) may be warranted if the following conditions were met: 1) CCR Parameter concentrations were above ESVs, and 2) data were collected from transects/locations adjacent, and from transects/locations either upstream or downstream to the WBF Plant CCR management units.

¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV CCR parameter. In this table, and in the results figures and tables for this report, fluoride has been grouped with the Appendix III CCR parameters only to avoid duplication.

March 31, 2024

2.0 METHODS

The statistical evaluation for the EI sediment data collected at the WBF Plant was conducted in three parts: 1) exploratory data analysis, 2) comparison of results to EAR screening levels, and 3) additional statistical analysis, when warranted.

2.1 EXPLORATORY DATA ANALYSIS

Exploratory data analysis is the initial step of statistical analysis. It utilizes simple summary statistics (e.g. mean, median, standard deviation, and percentiles) and graphical representations to identify important characteristics of an analytical dataset, such as the center of the data (mean, median), variation, distribution, spatial or temporal patterns, presence of outliers, and randomness.

2.1.1 Summary Statistics

Summary statistics were calculated for each CCR parameter grouped by water body and aggregated by the transect position relative to the WBF Plant CCR management units (adjacent and downstream). Summary statistics also were calculated for percent (%) ash and strontium. Summary statistics include information such as the total numbers of available samples, the frequencies of detection, ranges of reporting limits, minimum and maximum detected concentrations, mean concentrations, standard deviations, median concentrations and the 95th percentile concentrations. Summary statistics tables are presented in Attachment E.6-A.

2.1.2 Exploratory Data Plots

Exploratory data plots (transect plots) were constructed using the sediment results to support a visual review of the data. Box plots are commonly used to identify the center of the data, distribution, and variability, and to visually identify potential outliers. Except for TR07, only one sample was collected for each transect or individual location, therefore, box plots were not constructed for the sediment results.

Transect plots were constructed for sediment data collected in the Tennessee River and show individual sample results aggregated by transect position relative to the WBF Plant CCR management units (adjacent and downstream) and relative position within the water body (plant side bank or opposite-side bank). The symbols used in the transect plots indicate whether the reported result is a detected concentration (solid symbol) or a non-detect reported at the Method Detection Limit (hollow symbol).

Two transect plots were constructed for each CCR Parameter. One was a plot that included a reference line for the ESV for that parameter. In many cases, the sample results were much lower than the ESVs, so including the reference line induced a scaling effect that obscured patterns in the data. A second plot was produced for each CCR Parameter without a reference line in order to better identify patterns.

These plots are particularly useful in identifying potential patterns in the dataset (trends), frequency of detection, outliers, spatial differences relative to the WBF Plant CCR management units (adjacent and

APPENDIX E.6 STATISTICAL ANALYSIS OF SEDIMENT DATA

March 31, 2024

downstream), and differences relative to the position in the water body (right bank [plant-side bank] versus left bank [opposite-side bank]). The transect plots are presented in Attachment E.6-B.

2.1.3 Outlier Screening

Outliers are data points that are abnormally high or low as compared to other measurements and may represent anomalous data or data errors. Outliers may also represent natural variations of CCR Parameter concentrations in environmental systems. Screening for outliers is a critical step because outliers can bias statistical estimates, statistical testing results, and inferences.

Outlier values were initially screened visually using the transect plots. If suspected visual outliers were identified, then Tukey's procedure was used to identify extreme outliers (Tukey 1977). This method relies on the Interquartile Range (IQR), which is defined as the 75th percentile value minus the 25th percentile value. Values were identified as potential outliers as follows:

- Lower extreme outliers are less than the 25th percentile minus 3 x IQR
- **Upper extreme outliers** are greater than the 75th percentile plus 3 x IQR.

Finally, when the potential outliers were identified visually and by Tukey's procedure, then statistical testing for outliers (Rosner's Test) was conducted to determine if those data points were statistically significant outliers.

Following confirmation of the outliers as statistically significant, a desktop evaluation was conducted to verify that the data points were not errors, (e.g., laboratory or transcriptional errors). Field forms, data validation reports, and other variables in the dataset that could influence analytical results also were evaluated at this point. If a verifiable error was discovered, the outlier was removed and, if possible, replaced with a corrected value.

In the absence of a verifiable error, additional lines of evidence were reviewed to determine final outlier disposition (e.g., frequency of detection, spatial and temporal variability). If an outlier was identified as suitable for removal from further statistical analysis, a clear and defensible rationale based on multiple lines of evidence was provided. In addition, values that were identified as outliers and removed from further evaluation in the present statistical analysis were retained in the historical database and will be reevaluated for inclusion or exclusion in future statistical analyses of this dataset. The results of the outlier screening for the WBF Plant sediment dataset are provided in Section 3.1.

2.2 COMPARISON OF SEDIMENT RESULTS TO ESVS

The analytical results for the sediment dataset were compared to ESVs, as provided in Table 1-3 and Appendix A.2. Comparisons were done graphically using transect plots for sample results from the Tennessee River (Attachment E.6-B). Analytical results were also compared to ESVs in tabular format and are presented in Tables in Appendix J.3.

APPENDIX E.6 STATISTICAL ANALYSIS OF SEDIMENT DATA

March 31, 2024

Additional statistical analyses may be warranted if the following conditions were met: 1) CCR Parameter concentrations were above ESVs and 2) data were collected from transects/locations adjacent, and from transects/locations either upstream or downstream to the WBF Plant CCR management units.

These additional statistical evaluations may include:

- Formal hypothesis testing to identify differences between adjacent and downstream results, and
- PCA to identify the variables and individual samples that explain the greatest proportion of variability (provide the greatest amount of information) in the datasets.

The results are presented in Section 3.2.

3.0 RESULTS AND DISCUSSION

3.1 SUMMARY STATISTICS, EXPLORATORY DATA PLOTS, AND OUTLIER SCREENING

Summary statistics tables are presented in Attachment E.6-A and transect plots are presented in Attachment E.6-B. The summary statistics were aggregated by transect or individual sample location relative to the WBF Plant CCR management units (adjacent and downstream). The transect data plots were aggregated by transect location relative to the WBF Plant CCR management units (adjacent and downstream) and sample position in the water body (plant-side bank and opposite-side bank).

No outliers were identified in the WBF Plant sediment data set.

3.2 COMPARISON OF SEDIMENT RESULTS TO ESVS

No sediment results collected from the Tennessee River in proximity to the WBF Plant CCR management units exceeded either acute or chronic ESVs.

No additional statistical evaluation (PCA or Hypothesis testing) were warranted since no CCR parameter concentrations were identified above acute or chronic ESVs.

4.0 REFERENCES

StataCorp. (2017). Stata Graphics Reference Manual Stata: Release 15. Statistical Software. College Station, Texas: StataCorp LLC.

Tukey, J.W. (1977). Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley. 1977.

ATTACHMENT E.6-A SUMMARY STATISTICS

Summary Statistics - Tennessee River Sediment Investigation

Parameter	Location Relative to CCR Management	Frequency of Detection	Range of Reporting Limits	% Non Detect	Statistics using Detected Data Only			Statistics using Detects & Non-Detects				
	Units	Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile		
				F	Percent Ash							
Ash	Adjacent	4/4		0.0%	1	5	3.8	1.9	4.5	5		
	Downstream	4/4		0.0%	1	5	3.3	2.1	3.5	5		
	•			CCR Rule A	pendix III Parar	neters			•			
Boron	Adjacent	3/3		0.0%	1.16	2.89	1.96	0.872	1.83	2.78		
	Downstream	4/4		0.0%	1.03	2.36	1.72	0.62	1.75	2.32		
Calcium	Adjacent	3/3		0.0%	1,420	9,500	5,000	4,120	4,080	8,960		
	Downstream	4/4		0.0%	1,090	2,360	1,640	529	1,550	2,250		
Chloride	Adjacent	0/3	(5.42 - 5.88)	100.0%					5.59	5.85		
	Downstream	0/4	(5.43 - 6.19)	100.0%					5.77	6.14		
pH(Lab)	Adjacent	3/3		0.0%	7.2	7.5	7.33	0.153	7.3	7.48		
	Downstream	4/4		0.0%	7.3	7.6	7.38	0.15	7.3	7.56		
Sulfate	Adjacent	3/3		0.0%	40.1	65.1	50.9	12.8	47.6	63.4		
	Downstream	4/4		0.0%	25.4	48.3	39.3	10.1	41.7	47.8		
				CCR Rule Ap	pendix IV Parar	neters						
Antimony	Adjacent	3/3		0.0%	0.0865	0.159	0.112	0.0405	0.0916	0.152		
	Downstream	3/4	(0.0465 - 0.0465)	25.0%	0.0498	0.101	0.0673	0.0218	0.0609	0.0966		
Arsenic	Adjacent	3/3		0.0%	2.41	4.59	3.55	1.09	3.64	4.5		
	Downstream	4/4		0.0%	1.34	2.29	1.72	0.427	1.62	2.22		
Barium	Adjacent	3/3		0.0%	75.7	106	91.9	15.3	94	105		
	Downstream	4/4		0.0%	43.3	108	72.7	28.3	69.8	104		
Beryllium	Adjacent	3/3		0.0%	0.608	0.884	0.771	0.145	0.821	0.878		
	Downstream	4/4		0.0%	0.309	1.09	0.672	0.346	0.644	1.05		
Cadmium	Adjacent	3/3		0.0%	0.0959	0.423	0.289	0.171	0.348	0.416		
	Downstream	4/4		0.0%	0.0743	0.127	0.0923	0.0238	0.0839	0.121		
Chromium	Adjacent	3/3		0.0%	13.8	17.9	15.3	2.26	14.2	17.5		
	Downstream	4/4		0.0%	7.43	16.5	11.7	4.06	11.5	16.1		
Cobalt	Adjacent	3/3		0.0%	8.45	11.3	9.56	1.53	8.92	11.1		
	Downstream	4/4		0.0%	4.63	9.79	6.97	2.32	6.73	9.5		
Fluoride	Adjacent	3/3		0.0%	0.95	1.32	1.17	0.195	1.24	1.31		
	Downstream	2/4	(0.952 - 1)	50.0%	1.22	1.47	1.15	0.215	1.11	1.43		
Lead	Adjacent	3/3		0.0%	9.41	21.2	15.6	5.91	16.1	20.7		
	Downstream	4/4		0.0%	5.82	12	7.81	2.91	6.71	11.3		
Lithium	Adjacent	3/3		0.0%	6.94	11.4	9.68	2.4	10.7	11.3		
	Downstream	4/4		0.0%	5.52	16.9	10.7	5.15	10.1	16.3		

Summary Statistics - Tennessee River Sediment Investigation

Watts Bar Fossil Plant - Spring City, Tennessee

Parameter	Location Relative to CCR Management	Frequency of Detection	Range of Reporting Limits	% Non Detect		ics using Data Only		Statistics using	Detects & Non-De	etects
	Units	Detection	Reporting Limits	Detect	Minimum Detect	Maximum Detect	Mean	Standard Deviation	50 th Percentile	95 th Percentile
Mercury	Adjacent	3/3		0.0%	0.0185	0.079	0.0492	0.0303	0.0501	0.0761
	Downstream	3/4	(0.0102 - 0.0102)	25.0%	0.0116	0.0298	0.0165	0.00783	0.013	0.0275
Molybdenum	Adjacent	3/3		0.0%	0.401	0.572	0.464	0.0942	0.418	0.557
	Downstream	4/4		0.0%	0.163	0.418	0.293	0.111	0.296	0.406
Radium-226+228	Adjacent	3/3		0.0%	2.04	2.96	2.49	0.46	2.46	2.91
	Downstream	4/4		0.0%	1.66	2.91	2.44	0.575	2.6	2.9
Selenium	Adjacent	3/3		0.0%	0.638	1.02	0.87	0.204	0.953	1.01
	Downstream	4/4		0.0%	0.43	1.12	0.781	0.375	0.788	1.12
Thallium	Adjacent	3/3		0.0%	0.151	0.215	0.174	0.0359	0.155	0.209
	Downstream	4/4		0.0%	0.0887	0.189	0.135	0.0449	0.131	0.184
				TDEC Ap	endix I Parame	ters			•	
Copper	Adjacent	3/3		0.0%	9.35	30.3	17.5	11.2	12.8	28.6
	Downstream	4/4		0.0%	4.52	10.3	7.24	2.58	7.06	10
Nickel	Adjacent	3/3		0.0%	9.63	13.5	11.7	1.96	12.1	13.4
	Downstream	4/4		0.0%	5.8	14.3	9.78	3.84	9.51	13.9
Silver	Adjacent	3/3		0.0%	0.0263	0.0409	0.0313	0.00829	0.0268	0.0395
	Downstream	1/4	(0.0195 - 0.0216)	75.0%	0.0232	0.0232	0.0204	0.0016	0.0213	0.023
Vanadium	Adjacent	3/3		0.0%	17.7	26.1	20.9	4.52	19	25.4
	Downstream	4/4		0.0%	8.54	19	13.5	4.66	13.2	18.5
Zinc	Adjacent	3/3		0.0%	40.8	98.6	74	29.8	82.6	97
	Downstream	4/4		0.0%	33.9	58.9	45.9	10.5	45.4	57.3
		•		Oth	er Constituents			•	•	
Strontium	Adjacent	3/3		0.0%	5.63	13.6	10	4.05	10.9	13.3
	Downstream	4/4		0.0%	5.08	8.88	6.74	1.62	6.5	8.59

Notes:

CCR Rule - Title 40, Code of Federal Regulations, Part 257

TDEC - Tennessee Department of Environment and Conservation

% - percent

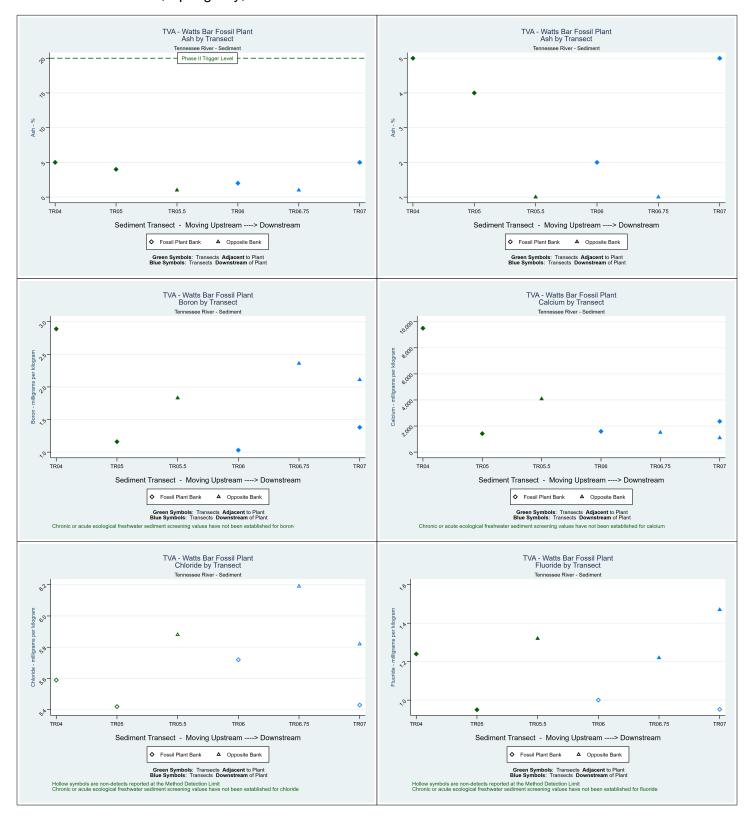
Statistical datasets were aggregated by location of transect relative to the CCR management units (upstream, adjacent, downstream)

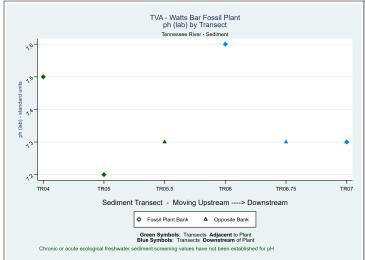
Except for Ash, pH & Radium 226 + 228, all units are milligrams per kilogram (mg/kg)

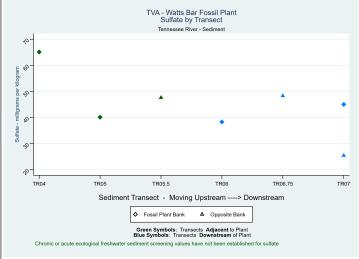
Units for Ash are percent (%)

Units for pH are Standard Units (S.U.)

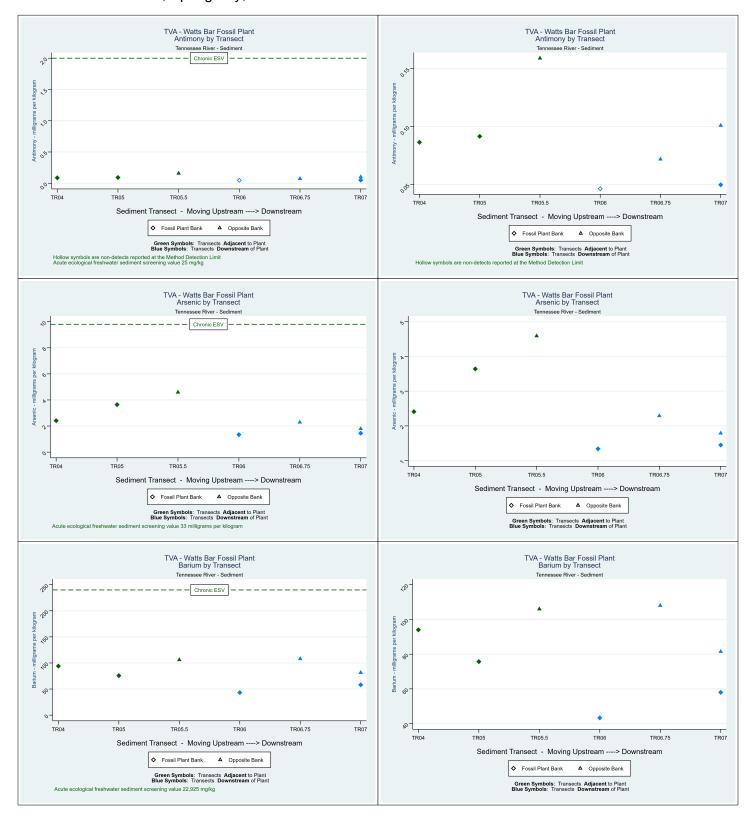
Units for Radium 226+228 are picocuries per gram (pCi/g)

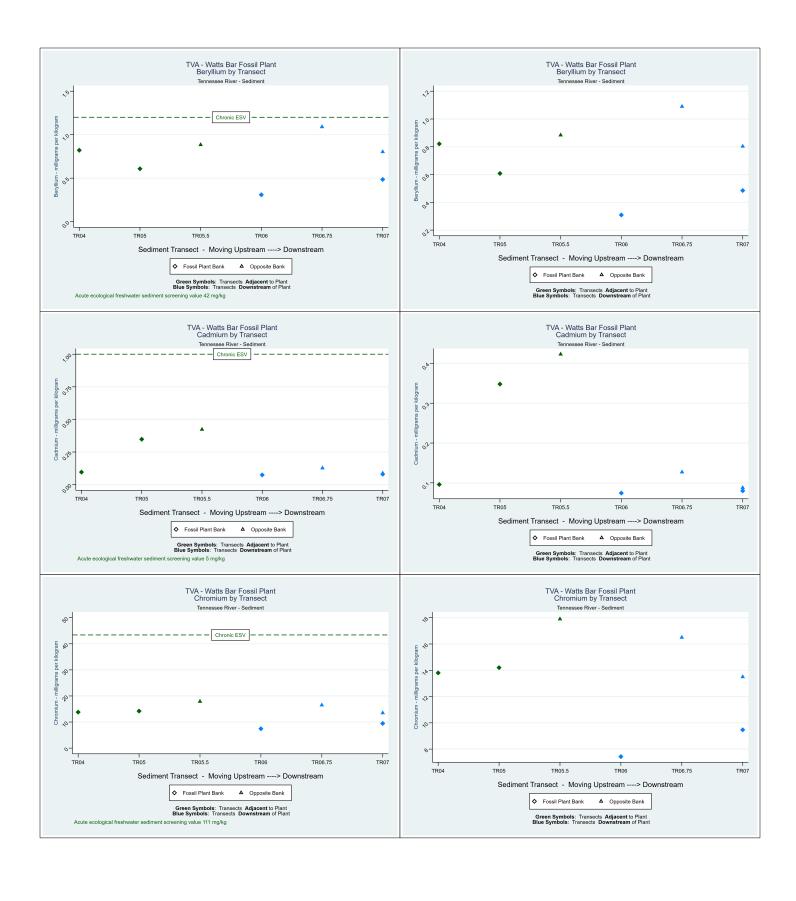

All non-detects reported at the laboratory reporting limit

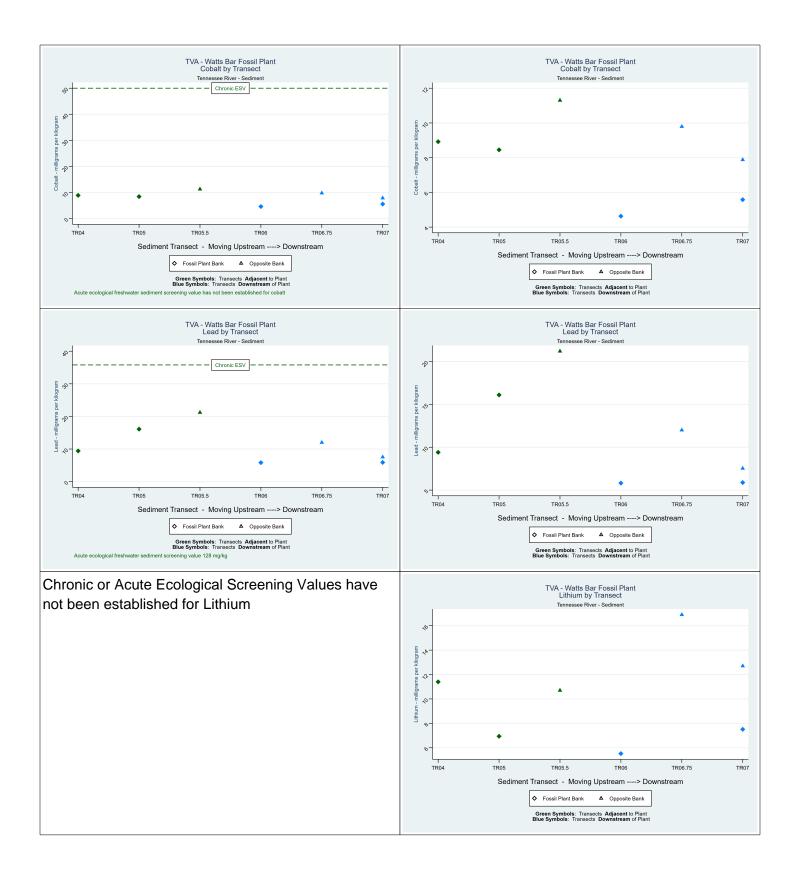

For Parameters with non-detects reported at the method detection limit, the mean and standard deviation were calculated using Kaplan-Meier methods (KM).

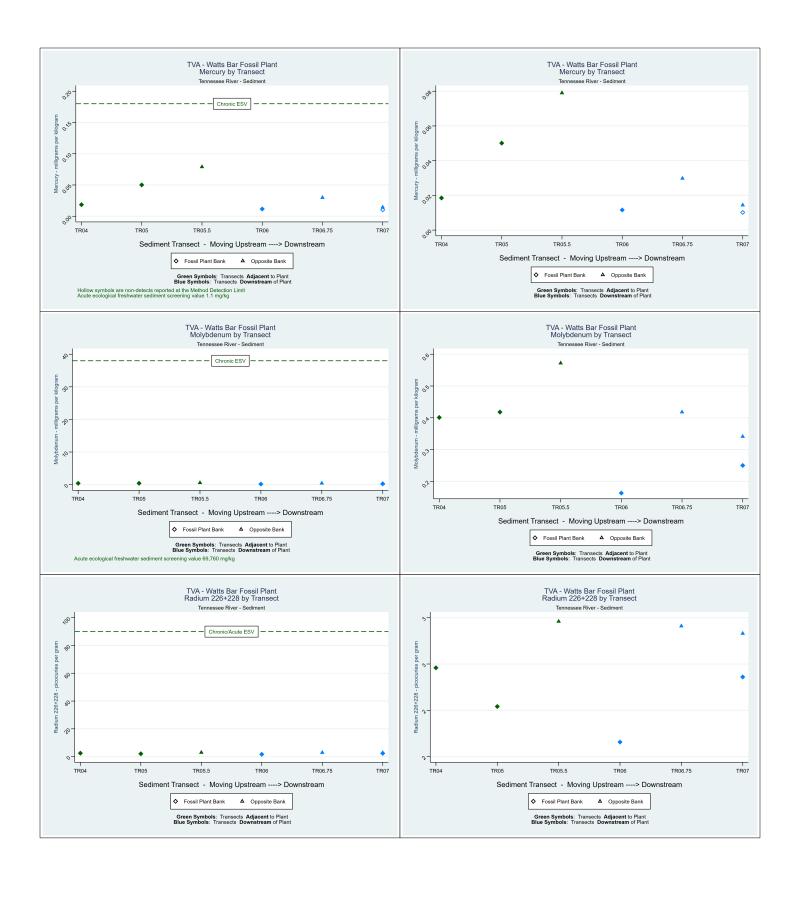

[&]quot;--" - Not Applicable

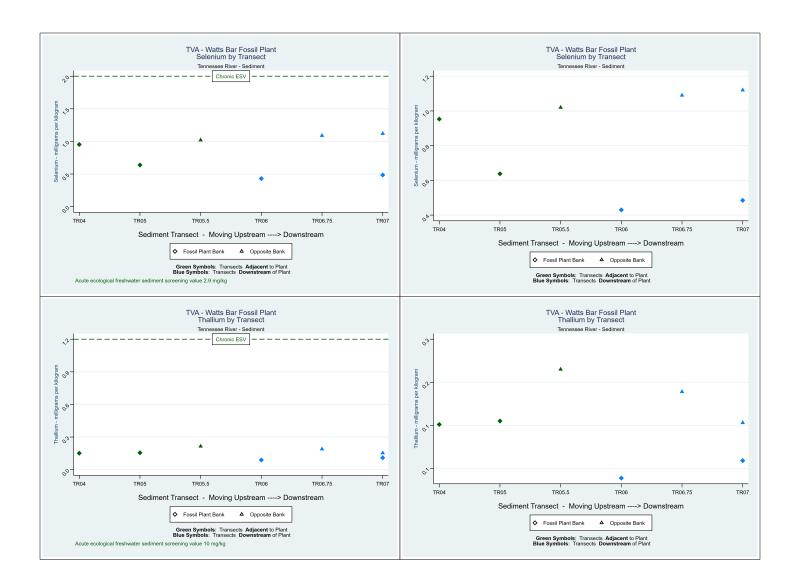
ATTCHMENT E.6-B TRANSECT PLOTS

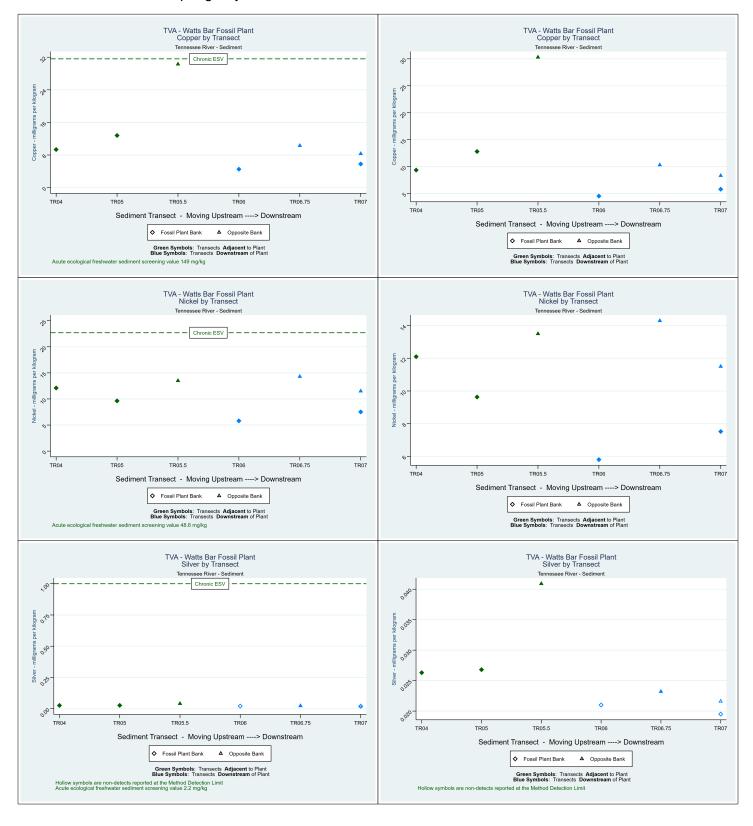

Transect Plots CCR Rule Appendix III Parameters Sediment Investigation - Tennessee River Watts Bar Fossil Plant, Spring City, Tennessee

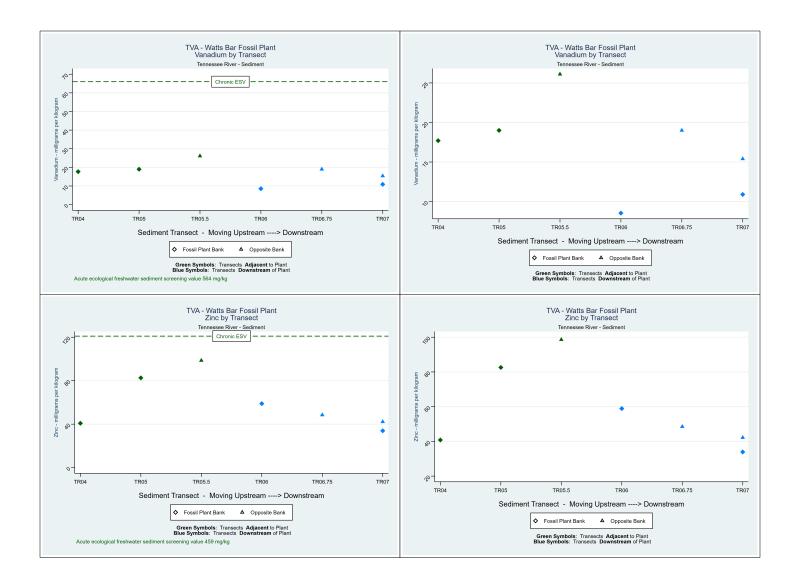







Transect Plots CCR Rule Appendix IV Parameters Sediment Investigation - Tennessee River Watts Bar Fossil Plant, Spring City, Tennessee





Transect Plots TDEC Appendix I Parameters Sediment Investigation - Tennessee River Watts Bar Fossil Plant, Spring City, Tennessee

Appendix E.7 - Data Evaluation of Fish Tissue Sample Data

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Log

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix E.7 - Data Evaluation of Fish Tissue Sample Data was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not consider any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Melissa Whitfield Aslund, PhD, Environmental Scientist

White

Reviewed by

Chris La Londe, Risk Assessor

Approved by

Carole M. Farr, Senior Principal Geologist

Table of Contents

ABBF	REVIATIONS	II
1.0	INTRODUCTION	
2.0	METHODS	2
2.1	COMPARISON OF CONSTITUENT CONCENTRATIONS IN FISH TISSUES TO FISH TISSUE CRITICAL BODY RESIDUES	
3.0	RESULTS	2
4.0	DISCUSSION	3
5.0	REFERENCES	4
Table Table	DF TABLES E.7-1 – Summary of Samples Collected and Included in Data Evaluation for Each Sampling Location, Fish Species, and Tissue Type	
	River	3

Abbreviations

BG Bluegill

CBR Critical Body Residue
CC Channel Catfish

CCR Coal Combustion Residuals

CCR Rule Title 40, Code of Federal Regulations, Part 257

EAR Environmental Assessment Report

El Environmental Investigation
ESVs Ecological Screening Values

LB Largemouth Bass

LOAEL Lowest Observed Adverse Effect Level

mg/kg Milligrams per Kilogram

NOAEL No Observed Adverse Effect Level

RS Redear Sunfish

SH Shad

Stantec Consulting Services Inc.

TDEC Tennessee Department of Environment and Conservation

TRA Tennessee River Adjacent
TRD Tennessee River Downstream
TRU Tennessee River Upstream
TVA Tennessee Valley Authority

USEPA United States Environmental Protection Agency

WBF Plant Watts Bar Fossil Plant

WW Wet Weight

March 31, 2024

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) prepared this appendix on behalf of the Tennessee Valley Authority (TVA) to summarize the data evaluation performed on fish tissue data to support the Environmental Assessment Report (EAR) at the Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee. Fish tissue samples were collected as part of the Tennessee Department of Environment and Conservation (TDEC) Order Environmental Investigation (EI) between April and May 2019 in the Tennessee River in proximity to the WBF Plant. Further details regarding the fish tissue sampling program and results are available in Appendix J.5 and the *Fish Tissue Sampling and Analysis Report* (Appendix J.6).

The water bodies, sampling locations, fish species, and tissue types included in this evaluation are summarized in Table E.7-1.

Table E.7-1 – Summary of Samples Collected and Included in Data Evaluation for Each Sampling Location, Fish Species, and Tissue Type

	Sample Location	Locations	Bluegill (BG)			Channel Catfish (CC)			Largemouth Bass (LB)			Redear Sunfish (RS)		sh	Shad (SH)
Water Body		Relative to WBF CCR Units	Muscle	Liver	Ovary	Muscle	Liver	Ovary	Muscle	Liver	Ovary	Muscle	Liver	Ovary	Whole Fish
	TRU	Upstream	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Tennessee River	TRA	Adjacent	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓
	TRD	Downstream	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Notes: CCR - Coal Combustion Residuals, TRU – Tennessee River Upstream, TRA – Tennessee River Adjacent, TRD – Tennessee River Downstream

For each sampled waterbody, this data evaluation focused on constituents from one of the following two categories:

- Constituents for which potential risks to aquatic life have been identified based on observations of
 concentrations greater than applicable EAR ecological screening values (ESVs, see Appendix
 A.2) in sediment or surface stream (excluding statistical outliers). Detailed comparisons of
 constituent concentrations in surface stream and sediment to the applicable ESVs are provided in
 Appendices E.5 and E.6, respectively.
- 2. Constituents with potential to bioaccumulate in fish tissues as identified by the United States Environmental Protection Agency (USEPA 2018).

The constituents identified for review in fish tissue for each sampled waterbody based on these criteria are summarized in Table E.7-2.

March 31, 2024

Table E.7-2 - Constituents Identified for Review in Fish Tissue for the Tennessee River

Water Body	Constituent	Rationale for Review in Fish Tissue							
Tannasaaa Diyar	Mercury	Bioaccumlative per USEPA (2018)							
Tennessee River	Selenium	Bioaccumlative per USEPA (2018)							

For the constituents identified in Table E.7-2 for the Tennessee River, the following sections present the methods and results from the data evaluation and comparison of fish tissue data to established screening levels for fish tissue critical body residue (CBR) No Observed Adverse Effect Levels (NOAELs) and Lowest Observed Adverse Effect Levels (LOAELs), where available, (see Table 1-5 and Appendix A.2 for list of CBRs identified as EAR screening levels for fish tissue concentrations).

2.0 METHODS

2.1 COMPARISON OF CONSTITUENT CONCENTRATIONS IN FISH TISSUES TO FISH TISSUE CRITICAL BODY RESIDUES

For the constituents identified in Table E.7-2 as requiring further review in the assessed water bodies in proximity to the WBF Plant, measured constituent concentrations (or reported detection limits, for samples where the constituent was not detected) for each analyzed fish species and tissue type were compared directly to the applicable CBRs presented in Appendix A.2.

3.0 RESULTS

Fish tissue samples taken in the three Tennessee River reaches were compared to CBR NOAELs and LOAELs for mercury and selenium. The reported fish tissue concentrations for these constituents are summarized and compared to their applicable CBRs in Table E.7-3 below. Additional information on the fish tissue results comparison to CBRs in the Tennessee River is included in Appendix J.5.

March 31, 2024

Table E.7-3 – Fish Tissue Concentrations for Mercury and Selenium in the Tennessee River

		Sample Concentration (mg/kg ww)*														
Constituent Type	Constituent		Gradient	Muscle				Liver				Ovary				Whole Fish
				BG	CC	LB	RS	BG	CC	LB	RS	BG	CC	LB	RS	SH
	TRU	Upstream	0.07	0.11	0.2	0.06	0.033	0.27	0.081	0.045	<0.0076	<0.0071	0.011	<0.0071	0.02	
	Mercury	TRA	Adjacent	<0.0072	0.12	0.28	0.029	0.026	0.25	0.17	0.081	<0.0072	<0.0076	0.026	<0.0075	0.013
CCR Rule Appendix IV		TRD	Downstream	0.054	0.072	0.2	0.083	0.029	0.11	0.07	0.14	<0.0072	<0.0074	0.014	0.008	0.014
Constituents		TRU	Upstream	1.4	0.78	1.5	2.1	1.3	1.2	1.1	1.1	2.3	2.2	2.4	2.6	1.7
		TRA	Adjacent	1.3	0.7	1.4	1.9	1.6	1.3	1.1	2.1	2.8	2.1	2.7	3.2	1.2
		TRD	Downstream	1.3	0.67	1.3	2	1.1	1.3	1	1.9	2.2	2.3	2.6	3.6	1.4

Notes: CCR Rule - Title 40, Code of Federal Regulations, Part 257; BG – Bluegill; CBR - Critical Body Residue; CC - Channel Catfish; LB - Largemouth Bass; RS - Redear Sunfish; SH – Shad; TRA – Tennessee River Adjacent; TRD – Tennessee River Downstream; TRU – Tennessee River Upstream; LOAEL – Lowest Observed Adverse Effect Level; mg/kg – milligram per kilogram, ww – wet weight; NOAEL - No Observed Adverse Effect Level;

^{*}Selenium concentrations reported as mg/kg ww for liver tissue and mg/kg dry weight for whole body, muscle, and ovary to permit direct comparison to the selenium critical body residues (CBRs) for these tissues.

Legend
No applicable CBR
Concentration < CBR NOAEL
Concentration > CBR NOAEL
Concentration > CBR LOAEL

4.0 DISCUSSION

For the reviewed constituents, where fish tissue concentrations were higher than CBR NOAELs, there was generally minimal variability in constituent concentrations between the upstream, adjacent, and downstream sampling reaches in proximity to the WBF Plant. However, because of the former WBF Plant's proximity to the Watts Bar Dam, there was insufficient space to establish a sampling control area immediately upstream of the WBF Plant. Therefore, the upstream control sampling reach was established in the forebay area of the Watts Bar Dam, resulting in the downstream and adjacent sampling reaches being located in the Chickamauga Reservoir inflow zone and the upstream sampling reach being established in the Watts Bar Reservoir forebay zone. Because these two reservoir zone types have much different flow regimes and ecologies, any direct comparisons between the upstream and downstream reaches are inappropriate.

Further interpretation of the ecological implications of these tissue concentrations will be completed in the context of the Corrective Action/Risk Assessment Plan.

March 31, 2024

5.0 REFERENCES

United State Environmental Protection Agency. (2018). Region 4 Ecological Risk Assessment Supplemental Guidance. March 2018 Update, Screening Values.

