APPENDIX H – HYDROGEOLOGIC INVESTIGATIONS

Appendix H.1 – Technical Evaluation of Hydrogeology

TDEC Commissioner's Order: Environmental Assessment Report Watts Barr Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix H.1 – Technical Evaluation of Hydrogeology was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _____

Mark Densmore, Senior Geologist

Reviewed by

Rebekah Brooks, PG, Senior Principal Hydrogeologist

Approved by

John Griggs, PG, Senior Principal

Table of Contents

ABB	REVIATIO	DNS	
1.0	INTRO	DUCTION	1
2.0	GROUN	NDWATER AND HYDROGEOLOGICAL INVESTIGATION	3
2.1	PREVIC	OUS STUDIES AND ASSESSMENTS	
2.2	CURRE	ENT AND ONGOING GROUNDWATER MONITORING	4
2.3	HYDRC	DGEOLOGY	4
	2.3.1	Scope of Work	
	2.3.2	Well Installation	5
	2.3.3	Well Construction	
	2.3.4	Well Development	
	2.3.5	Aquifer Testing	
	2.3.6	Groundwater Sampling	
	2.3.7	Hydrogeologic Assessment Results	
2.4	GROUN	NDWATER QUALITY	
	2.4.1	Piper Diagrams	
	2.4.3	Summary	16
3.0	SUMM	ARY	17
4.0	REFER	ENCES	19

LIST OF TABLES

- Table H.1-1 Summary of Environmental Investigation Monitoring Well Locations
- Table H.1-2 Summary of Monitoring Well Construction Specifications
- Table H.1-3
 Summary of Hydraulic Conductivity Results from Slug Test Data
- Table H.1-4Groundwater Level Measurements, Groundwater Sampling Event #6
(July 6, 2020)
- Table H.1-5Tennessee River and Groundwater Elevation Comparison (August 2019 July
2020)
- Table H.1-6
 Rate and Direction of Groundwater Flow Summary
- Table H.1-7 Groundwater Analytical Results
- Table H.1-8 Groundwater Quality Parameters
- Table H.1-9 Screening Levels for Groundwater
- Table H.1-10 Summary of Statistically Significant Concentrations/Values
- Table H.1-11 Linear Regression Results

LIST OF EXHIBITS

- Exhibit H.1-1 Monitoring Well and Piezometer Network
- Exhibit H.1-2 Lithologic Model (Oblique View Looking Northwest)
- Exhibit H.1-3 Lithologic Model Primarily Alluvial Silts and Clays (Oblique View Looking Northwest)
- Exhibit H.1-4 Lithologic Model Primarily Alluvial Sand (Oblique View Looking Northwest)
- Exhibit H.1-5 Geologic Map with Top of Bedrock Contours
- Exhibit H.1-6 Regional Geologic Map
- Exhibit H.1-7 Lithologic Model Top of Bedrock (Oblique View Looking Northwest)
- Exhibit H.1-8 Thickness of Clays and Silts Above Uppermost Aquifer
- Exhibit H.1-9 Lithologic Model Physiographic Setting (Oblique View Looking Northwest)
- Exhibit H.1-10 Groundwater Elevation Contour Map, Event #6 (July 6, 2020)
- Exhibit H.1-11 WBF Instrumentation Used for Surface Water / Pore Water / Groundwater Hydrograph Comparison
- Exhibit H.1-12 Groundwater / Surface Water Elevation Comparison
- Exhibit H.1-13 Groundwater / Surface Water Elevation Comparison Manual Instrumentation
- Exhibit H.1-14 Pore Water / Surface Water Elevation Comparison
- Exhibit H.1-15 Pore Water / Surface Water Elevation Comparison Manual Instrumentation
- Exhibit H.1-16 Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule Appendix IV and TDEC Appendix I Constituents

Exhibit H.1-17 Piper Diagram – July 2020

LIST OF ATTACHMENTS

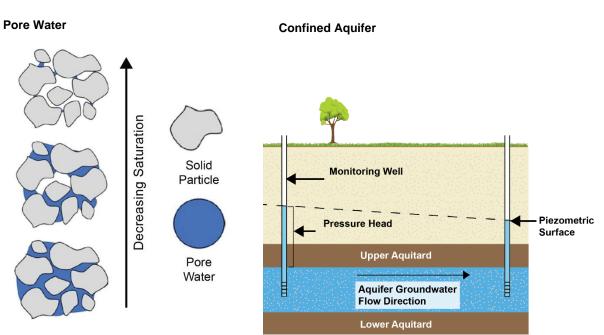
ATTACHMENT H.1-A	HYDROGRAPHS
ATTACHMENT H.1-B	PIPER DIAGRAMS

Abbreviations

amsl	Above Mean Sea Level
CARA	Corrective Action/Risk Assessment
CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five
	inorganic constituents included in Appendix I of Tennessee Rule 0400-
	11-0104
CCR Rule	Title 40, Code of Federal Regulations, Part 257
CFR	Code of Federal Regulations
cm/sec	Centimeters Per Second
EAR	Environmental Assessment Report
EI	Environmental Investigation
EIP	Environmental Investigation Plan
GSL	Groundwater Screening Level
NPDES	National Pollutant Discharge Elimination System
%	Percent
PVC	Polyvinyl Chloride
QAPP	Quality Assurance Project Plan
Redox	Oxidation/reduction potential
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	TDEC Commissioner's Order OGC15-0177
ТІ	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Barr Fossil Plant

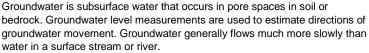
Introduction March 31, 2024

1.0 INTRODUCTION


Stantec Consulting Services Inc (Stantec), on behalf of the Tennessee Valley Authority (TVA), has prepared this technical evaluation appendix to summarize historical and recent evaluations of hydrogeological and analytical results for groundwater and geochemical data at TVA's Watts Bar Fossil Plant (WBF Plant) in Spring City, Tennessee. This technical appendix also provides a characterization of the extent of contamination and preliminary explanation for the observed occurrences of coal combustion residuals (CCR) constituents in groundwater to support information provided in the Environmental Assessment Report (EAR) and to fulfill the requirements for the Tennessee Department of Environment and Conservation (TDEC)-issued Commissioner's Order No. OGC15-0177 (TDEC Order) Program (TDEC 2015). Further evaluation of the need for corrective actions and the associated extent of groundwater contamination will be provided in the Corrective Action/Risk Assessment (CARA) Plan. For purposes of this document, the following hydrogeological terms as they are defined below are used throughout this document.

- Pore water subsurface water that occurs in pore spaces in CCR material
- Groundwater subsurface water that occurs in pore spaces in unconsolidated or geologic materials (e.g., soil, bedrock)
- Aquifer a geologic formation capable of yielding usable quantities of groundwater
- Confined aquifer an aquifer present between two aquitards when the water level in a well is observed to be above the top of the aquifer due to the confining pressure (see graphic below)
- Aquitard a geologic formation comprised of less permeable geologic materials that transmit groundwater more slowly than an aquifer
- Saturated Unconsolidated or geologic materials (e.g., soil, bedrock) or CCR material where all
 of the pore space is filled with water. The use of the term "saturated" in reference to the moisture
 content of CCR material does not imply that the pore water is readily separable from the CCR
 material
- Moisture content the measure of the amount of water contained within unconsolidated or geologic materials (e.g., soil, bedrock) or CCR material. Moisture content of saturated material can be variable because the characteristics of the material determine the amount of pore space available for water to fill
- Phreatic surface the surface of pore water at which pressure is atmospheric and below which CCR material may be saturated with pore water. Pore water levels are measured at locations where temporary wells or piezometers were installed within CCR material. The measured pore water levels are used to infer pore water levels between the wells and piezometers to develop the phreatic surface

Introduction March 31, 2024


- Piezometric surface the groundwater surface defined by the level to which groundwater will rise in a well completed in a confined aquifer
- Uppermost aquifer the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within a facility's property boundary.

In a confined aquifer, measured groundwater levels rise above the top of the aquifer. The difference between the measured groundwater levels within the aquifer and the top of the aquifer is called the pressure head. A figure showing pressure head for a confined aquifer and associated bounding aquitards is provided below. For confined aquifers, groundwater is not encountered in the interval shown as pressure head above the top of the aquifer because it is bounded by an upper aquitard, which also physically separates the groundwater from the geologic unit located above the upper aquitard.

Benson, C., *Water Flow in Coal Combustion Products and Drainage of Free Water*, Report No. 3002021963, Electric Power Research Institute, Palo Alto, CA.

This figure depicts how subsurface water occurs in the pore spaces in CCR material (referred to as "pore water" in this EAR), and how saturation varies within the CCR material. The phreatic surface is the surface of pore water at which pressure is atmospheric and below which CCR material may be saturated with pore water.

Groundwater and Hydrogeological Investigation March 31, 2024

2.0 GROUNDWATER AND HYDROGEOLOGICAL INVESTIGATION

The purpose of the groundwater and hydrogeological investigations was to further characterize and evaluate subsurface conditions in proximity to two CCR management units at the WBF Plant, including the Ash Pond and the Slag Disposal Area. For these investigations, TVA reviewed information from previous studies and assessments, completed field sampling programs, and conducted evaluations related to geology, hydrogeology, groundwater quality and CCR material characteristics as part of the TDEC Order Environmental Investigation (EI).

The following sections summarize the previous studies and present overall hydrogeological investigation and evaluation findings related to the WBF Plant CCR management units based on data obtained during previous studies and the EI.

2.1 PREVIOUS STUDIES AND ASSESSMENTS

This section provides a summary of prior studies that have been conducted at the WBF Plant and provide usable information related to geology, hydrogeology, groundwater quality and CCR material characteristics. No previous studies of the geochemical interaction of geological materials, groundwater or pore water are known to have been conducted. In addition to the studies summarized below, information from other hydrogeological and geotechnical studies that met the data quality objectives of the *Environmental Investigation Plan (EIP)* (TVA 2018) is incorporated into the evaluation presented in this appendix. Previously closed CCR management units were closed in accordance with applicable regulations in effect at the time of closure.

Exploratory drilling at the WBF Plant began in 1940 to evaluate the suitability for the foundation for a proposed power plant. The bedrock was described as shale across the plant, and overburden was thin in most cases, except near the Tennessee River (Fox 1942).

Beginning in the late 1980s, TVA began performing targeted hydrogeological studies to evaluate the existing and future proposed ash management practices. In 1988, soil borings and monitoring wells were installed to evaluate subsurface conditions and groundwater quality (TVA 1988). Field activities included drilling three soil borings, geotechnical testing and soil classification, and installing three monitoring wells.

From 1996 to 2005, US Minerals reclaimed slag from the Slag Disposal Area for use in manufacturing products. In 2009, the Slag Disposal Area and Closed Metal Cleaning Pond were closed under TDEC Permit No. TNR190741 in accordance with the *Closure and Post Closure Plan* (TVA 2007). It is unknown whether the Closed Metal Cleaning Pond was ever used. During inspections following the closure, poor surface drainage was observed in the area west of the Slag Disposal Area. A separate stormwater drainage and maintenance project was later implemented to improve drainage and remove ponded water from around the Slag Disposal Area.

TVA demolished the main powerhouse at the WBF Plant in 2012 and closed the Ash Pond in 2015 under TDEC Permit No. TN0005461 in accordance with the *Ash Pond Closure Plan* (TVA 2013). As part of the

Groundwater and Hydrogeological Investigation March 31, 2024

closure, CCR materials were excavated from the southern portion of the Ash Pond and consolidated/capped in the northern portion of the Ash Pond using a geosynthetic and soil cap (CDM Smith 2015). The southern portion of the former Ash Pond was converted into a National Pollutant Discharge Elimination System (NPDES) -permitted stormwater pond (Permit No. TNR058427) for the plant. A clay divider dike was constructed between the capped portion of the Ash Pond and the stormwater pond (CDM Smith 2015).

In 2011 and 2012, five borings were drilled and completed as temporary groundwater observation wells as part of the Ash Pond closure construction activities (CDM Smith 2012). Groundwater levels measured in the wells were used in geotechnical evaluations associated with the closure of the Ash Pond. No samples were collected for laboratory analysis from these wells. The observation wells were then during construction activities.

In 2014, three monitoring wells were installed in accordance with the *Ash Pond Closure Groundwater Monitoring Plan* included in the *Ash Pond Closure Plan* (TVA 2013). In 2016, an additional monitoring well was installed in an upgradient location to be monitored as a potential background well (Stantec 2017). Compliance groundwater monitoring began in October 2014 and is ongoing.

2.2 CURRENT AND ONGOING GROUNDWATER MONITORING

As of October 19, 2015, the effective date of Title 40 of the Code of Federal Regulations (40 CFR) Part 257 (CCR Rule), the Ash Pond and the Slag Disposal Area were not receiving CCR material, were not impounding water, and had been previously closed. As a result, these units are not subject to the CCR Rule.

Current and ongoing compliance groundwater monitoring at the WBF Plant CCR management units consists of one program:

NPDES Permit: From 2014 to the present, TVA has conducted quarterly or semiannual groundwater monitoring at the Ash Pond under NPDES Permit No. TN0005461 in association with the Ash Pond Closure Plan. The Ash Pond is listed as a Non-Registered Site by TDEC. Sample collection and laboratory analysis are performed in accordance with TDEC Rule 0400-11-01-.04 and the facility Groundwater Monitoring Plan included within the Ash Pond Closure Plan (TVA 2013) approved by TDEC. Groundwater analytical data reports have been and continue to be provided to TDEC as part of this program.

Exhibit H.1-1 shows the current groundwater monitoring well and piezometer networks for the WBF Plant. Appendix E.3 provides a list of the wells and their associated monitoring program.

2.3 HYDROGEOLOGY

The objectives of the TDEC Order hydrogeological and groundwater investigations were to characterize the hydrogeology and groundwater quality and evaluate groundwater flow conditions in the vicinity of the WBF Plant CCR management units.

Groundwater and Hydrogeological Investigation March 31, 2024

TVA performed well installation and groundwater sample collection activities in accordance with the *EIP*, *Groundwater Investigation and Hydrogeological Investigation Sampling and Analysis Plans* (SAPs) (Stantec 2018a and 2018b), *Quality and Assurance Project Plan (QAPP)* and TVA's Environmental Technical Instructions (TIs). Well installation and sample location selection, sample collection methodology, sample analyses, and quality assurance/quality control completed for the investigations are provided in the *Hydrogeological Investigation Sampling and Analysis Report (SAR)* (Appendix H.2) and the *Groundwater Investigation SARs* for the six sampling events (Appendices H.3 through H.8).

As reported in the *Groundwater and Hydrogeological Investigation SARs*, the data collected during these investigations were deemed usable for reporting and evaluation in this EAR because they met the objectives of the *EIP*. An analysis of results and discussion of the dataset from these investigations along with data collected under other *TDEC Order SAPs* and data collected under the Ash Pond closure compliance program is presented in the sections below.

2.3.1 Scope of Work

The scope of work for the EI hydrogeological and groundwater investigations included drilling soil borings and installing permanent wells at six planned locations, collecting soil samples from the screened interval of two proposed background wells, obtaining saturated zone hydraulic conductivity data, and conducting six groundwater sampling events.

The groundwater sampling events included gauging groundwater and pore water levels in permanent and temporary monitoring wells and piezometers installed as part of the EI and other existing monitoring wells and piezometers near the CCR management units. The groundwater and soil samples were analyzed for the CCR-related constituents listed in Appendices III and IV of the CCR Rule, except soil samples were not analyzed for total dissolved solids. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the CCR Rule Appendices III and IV were analyzed to maintain continuity with the TDEC compliance programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents are hereafter referred to as CCR Parameters. For geochemical evaluation, groundwater samples were analyzed for major cations/anions not included in the CCR Parameters. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium. Table H.1-1 provides a summary of the boring and well locations associated with the hydrogeological investigation and the rationale for each well location. The locations of the EI wells and other program well locations are shown on Exhibit H.1-1.

2.3.2 Well Installation

The hydrogeological investigation well installation activities were conducted between May 29, 2019 and October 11, 2019, and consisted of hollow stem auger drilling, well installation, well development, slug testing, pump installation, and well surveys. Stantec performed field activities based on guidance and specifications listed in TVA's TIs, the *SAPs*, and the *QAPP*.

Two proposed background permanent wells (WBF-102 and WBF-103) were installed in unconsolidated materials to provide groundwater samples that have not been affected by the CCR management units

Groundwater and Hydrogeological Investigation March 31, 2024

and to be representative of background conditions. Soil samples were collected from the screened intervals of each of the background well borings for analysis of CCR Parameters. The soil sample results are provided in the *Background Soil Investigation SAR* (Appendix F.1).

One permanent monitoring well (WBF-101) was installed in unconsolidated materials at a location downgradient of the Ash Pond, and three permanent monitoring wells (WBF-104, WBF-105, and WBF-106) were installed in unconsolidated materials at locations downgradient of the Slag Disposal Area to provide locations to evaluate groundwater flow and quality in these areas.

2.3.3 Well Construction

Permanent monitoring wells were installed by qualified drill crews working under the direction of a Stantec Professional Geologist and a licensed Tennessee driller. Wells were constructed of four-inch diameter Schedule 40 polyvinyl chloride (PVC) pre-packed well screens (0.010-inch slots) and riser. The screen and riser consisted of flush-joint, threaded PVC pipe. The screen length was selected based on the results of the boring log and the target stratum and was either five or 10 feet in length. Well construction details are included in the *Hydrogeological Investigation SAR*. Table H.1-2 shows the well construction summary for wells WBF-101 through WBF-106 and other previously existing wells shown on Exhibit H.1-1.

2.3.4 Well Development

Each new permanent well was developed using a combination of bailing, surging, and pumping after a minimum of 24 hours following well installation. A summary of initial and final water quality measurements collected during well development is presented in Table B.2 in Appendix B of the *Hydrogeological Investigation SAR* (Appendix H.2).

2.3.5 Aquifer Testing

2.3.5.1 Slug Testing

After development of the wells installed as part of the hydrogeological investigation, Stantec performed slug testing in five of the six permanent wells (WBF-101, WBF-103, WBF-104, WBF-105, and WBF-106) to estimate the hydraulic conductivity of the unconsolidated materials within the screened interval of each well. A pressure transducer with a data recorder was used to collect water level information from the wells. Monitoring well WBF-102 could not be tested because it was repeatedly dry or had insufficient water column to conduct the tests.

The field data were analyzed using AQTESOLVTM Version 4.50 Professional software to estimate the hydraulic conductivity of the saturated unconsolidated materials in the screened interval of each tested monitoring well. Calculated hydraulic conductivities are summarized in Table B.3 in Appendix B of the *Hydrogeological Investigation SAR* (Appendix H.2), and the software output package is provided in Appendix E of the *Hydrogeological Investigation SAR*. The hydraulic conductivity in the five tested EI permanent wells WBF-101 and WBF-103 through WBF-106 ranged from 1.91 x 10⁻⁴ centimeters per second (cm/sec) to 7.26 x 10⁻³ cm/sec.

Groundwater and Hydrogeological Investigation March 31, 2024

A summary of the EI slug test results is provided in Table H.1-3. The geometric mean of the hydraulic conductivities measured in wells listed in Table H.1-3 is 5.28×10^{-4} cm/sec.

2.3.6 Groundwater Sampling

Groundwater samples were collected during six events on the following dates:

- Event 1 August 27-28, 2019
- Event 2 October 29-31, 2019
- Event 3 January 7-9, 2020
- Event 4 March 3-4, 2020
- Event 5 April 27-29, 2020
- Event 6 July 7-8, 2020.

TVA performed investigation sample and data collection activities in accordance with the *Groundwater Investigation SAP*, TVA's TIs, and the *QAPP*. Permanent wells were purged using dedicated bladder pumps equipped with dedicated tubing and low-flow purging and sampling techniques. Details of each sampling event are provided in the *Groundwater Investigation SARs*, Events #1 through #6 (Appendices H.3 through H.8).

2.3.7 Hydrogeologic Assessment Results

Several soil boring and well installation projects at and in the vicinity of the WBF Plant CCR management units yielded information about the geology, hydrogeological properties of the geologic formations, groundwater elevations, groundwater flow direction, and groundwater quality. This section provides an evaluation of the hydrogeological setting of the WBF Plant CCR management units.

2.3.7.1 Geology and Lithology

Chapter 2.4 of the EAR provides a discussion of the regional geologic setting for the WBF Plant. This section provides a discussion of the site-specific geology and lithology of the WBF Plant. Use of the terminology "fill material" in the following discussions excludes CCR material. A discussion of CCR material is provided in Appendix G.1. Exhibit H.1-2 shows a three-dimensional representation of the extent of CCR material at the WBF Plant.

The WBF Plant is located in the Tennessee River valley in the western portion of the Appalachian Valley Physiographic Province, also known as the Valley and Ridge Province (Fox 1942). The natural unconsolidated materials consist primarily of alluvium overlying bedrock. Alluvium refers to native materials (i.e., clay, silt, sand, or gravel) that are deposited by moving water. Unconsolidated material thicknesses ranged from approximately 0 to 32 feet based on the information collected during the EI (see Appendix C of Appendix H.2 for boring logs). The unconsolidated materials are thickest near the river and thinner at greater distances from the river. The alluvium can be differentiated into silts, clays, sands,

Groundwater and Hydrogeological Investigation March 31, 2024

and gravels, which exhibit a coarsening downward sequence. The upper fine-grained alluvium layer varies in thickness from approximately 0 to 27 feet and is primarily comprised of clay and silty clays. Clay soils of variable thickness are present under the CCR management units. The lower alluvial layer, ranging in thickness from 0 to 20 feet, is primarily silty sand, sand, and gravel. Exhibits H.1-3 and H.1-4 show three-dimensional representations of the extent of the unconsolidated materials consisting primarily of silts and clays, and sands and silty sands, respectively.

Geologic mapping indicates that the unconsolidated materials are underlain by bedrock comprised of the Conasauga Group, specifically the Conasauga Group Middle and the Nolichucky Shale. Exhibit H.1-5 is a geologic map of the WBF Plant.

The upper bedrock consists of dark gray-green shale, weathered in the upper few feet, with varying amounts of gray limestone based on boring logs from the *Exploratory Drilling SAR* (Appendix G.2). The bedrock surface slopes east toward the Tennessee River, with elevations ranging from 696 feet above mean sea level (amsl) west of the Slag Disposal Area to 664 feet amsl along the Tennessee River. The average dip of the strata is 35 degrees southeast, and the average strike is 35 degrees to the northeast (Fox 1942). The Kingston Fault has been identified west of the plant. Exhibit H.1-6 shows the regional geology and the location of the nearby mapped faults. Exhibit H.1-7 shows a three-dimensional representation of the bedrock surface.

2.3.7.2 Hydrostratigraphic Units and the Uppermost Aquifer

Hydrostratigraphic units are geological formations that are defined to characterize the hydrogeology of the WBF Plant to understand where and how groundwater is flowing. Groundwater flows from higher groundwater elevations to lower elevations. In saturated geological formations that have higher permeability than adjacent formations, groundwater flows in a mostly horizontal direction. In saturated geological formations, groundwater flows in a mostly horizontal direction. In saturated geological direction. The more permeable geological formations capable of yielding useable quantities of groundwater are called aquifers. Aquifers are targeted for development as water sources by property owners. The less permeable geological formations are called aquitards.

Hydraulic characteristics of hydrostratigraphic units are used to classify aquifers. An aquifer located between two aquitards is called a confined aquifer. Groundwater can flow through aquitards into underlying aquifers, but the rate of flow is commonly much slower than the rate of flow within the aquifer. Aquifers can be considered confined even if they are not completely covered by an aquitard. For example, the Memphis aquifer in western Tennessee is a confined aquifer, yet it is known that the aquitard above the Memphis aquifer is thin or absent in some areas (United States Geological Survey 1990).

As shown in the graphical representation in Section 1.0, in a confined aquifer, measured groundwater levels rise above the top of the aquifer. The difference between the measured groundwater levels within the aquifer and the top of the aquifer is called the pressure head. For confined aquifers, groundwater is not encountered in the interval shown as pressure head above the top of the aquifer because it is bounded by an upper aquitard, which also physically separates the groundwater from the geologic unit located above the upper aquitard.

Groundwater and Hydrogeological Investigation March 31, 2024

In state and federal regulations, the term uppermost aquifer is used. This is the aquifer nearest the natural ground surface, as well as lower aquifers that are hydraulically interconnected with this aquifer within a facility's property boundary that are capable of yielding usable quantities of groundwater. Regulations are designed to protect the groundwater in the uppermost aquifer because it could be used by property owners as a source of water. The term uppermost aquifer is used in this report.

Based on the geology and hydraulic conductivities measured in the vicinity of the CCR management units, the alluvial sands and gravels above bedrock shown on Exhibit D-2 in Appendix D of the EAR, are considered to be the uppermost aquifer. The uppermost aquifer is overlain by less permeable clays that are defined as an aquitard; therefore, the uppermost aquifer is a confined aquifer. Groundwater in the confined aquifer is not in contact with the CCR material inside the CCR management units because the aquitard physically separates them.

Exhibit H.1-8 shows the distribution and thickness of the clays that comprise the aquitard above the uppermost aquifer. Based on visual field descriptions of unconsolidated materials on borings logs, two locations might not have clay above the uppermost aquifer. These locations are shown on Exhibit H.1-9, and both locations are in the Drainage Improvements Area. The following bullets present information about the visual field descriptions provided on boring logs for these locations. Also, an evaluation of the changes in water levels, above and below the aquitard, to fluctuations in surface stream water levels are provided in Section 2.3.7.4.

- WBF-B11 in the Drainage Improvements Area: The base of the CCR material in this boring was at a depth of approximately 20 feet, and the material beneath it consisted of approximately one foot of clayey sand. The bedrock interface is below the sand interval
- WBF-B15 in the Drainage Improvements Area: The base of the CCR material in this boring was at a depth of approximately 21 to 23 feet and consisted of CCR / clayey gravel mixture over the bedrock interface.

2.3.7.3 Groundwater Flow

This section provides a discussion of how groundwater flows at the WBF Plant. Groundwater flow occurs because gravity moves groundwater from areas of higher groundwater elevations to areas of lower elevations along flow paths that are generally perpendicular to groundwater elevation contours. Physiographic and hydrogeological features affect how groundwater flows. Hydrogeological barriers (i.e., rivers and surface streams) and divides (i.e., ridges that form watershed boundaries) bound the extent of groundwater flow. Groundwater flows toward, but not across, hydrogeological barriers and away from hydrogeological divides.

Exhibit H.1-9 shows the physiographic setting of the WBF Plant within the floodplain of the Tennessee River. The key characteristics of the setting are that the plant is situated in a low-lying area along the Tennessee River with higher elevation ridges to the northwest of the plant. Physiographic features that affect groundwater flow in the vicinity of the WBF Plant include the Tennessee River to the east and ridges, which serve as a topographic divide to groundwater flow (Exhibit H.1-10).

Groundwater and Hydrogeological Investigation March 31, 2024

Groundwater levels in the uppermost aquifer were measured in 10 wells and used for groundwater elevation contour map development. Groundwater level measurements were also obtained from 9 piezometers installed for other programs. Surface water elevation measurements for the Tennessee River were continuously recorded at the tailwater levels of Watts Bar Dam as part of TVA's plant operations. The automated reading recorded closest to noon on the gauging date was used for comparison to manually gauged groundwater levels. The groundwater level measurements were converted to elevations. Table H.1-4 provides groundwater and Tennessee River level and elevation data for Event #6 in July 2020. Table H.1-5 provides elevation data from the Groundwater Investigation. Exhibit H.1-10 provides a representative groundwater elevation contour map for Event #6 in July 2020. Groundwater elevatio

At the WBF Plant, groundwater levels were measured within the alluvial sands and gravels. Generally, the horizontal groundwater flow direction is from the west-northwest to the east-southeast towards the Tennessee River. Groundwater flow in the sands and gravels is bounded to the east by the Tennessee River. Exhibit H-1.10 from groundwater sampling Event #6 in July 2020 is a representative groundwater elevation contour map for the sands and gravels.

Horizontal groundwater flow rates were calculated using groundwater elevation data acquired during the six El groundwater sampling events and a mean hydraulic conductivity derived from the results of slug testing data (Table H.1-3) for the Slag Disposal Area and Ash Pond. Horizontal groundwater flow direction and hydraulic gradient were estimated using the triangulation method and groundwater elevations for each event. The flow rate was calculated using typical effective porosity percentages based on soil type, constant hydraulic conductivity values based on geometric mean calculations from slug testing, and the groundwater elevation inputs specific to each gauging event. Table H.1-6 provides a summary of the information used to estimate the average horizontal flow rate and the results of the calculations for each groundwater sampling event.

Slag Disposal Area

For unconsolidated materials at the Slag Disposal Area, the values used to calculate groundwater flow rates follow:

- Geometric mean of hydraulic conductivity of 5.28 x 10⁻⁴ cm/sec
- Average horizontal hydraulic gradient ranged from 0.0159 feet/foot (Event #5) to 0.0183 feet/foot (Event #2)
- Effective porosity of 25%. The reference for the effective porosity of the unconsolidated material (fine-medium sand) uses specific yield as a proxy for effective porosity of unconsolidated material (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at the Slag Disposal Area ranged from 35 feet/year (Event #5) to 40 feet/year (Event #2). These calculated groundwater flow rates, and those presented below, are generally much slower than water flow in surface streams or rivers. Flow rates in surface streams or rivers generally are measured in feet per second (United States Geological Survey 1999).

Groundwater and Hydrogeological Investigation March 31, 2024

Ash Pond

For unconsolidated materials at the Ash Pond, the values used to calculate groundwater flow rates follow:

- Geometric mean of hydraulic conductivity of 5.28 x 10⁻⁴ cm/sec
- Average horizontal hydraulic gradient ranged from 0.0209 feet/foot (Event #1) to 0.0228 feet/foot (Event #3)
- Effective porosity of 25%. (Johnson, A.I. Revised 1966, page D18).

The average groundwater flow rate for the unconsolidated materials at the Ash Pond ranged from 46 feet/year (Event #1) to 50 feet/year (Event #3).

2.3.7.4 Groundwater/Surface Stream/Pore Water Relationships

This section provides a discussion of groundwater, surface stream, and pore water elevation relationships. The discussion consists of two parts. The first part of the discussion is focused on a general comparison of differences in pore water and inferred groundwater elevations in the vicinity of each of the CCR management units. The second part of the discussion is focused on correlations between fluctuations in groundwater, surface stream, and pore water levels and includes an evaluation of the effect of precipitation events. Exhibit H.1-1 shows the locations of wells and piezometers used to manually gauge groundwater and pore water elevations. Exhibit H.1-11 shows locations of wells and piezometers that are automated to record pore water and groundwater elevations. Exhibit H.1-12 provides hydrographs of the Tennessee River (as measured at the Watts Bar Tailwater) and groundwater elevations (for automated piezometers). Exhibit H.1-13 provides hydrographs of the Tennessee River and groundwater elevations (for manually gauged or read wells and piezometers). Exhibit H.1-14 provides hydrographs of the Tennessee River and pore water elevations (for automated piezometers). Exhibit H.1-15 provides hydrographs of the Tennessee River and pore water elevations (for manually gauged or read wells and piezometers). Table H.1-5 provides a comparison of the groundwater elevations at wells and piezometers and the Tennessee River for the six sampling events. A complete set of hydrographs for available instrumentation is provided in Attachment H.1-A.

General Comparison of Pore Water and Groundwater Elevations

Within the Slag Disposal Area, the pore water phreatic surface was at an elevation approximately three to five feet higher than groundwater levels in the uppermost aquifer during the El. An observed relationship between water levels in piezometers WBF-B15A/B and WBF-B16B and precipitation events in suggests that an adjacent pond to the west may be losing water into the subsurface, which may be affecting pore water levels. A cross section of the Slag Disposal Area included in Appendix D-2 of the EAR shows pore water levels at higher elevations near the western portion of the CCR management unit compared to pore water and surface stream elevations in the eastern portion of the CCR management unit and in the Tennessee River, respectively.

Within the Ash Pond, there is no phreatic surface because the CCR material is unsaturated based on observations made during temporary well installation activities and subsequent pore water gauging

Groundwater and Hydrogeological Investigation March 31, 2024

events. During well installation, the CCR material at proposed location WBF-TW01 was unsaturated. Temporary well WBF-TW02 was reported to be dry during two of the six groundwater gauging events, and the pore water level was less than 0.1 foot above the base of the screen during the other four events. Because the temporary well was screened at the base of the CCR material, this implies that the CCR material was unsaturated or effectively unsaturated during the monitoring period. This suggests that the cap is performing as expected and has effectively eliminated infiltration of precipitation into the CCR material.

Correlations Between Fluctuations in Groundwater, Surface Stream, and Pore Water Levels

The following are observations regarding correlation of fluctuations in water levels between the Tennessee River, groundwater, pore water, and precipitation.

- Tennessee River: Exhibit H.1-12 shows a hydrograph for the Tennessee River and a timeline of precipitation events, including the amount of precipitation, recorded at the Spring City NOAA weather station. The river stage fluctuations appear to correlate with winter and summer pool changes that are part of the management of water levels in Watts Bar Reservoir. The seasonal influence of the operating reservoir levels is apparent, with the lowest stages generally occurring during the late fall through early spring months and the highest stages generally occurring during the late spring through early fall months. Larger precipitation events sometimes correlate with higher elevations of the Tennessee River stage.
- Slag Disposal Area. Exhibit H.1-12 shows a comparison of river stage and groundwater level fluctuations at monitored locations near the Slag Disposal Area. The groundwater hydrographs for automated locations WBF-B13B and WBF-B14B, which are near the Tennessee River, show fluctuation patterns similar to the river stage. These hydrographs also show correlation with precipitation events. For some of the precipitation events, the fluctuation is greater for the piezometer groundwater levels than for the river stage. This suggests that the groundwater elevations in the vicinity of these piezometers are affected by precipitation events. The hydrographs for piezometers located farther from the river show subdued levels of fluctuation but are correlated with river stage and precipitation events.

Exhibit H.1-14 shows a comparison of river stage and pore water level fluctuations at monitored locations within the Slag Disposal Area. The pore water hydrographs for the automated instruments show generally stable groundwater elevations with fluctuations of less than five feet that correlate with the seasonal precipitation. The higher pore water elevations occur in late winter to early spring. The lower elevations occur in late summer and fall. Short-term increases in pore water level elevations correlate with precipitation events. There is not strong correlation with river stage fluctuations. The pore water fluctuations appear to have more correlation with seasonal precipitation than with management of water levels in Watts Bar Reservoir. The groundwater elevations with fluctuations of less than five feet that correlate with seasonal precipitation (Exhibit H.1.13). These hydrographs do not have the resolution to make comparisons to short-term river level fluctuations or precipitation events.

Groundwater and Hydrogeological Investigation March 31, 2024

The pore water hydrographs for the manually gauged or read instruments show generally stable pore water elevations with fluctuations of less than approximately six feet that correlate with seasonal precipitation (Exhibit H.1-15). These hydrographs do not have the resolution to make comparisons to seasonal or short-term precipitation events. The manual pore water gauging data from TW02 indicated that the pore water was at or below the base of the screen, which is located at approximately the base of the CCR management unit.

In summary, the fluctuations in groundwater levels in the uppermost aquifer are correlated with fluctuations in the Tennessee River stage, seasonal precipitation, and short-term precipitation events. The fluctuations in pore water levels generally show a closer correlation with precipitation than to the Tennessee River stage.

2.4 GROUNDWATER QUALITY

This section provides a discussion of the analytical results for groundwater samples collected from monitoring wells installed as part of the EI and previously installed wells monitored as part of the Ash Pond closure groundwater monitoring program. The groundwater quality evaluation is based on a statistical evaluation of constituents listed in Appendix I of TDEC Rule 0400-11-01-.04 (TDEC Appendix I) and Appendices III and IV of the CCR Rule. The analytical results were compared to GSLs approved by TDEC (see Appendix A.2). The results of the statistical evaluation are shown in a color-coded format where green indicates no statistically significant concentration greater than or equal to the GSL for constituents other than pH and no statistically significant difference outside the GSL range for pH, and red indicates a statistically significant concentration greater than or equal to the GSL for constituents other than pH or a statistically significant difference outside the GSL range for pH. The statistical methods applied to determine the green and red categories are discussed in the statistical evaluation of groundwater analytical data provided in Appendix E.3 and the results are summarized below. Table H.1-7 provides the analytical results of groundwater samples used in the statistical evaluation. Table H.1-8 provides a summary of groundwater quality parameters used for the statistical analyses. Table H.1-9 lists the approved GSLs. Table H.1-10 shows the results of the statistical evaluation with the color-coded format described above.

The dataset compiled for statistical analysis included available analytical data for groundwater samples collected between October 2014 and October 2022, although the specific start date and frequency of sampling may vary between wells based on date of well installation and the applicable monitoring program. Wells MW-1, MW-2, and MW-3 were sampled between October 2014 and October 2022. Well WBF-100 was sampled between January 2017 and October 2022. Wells WBF-101 and WBF-103 through WBF-106 were sampled during 10 events, and WBF-102 was sampled during nine events between October 2014 and October 2022 to complete the scope in the approved *Groundwater Investigation SAP* and additional sampling conducted in conjunction with sampling events for the Ash Pond closure groundwater monitoring program.

The statistical evaluation included screening for outliers, which are abnormally high or low values that may represent anomalous data or data errors. There were no outliers removed from further statistical

Groundwater and Hydrogeological Investigation March 31, 2024

analysis based on this evaluation. Appendix E.3 provides additional information regarding the outlier evaluation and methods used to compare results to the GSLs.

The statistical evaluation identified 14 CCR Rule Appendix III well-constituent pairs with statistically significantly concentrations above a GSL or outside the GSL range for pH. These included pH, sulfate, and total dissolved solids. Four well-constituent pairs for the CCR Rule Appendix IV constituents (which are also TDEC Appendix I constituents) had a statistically significant concentration above a GSL. Cadmium (WBF-104) and cobalt (MW-1, WBF-104, and WBF-106) were the only Appendix I or Appendix IV constituents with a statistically significant concentration above an approved level. Table H.1-10 provides a summary of the statistical evaluation. Exhibit H.1-11 provides the results of the statistical evaluations for CCR Rule Appendix IV and TDEC Appendix I constituents with at least one detection above the GSL for the Ash Pond and Slag Disposal Area. A detailed explanation of the interpretation of the graphs inset on these exhibits is provided in Appendix E.3.

For the well-constituent pairs identified with statistically significantly concentrations greater than or equal to a GSL or outside the GSL range for pH, linear regression analysis identified two statistically significant decreasing trends and three statistically significant increasing trends. Table H.1-11 provides a summary of the trend evaluation.

2.4.1 Piper Diagrams

Another approach to characterize the groundwater analytical results included the use of Piper diagrams, which are graphical representations of the major ion chemistry of groundwater. Available groundwater data were used to develop the diagrams, which were used to visually evaluate similarities and differences in the general chemistry characteristics of the groundwater samples and assess whether the results potentially indicated influences from the various sources of groundwater. A Piper diagram from the July 2020 groundwater sampling event is depicted in Exhibit H.1-17, which is considered to be representative of the major ion distribution of the groundwater near the WBF Plant CCR management units over the sampling time period. Piper diagrams for the remaining four events conducted between October 2019 and April 2020 are provided in Attachment H.1-B.

The groundwater-type of the upgradient well (WBF- 103) was observed to be a calcium-sulfate type. Groundwater near the Ash Pond was a calcium-sulfate type near locations WBF-101 and WBF-102. Groundwater near the Slag Disposal Area was a calcium-sulfate type near locations WBF-104, WBF-105, and WBF-106. Additional information regarding groundwater geochemistry is provided in Section 2.4.2.

2.4.2 Geochemistry of Soils-Groundwater Interaction

Groundwater quality is affected by numerous geochemical processes during groundwater flow through geological materials. The distinct difference between the chemical characteristics of pore water within the CCR material, presented in Appendix G.1, and the characteristics of groundwater quality downgradient of the CCR management units at the WBF Plant is difficult to explain without the aid of geochemistry. It is well documented in the literature that certain CCR constituents that are detected in pore water (typically at higher concentrations than in groundwater) can be affected by geochemical processes that occur between constituents dissolved in groundwater and geological materials through which it flows. The

Groundwater and Hydrogeological Investigation March 31, 2024

effects of these geochemical processes, which often result in the attenuation of CCR constituents (i.e., reduced concentrations) can explain observed differences between the characteristics of pore water and groundwater. The extent of the interactions between dissolved constituents in groundwater and geological materials ranges from limited interaction for constituents such as boron, chloride and sulfate, to strong interactions for constituents such as arsenic and cobalt.

Descriptions of the geochemical interactions between geological materials and constituents dissolved in groundwater are provided in many textbooks (e.g., Appelo and Postma 1996). Geochemical reactions or processes that can affect CCR constituents include:

- Adsorption/desorption on the surfaces of metal hydroxides an interaction whereby constituents adsorb to metal hydroxide soil minerals; the process is reversible and controlled by the pH and oxidation/reduction potential (redox) of groundwater
- Cation exchange with clay minerals a process where positively charged constituents (cations) absorb to negatively charged clay minerals, subject to competition and concentrations relative to other constituents. The strength of the electrostatic bond formed varies with the constituents involved, but in general cation exchange reactions are reversible
- Mineral precipitation or dissolution a process where dissolved constituents in groundwater combine to form a soil mineral; minerals are also subject to dissolution (i.e., reaction is reversible) under certain conditions of groundwater pH and redox.

Observations of groundwater and pore water chemistry can indicate the extent to which geochemical processes chemically change groundwater and influence groundwater quality at the WBF Plant. Boron, chloride, and sulfate commonly occur in high concentrations in pore water and are minimally attenuated by geochemical processes. Thus, they can be used to infer locations in the groundwater monitoring program where there is an influence from pore water. This is because boron and chloride are considered non-reactive because neither constituent is subject to geochemical reactions that would materially change concentrations in groundwater during flow through geological materials. Sulfate is considered a low-reactive constituent because there are geochemical conditions in some CCR influenced groundwater where the concentration of sulfate can be reduced by mineral precipitation.

In contrast, those CCR constituents most likely to be influenced by interactions between geological materials and groundwater (e.g., arsenic, lithium, and molybdenum) typically show concentrations in groundwater monitoring wells that are much different than those observed in pore water, indicating that groundwater is being chemically changed relative to pore water by some physical or geochemical process (or a combination of both) occurring as it flows through geological materials. Groundwater quality measured at a given groundwater monitoring location is a result not only of the interactions between its constituents and the geological materials through which it flows, but also of flow from upgradient sources (including background). Thus, the area upgradient of a groundwater monitoring well can be thought of as an interacting geochemical and hydrogeologic system, including:

• Materials that contribute chemical mass to groundwater

Groundwater and Hydrogeological Investigation March 31, 2024

- The physical properties of the geological materials that govern direction and rate of groundwater flow
- Minerals in the geologic materials that can interact with constituents being transported by groundwater
- The pH and redox conditions of groundwater.

This geochemical and hydrogeological system, which includes natural and anthropogenic sources and interactions with natural geologic materials, is referred to as the upgradient system.

Understanding the geochemistry of geological materials is important in interpreting the processes influencing current conditions of groundwater chemistry at the WBF Plant and evaluating effects of activities, such as capping or groundwater remediation, on the evolution of groundwater quality. Further evaluation of the geochemical processes acting in the upgradient system at the WBF Plant to influence groundwater quality will be included in the CARA Plan during assessments of remedies, where needed.

2.4.3 Summary

Downgradient of the CCR management units, two CCR Rule Appendix IV CCR constituents (which are also TDEC Appendix I constituents) had statistically significant concentrations in onsite groundwater above a GSL in three wells, including cadmium (WBF-104) and cobalt (MW-1, WBF-104, and WBF-106). The groundwater impacts described above are limited to onsite areas downgradient along the perimeter of the CCR management units. These constituents and onsite groundwater in the vicinity of these wells will be further evaluated in the CARA Plan to determine the need for corrective actions.

Summary March 31, 2024

3.0 SUMMARY

The objectives of the TDEC Order hydrogeological and groundwater investigations were to characterize the hydrogeology and groundwater quality and evaluate groundwater flow conditions in the vicinity of the WBF Plant CCR management units. The key findings of the WBF Plant hydrogeological and groundwater investigations are summarized below:

 TVA evaluated analytical results for groundwater in support of the EAR based on data collected under two groundwater monitoring programs, including the EI and the Ash Pond closure groundwater monitoring programs. Monitoring well locations and CCR constituents that will require further evaluation in the CARA Plan are provided below.

Summary of Findings Requiring Further Evaluation in the CARA Plan					
CCR Management Unit Groundwater					
Ash Pond	Cobalt (Well MW-1)				
Slag Disposal Area	Cadmium (Well WBF-104) Cobalt (Wells WBF-104 and WBF-106)				

- Drainage modifications or potential corrective actions are expected to reduce concentrations of CCR constituents to below GSLs in groundwater at downgradient monitoring locations.
- Pore water within the CCR material has specific chemical characteristics that are different from the characteristics of groundwater downgradient of the CCR management units. Certain CCR constituents that have been detected in pore water are affected by geochemical processes during groundwater flow through geological materials. The effect of these geochemical processes, which can result in the attenuation of CCR constituents and reduced dissolved groundwater concentrations, can explain the observed differences between the characteristics of pore water and groundwater quality.
- Within the Slag Disposal Area, the pore water phreatic surface may be affecting infiltration of storm water upgradient of the CCR management unit. The pore water levels within Slag Disposal Area would be expected to decrease in elevation if stormwater drainage or cap modifications were to be implemented. Within the Ash Pond, there is no phreatic surface because the CCR material is unsaturated. The use of the term "saturated" or references to the moisture content of CCR material does not imply that the pore water is readily separable from the CCR material.
- The coarse-grained unconsolidated alluvial deposits above bedrock are considered to be the uppermost aquifer and are under confined conditions. The uppermost aquifer is typically overlain by clays that act as an aquitard. Available water level data, including the effect of the Tennessee River stage, indicate that the aquitard provides hydraulic separation between the uppermost aquifer and the CCR material.

Summary March 31, 2024

> • The horizontal groundwater flow direction within the uppermost aquifer is generally from the westnorthwest to the east-southeast toward the Tennessee River. Groundwater flow in the vicinity of the CCR management units is bounded to the east by the Tennessee River.

TVA will continue to monitor the trends of cadmium and cobalt and conduct further evaluation in the CARA Plan to determine if corrective actions are needed. The influence of geochemical processes on groundwater quality will be further evaluated in the CARA Plan as part of the assessment of remedies, where needed.

References March 31, 2024

4.0 **REFERENCES**

- Appelo, C.A.J and D. Postma. (1996). Geochemistry, Groundwater and Pollution. A.A. Balkema.
- CDM Smith, Inc. (CDM Smith). (2012). Geotechnical Design Memorandum, Watts Bar Fossil Plant Coal Combustion Products Closure Project, Phase 2 – Ash/Stilling Pond Breaching Project. August 17, 2012.
- CDM Smith (2015). Construction Record Documentation Report, Workplan 2: Ash Pond Closure Project, WBF-10W254-WP-2". March 2015.
- Environmental Standards, Inc. (2018). Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Plant Environmental Investigation. Revision 2 Final. November 2018.
- Fox, Portland P. (1942). Watts Bar Steam Plant Exploration and Geology of Foundation.
- Johnson, A.I. (Revised 1966). Specific Yield Compilation of Specific Yields for Various Materials. U.S. Geological Survey, Water Supply Paper 1662-D.
- Stantec Consulting Services Inc. (Stantec). (2017). *Groundwater Monitoring Optimization Phase 3, Watts* Bar Fossil Plant. March 3, 2017.
- Stantec. (2018a). Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant. Revision 3 Final. Prepared for TVA. November 19, 2018.
- Stantec. (2018b). *Hydrogeological Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant. Revision 3.* Prepared for TVA. November 19, 2018.
- Tennessee Department of Environment and Conservation. (2015). *Commissioner's Order No. OGC15-*0177. August 6, 2015.
- TVA. (1988). Report of Soil Borings, Monitoring Well Installation and Soil Laboratory Testing. November 1988.
- TVA. (2007). Closure and Post-Closure Plan, Slag Processing and Pond Area. April 2007.
- TVA. (2013). Ash Pond Closure Plan. October 3, 2013.
- TVA. (2018). Environmental Investigation Plan, Watts Bar Fossil Plant, Revision 3 Final. November 19, 2018.
- United States Geological Survey (USGS). (1990). Geology and Ground-Water Resources of the Memphis Sand in Western Tennessee by W.S. Parks and J.K. Carmichael. 1990.
- USGS. (1999). Sustainability of Ground-Water Resources. USGS Circular 1186.

TABLES

Table H.1-1 - Summary of Environmental Investigation Monitoring Well LocationsWatts Bar Fossil Plant

Boring ID	Well ID	Location	Rationale			
WBF-101	WBF-101	Northeast corner of the closed Ash Pond	To assess local groundwater flow and quality downgradient of the CCR management units			
WBF-102Alt2 (Sonic)	WBF-102	West of the closed Ash Pond	To assess groundwater flow and quality at a background location			
WBF-103	WBF-103	West of the closed Slag Disposal Area, south of former coal yard storage area	To assess groundwater flow and quality at a background location			
WBF-104	WBF-104	Southeast of the closed Slag Disposal Area	To assess local groundwater flow and quality downgradient of the CCR management units			
WBF-105/ WBF-105 (Sonic)	WBF-105	East of the closed Slag Disposal Area	To assess local groundwater flow and quality downgradient of the CCR management units			
WBF-106	WBF-106	Northeast of the closed Slag Disposal Area	To assess local groundwater flow and quality downgradient of the CCR management units			

Notes:

CCR	Coal Combustion Residual
ID	Identification
WBF	Watts Bar Fossil Plant

Table H.1-2 - Summary of Monitoring Well Construction SpecificationsWatts Bar Fossil Plant

	Top of Casing Bottom of Well				Screened Interval						
Well ID	Stickup	Elevation	Depth	Depth	Elevation	Depth Top	Depth Bottom	Depth Top	Depth Bottom	Elevation Top	Elevation Bottom
	ft ags	ft NGVD29	ft bgs	ft btoc	ft NGVD29	ft bgs	ft bgs	ft btoc	ft btoc	ft NGVD29	ft NGVD29
MW-1	2.5	711.92	31.0	33.5	678.4	20.8	30.8	23.3	33.3	688.6	678.6
MW-2	3.0	696.22	29.5	32.5	663.7	19.7	29.4	22.7	32.4	673.5	663.8
MW-3	3.0	704.29	28.6	31.6	672.7	18.6	28.6	21.6	31.6	682.7	672.7
WBF-100	4.1	741.49	54.2	58.3	683.2	43.6	53.7	47.7	57.8	693.8	683.7
WBF-101	4.4	703.15	33.1	37.5	665.6	22.9	32.7	27.3	37.1	675.8	666.0
WBF-102	4.8	723.98	19.8	24.6	699.4	14.6	19.4	19.4	24.2	704.6	699.8
WBF-103	4.0	725.09	18.2	22.2	702.9	13.0	17.8	17.0	21.8	708.1	703.3
WBF-104	3.4	697.45	28.3	31.7	665.8	18.1	27.9	21.5	31.3	676.0	666.2
WBF-105	4.7	704.5	32.7	37.4	667.1	27.5	32.3	32.2	37.0	672.3	667.5
WBF-106	4.7	706.34	33.3	38.0	668.4	23.1	32.9	27.8	37.6	678.5	668.7

Notes:

ags	above ground surface
bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
NGVD29	National Geodetic Vertical Datum of 1929

1. Well information based on data provided by TVA and Stantec (e.g., well logs, well inspection report); however, there may be discrepancies between sources for certain information.

2. Wells were professionally surveyed on August 26, 2019.

3. Stick-up height based on difference between surveyed values for Top of Casing Elevation and Ground Surface Elevation.

Monitoring	Saturated	Number	of Tests	Average Hydraulic	Average Hydraulic		
Well ID	Thickness	Falling Head Rising Head		Conductivity ft/day	Conductivity cm/sec		
WBF-101	14.67	3	3	0.5411	1.91E-04		
WBF-103	5.59	3	3	20.59	7.26E-03		
WBF-103	15.32	3	3		2.26E-03		
		-	-	0.6400			
WBF-105	22.34	3	3	1.373	4.85E-04		
WBF-106 22.16 3 3 0.7648 2.70E-04							
Geometric Mean of Hydrualic Conductivity Unconsolidated Materials(cm/sec) 5.28E-04							

Notes:

cm/sec centimeters per second ft feet

ID identification

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells										
WBF-00-GW-43-001	MW-1	6-Jul-20	7.95	711.92	703.97	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays
WBF-00-GW-43-002	MW-2	6-Jul-20	20.20	704.29	684.09	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand
WBF-00-GW-43-003	MW-3	6-Jul-20	12.72	696.22	683.50	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand
WBF-00-GW-43-004	WBF-100	6-Jul-20	42.25	741.49	699.24	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvial silts and clays
WBF-00-GW-43-005	WBF-101	6-Jul-20	15.30	703.15	687.85	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-006	WBF-102	6-Jul-20	21.55	723.98	702.43	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay
WBF-00-GW-43-007	WBF-103	6-Jul-20	15.25	725.09	709.84	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay / alluvial sand
WBF-00-GW-43-008	WBF-104	6-Jul-20	13.91	697.45	683.54	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-009	WBF-105	6-Jul-20	12.70	704.50	691.80	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand
WBF-00-GW-43-010	WBF-106	6-Jul-20	13.79	706.34	692.55	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial silty sand and alluvial sand
Piezometers	•	•	•	•		•				
n/a	WBF-B02C	6-Jul-20	11.3	n/a	707.8	719.1	680.5	38.6	n/a	Alluvial sandy silt
n/a	WBF-B03B	6-Jul-20	3.1	n/a	696.8	699.9	665.9	34.0	n/a	Alluvial sand with silt and gravel
n/a	WBF-B04C	6-Jul-20	12.8	n/a	700.6	713.4	668.4	45.0	n/a	Alluvial silty sand / alluvial sandy gravel
n/a	WBF-B05C	6-Jul-20	11.7	n/a	705.5	717.2	668.2	49.0	n/a	Alluvial silty sand
n/a	WBF-B12B	6-Jul-20	4.9	n/a	694.5	699.4	674.4	25.0	n/a	Alluvial sandy silt
n/a	WBF-B13B	6-Jul-20	9.2	n/a	690.4	699.6	674.6	25.0	n/a	Alluvial sandy silt
n/a	WBF-B14B	6-Jul-20	12.7	n/a	688.2	700.9	676.1	24.8	n/a	Alluvial silty sand
n/a	WBF-B15B	6-Jul-20	3.8	n/a	710.9	714.7	692.7	22.0	n/a	Alluvial clayey gravel
n/a	WBF-B16B	6-Jul-20	3.1	n/a	710.5	713.6	692.6	21.0	n/a	Shale
Surface Water Gauge	•	+	ł	ł		•	• • • •			*
Tennessee River	n/a	6-Jul-20	n/a	n/a	683.13	n/a	n/a	n/a	n/a	n/a

Notes:

bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable
UNID	Unique Numerical Identification

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

	Groundwater Elevation by Date (ft amsl)									
Well ID	8/26/2019	10/28/2019	1/7/2020	3/2/2020	4/27/2020	7/6/2020				
MW-1	703.34	702.89	705.61	706.36	706.10	703.97				
MW-2	684.25	NM	683.55	686.38	686.14	684.09				
MW-3	683.27	681.54	683.33	685.49	685.41	683.50				
WBF-100	698.74	697.96	699.61	700.60	700.53	699.24				
WBF-101	687.45	685.80	688.15	690.01	689.67	687.85				
WBF-102	701.61	700.73	702.96	704.23	704.21	702.43				
WBF-103	710.13	710.26	711.35	710.90	710.59	709.84				
WBF-104	683.34	681.80	683.70	685.57	685.56	683.54				
WBF-105	690.94	689.37	691.56	693.02	692.99	691.80				
WBF-106	692.10	691.33	693.26	693.67	693.70	692.55				
WBF-B02C	707.2	705.8	708.5	709.8	709.4	707.8				
WBF-B03B	NM	695.2	697.2	698.3	697.9	696.8				
WBF-B04C	700.0	698.7	700.9	702.1	701.9	700.6				
WBF-B05C	704.8	703.5	706.1	707.4	707.1	705.5				
Tennessee River	683.79	681.88	685.15	684.44	683.98	683.13				

Notes:

ft amslfeet above mean sea levelIDidentificationNMnot measured

Table H.1-6 - Rate and Direction of Groundwater Flow Summary Watts Bar Fossil Plant

Slag Disposal Area

Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Measurement Date	26-Aug-19	28-Oct-19	6-7 -Jan-20	2-Mar-20	27-28/Apr-20	6-Jul-20
Horizontal Gradient (ft/ft)	0.0171	0.0183	0.0177	0.0161	0.0159	0.0166
Hydraulic Conductivity (cm/sec)	5.28E-04	5.28E-04	5.28E-04	5.28E-04	5.28E-04	5.28E-04
Effective Porosity	25%	25%	25%	25%	25%	25%
Flow Direction	E-SE	E-SE	E-SE	E-SE	E-SE	E-SE
Flow Rate (ft/yr)	37	40	39	35	35	36

Ash Pond

Sampling Event	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
Groundwater Elevation Measurement Date	26-Aug-19	6-Aug-19 28-Oct-19		6-7 -Jan-20 2-Mar-20		6-Jul-20
Horizontal Gradient (ft/ft)	0.0209	*	0.0228	0.0213	0.0217	0.0219
Hydraulic Conductivity (cm/sec)	5.28E-04	5.28E-04	5.28E-04	5.28E-04	5.28E-04	5.28E-04
Effective Porosity	25%	25%	25%	25%	25%	25%
Flow Direction	E-SE	E-SE	E-SE	E-SE	E-SE	E-SE
Flow Rate (ft/yr)	46		50	47	47	48

Notes:

cm/sec - centimeter per second

ft/ft - feet per foot

ft/yr - feet per year

% - percent

E-SE - East-Southeast

* Well MW-2 was not gauged in Event 2.

Sample Location							MW-1					
Sample Date Sample ID Parent Sample ID		20-Oct-14 WBF-MW-1-1014	13-Jan-15 WBF-MW-1-0115	13-Jan-15 WBF-MW-1-0115-DUP WBF-MW-1-0115	21-Apr-15 WBF-MW-1-0415	22-Jul-15 WBF-WM-1-0715	6-Oct-15 WBF-WM-1-1015	6-Oct-15 WBF-MW-1-1015-DUP WBF-MW-1-1015	25-Jan-16 WBF-MW-1-0116	13-Apr-16 WBF-MW-1-0416	6-Jul-16 WBF-MW-1-0716	6-Jul-16 WBF-MW-1-0716-DUP WBF-MW-1-0716
ample Depth		28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample		Normal Environmental Sample		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Fotal Metals				11		1		1				
Numinum	ug/L	-	-	-	-	-	-	-	-	-	-	
ntimony	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
rsenic	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	ug/L	47.7	47.4	46.3	44.7	44	42.6	41.8	48.8	53	43.1	43.4
Beryllium	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	ug/L	-	-	-	-	-	-	-	-		-	-
Cadmium	ug/L	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Calcium Chromium	ug/L	- <5	- <2	- <2	- <2	- <2	- <2	- <2	- <2	- <2	- <2	- <2
Cobalt	ug/L	<5 10.7	<2 14.1	<2 13.4	<2 15.5	9.8	10.5	10.4	<2 10	11.2	8.52	8.34
Copper	ug/L	<10.7	<2	<2	<2	<2	69.1	<2	<2	<2	<	<2
ron	ug/L ug/L	-	<2	<2	<2	<2	05.1	<2	<2	<2	<2	< <u><</u>
.ead	ug/L	<2	<2	<2	<2	<2	<2	<2	<2		<2	<2
Lithium	ug/L		-					-	-		-	
/lagnesium	ug/L	-	-	-	-	-	_	-	-	<u> </u>	_	-
Vanganese	ug/L	-	-	-	-	-	-	-	-	<u>-</u>	<u>-</u>	-
Vercury	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	ug/L	-	-	-	-	-	-			-	-	-
Nickel	ug/L	<10	10.5	10	11.6	6.57	7.57	8.56	8.53	7.38	5.45	5.36
Potassium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silicon	ug/L	-	-	-	-	-	-	-	-	-	-	-
Silver	ug/L	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Vanadium	ug/L	<2	<2	<2	2.17	3.62	2.93	2.97	5.71	<4	<2	2.08
Zinc	ug/L	<50	<25	<25	<25	<25	75.8	<25	<25	<25	<25	<25
Radiological Param							1	1		1	1	
Radium-226	pCi/L	-	-	-	-	-	-	-	-	-	-	-
Radium-228	pCi/L	-	-	-	-	-	-	-	-	-	-	-
Radium-226+228	pCi/L	-	-	-	-	-	-	-	-	-	-	
Anions Chloride						1	1	1				
	mg/L	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100	- <0.100
Fluoride Sulfate	mg/L mg/L	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
General Chemistry	IIIg/L	-	_	_	-		-	-	_	-	-	
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	· ·	-	-	-	-
oH (lab)	mg/L SU	-	-	-	-	-	-	-	-	-	6.27	6.25
Total Dissolved Solids	mg/L		-	-	-	-	-	-	-	-	-	-

See notes on last page.

Sample Location	I		MW-1									
Sample Date Sample ID Parent Sample ID		4-Oct-16 WBF-MW-1-1016	4-Oct-16 WBF-MW-1-1016-DUP WBF-MW-1-1016	18-Jan-17 WBF-MW-1	4-Apr-17 WBF-MW-1-040417	18-Jul-17 WBF-MW-1	18-Jul-17 WBF-Mw-1 WBF-MW-1-0717	16-Oct-17 WBF-MW-1	9-Jan-18 WBF-MW-1-010918	17-Apr-18 WBF-MW-1	17-Apr-18 WBF-MW-1 WBF-MW-1-0418	
Sample Depth Sample Type Program	Units	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Field Duplicate Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Field Duplicate Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Field Duplicate Sample State Compliance	
Filogram	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	
Total Metals												
Aluminum	ug/L	-	-	-	-	-	-	-	-	-	-	
Antimony	ug/L	<2	<2	-	<2	-	-	<2	-	<2	<2	
Arsenic	ug/L	<2	<2	-	<1	-	-	<1	-	<1	<1	
Barium	ug/L	46.7	43.9	-	37.7	-	-	37.8	-	38.9	38.6	
Beryllium	ug/L	<2	<2	-	<1 1,320	-	-	<1	-	<1	<1	
Boron Cadmium	ug/L	949 <1	940 <1	989	1,320	818	817	923 <1	842	901 <1	895 <1	
Calcium	ug/L ug/L	72,300	73,800	69,800	61,700	70,400	72,200	68,500	79,400	57.900	57,900	
Chromium	ug/L ug/L	<2	<2	-	<2	-	-	<2	-	2.12	<2	
Cobalt	ug/L	7.44	7.77	_	12.3	_	_	9.39	<u> </u>	11.6	11.6	
Copper	ug/L	<2	<2	_	<2	-	_	<2	-	<2	<2	
Iron	ug/L	-	-	_	-	-	_	-	-	-	-	
Lead	ug/L	<2	<2	-	<1	-	-	<1	-	<1	<1	
Lithium	ug/L	11.2 J	10.6 J	12.1	7.32	9.33	9.22	10	12.7	7.26	7.17	
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	-	
Manganese	ug/L	-	-	-	-	-	-	-	-	-	-	
Mercury	ug/L	<0.2	<0.2	-	<0.2	-	-	<0.2	-	<0.2	<0.2	
Molybdenum	ug/L	<2	<2	<5	<5	<5	<5	<5	<5	<5	<5	
Nickel	ug/L	6.02	5.5	-	7.73	-	-	5.78	-	8.7	8.22	
Potassium	ug/L	-	-	-	-	-	-	-	-	-	-	
Selenium	ug/L	<2	<2	-	<5	-	-	<5	-	<5	<5	
Silicon	ug/L	-	-	-	-	-	-	-	-	-	-	
Silver	ug/L	<2	<2	-	<1	-	-	<1	-	<1	<1	
Sodium	ug/L	-	-	-	-	-	-	-	-	-		
Thallium	ug/L	<2	<2	-	<1	-	-	<1	-	<1	<1	
Vanadium Zinc	ug/L ug/L	<2 <25	<2 <25	-	<1 10.8	-	-	<1 <5	-	2.1 <5	2.09 <5	
Radiological Parame		<25	<25	-	10.8	-	-	<5	-	<5	<0	
Radium-226	pCi/L	0.0270 +/-(0.0730)U*	0.0711 +/-(0.0755)U*	0.110 +/-(0.219)U	0.00902 +/-(0.0541)U	0.0204 +/-(0.0543)U	0.0403 +/-(0.0411)U	0.0158 +/-(0.0455)U	0.114 +/-(0.0657)	0.0800 +/-(0.0579)	0.0408 +/-(0.0511)U	
Radium-228 Radium-226+228	pCi/L pCi/L	0.194 +/-(0.300)U	0.445 +/-(0.347)U	-0.173 +/-(0.340)U	0.315 +/-(0.252)U	0.372 +/-(0.274)U	0.246 +/-(0.225)U	0.386 +/-(0.283)U	0.535 +/-(0.241)	0.314 +/-(0.208)U	0.172 +/-(0.174)U	
Anions	poi/L	-	-	-	-	-	-	-	-	-	-	
		0.70	C 00	0.50	7.00	7.00	0.14	7.05	7.40	7.00	7.54	
Chloride Fluoride	mg/L mg/L	6.79 <0.100	6.80 <0.100	8.52	7.62 <0.100	7.66	9.14	7.35 <0.100	7.19	7.62 <0.100	7.51 <0.100	
Sulfate	mg/L	<0.100 95.3	<0.100 72.5	91.8	<0.100 85.0	84.7	82.4	<0.100 80.3	102	93.4	91.2	
General Chemistry	ing/∟	30.0	12.5	31.0	03.0	04.7	02.4	00.5	102	33.4	31.2	
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	
Alkalinity, Carbonate	mg/L	-		_	_			_	<u> </u>	_		
pH (lab)	SU	6.3	6.3	-	6.5	-	-	6.2	<u>-</u>	7.2	6.1	
Total Dissolved Solids	mg/L	317	304	300	234	294	308	288	318	272	275	
		See notes on last page.								•		

See notes on last page.

Sample Location						MW-1				
Sample Date Sample ID Parent Sample ID		17-Jul-18 WBF-MW-1-GW-071718	16-Oct-18 WBF-MW-1-GW-101618	2-Apr-19 WBF-MW-1-GW-040219	2-Apr-19 WBF-MW-1-DUP-040219 WBF-MW-1-GW-040219	23-Oct-19 WBF-GW-MW1-102319	29-Apr-20 WBF-GW-MW1-042920	29-Apr-20 WBF-AW-MW1-042920 WBF-GW-MW1-042920	5-Oct-20 WBF-GW-MW1-100520	26-Apr-21 WBF-GW-MW1-04262021
ample Depth		28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft	28.5 ft
Sample Type Program	Units	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Field Duplicate Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sample State Compliance	Field Duplicate Sample State Compliance	Normal Environmental Sample State Compliance	Normal Environmental Sampl State Compliance
Total Metals	1									
luminum	ug/L	-	-	-	-	-	-	-	-	-
ntimony	ug/L	-	<2	<0.33	0.346 J	<0.378	<0.378	<0.378	<0.077	<0.077
rsenic	ug/L	-	<1	0.487 J	0.449 J	<0.323	<0.313	0.691 J	0.19 J	0.20 J
arium	ug/L	-	40.2	43.7	44.7	45.6	38.6	36.8	42.6 J	42.9
eryllium	ug/L	-	<1	<0.33	<0.33	<0.182	<0.182	0.343 J	0.066 U*	0.076 J
oron	ug/L	739	777	812	833	864	834	860	803	781
admium	ug/L	-	<1	<0.33	<0.33	<0.125	<0.217	0.290 J	0.065 J	0.061 J
alcium	ug/L	74,300	65,100	72,100	74,100	75,900	56,500	54,600	67,600	79,100
hromium	ug/L	-	<2	1.78 U*	1.49 U*	<1.53	<1.53	<1.53	0.29 J	0.26 U*
obalt	ug/L	-	8.83	9.08	9.32	6.27	13.0	13.1	8.4	8.9
opper	ug/L	-	<2	<0.33	0.4 J	0.843 U*	<0.627	<0.627	<0.43	<0.43
on .	ug/L	-	-	-	-	-	-	-	-	-
ead	ug/L	-	<1	<0.33	<0.33	<0.128	<0.128	0.590 U*	0.060 U*	<0.043
thium	ug/L	11.3	12.5	11.2	11.1	12.1	6.85	7.86	10	10.1
lagnesium	ug/L	-	-	-	-	-	-		-	-
langanese lercury	ug/L	-	<0.2	- <0.101	- <0.101	- <0.101	<0.130	- <0.130	- <0.080	<0.070
lolybdenum	ug/L ug/L	- <0.33	<0.2	<0.101	<0.101	<0.610	<0.130	<0.130	<0.080	<0.070
lickel	ug/L ug/L	<0.33	6.78	6.5	6.79	5.40	7.98	8.59	6.2	6.4
otassium	ug/L		0.78	0.5	0.79	-	-	-	-	0.4
elenium	ug/L	-	<5	<0.33	<0.33	<1.51	<1.51	<1.51	<0.14	<0.14
ilicon	ug/L			-	-	-	-	-	-	-
ilver	ug/L	-	<1	<0.33	<0.33	<0.177	<0.177	<0.177	<0.077	<0.077
odium	ug/L		-	-	-	-	-	-	-	-
hallium	ug/L	-	<1	<0.5	<0.5	<0.148	<0.148	0.673 U*	<0.047	<0.047
anadium	ug/L	-	1.1 U*	1.44 U*	1.3 U*	<0.991	<0.991	<0.991	<0.27	<0.27
inc	ug/L	-	6.54 U*	<8.3	<8.3	<3.22	8.58	5.00	7.0	3.8 J
adiological Parame	ters									
adium-226	pCi/L	0.305 +/-(0.0968)U*	0.281 +/-(0.0966)U*	0.0616 +/-(0.0615)U	0.0468 +/-(0.0551)U	0.166 +/-(0.426)U	0.748 +/-(0.616)U	-0.00613 +/-(0.292)U	-0.00749 +/-(0.322)U	0.375 +/-(0.567)U
adium-228 adium-226+228	pCi/L pCi/L	0.184 +/-(0.198)U	0.165 +/-(0.205)U	0.141 +/-(0.222)U	0.232 +/-(0.232)U	0.260 +/-(0.332)U 0.427 +/-(0.540)U	-0.0707 +/-(0.223)U 0.748 +/-(0.656)U	0.303 +/-(0.347)U 0.303 +/-(0.454)U	0.0202 +/-(0.244)U 0.0202 +/-(0.404)U	0.508 +/-(0.516)U 0.883 +/-(0.767)U
nions			1							
hloride	mg/L	6.74	6.87	7.00	6.68	6.60	7.36	6.87	6.6	7.8
luoride	mg/L	-	<0.100	0.0422 J	<0.0263	0.0336 J	0.0373 J	0.0441 J	0.025 U*	0.023 J
ulfate	mg/L	82.4	81.7	89.2	83.5	79.9	76.9	72.4	78.9	84.9
General Chemistry			•							
kalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-
Ikalinity, Carbonate	mg/L	-	-	-	-	-	-	-	<u>-</u>	-
H (lab)	SU	-	6.4 J	6.3 J	6.3 J	6.7 J	6.6 J	6.7 J	6.0 J	6.4 J
Total Dissolved Solids	mg/L	306	432	285 J	280 J	287	241	232	280	293

Stantec

Page 3 of 18

Sample Location				MW-1				MW-2		
Sample Date Sample ID Parent Sample ID		6-Oct-21 WBF-GW-MW1-10062021	6-Oct-21 WBF-GW-FD-10062021 WBF-GW-MW1-10062021	19-Apr-22 WBF-GW-MW-1-04192022	18-Oct-22 WBF-GW-MW-1-10182022	20-Oct-14 WBF-MW-2-1014	13-Jan-15 WBF-MW-2-0115	21-Apr-15 WBF-MW-2-0415	21-Apr-15 WBF-MW-2-0415-DUP WBF-MW-2-0415	22-Jul-15 WBF-MW-2-0715
Sample Depth Sample Type Program	Units	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Field Duplicate Sample State Compliance	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Normal Environmental Sample	27.5 ft Normal Environmental Sample State Compliance	27.5 ft Normal Environmental Sample State Compliance	27.5 ft Normal Environmental Sample State Compliance	27.5 ft Field Duplicate Sample State Compliance	27.5 ft Normal Environmental Samp State Compliance
Total Metals			1							
Aluminum	ug/L	-	-	-	-	-	-	-	-	-
Antimony	ug/L	<0.071	<0.071	<0.071	<0.087	<2	<2	<2	<2	<2
Arsenic	ug/L	0.10 J	0.12 J	0.24 J	0.23 J	<2	<2	<2	<2	<2
Barium	ug/L	44.2	49.6	38.2	41.2	78.2	74.4	75.3	76	54.1
Beryllium	ug/L	0.054 J	0.034 J	0.11 U*	0.16 U*	<2	<2	<2	<2	<2
Boron	ug/L	883	861	765	679	-	-	-	-	-
Cadmium	ug/L	0.071 J	0.082	0.084 U*	0.13 U*	<1	<1	<1	<1	<1
Calcium	ug/L	74,000	83,000	67,200	69,100	-	-	-	-	-
Chromium	ug/L	0.30 U*	0.39 U*	0.34 U*	0.69 U*	<5	<2	<2	<2	<2
Cobalt	ug/L	9.8	11.0	10.4	8.5	<2	<2	<2	<2	<2
Copper	ug/L	<0.50	<0.50	<0.50	<0.42	<10	<2	<2	<2	<2
Iron	ug/L	-	-	-	-	-	-	-	-	-
Lead	ug/L	0.045 J	0.038 J	0.037 U*	0.10 U*	<2	<2	<2	<2	<2
Lithium	ug/L	9.6	11.7	8.4	10.7	-	-	-	-	-
Magnesium	ug/L	-	-	-	-	-	-	-	-	-
Manganese	ug/L	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.070	<0.070	<0.070	<0.095	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	ug/L	<0.094	<0.094	<0.094	<0.075	-	-	-	-	-
Nickel	ug/L	6.9	7.7	7.1	6.4	<10	<2	<2	<2	<2
Potassium	ug/L	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<0.067	<0.067	<0.067	<0.074	<10	<2	<2	<2	<2
Silicon	ug/L	-	-	-	-	-	-	-	-	-
Silver	ug/L	<0.16	<0.16	<0.16	<0.13	<5	<2	<2	<2	<2
Sodium	ug/L	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<0.041	<0.041	<0.041	0.082 U*	<2	<2	<2	<2	<2
Vanadium	ug/L	<0.16	<0.16	<0.16	<0.20	2.04	<2	2.24	2.47	3.44
Zinc	ug/L	5.0	4.9 J	4.2 J	4.2 J	<50	<25	<25	<25	<25
Radiological Param										
Radium-226	pCi/L	-0.0572 +/-(0.188)U	0.0669 +/-(0.294)U	0.456 +/-(0.543)U	0.199 +/-(0.282)U	-	-	-	-	-
Radium-228	pCi/L	0.539 +/-(0.414)U	0.549 +/-(0.381)	1.42 +/-(0.671)	0.273 +/-(0.409)U	-	-	-	-	-
Radium-226+228	pCi/L	0.539 +/-(0.454)U	0.616 +/-(0.481)J	1.88 +/-(0.863)J	0.472 +/-(0.497)U	-	-	-	-	-
Anions										
Chloride	mg/L	7.3	7.4	8.1	8.0	-	-	-	-	-
Fluoride	mg/L	0.039 J	0.034 J	0.036 J	0.026 J	<0.100	<0.100	<0.100	<0.100	<0.100
Sulfate	mg/L	79.1	79.3	87.6	78.9	-	-	-	-	-
General Chemistry										
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-
pH (lab)	SU	6.6 J	6.4 J	6.5 J	6.6 J	-	-	-	-	-
Total Dissolved Solids	mg/L	282	284	274	277	-	-	-	-	-

715	6-Oct-15 WBF-MW-2-1015
tal Sample Nor ance	27.5 ft rmal Environmental Sample State Compliance
	- <2 56.3 <2 - <1 - 2.97 <2 - - <2 - - - - - - - - - - - - -
	<2
	<2 5.66 <25
	-
	- <0.100 -

Sample Location						M	N-2				
Sample Date Sample ID Parent Sample ID		25-Jan-16 WBF-MW-2-0116	25-Jan-16 WBF-MW-2-0116-DUP WBF-MW-2-0116	13-Apr-16 WBF-MW-2-0416	6-Jul-16 WBF-MW-2-0716	4-Oct-16 WBF-MW-2-1016	18-Jan-17 WBF-MW-2	4-Apr-17 WBF-MW-2-040417	17-Jul-17 WBF-MW-2	16-Oct-17 WBF-MW-2	16-Oct-17 WBF-MW-2 WBF-MW-2-1017
Sample Depth Sample Type Program	Units	27.5 ft Normal Environmental Sample State Compliance	27.5 ft Field Duplicate Sample State Compliance	27.5 ft Normal Environmental Sample State Compliance	27.5 ft Field Duplicate Samp State Compliance						
Total Metals											
Aluminum	ug/L	-	-	-	-	-	-	-	-	-	-
ntimony	ug/L	<2	<2	<2	<2	<2	-	<2	-	<2	<2
Arsenic	ug/L	<2	<2	<2	<2	<2	-	<1	-	<1	<1
Barium	ug/L	51.8	51.8	48.1	48.4	43.6	-	58.4	-	83.1	85.1
Beryllium	ug/L	<2	<2	<2	<2	<2	-	<1	-	<1	<1
Boron	ug/L	-	-	-	-	230	1,610	1,740	174	824	849
Cadmium	ug/L	<1	<1	<1	<1	<1	-	<1	-	<1	<1
Calcium	ug/L	-	-	-	-	33,500	69,700	70,400	35,100	51,400	52,000
Chromium	ug/L	<2	10.7	<2	<2	<2	-	<2	-	<2	<2
Cobalt	ug/L	<2	<2	<2	<2	<2	-	0.65	-	<0.5	<0.5
Copper	ug/L	<2	<2	<2	<2	<2	-	<2	-	<2	<2
ron	ug/L	-	-	-	-	-	-	-	-	-	-
_ead	ug/L	<2	<2	<2	<2	<2	-	<1	-	<1	<1
_ithium	ug/L	-	-	-	-	<50	<5	<5	<5	<5	<5
Vagnesium	ug/L	-	-	-	-	-	-	-	-	-	-
Vanganese	ug/L	-	-	-		•	-		-	•	· · ·
Vercury	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	<0.2	<0.2
Volybdenum	ug/L	-	-	-	-	<2	<5	<5	<5	<5	<5
Nickel	ug/L	<2	<2	<2	<2	<2	-	<1	-	<1	<1
Potassium	ug/L	-	-	-	-	-	-	-	-	-	
Selenium	ug/L	<2	<2	<2	<2	<2	-	<5	-	<5	<5
Silicon	ug/L	-	-	-	-	-	-	-	-	-	-
Silver	ug/L	<2	<2	<2	<2	<2	-	<1	-	<1	<1
Sodium Thallium	ug/L	- <2	- <2	-	-	- <2	-	-	-	-	-
/anadium	ug/L	<2 5.61	<2 5.55	<2 <4	<2 2.23	<2 <2	-	<1	-	<1 <1	<1 1.08
Zinc	ug/L ug/L	<25	<25	<25	<25	<2 <25	-	<1 <5	-	<5	<5
Radiological Paramet		<20	<23	<25	<25	<25	-	<0	-	<0	<0
Radium-226	pCi/L	_	-	-	-	0.111 +/-(0.0809)U*	0.111 +/-(0.187)U	0.0170 +/-(0.0585)U	0.0204 +/-(0.0453)U	0.0438 +/-(0.0451)U	0.0365 +/-(0.0483)U
Radium-228	pCi/L	-		-		0.170 +/-(0.320)U	0.369 +/-(0.318)U	0.588 +/-(0.253)	0.451 +/-(0.268)	-0.253 +/-(0.220)U	0.246 +/-(0.256)U
Radium-226+228	pCi/L	-	_	<u> </u>	_	-	-	-	-	-	-
Anions	p0#2										
Chloride	mg/L	-	-	-	-	2.52	5.56	6.22	2.00	7.25	6.81
Fluoride	mg/L	<0.100	<0.100	<0.100	<0.100	<0.100	-	<0.100	-	<0.100	<0.100
Sulfate	mg/L	-	-	-	-	39.6	73.0	54.2	37.8	37.6	36.2
General Chemistry								•			
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	<u>-</u>		<u>-</u>	<u>-</u>	<u> </u>	<u>-</u>	<u>-</u>	-
oH (lab)	SU	-	-	<u>-</u>	6.55	6.4	<u>-</u>	6.8	<u>-</u>	6.5	6.5
Total Dissolved Solids	ma/L				-	148	297	221	148	191	199

Sample Location		9-Jan-18	18-Apr-18	17-Jul-18	17-Jul-18	16-Oct-18	MW-2 3-Apr-19	22-Oct-19	22-Oct-19	29-Apr-20	5-Oct-20	28-Apr-21
Sample Date Sample ID Parent Sample ID		9-Jan-18 WBF-MW-2-010918	18-Apr-18 WBF-MW-2	17-Jul-18 WBF-MW-2-GW-071718	17-Jul-18 WBF-MW-2-GW-DUP-071718 WBF-MW-2-GW-071718	16-Oct-18 WBF-MW-2-GW-101618	3-Apr-19 WBF-MW-2-GW-040319	22-Oct-19 WBF-GW-MW2-102219	WBF-AW-MW2-102219 WBF-GW-MW2-102219	29-Apr-20 WBF-GW-MW2-042920	5-Oct-20 WBF-GW-MW2-100520	28-Apr-21 WBF-GW-MW2-04282021
Sample Depth		27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft	27.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample		Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample		Normal Environmental Sam
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals												
Aluminum	ug/L	-	-	-	-	-	-	-	-	-	-	-
Antimony	ug/L	-	<2	-	-	<2	<0.33	<0.378	<0.378	<0.378	<0.077	<0.077
Arsenic	ug/L	-	<1	-	-	<1	0.332 J	<0.323	<0.323	<0.313	<0.14	<0.14
Barium	ug/L	-	40.8	-	-	31.3	37	35.4	35.0	37.4	36.9 J	33.8
Beryllium	ug/L	-	<1	-	-	<1	<0.33	<0.182	<0.182	<0.182	<0.054	<0.054
Boron	ug/L	171	196	124	117	110	125	122	121	131	116	100
Cadmium	ug/L	-	<1			<1	<0.33	<0.125	<0.125	<0.217	0.065 J	<0.030
Calcium	ug/L	32,700	37,000	31,300	29,300	25,800	30,900	28,400	29,300	32,900	31,000	34,600
Chromium	ug/L	-	<2	-	-	<2	1.85 U*	<1.53	<1.53	<1.53	<0.20	0.37 U*
Cobalt	ug/L	-	<0.5	-	-	<0.5	<0.33	0.0790 J	0.0820 J	<0.134	<0.085	<0.085
Copper	ug/L	-	<2	-	-	<2	<0.33	0.816 J	<0.627	<0.627	<0.43	<0.43
Iron	ug/L	-	-	-	-	-	-	-	-	-	-	-
Lead	ug/L	-	<1	-	-	<1	<0.33	<0.128	<0.128	<0.128	<0.043	<0.043
Lithium	ug/L	<5	<5	<2.56	<2.56	<5	<3.14	<3.39	<3.39	<3.39	0.52	0.56
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Manganese	ug/L	-	-	-	-	-	-		-	-	· · · · ·	-
Mercury	ug/L	-	<0.2	-	-	<0.2	<0.101	<0.101	<0.101	<0.130	<0.080	<0.070
Molybdenum	ug/L	<5	<5	<0.33	<0.33	<5	<0.33	<0.610	<0.610	<0.610	<0.081	<0.081
Nickel	ug/L	-	<1	-	-	<1	<0.33	<0.336	<0.336	<0.336	0.31 J	<0.18
Potassium	ug/L	-	-	-	-	-	-	-	-	-		
Selenium	ug/L	-	<5	-	-	<5	<0.33	<1.51	<1.51	<1.51	<0.14	<0.14
Silicon	ug/L	-	-	-	-	-	-	-	-	-	-	-
Silver	ug/L	-	<1	-	-	<1	<0.33	<0.177	<0.177	<0.177	<0.077	0.087 J
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	-	<1	-	-	<1	<0.5	<0.148	<0.148	<0.148	<0.047	<0.047
Vanadium	ug/L	-	2.6	-	-	1.42 U* 8.45 U*	1.19 U*	<0.991	<0.991	<0.991	<0.27	<0.27
^{Zinc} Radiological Param	ug/L	-	<5	-	-	8.45 U*	<8.3	<3.22	<3.22	<3.22	2.3 J	<2.3
Radium-226	pCi/L	0.111 +/-(0.0680)	0.0751 +/-(0.0565)U	0.245 +/-(0.0861)U*	0.140 +/-(0.0705)U*	0.239 +/-(0.0898)U*	0.0542 +/-(0.0617)U	0.318 +/-(0.486)U	0.278 +/-(0.478)U	0.515 +/-(0.601)U	-0.314 +/-(0.359)U	0.0706 +/-(0.420)U
Radium-228	pCi/L	0.219 +/-(0.269)U	0.138 +/-(0.164)U	0.184 +/-(0.237)U	0.145 +/-(0.202)U	0.0843 +/-(0.212)U	0.261 +/-(0.196)U	0.160 +/-(0.300)U	0.171 +/-(0.276)U	0.198 +/-(0.434)U	0.0150 +/-(0.228)U	0.00787 +/-(0.385)U
Radium-226+228	pCi/L	-	-	-	-	-	-	0.478 +/-(0.572)U	0.449 +/-(0.552)U	0.714 +/-(0.742)U	0.0150 +/-(0.425)U	0.0784 +/-(0.569)U
Anions	1	1		1			1					
Chloride	mg/L	1.90	2.13	1.69	1.79	9.37	1.43	1.84	1.83	1.66	1.3	2.0
Fluoride	mg/L	-	<0.100	-	-	<0.100	0.0635 J	0.0840 J	0.0821 J	0.0626 J	0.060 U*	0.059
Sulfate	mg/L	39.1	41.0	26.6	28.3	42.1	26.5	24.5	24.3	19.9	23.8	22.2
General Chemistry												
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
pH (lab)	SU	-	7.4	-	-	6.7 J	6.6 J	7.0 J	6.9 J	7.2 J	6.2 J	6.8 J
Total Dissolved Solids	mg/L	162	162	124	117	299	86.0	113	110	135	129	130

Sample Location			MW-2	2				M	W-3	
Sample Date Sample ID Parent Sample ID		6-Oct-21 WBF-GW-MW2-10062021	19-Apr-22 WBF-GW-MW-2-04192022	19-Apr-22 WBF-GW-FD-04192022 WBF-GW-MW-2-04192022	19-Oct-22 WBF-GW-MW-2-10192022	21-Oct-14 WBF-MW-3-1014	21-Oct-14 WBF-MW-3-1014-DUP WBF-MW-3-1014	13-Jan-15 WBF-MW-3-0115	21-Apr-15 WBF-MW-3-0415	22-Jul-15 WBF-MW-3-0715
Sample Depth		27.5 ft	27.5 ft	27.5 ft	27.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft
Sample Type		Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental San
Program	Units	State Compliance	State Compliance	State Compliance		State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals						<u> </u>			1	
Aluminum	ug/L	-	-	-	-	-	-	-	-	-
Antimony	ug/L	<0.071	<0.071	<0.071	<0.087	<2	<2	<2	<2	<2
Arsenic	ug/L	<0.083	<0.083	<0.083	<0.092	<2	<2	<2	<2	<2
Barium	ug/L	37.4	38.3	36.9	36.8	132	133	94.3	101	118
Beryllium	ug/L	<0.032	<0.032	<0.032	<0.049	<2	<2	<2	<2	<2
Boron	ug/L	86.6	95.7	91.3	88.6	-	-	-	-	-
Cadmium	ug/L	0.040 J	0.018 U*	0.023 U*	0.039 U*	<1	<1	<1	<1	<1
Calcium	ug/L	35,000	37,600	36,400	35,200	-	-	-	-	-
Chromium	ug/L	0.44 U*	0.58 U*	0.56 U*	0.58 U*	<5	<5	<2	<2	<2
Cobalt	ug/L	<0.081	<0.081	<0.081	<0.095	<2	<2	<2	<2	<2
Copper	ug/L	<0.50	0.59 J	0.53 J	<0.42	<10	<10	<2	<2	<2
Iron	ug/L	-	-	-	-	-	-	-	-	-
Lead	ug/L	<0.028	0.11 U*	0.11 U*	<0.056	<2	<2	<2	<2	<2
Lithium	ug/L	0.42 J	0.58	0.57	0.59	-	-	-	-	-
Magnesium	ug/L	-	-	-	-	-	-	-	-	-
Manganese	ug/L	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.070	<0.070	<0.070	<0.095	<0.2	<0.2	<0.2	<0.2	<0.2
Molybdenum	ug/L	<0.094	<0.094	<0.094	0.23 U*	-	-	-	-	-
Nickel	ug/L	0.25 U*	0.21 J	0.24 J	0.27 J	<10	<10	<2	<2	<2
Potassium	ug/L	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<0.067	<0.067	<0.067	<0.074	<10	<10	<2	<2	<2
Silicon	ug/L	-	-	-	-	-	-	-	-	-
Silver	ug/L	<0.16	<0.16	<0.16	<0.13	<5	<5	<2	<2	<2
Sodium	ug/L	-	-	-	-	-		-		-
Thallium	ug/L	<0.041	<0.041	<0.041	<0.026	<2	<2	<2	<2	<2
Vanadium	ug/L	0.24 J	0.16 J	<0.16	0.21 J	3.82	3.87	<2	2.12	4.29
Zinc	ug/L	<2.0	<2.0	<2.0	<1.9	<50	<50	<25	<25	<25
Radiological Parame		42.0	×2.0	~£.0	\$1.0	100	400	420	420	420
Radium-226	pCi/L	-0.0395 +/-(0.212)U	0.318 +/-(0.565)U	0.112 +/-(0.539)U	0.165 +/-(0.344)U	-		-	-	-
Radium-228	pCi/L	0.318 +/-(0.542)U	0.351 +/-(0.312)U	0.175 +/-(0.350)U	0.270 +/-(0.353)U	-	-	-	-	-
Radium-226+228	pCi/L	0.318 +/-(0.582)U	0.668 +/-(0.645)U	0.287 +/-(0.643)U	0.435 +/-(0.493)U	-	-	-	-	-
Anions	••						1		1	
Chloride	mg/L	1.6	1.9	1.8	1.6	-	-	-	-	-
Fluoride	mg/L	0.059	0.064	0.064	0.053	<0.100	<0.100	<0.100	<0.100	<0.100
Sulfate	mg/L	33.8	32.2	30.4	31.1	-	-	-	-	-
General Chemistry							1		1	
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-
pH (lab)	รับ	6.7 J	7.0 J	6.9 J	7.0 J	-	-	-	-	-
Total Dissolved Solids	ma/L	146	156	152	129	-				· ·

5 0715 ntal Sample	22-Jul-15 WBF-MW-3-0715-DUP WBF-MW-3-0715 26.5 ft Field Duplicate Sample
iance	State Compliance
	- <2
	<2
	125
	<2
	-
	<1
	-
	<2
	<2
	2.7
	-
	<2
	-
	-
	-
	<0.2
	-
	<2
	-
	<2
	-
	<2
	- <2
	2.3
	<25
	N20
	-
	-
	-
	-
	<0.100
	-
	-
	-
	-
	-

Sample Date		6-Oct-15	25-Jan-16	13-Apr-16	13-Apr-16	6-Jul-16	4-Oct-16	4-Apr-17	17-Jul-17	16-Oct-17	10-Jan-18	10-Jan-18
Sample ID Parent Sample ID		WBF-MW-3-1015	WBF-MW-3-0116	WBF-MW-3-0416	WBF-MW-3-0416-DUP WBF-MW-3-0416	WBF-MW-3-0716	WBF-MW-3-1016	WBF-MW-3-040417	WBF-MW-3	WBF-MW-3	WBF-MW-3-011018	WBF-MW-3-DUP-0110 WBF-MW-3-0118
Sample Depth		26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft	26.5 ft
ample Type		Normal Environmental Sample	Normal Environmental Sample		Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample		Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Samp
rogram	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
otal Metals	1 1											
luminum	ug/L	-	-	-		-	-	-	-	-	-	-
ntimony	ug/L	<2	<2	<2	<2	<2	<2	<2	-	<2	-	-
Arsenic	ug/L	<2	<2	<2	<2	<2	<2	<1	-	<1	-	-
Barium	ug/L	120	108	113	104	107	118	39.6	-	34.7	-	-
Beryllium	ug/L	<2	<2	<2	<2	<2	<2	<1	-	<1	-	-
Boron	ug/L	-	-	-	-	-	1,190	299	941	147	1,310	1,260
Cadmium	ug/L	<1	<1	<1	<1	<1	<1	<1		<1		-
Calcium	ug/L	-	-	-	-	-	62,400	37,600	55,600	29,800	70,000	68,300
Chromium	ug/L	<2	<2	<2	<2	<2	<2	<2	-	<2	-	-
Cobalt	ug/L	<2 <2	<2	<2 <2	<2	<2	<2	<0.5	-	<0.5	-	-
Copper Iron	ug/L	<2	<2	<2	<2	<2	<2	<2	-	<2	-	-
_ead	ug/L ug/L	<2	<2	<2	<2	<2	<2	- <1	-	- <1	-	-
_ithium	ug/L ug/L	-	<2	<2	<2	<2	<50	<5	<5	<5	<5	-5
Magnesium	ug/L	-	_					-	-	-	-	-
Manganese	ug/L	-	<u> </u>	_	-	<u>.</u>	_	_	_		_	
Mercury	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	_	<0.2	_	
Molybdenum	ug/L	-	-	-	-	-	<2	<5	<5	<5	<5	<5
Nickel	ug/L	<2	<2	<2	<2	<2	<2	<1	-	<1	-	-
Potassium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<2	<2	<2	<2	<2	<2	<5	-	<5	-	-
Silicon	ug/L	-	-	-	-	-	-	-	-	-	-	-
Silver	ug/L	<2	<2	<2	<2	<2	<2	<1	-	<1	-	-
Sodium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<2	<2	<2	<2	<2	<2	<1	-	<1	-	-
Vanadium	ug/L	3.57	5.7	<4	<4	2.42	<2	<1	-	<1	-	-
Zinc	ug/L	<25	<25	<25	<25	<25	<25	<5	-	<5	-	-
Radiological Parame												
Radium-226	pCi/L	-	-	-	-	-	0.160 +/-(0.0985)	0.0834 +/-(0.0657)U	0.0116 +/-(0.0427)U	0.0286 +/-(0.0541)U	0.166 +/-(0.0752)	0.0902 +/-(0.0633)
Radium-228	pCi/L	-	-	-	-	-	-0.0170 +/-(0.347)U	-0.0527 +/-(0.198)U	0.0895 +/-(0.231)U	0.109 +/-(0.286)U	0.514 +/-(0.273)	0.639 +/-(0.300)
Radium-226+228 Anions	pCi/L	-	-	-	-	-	-	-	-	-	-	-
				1								
Chloride	mg/L	-	-	-	-	-	5.56	2.77	7.04	1.89	4.68	4.69
Fluoride Sulfate	mg/L ma/L	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100 43.4	<0.100 35.0	- 46.8	<0.100 32.6	- 70.6	- 70.7
General Chemistry	mg/∟	-	-	-	-	-	43.4	35.0	46.8	32.6	70.6	70.7
Alkalinity, Bicarbonate	mg/L					-						
Alkalinity, Bicarbonate		-	-	-	-		-	-	-	-	-	-
Alkalinity, Carbonate	mg/L SU					- 6.52	1.7	6.9		- 6.7		
Total Dissolved Solids	mg/L	-	-	-	-	-	231	141	228	129	271	268

Sample Location						MW-3				
Sample Date Sample ID Parent Sample ID		18-Apr-18 WBF-MW-3	18-Jul-18 WBF-MW-3-GW-	17-Oct-18 WBF-MW-3-GW-101718	17-Oct-18 WBF-MW-3-DUP-101718 WBF-MW-3-GW-101718	3-Apr-19 WBF-MW-3-GW-040319	23-Oct-19 WBF-GW-MW3-102319	28-Apr-20 WBF-GW-MW3-042820	6-Oct-20 WBF-GW-MW3-100620	28-Apr-21 WBF-GW-MW3-04282021
ample Depth ample Type	Units	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Field Duplicate Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance	26.5 ft Normal Environmental Sample State Compliance
Program	Units	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals										
Aluminum	ug/L	-	-	-	-	-	-	-	-	-
Antimony	ug/L	<2	-	<2	<2	<0.33	<0.378	<0.378	<0.077	<0.077
Arsenic	ug/L	<1	-	<1	<1	0.38 J	<0.323	<0.313	0.14 J	<0.14
Barium	ug/L	97.8	-	81.2	81.5	79.8	86.5	82.4	103 J	71.2
Beryllium	ug/L	<1	-	<1	<1	<0.33	<0.182	<0.182	<0.054	<0.054
Boron	ug/L	2,030	508	597	558	972	1,210	459	642	364
Cadmium	ug/L	<1	-	<1	<1	<0.33	<0.125	<0.217	0.12	<0.030
Calcium	ug/L	79,200	56,900	46,900	47,800	65,800	64,700	53,200	46,300	53,900
Chromium	ug/L	<2	-	2.74	2.47	2 U*	<1.53	<1.53	0.64 U*	1.1 U*
Cobalt	ug/L	0.687	-	<0.5	<0.5	0.333 J	0.264 J	<0.134	0.87	<0.085
Copper	ug/L	<2	-	<2	<2	0.405 J	0.891 U*	<0.627	<0.43	<0.43
Iron	ug/L	-	-	-	-	-	-	-	-	-
Lead	ug/L	<1	-	<1	<1	<0.33	0.138 J	<0.128	0.090 U*	<0.043
Lithium	ug/L	<5	<2.56	<5	<5	<3.14	<3.39	<3.39	0.80	0.55
Magnesium	ug/L	-	-	-	-	-	-	-	-	-
Manganese	ug/L	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.2	-	<0.2	<0.2	<0.101	<0.101	<0.130	<0.080	<0.070
Molybdenum	ug/L	<5	<0.33	<5	<5	<0.33	<0.610	<0.610	0.13 J	0.089 J
Nickel	ug/L	1.02	-	<1	<1	0.542 J	0.680 J	<0.336	1.3	<0.18
Potassium	ug/L	-	-	-	-	-	-	-	-	-
Selenium	ug/L	<5	-	<5	<5	<0.33	<1.51	<1.51	<0.14	0.20 J
Silicon	ug/L	-	-	-	-	-	-	-	-	-
Silver	ug/L	<1	-	<1	<1	<0.33	<0.177	<0.177	<0.077	<0.077
Sodium	ug/L	-	-	-	-	-	-	-	-	-
Thallium	ug/L	<1	-	<1	<1	<0.5	<0.148	<0.148	<0.047	<0.047
Vanadium	ug/L	2.61	-	1.57 U*	1.66 U*	1.44 U*	1.02	<0.991	0.45 J	0.45 J
Zinc	ug/L	<5	-	<5	<5	<8.3	<3.22	<3.22	3.8 J	<2.3
Radiological Parame	eters									
Radium-226	pCi/L	0.0995 +/-(0.0590)	0.181 +/-(0.0778)U*	0.141 +/-(0.0713)U*	0.148 +/-(0.0699)U*	0.00492 +/-(0.0485)U	0.496 +/-(0.598)U	0.104 +/-(0.444)U	-0.347 +/-(0.342)U	0.111 +/-(0.443)U
Radium-228	pCi/L	0.422 +/-(0.218)	-0.0865 +/-(0.184)U	0.312 +/-(0.285)U	0.125 +/-(0.248)U	0.451 +/-(0.283)U*	0.289 +/-(0.402)U	-0.130 +/-(0.380)U	0.155 +/-(0.227)U	0.242 +/-(0.450)U
Radium-226+228	pCi/L	-	-	-	-	-	0.786 +/-(0.721)U	0.104 +/-(0.585)U	0.155 +/-(0.411)U	0.353 +/-(0.632)U
Anions										
Chloride	mg/L	5.99	5.35	3.25 J	11.1 J	3.63	3.90	2.90	3.1	2.5
Fluoride	mg/L	<0.100	-	<0.100	<0.100	0.0809 J	0.0537 J	0.0571 J	0.052	0.054
Sulfate	mg/L	96.9	28.2	118	110	56.6	59.8	29.8	31.3	24.2
General Chemistry	<u>×</u> _!									
Alkalinity, Bicarbonate	mg/L	-	<u>-</u>	<u>-</u>	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	<u>-</u>
pH (lab)	SU	7.4	-	6.6 J	6.6 J	6.7 J	6.9 J	7.3 J	6.3 J	6.9 J
Total Dissolved Solids	mg/L	308	191	343	348	208	209	190	198	182

Page 9 of 18

Sample Location			MW-3						WBF-100			
Sample Date Sample ID Parent Sample ID		5-Oct-21 WBF-GW-MW3-10052021	20-Apr-22 WBF-GW-MW-3-04202022	19-Oct-22 WBF-GW-MW-3-10192022	18-Jan-17 WBF-100	5-Apr-17 WBF-100-040517	5-Apr-17 WBF-100-DUP-040517 WBF-100-0417	18-Jul-17 WBF-100-071817	16-Oct-17 WBF-100-101617	18-Jul-18 WBF-100-GW-071818	17-Oct-18 WBF-100-GW-101718	2-Apr-19 WBF-100-GW-040219
Sample Depth		26.5 ft	26.5 ft	26.5 ft	53.5 ft	53.5 ft	53.5 ft	53.5 ft	53.5 ft	53.5 ft	53.5 ft	53.5 ft
Sample Type		Normal Environmental Sample		Normal Environmental Sample		Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Samp
Program	Units	State Compliance	State Compliance		State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance	State Compliance
Total Metals							1		11		1	1
Aluminum	ug/L	-	-	-	-	-	-	-	-	-	-	-
Antimony	ug/L	<0.071	<0.071	<0.087	<2	<2	<2	-	<2	<2	<2	<0.33
Arsenic	ug/L	0.099 J	0.12 J	0.11 J	<1	<1	<1	-	<1	<1	<1	0.389 J
Barium	ug/L	79.4	67.5	77.6	108	96.7	97.9	-	68.5	63.4	63.6	63.6
Beryllium	ug/L	<0.032	<0.032	<0.049	<1	<1	<1	-	<1	<1	<1	<0.33
Boron	ug/L	413	309	603	1,670	2,650	2,450	1,560	1,790	1,690	1,650	1,650
Cadmium	ug/L	<0.016	<0.016	0.063 U*	<1	<1	<1	-	<1	<1	<1	<0.33
Calcium	ug/L	53,200	51,600	54,300	146,000	172,000	172,000	150,000	149,000	148,000	152,000	151,000
Chromium	ug/L	1.2 U*	1.4 J	0.86 U*	<2	<2	<2	-	<2	<2	<2	2.09 U*
Cobalt	ug/L	<0.081	<0.081	<0.095	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.33
Copper	ug/L	<0.50	1.7	<0.42	<2	<2	<2	-	<2	<2	<2	0.468 J
Iron	ug/L	-		-	-	-		-	-	-	-	
Lead	ug/L	<0.028	<0.028	<0.056	<1	<1	<1	-	<1	<1	<1	0.541 J
Lithium	ug/L	0.55	0.56	0.74	<5	<5	<5	<5	<5	<5	<5	3.65 J
Magnesium	ug/L	-	-	-	-	-	-	-	-	-	-	-
Manganese	ug/L	-	-	-	-	-	-	-	-	-	-	-
Mercury	ug/L	<0.070	<0.070	<0.095	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.101
Molybdenum	ug/L	<0.094	<0.094	0.080 U*	<5	<5	<5	<5	<5	<5	<5	<0.33
Nickel	ug/L	<0.17	0.90	0.44 J	1.03	<1	<1	-	<1	<1	<1	0.715 J
Potassium Selenium	ug/L	- 0.099 J	- 0.23 U*	- 0.075 J	- <5	- <5	<5	-	- <5	- <5	-	<0.33
	ug/L	0.099 5	0.23 0		<5	<5	<5	-	<0	<5	<5	<0.33
Silicon Silver	ug/L		<0.16	- <0.13	-	- <1	-	-	<1	-	-	<0.33
Sodium	ug/L	<0.16	<0.16	<0.13	<1	<1	<1	-	<1	<1	<1	<0.33
Thallium	ug/L ug/L	- <0.041	<0.041	- <0.026	- <1	- <1	<1	-	<1	- <1	<1	<0.5
Vanadium	ug/L	0.44 J	0.35 J	0.37 J	<1	<1	<1	-	<1	1.22	1.43 U*	1.5 U*
Zinc	ug/L	<2.0	2.4 J	<1.9	<5	24.1	<5		<5	<5	<5	<8.3
Radiological Param		<2.0	2.7 3	<1.5	~5	24.1		-	~5	<5		<0.5
Radium-226	pCi/L	0.249 +/-(0.361)U	-0.0713 +/-(0.367)U	0.346 +/-(0.346)U	0.169 +/-(0.199)U	0.0501 +/-(0.0679)U	0.0349 +/-(0.0620)U	0.141 +/-(0.0913)	0.0397 +/-(0.0538)U	0.202 +/-(0.0819)U*	0.218 +/-(0.0863)U*	0.0475 +/-(0.0622)U
Radium-228	pCi/L	0.235 +/-(0.365)U	0.535 +/-(0.384)U	0.448 +/-(0.537)U	0.311 +/-(0.358)U	0.284 +/-(0.230)U	0.148 +/-(0.234)U	0.378 +/-(0.232)	0.0760 +/-(0.204)U	0.147 +/-(0.197)U	0.0986 +/-(0.214)U	0.234 +/-(0.204)U
Radium-226+228	pCi/L	0.484 +/-(0.513)U	0.535 +/-(0.531)U	0.794 +/-(0.639)U	-	-	-	-	-	-	-	-
Anions		•										
Chloride	mg/L	2.5	1.9	2.5	6.63	7.56	7.50	6.94	7.54	6.91	7.21	6.71
Fluoride	mg/L	0.054	0.051	0.058	<0.100	<0.100	<0.100	-	<0.100	<0.100	<0.100	0.0459 J
Sulfate	mg/L	22.8	21.8	39.3	194	213	226	210	226	230	220	181
General Chemistry	'											
Alkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-			· ·	-	-	-	· · ·			
pH (lab)	SU	6.5 J	6.9 J	6.9 J	7.2	6.9	6.8	-	6.8	6.8 J	6.9 J	6.9 J
Total Dissolved Solids	mg/L	163	160	216	578	551	555	556	572	564	725	488

Sample Location						WBF	-100				
Sample Date Sample ID Parent Sample ID		22-Oct-19 WBF-GW-100-102219	28-Apr-20 WBF-GW-100-042820	6-Oct-20 WBF-GW-100-100620	6-Oct-20 WBF-AW-100-100620 WBF-GW-100-100620	26-Apr-21 WBF-GW-100-04262021	26-Apr-21 WBF-AW-100-04262021 WBF-GW-100-04262021	5-Oct-21 WBF-GW-100-10052021	20-Apr-22 WBF-GW-WBF-100-04202022	18-Oct-22 WBF-GW-WBF-100-10182022	18-Oct-22 WBF-GW-FD01-1018202 WBF-GW-WBF-100-101820
Sample Depth Sample Type Program	Units	53.5 ft Normal Environmental Sample State Compliance	53.5 ft Normal Environmental Sample State Compliance	53.5 ft Normal Environmental Sample State Compliance	53.5 ft Field Duplicate Sample State Compliance	53.5 ft Normal Environmental Sample State Compliance	53.5 ft Field Duplicate Sample State Compliance	53.5 ft Normal Environmental Sample State Compliance	53.5 ft Normal Environmental Sample State Compliance	53.5 ft Normal Environmental Sample	53.5 ft Field Duplicate Sample
otal Metals							1				
luminum	ug/L	-	-	-	-	-	-	-	-	-	-
ntimony	ug/L	<0.378	<0.378	<0.077	<0.077	<0.077	<0.077	<0.071	<0.071	0.088 J	0.096 J
rsenic	ug/L	<0.323	0.475 J	0.15 J	<0.14	<0.14	<0.14	<0.083	0.13 J	0.17 J	0.16 J
arium	ug/L	65.5	55.1	50.4 J	48.9 J	48.0	50.4	49.5	40.2	42.2	41.6
əryllium	ug/L	<0.182	<0.182	<0.054	<0.054	<0.054	<0.054	<0.032	<0.032	<0.049	<0.049
oron	ug/L	1,680	1,670	1,680	1,700	1,630	1,870	1,900	2,030	1,930	1,720
admium	ug/L	<0.125	<0.217	0.030 UJ	0.12 J	<0.030	<0.030	0.029 J	<0.016	0.039 U*	0.031 U*
alcium	ug/L	153,000	141,000	147,000	138,000	162,000	171,000	178,000	163,000	166,000	153,000
hromium	ug/L	<1.53	<1.53	0.50 U*	0.46 U*	0.47 U*	0.46 U*	0.84 U*	0.49 U*	0.86 U*	0.73 U*
obalt	ug/L	0.109 J	<0.134	<0.085	<0.085	<0.085	<0.085	<0.081	0.12 J	<0.095	<0.095
opper	ug/L	0.677 J	<0.627	<0.43	<0.43	<0.43	<0.43	<0.50	<0.50	0.65 J	0.50 J
'n	ug/L	-	-		-	-	-		-		-
ad	ug/L	<0.128	0.714 U*	0.20 U*	0.20 U*	<0.043	0.048 U*	0.061 J	0.24 J	0.22 U*	0.17 U*
hium	ug/L	3.54 J	3.61 J	1.7	1.7	1.6	1.7	1.8	1.7	1.8	1.8
agnesium	ug/L	-	-	-	-	-	-	-	-	-	-
anganese	ug/L	-	-	-	-	-	-	-	-	-	-
ercury	ug/L	<0.101	<0.130	<0.080	< 0.080	<0.070	<0.070	<0.070	<0.070	<0.095	<0.095
olybdenum	ug/L	<0.610 0.926 J	<0.610 0.543 J	<0.081 0.53	<0.081	<0.081 0.61	<0.081	<0.094 0.75	<0.094 0.70	0.11 U* 1.1 U*	0.38 U* 0.97 U*
ckel otassium	ug/L	0.926 J	0.543 J	0.53	0.50	0.61	0.65	0.75	0.70	1.10	0.97 0*
elenium	ug/L ug/L	- <1.51	- <1.51	<0.14	- <0.14	<0.14	<0.14	- 0.089 J	- 0.15 U*	- 0.13 J	- 0.13 J
licon	ug/L	<1.51	-	<0.14	<0.14	-	<0.14	0.089 5	-	-	0.13 5
lver	ug/L ug/L	- <0.177	<0.177	<0.077	- <0.077	<0.077	<0.077	<0.16	- <0.16	<0.13	<0.13
odium	ug/L	-	<0.177	<0.077	<0.077	-	<0.077	<0.10		-	<0.13
nallium	ug/L	<0.148	0.386 U*	0.059 U*	0.065 U*	<0.047	<0.047	<0.041	<0.041	<0.026	<0.026
anadium	ug/L	<0.991	<0.991	<0.27	<0.27	0.32 J	<0.27	<0.16	<0.16	<0.20	<0.20
nc	ug/L	<3.22	<3.22	4.4 J	<2.3	<2.3	<2.3	<2.0	<2.0	5.8	5.4
adiological Parame		10122	TOLLE		1210	110	1210	42.10	4210	0.0	011
adium-226	pCi/L	0.289 +/-(0.447)U	0.478 +/-(0.496)U	0.314 +/-(0.467)U	0.305 +/-(0.487)U	0.202 +/-(0.463)U	-0.324 +/-(0.334)U	-0.0256 +/-(0.237)U	0.312 +/-(0.487)U	-0.133 +/-(0.278)U	0.194 +/-(0.362)U
adium-228	pCi/L	0.0272 +/-(0.494)U	0.127 +/-(0.247)U	0.365 +/-(0.396)U	-0.180 +/-(0.394)U	0.612 +/-(0.509)U	0.112 +/-(0.439)U	0.261 +/-(0.477)U	0.455 +/-(0.474)U	0.348 +/-(0.491)U	0.415 +/-(0.470)U
adium-226+228	pCi/L	0.316 +/-(0.667)U	0.606 +/-(0.554)U	0.679 +/-(0.612)U	0.305 +/-(0.626)U	0.815 +/-(0.688)U	0.112 +/-(0.551)U	0.261 +/-(0.533)U	0.766 +/-(0.680)U	0.348 +/-(0.564)U	0.609 +/-(0.594)U
nions						•					
hloride	mg/L	6.39	7.83	8.0	8.1	9.9	9.9	9.3	9.9	9.4	9.2
uoride	mg/L	0.0543 J	0.0312 J	0.028 J	0.029 J	0.025 J	0.026 J	0.036 J	0.037 J	0.030 J	0.030 J
ulfate	mg/L	230	169	190	193	218	229	240	262	266	249
eneral Chemistry											
lkalinity, Bicarbonate	mg/L	-	-	-	-	-	-	-	-	-	-
Alkalinity, Carbonate	mg/L	-	-	-	-	-	-	-	-	-	-
H (lab)	SU	7.1 J	7.5 J	6.7 J	6.8 J	7.1 J	7.2 J	6.8 J	7.3 J	6.8 J	5.9 J
otal Dissolved Solids	mg/L	546	502	565	571	589	585	624	633	610	613

Sample Location	1	1				WBF-101				
Sample Location Sample Date Sample ID Parent Sample ID		27-Aug-19 WBF-GW-005-20190827	31-Oct-19 WBF-GW-005-20191031	9-Jan-20 WBF-GW-005-20200109	3-Mar-20 WBF-GW-005-20200303	29-Apr-20 WBF-GW-005-20200429	7-Jul-20 WBF-GW-005-20200707	23-Mar-21 WBF-GW-WBF-101-03232021	18-Aug-21 WBF-GW-WBF-101-08182021	18-Aug-21 WBF-GW-FD02-08182021 WBF-GW-WBF-101-08182021
Sample Depth Sample Type		32.2 ft Normal Environmental Sample		32.2 ft Normal Environmental Sample	32.2 ft Field Duplicate Sample					
Program	Units	EIP	EIP	EIP	EIP	EIP	EIP	EIP	EIP	EIP
Total Metals	I									
Aluminum	ug/L	-	-	-	-	-	-	21.2 J	<12.5	<12.5
Antimony	ug/L	<0.378	<0.378	<0.378	<0.378	1.07 U*	<0.378	<0.378	<0.378	<0.378
Arsenic	ug/L	1.31	1.68	2.18 U*	1.94	1.19 U*	0.922 J	1.43	0.746 J	0.958 J
Barium	ug/L	466	416	141	34.1	238	334	29.9	198	200
Beryllium	ug/L	0.213 J	0.317 U*	<0.182	0.338 J	<0.182	<0.182	<0.182	<0.182	<0.182
Boron	ug/L	51.8 U*	<38.6	547	2,030	90.4	42.5 J	1,480	49.0 J	54.3 J
Cadmium	ug/L	<0.125	<0.125	0.695 J	3.76	0.414 U*	<0.217	2.34	<0.217	<0.217
Calcium	ug/L	105,000	105,000	157,000	302,000	126,000	114,000	251,000 J	140,000	140,000
Chromium	ug/L	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53
Cobalt	ug/L	0.782	1.20	73.3	297	6.82 J	0.462 J	248 J	1.27	1.39
Copper	ug/L	<0.627	<0.627	<0.627	<0.627	4.36 U*	<0.627	<0.627	<0.627	<0.627
Iron	ug/L	-	-	-	-	-	-	41,100	40,600	40,400
Lead	ug/L	<0.128	<0.128	<0.128	0.238 J	0.158 U*	<0.128	<0.128	<0.128	<0.128
Lithium	ug/L	<3.39	4.23 J	<3.39	3.80 J	<3.39	<3.39	<3.39	<3.39	<3.39
Magnesium	ug/L	13,600	14,200	22,700	39,900	16,400	15,200	35,500 J	18,700	18,700
Manganese	ug/L	-	-	-	-	-	-	29,100 J	4,010	4,030
Mercury	ug/L	0.160 J	<0.101	<0.101	<0.101	<0.130	<0.130	<0.130	<0.130	<0.130
Molybdenum	ug/L	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	< 0.336	0.532 U*	10.5	47.3	1.72 U*	<0.336	40.3	<0.336	<0.336
Potassium	ug/L	919	1,040	1,310	2,400	1,150	968	2,660	986	1,020
Selenium	ug/L	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silicon	ug/L	-	-	-	-	-	-	12,900	10,600	10,600
Silver	ug/L	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	10,600	11.100	13,800	23,600	11.500	10,300	18,800	10,800	10,900
Thallium	ug/L	0.190 J	0.692 U*	<0.148	<0.148	0.281 U*	<0.148	<0.148	<0.148	<0.148
Vanadium	ug/L	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991
Zinc	ug/L	3.88 U*	<3.22	23.4	145	8.02	9.61	128 J	<3.22	<3.22
Radiological Parame	eters									
Radium-226	pCi/L	0.624 +/-(0.579)U	0.688 +/-(0.448)	0.627 +/-(0.524)U	0.639 +/-(0.605)U	0.405 +/-(0.583)U	0.0206 +/-(0.395)U	-0.0212 +/-(0.154)U	0.0558 +/-(0.440)U	0.256 +/-(0.426)U
Radium-228	pCi/L	0.535 +/-(0.466)U	0.260 +/-(0.349)U	0.289 +/-(0.304)U	0.0791 +/-(0.323)U	0.287 +/-(0.283)U	0.269 +/-(0.298)U	-0.109 +/-(0.268)U	0.178 +/-(0.266)U	0.0508 +/-(0.409)U
Radium-226+228	pCi/L	1.16 +/-(0.743)U	0.947 +/-(0.568)J	0.916 +/-(0.606)U	0.718 +/-(0.686)U	0.691 +/-(0.648)U	0.290 +/-(0.495)U	0.000 +/-(0.309)U	0.234 +/-(0.514)U	0.307 +/-(0.590)U
Anions										
Chloride	mg/L	4.60	5.15	5.67	6.33	6.31	7.05	6.82	7.34	7.36
Fluoride	mg/L	0.0587 J	0.0602 U*	0.0396 J	0.0557 J	0.0985 U*	0.110 U*	0.0580 J	0.0830 U*	0.0995 U*
Sulfate	mg/L	193	158	355	884	238	240	797	369 J	291 J
General Chemistry										
Alkalinity, Bicarbonate	mg/L	157	147	148	81.6	126	129	59.6	140	134
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	425	427	695	1,340	551	509	1,290	614	596

Page 12 of 18

Sample Location			WBF-101				WB	F-102		
Sample Date Sample ID Parent Sample ID		19-Apr-22 WBF-GW-WBF-101-04192022	19-Apr-22 WBF-GW-FD02-04192022 WBF-GW-WBF-101-04192022	18-Oct-22 WBF-GW-WBF-101-10182022	28-Aug-19 WBF-GW-006-20190828	30-Oct-19 WBF-GW-006-20191030	8-Jan-20 WBF-GW-006-20200108	3-Mar-20 WBF-GW-006-20200303	27-Apr-20 WBF-GW-006-20200427	7-Ju WBF-GW-00
Sample Depth Sample Type Program	Units	32.2 ft Normal Environmental Sample CCR Program	32.2 ft Field Duplicate Sample CCR Program	32.2 ft Normal Environmental Sample	23 ft Normal Environmental Sample EIP	23 Normal Environ El				
Total Metals										
Aluminum	ug/L	<15.5	<15.5	15.9 J	-	-	-	-	-	-
Antimony	ug/L	<0.506	<0.506	<0.506	<0.378	<0.378	<0.378	<0.378	<0.378	<0.3
Arsenic	ug/L	0.644 J	0.552 J	0.674 J	0.495 J	0.468 J	0.866 U*	0.483 J	0.464 U*	0.39
Barium	ug/L	49.8	47.4	135	61.5	60.6	36.7	50.5	52.2	42
Beryllium	ug/L	<0.274	<0.274	<0.274	<0.182	<0.182	0.486 U*	<0.182	<0.182	0.26
Boron	ug/L	670	666	76.4 U*	105 U*	90.8	60.2 J	60.5 J	42.0 J	58.6
Cadmium	ug/L	0.668 J	0.609 J	<0.217	0.178 J	0.127 J	<0.217	<0.217	<0.217	<0.2
Calcium	ug/L	194,000	193,000	150,000	309,000	212,000	89,300	99,300	131,000	220,0
Chromium	ug/L	<1.53	<1.53	<1.53	<1.53	2.74 U*	<1.53	<1.53	<1.53	<1.
Cobalt	ug/L	97.1	97.7	1.07	11.1	1.15	<0.134	<0.134	<0.134	<0.1
Copper	ug/L	<1.14	<1.14	<1.14	1.02 J	2.06 U*	1.71 U*	0.670 J	0.804 U*	<0.6
Iron	ug/L	38,700	37,700	44,300	-	-	-	-	-	
Lead	ug/L	<0.167	<0.167	<0.167	<0.128	<0.128	<0.128	<0.128	<0.128	<0.1
Lithium	ug/L	2.24 J	2.35 J	<0.831	3.46 U*	<3.39	4.23 J	<3.39	5.63 U*	<3.
Magnesium	ug/L	26,900	26,200	21,200	55,800	31,000	13,100	12,800	18,000	34,1
Manganese	ug/L	12,500	12,500	4,380	-	-	-	-	-	-
Mercury	ug/L	<0.130	<0.130	<0.130	<0.101	0.564	<0.101	<0.101	0.543	1.2
Molybdenum	ug/L	<0.610 18.1	<0.610 18.1	<0.610 <0.517	<0.610 2.21	0.713 J 1.31 U*	4.32 J 1.27 U*	2.86 J <0.336	1.62 U* 0.362 U*	<0.6 0.726
Nickel Potassium	ug/L	18.1	1,800	<0.517 1,050	1,580	2,350	3,210	2,720	2,690	1,56
Selenium	ug/L ug/L	<0.739	<0.739	<0.739	<1.51	5.48	<1.51	<1.51	2,690 2.48 J	2.45
Silicon	-	12,400		11,300	<1.51	5.46	<1:51	<1.51	2.46 J	2.40
Silver	ug/L ug/L	<0.223	11,900 <0.223	<0.223	- <0.177	<0.177	<0.177	<0.177	- <0.177	<0.1
Sodium	ug/L	13,800	13,400	11,200	11,800	58,800	7,430	9,430	12,300	14,1
Thallium	ug/L	<0.472	<0.472	<0.472	<0.148	<0.148	<0.148	0.237 J	0.148 U*	0.26
Vanadium	ug/L	<0.776	<0.776	<0.776	1.57	1.68	<0.991	<0.991	<0.991	<0.9
Zinc	ug/L	59.6	60.6	<2.88	6.25 U*	7.24 U*	<3.22	<3.22	<3.22	4.14
Radiological Param	. ၂	33.0	00.0	\$2.00	0.23 0	1.24 0	5.22	5.22	NJ.22	4.1-
Radium-226	pCi/L	-0.0409 +/-(0.351)U	0.283 +/-(0.405)U	0.217 +/-(0.358)U	0.477 +/-(0.594)U	0.553 +/-(0.462)U	-0.225 +/-(0.407)U	0.910 +/-(0.681)U	0.310 +/-(0.517)U	0.475 +/-(
Radium-228	pCi/L	0.794 +/-(0.557)U	0.763 +/-(0.461)U*	-0.00685 +/-(0.410)U	0.225 +/-(0.389)U	-0.0587 +/-(0.214)U	0.213 +/-(0.328)U	0.484 +/-(0.425)U	0.290 +/-(0.322)U	0.474 +/-(
Radium-226+228	pCi/L	0.794 +/-(0.658)U	1.05 +/-(0.613)U*	0.217 +/-(0.544)Ú	0.702 +/-(0.710)U	0.553 +/-(0.509)Ú	0.213 +/-(0.522)U	1.39 +/-(0.802)U	0.600 +/-(0.609)U	0.949 +/-(
Anions		• • •								
Chloride	mg/L	7.33	7.35	9.96	19.8	18.5	4.53	8.42	12.2	25.
Fluoride	mg/L	0.128	0.0830 J	0.0638 J	0.0439 J	0.0415 U*	0.0989 J	0.0816 J	0.126 U*	0.062
Sulfate	mg/L	491	497	343	664	545	90.2 J	141	194	45
General Chemistry										
Alkalinity, Bicarbonate	mg/L	93.2	89.7	133	367	246	226	210	252	30
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<2.60	<5.00	<5.00	<5.00	<5.00	<5.00	<5.0
pH (lab)	SU		-		-		-			-
Total Dissolved Solids	mg/L	891	876	667	1,280	1,140	386	464	562	1,04

7-Jul-20 GW-006-20200707

23 ft nvironmental Sample EIP

-
<0.378
0.393 J
42.9
0.261 U*
58.6 J
<0.217
220,000
<1.53
<0.134
<0.627
-
<0.128 <3.39
<3.39 34,100
-
1.23
<0.610
0.726 U*
1,560
2.45 J
-
<0.177
14,100
0.263 J
<0.991
4.14 J
475 +/-(0.565)U
474 +/-(0.381)U
949 +/-(0.681)U
25.8
0.0629 U*
452
301
<5.00
-

-1,040

Sample Location	1		WE	3F-102					WBF-103			
Sample Date Sample ID Parent Sample ID		24-Mar-21 WBF-GW-WBF-102-03242021	24-Mar-21 WBF-GW-FD02-03242021 WBF-GW-WBF-102-03242021	18-Aug-21 WBF-GW-WBF-102-08182021	21-Apr-22 WBF-GW-WBF-102-04212022	27-Aug-19 WBF-GW-007-20190827	29-Oct-19 WBF-GW-007-20191029	7-Jan-20 WBF-GW-007-20200107	3-Mar-20 WBF-GW-007-20200303	28-Apr-20 WBF-GW-007-20200428	7-Jul-20 WBF-GW-007-20200707	23-Mar-21 WBF-GW-WBF-103-03232021
Sample Depth		23 ft	23 ft	23 ft	23 ft	19.5 ft	19.5 ft	19.5 ft	19.5 ft	19.5 ft	19.5 ft	19.5 ft
Sample Type		Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	· · · · · · · · · · · · · · · ·			Normal Environmental Sample	Normal Environmental Sample
Program	Units	EIP	EIP	EIP	CCR Program	EIP	EIP	EIP	EIP	EIP	EIP	EIP
Total Metals												
luminum	ug/L	<12.5	<12.5	<12.5	<15.5	-	-	-	-	-	-	107
ntimony	ug/L	<0.378	<0.378	<0.378	<0.506	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
rsenic	ug/L	<0.313	0.564 J	<0.313	0.369 J	<0.323	0.324 J	0.781 U*	<0.313	<0.313	<0.313	<0.313
Barium	ug/L	24.7	25.7	23.7	39.3	120	155	76.4	83.2	70.5	81.7	65.8
Beryllium	ug/L	<0.182	0.256 J	<0.182	<0.274	<0.182	<0.182	0.235 U*	<0.182	<0.182	<0.182	<0.182
Boron	ug/L	71.2 U*	90.2 U*	88.9	72.7 J	80.2 U*	52.2 J	58.8 J	<38.6	<38.6	41.8 J	82.7 U*
Cadmium	ug/L	<0.217	0.232 J	<0.217	<0.217	<0.125	<0.125	<0.217	<0.217	<0.217	<0.217	<0.217
Calcium	ug/L	98,900 J	103,000 J	119,000	151,000	21,600	36,400	40,200	17,800	20,600	17,600	22,700
Chromium	ug/L	1.95 J	2.56	2.39	1.91 J	<1.53	2.04 U*	<1.53	1.55 J	<1.53	<1.53	<1.53
Cobalt	ug/L	<0.134	0.195 J	<0.134	<0.261	1.03	2.34	4.44	1.12	0.903 U*	0.905	0.607
Copper	ug/L	<0.627	<0.627	<0.627	<1.14	<0.627	1.22 U*	<0.627	2.92	<0.627	<0.627	<0.627
ron	ug/L	20.3 U*	<19.5	27.5 J	<27.7	-	-	-	-	-	-	202
ead	ug/L	<0.128	0.207 J	<0.128	0.199 J	<0.128	<0.128	<0.128	6.21	<0.128	<0.128	<0.128
.ithium	ug/L	<3.39	<3.39	<3.39	<0.831	<3.39	<3.39	<3.39	<3.39	4.97 U*	<3.39	<3.39
Magnesium	ug/L	16,000	16,800	16,900	22,800	4,670	7,390	8,290	4,110	4,660	4,030	5,920
Vanganese	ug/L	1.44 U*	1.19 U*	3.62 U*	2.43 U*	-	-	-	-	-	-	2,400
Mercury	ug/L	<0.130	<0.130	<0.130	<0.130	<0.101	<0.101	<0.101	<0.101	<0.130	<0.130	<0.130
Nolybdenum	ug/L	0.656 J	0.787 J	<0.610	0.648 J	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	<0.336	<0.336	0.397 J	<0.517	2.70	3.16	3.40 U*	1.66	1.38 U*	2.33 U*	1.29
Potassium	ug/L	1,260	1,460	1,320	2,320	4,450	6,530	7,500	4,060	4,050	3,520	5,220
Selenium	ug/L	<1.51	1.56 J	2.19 J	1.89 J	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silicon	ug/L	2,340 J	2,690 J	3,860	4,090 J	-	-	-	-	-	-	2,930
Silver	ug/L	<0.177	<0.177	<0.177	<0.223	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	6,830	6,500	6,150	13,100	5,830	11,600	10,200	5,370	5,540	6,220	4,150
Thallium	ug/L	0.230 J	0.651 J	<0.148	0.589 J	<0.148	<0.148	0.649 U*	<0.148	<0.148	<0.148	<0.148
/anadium	ug/L	<0.991	<0.991	<0.991	<0.776	0.999 J	1.22 U*	<0.991	<0.991	<0.991	<0.991	<0.991
Zinc	ug/L	<3.22	<3.22	<3.22	3.07 J	6.70 U*	8.94 U*	4.66 J	9.38	<3.22	6.65	<3.22
Radiological Param	neters											
Radium-226	pCi/L	0.0420 +/-(0.223)U	0.0932 +/-(0.256)U	-0.141 +/-(0.332)U	-0.0769 +/-(0.303)U	0.539 +/-(0.601)U	0.543 +/-(0.584)U	0.440 +/-(0.542)U	0.537 +/-(0.554)U	0.561 +/-(0.480)U	-0.0548 +/-(0.389)U	0.0654 +/-(0.236)U
Radium-228	pCi/L	0.657 +/-(0.448)U*	0.230 +/-(0.363)U	0.150 +/-(0.236)U	0.327 +/-(0.303)U	0.208 +/-(0.347)U	0.302 +/-(0.310)U	0.134 +/-(0.352)U	0.215 +/-(0.435)U	-0.00991 +/-(0.351)U	0.430 +/-(0.354)U	0.758 +/-(0.386)U*
Radium-226+228	pCi/L	0.699 +/-(0.501)U*	0.323 +/-(0.445)U	0.150 +/-(0.407)U	0.327 +/-(0.429)U	0.747 +/-(0.694)U	0.845 +/-(0.661)U	0.574 +/-(0.646)U	0.752 +/-(0.704)U	0.561 +/-(0.594)U	0.430 +/-(0.526)U	0.823 +/-(0.452)U*
Anions												
Chloride	mg/L	5.49	5.29	4.15	37.8	5.63	4.51	4.58	5.51	5.26	5.63	5.30
luoride	mg/L	0.0515 J	0.0450 J	0.0799 U*	0.0611 J	<0.0263	0.0443 U*	0.0362 J	0.0276 J	0.0450 U*	0.0669 U*	<0.0260
Sulfate	mg/L	110	104	161	179	84.7	71.3	86.6	67.4	61.6	60.8	50.3
General Chemistry												
Alkalinity, Bicarbonate	mg/L	247	226	201	280	60.4	78.2	73.5	36.7	44.4	36.7	37.0
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
oH (lab)	SU	-	-	-	-		-	-			-	-
Fotal Dissolved Solids	mg/L	433	459	460	573	184	196	230	162	183	152	147

Sample Location			WBF-103					WBF-104			
Sample Date Sample ID Parent Sample ID		17-Aug-21 WBF-GW-WBF-103-08172021	21-Apr-22 WBF-GW-WBF-103-04212022	18-Oct-22 WBF-GW-WBF-103-10182022	27-Aug-19 WBF-GW-008-20190827	29-Oct-19 WBF-GW-008-20191029	7-Jan-20 WBF-GW-008-20200107	4-Mar-20 WBF-GW-008-20200304	28-Apr-20 WBF-GW-008-20200428	8-Jul-20 WBF-GW-008-20200708	8-Jul-20 WBF-GW-DUP01-2020070 WBF-GW-008-20200708
Sample Depth Sample Type Program	Units	19.5 ft Normal Environmental Sample EIP	19.5 ft Normal Environmental Sample CCR Program	19.5 ft Normal Environmental Sample	26.4 ft Normal Environmental Sample EIP	26.4 ft Field Duplicate Sample EIP					
Total Metals		ļ									
Aluminum	ug/L	25.8 J	<15.5	17.0 J	-	-	-	-	-	-	-
Antimony	ug/L	<0.378	<0.506	<0.506	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Arsenic	ug/L	<0.313	0.373 J	<0.282	0.701 J	0.594 J	0.872 U*	0.318 J	0.559 U*	0.685 U*	0.658 U*
Barium	ug/L	73.0	76.1	73.0	21.1	27.3	23.2	43.4	38.3	33.8	34.7
Beryllium	ug/L	<0.182	<0.274	<0.274	0.182 J	<0.182	0.198 U*	0.229 J	0.200 U*	0.309 J	0.332 J
Boron	ug/L	61.2 J	79.5 J	<60.1	4,940	3,750	1,910	3,570	3,420	4,260 J	4,500 J
Cadmium	ug/L	<0.217	<0.217	<0.217	7.60	10.5	6.08	7.28	6.87	8.14	8.32
Calcium	ug/L	14,300	44,200	12,800	581,000	442,000	208,000	450,000	456,000	576,000	587,000
Chromium	ug/L	<1.53	<1.53	<1.53	<1.53	1.70 U*	<1.53	<1.53	<1.53	<1.53	<1.53
Cobalt	ug/L	0.434 J	0.827	0.317 J	437	379	167	256	249	365	373
Copper	ug/L	<0.627	<1.14	<1.14	1.06 J	2.10 U*	<0.627	<0.627	0.878 U*	<0.627	<0.627
Iron	ug/L	27.4 U*	38.5 J	<27.7	-	-	-	-	-	-	-
Lead	ug/L	<0.128	<0.167	<0.167	0.232 J	0.178 J	<0.128	<0.128	0.218 U*	0.214 U*	0.217 U*
Lithium	ug/L	<3.39	<0.831	<0.831	5.98 U*	4.06 J	<3.39	<3.39	7.07 U*	3.59 J	4.10 J
Magnesium	ug/L	3,190	8,640	3,240	69,700	53,900	25,500	52,800	52,800	64,500	65,700
Manganese	ug/L	605	1,720 J	606	-	-	-	-	-	-	-
Mercury	ug/L	<0.130	<0.130	<0.130	<0.101	<0.101	<0.101	<0.101	<0.130	<0.130	<0.130
Molybdenum	ug/L	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	1.34	1.46	1.14	65.6	66.9	32.2	51.0	50.2	67.5	69.3
Potassium	ug/L	3,170	5,960	2,920	1,610	1,660	909	1,340	1,390	1,640	1,670
Selenium	ug/L	<1.51	<0.739	0.930 J	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silicon	ug/L	3,590	3,090 J	3,840	-	-	-	-	-	-	-
Silver	ug/L	<0.177	<0.223	<0.223	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	4,890	13,900	5,050	29,800	35,700	14,500	23,300	22,200	26,200	26,000
Thallium	ug/L	0.172 J	<0.472	<0.472	<0.148	<0.148	<0.148	<0.148	0.231 U*	0.209 U*	0.250 U*
Vanadium	ug/L	<0.991	<0.776	<0.776	1.02	1.18 U*	<0.991	<0.991	<0.991	<0.991	<0.991
Zinc	ug/L	<3.22	<2.88	<2.88	102	113	48.0	91.1	87.5	125	126
Radiological Paran	neters										
Radium-226	pCi/L	-0.0371 +/-(0.231)U	0.237 +/-(0.398)U	-0.0695 +/-(0.200)U	0.541 +/-(0.608)U	0.325 +/-(0.383)U	-0.0750 +/-(0.402)U	1.20 +/-(0.727)	0.309 +/-(0.502)U	0.500 +/-(0.523)U	0.370 +/-(0.552)U
Radium-228	pCi/L	-0.0227 +/-(0.227)U	0.321 +/-(0.387)U	0.540 +/-(0.555)U	-0.0176 +/-(0.367)U	0.150 +/-(0.271)U	0.0847 +/-(0.313)U	0.166 +/-(0.354)U	0.449 +/-(0.298)	0.502 +/-(0.415)U	0.903 +/-(0.434)
Radium-226+228	pCi/L	0.000 +/-(0.324)U	0.558 +/-(0.555)U	0.540 +/-(0.590)U	0.541 +/-(0.710)U	0.476 +/-(0.469)U	0.0847 +/-(0.510)U	1.36 +/-(0.808)J	0.758 +/-(0.584)J	1.00 +/-(0.668)U	1.27 +/-(0.702)J
Anions											
Chloride	mg/L	4.72	4.41	6.68	5.03	5.53	2.95	5.54	5.55	7.08	7.06
Fluoride	mg/L	0.0446 U*	0.0324 J	0.0562 J	<0.0658	0.0411 U*	0.0777 J	0.0368 J	0.0622 U*	0.149 U*	0.158 U*
Sulfate	mg/L	32.9	102	34.5	1,970	1,380	726	1,510	1,280	1,750	1,770
General Chemistry		·									
Alkalinity, Bicarbonate	mg/L	28.8	77.6	26.6	70.3	60.7	41.9	49.4	55.5	55.1	54.4
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<2.60	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	- 97.0	-	-	-	-	-	-	-	-	-
Total Dissolved Solids	mg/L	97.0	223	109	2,720	2,130	1,050	1,720	2,000	2,810	2,720

Sample Location				WBF-104				WBF-105							
Sample Date Sample ID Parent Sample ID		24-Mar-21 WBF-GW-WBF-104-03242021	19-Aug-21 WBF-GW-WBF-104-08192021	20-Apr-22 WBF-GW-WBF-104-04202022	19-Oct-22 WBF-GW-WBF-104-10192022	19-Oct-22 WBF-GW-FD02-10192022 WBF-GW-WBF-104-10192022	28-Aug-19 WBF-GW-009-20190828	30-Oct-19 WBF-GW-009-20191030	8-Jan-20 WBF-GW-009-20200108	4-Mar-20 WBF-GW-009-20200304	28-Apr-20 WBF-GW-009-20200428	7-Jul-20 WBF-GW-009-20200707			
Sample Depth		26.4 ft	35.1 ft	35.1 ft	35.1 ft	35.1 ft	35.1 ft	35.1 ft							
Sample Type		Normal Environmental Sample			Normal Environmental Sample	Field Duplicate Sample	Normal Environmental Sample		· · · · · · · · · · · · · · · ·	Normal Environmental Sample					
Program	Units	EIP	EIP	CCR Program			EIP	EIP	EIP	EIP	EIP	EIP			
Total Metals		ļ													
Aluminum	ug/L	26.9 U*	45.0	32.6	58.1	58.6	-	-	-	-	-	-			
Antimony	ug/L	<0.378	<0.378	<0.506	<0.506	0.510 J	0.563 U*	<0.378	<0.378	<0.378	<0.378	<0.378			
Arsenic	ug/L	0.475 J	0.502 U*	0.517 J	<0.282	0.309 J	1.32	1.54	1.70 U*	1.35	1.27 U*	1.39			
Barium	ug/L	22.2	22.5	19.8	19.7	19.9	112	101	110	97.4	101	96.1			
Beryllium	ug/L	0.225 J	0.240 J	<0.274	<0.274	0.281 J	<0.182	<0.182	0.238 U*	<0.182	<0.182	0.347 U*			
Boron	ug/L	3,930	5,150	4,700	5,320	5,150	52.3 U*	56.1 J	<38.6	49.7 J	47.8 J	47.8 J			
Cadmium	ug/L	8.60	9.08	9.65	10.9	11.0	<0.125	<0.125	<0.217	<0.217	<0.217	<0.217			
Calcium	ug/L	523,000 J	604,000	534,000	496,000	510,000	127,000	135,000	132,000	133,000	140,000	128,000			
Chromium	ug/L	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	2.04 U*	<1.53	<1.53	<1.53	10.9 U*			
Cobalt	ug/L	460	541	598	596	608	0.151 J	0.113 J	0.262 U*	<0.134	0.212 U*	<0.134			
Copper	ug/L	<0.627	<0.627	<1.14	<1.14	<1.14	0.930 J	1.02 U*	0.736 U*	<0.627	<0.627	<0.627			
Iron	ug/L	177	382	268	191	197	-	-	-	-	-	-			
Lead	ug/L	<0.128	<0.128	<0.167	<0.167	<0.167	<0.128	<0.128	<0.128	<0.128	<0.128	<0.128			
Lithium	ug/L	<3.39	<3.39	3.54 J	3.92 J	3.83 J	5.46 U*	<3.39	<3.39	<3.39	6.41 U*	<3.39			
Magnesium	ug/L	66,400	71,800	73,100	69,000	69,200	19,100	19,400	20,600	19,300	19,200	18,100			
Manganese	ug/L	68,500	76,300	77,700	81,400	83,100	-	-	-	-	-	-			
Mercury	ug/L	<0.130	<0.130	<0.130	<0.130	<0.130	<0.101	<0.101	<0.101	<0.101	<0.130	<0.130			
Molybdenum	ug/L	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	1.40 J			
Nickel	ug/L	76.3	93.5	98.9	105	106	<0.336	<0.336	0.865 U*	<0.336	<0.336	0.360 U*			
Potassium	ug/L	1,620	1,790	1,740	2,010	2,050	894	915	857	832	911	891			
Selenium	ug/L	<1.51	<1.51	<0.739	<0.739	<0.739	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51			
Silicon	ug/L	17,000 J	19,200	21,700	21,300	21,800	-	-	-	-	-	-			
Silver	ug/L	<0.177	<0.177	<0.223	<0.223	<0.223	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177			
Sodium	ug/L	26,800	28,000	30,800	27,600	27,900	29,700	30,500	29,400	29,300	29,600	27,500			
Thallium	ug/L	0.158 J	<0.148	<0.472	<0.472	<0.472	<0.148	<0.148	<0.148	<0.148	<0.148	0.294 J			
Vanadium	ug/L	<0.991	<0.991	<0.776	<0.776	<0.776	<0.991	1.01	<0.991	<0.991	<0.991	1.40			
Zinc Rediclogical Decem	ug/L	145	185	174	241	245	4.51 U*	<3.22	<3.22	<3.22	<3.22	4.39 J			
Radiological Param															
Radium-226	pCi/L	0.182 +/-(0.332)U	0.623 +/-(0.542)U	-0.0650 +/-(0.313)U	0.481 +/-(0.398)U	0.0626 +/-(0.240)U	0.847 +/-(0.698)U	0.310 +/-(0.364)U	0.301 +/-(0.538)U	1.33 +/-(0.785)	0.886 +/-(0.639)	0.522 +/-(0.527)U			
Radium-228	pCi/L	0.538 +/-(0.411)U	0.0202 +/-(0.323)U	0.986 +/-(0.589)	0.321 +/-(0.321)U	0.354 +/-(0.386)U	0.0921 +/-(0.352)U	0.507 +/-(0.366)U	0.229 +/-(0.357)U	0.182 +/-(0.247)U	0.350 +/-(0.281)U	0.792 +/-(0.451)			
Radium-226+228	pCi/L	0.721 +/-(0.528)U	0.643 +/-(0.631)U	0.986 +/-(0.667)J	0.802 +/-(0.511)U	0.417 +/-(0.454)U	0.939 +/-(0.782)U	0.817 +/-(0.516)U	0.530 +/-(0.645)U	1.51 +/-(0.823)J	1.24 +/-(0.698)J	1.31 +/-(0.694)J			
Anions		•													
Chloride	mg/L	6.89	7.50	11.1	6.93	6.84	4.24	5.21	5.59	5.52	5.68	6.02			
Fluoride	mg/L	<0.0650	0.0650 UJ	0.0328 U*	<0.0650	<0.0650	0.0790 J	0.0741 U*	0.0722 J	0.0530 J	0.115 U*	0.132 U*			
Sulfate	mg/L	1,560	1,750	1,860	1,720	1,700	341	335	350 J	347	329	349			
General Chemistry															
Alkalinity, Bicarbonate	mg/L	48.4	46.8	41.7	46.1	50.1	173	153	136	109	110	115			
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<2.60	<2.60	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00			
pH (lab)	SU	-	-	-	-	-	-	-	-	-	-	-			
Total Dissolved Solids	mg/L	1,350	2,320	2,450	2,380	2,570	654	657	710	640	668	709			

Sample Location	1		WB	F-105				WBF-	106		
Sample Date Sample ID Parent Sample ID		25-Mar-21 WBF-GW-WBF-105-03252021	19-Aug-21 WBF-GW-WBF-105-08192021	20-Apr-22 WBF-GW-WBF-105-04202022	17-Oct-22 WBF-GW-WBF-105-10172022	28-Aug-19 WBF-GW-010-20190828	28-Aug-19 WBF-GW-DUP01-20190828 WBF-GW-010-20190828	30-Oct-19 WBF-GW-010-20191030	30-Oct-19 WBF-GW-DUP01-20191030 WBF-GW-010-20191030	8-Jan-20 WBF-GW-010-20200108	8-Jan-20 WBF-GW-DUP01-20200108 WBF-GW-010-20200108
Sample Depth Sample Type Program	Units	35.1 ft Normal Environmental Sample EIP	35.1 ft Normal Environmental Sample EIP	35.1 ft Normal Environmental Sample CCR Program	35.1 ft Normal Environmental Sample	32.6 ft Normal Environmental Sample EIP	32.6 ft Field Duplicate Sample EIP	32.6 ft Normal Environmental Sample EIP	32.6 ft Field Duplicate Sample EIP	32.6 ft Normal Environmental Sample EIP	32.6 ft Field Duplicate Sample EIP
Total Metals		•				•					
Aluminum	ug/L	<12.5	<12.5	<15.5	<15.5	-	-	-	-	-	-
Antimony	ug/L	<0.378	<0.378	<0.506	0.584 J	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Arsenic	ug/L	1.24	1.32 U*	1.22	1.31	1.70	1.72	0.733 J	0.735 J	1.02 U*	0.848 U*
Barium	ug/L	97.1	99.2	95.0	92.0	51.4	51.0	34.4	33.6	30.2	30.5
Beryllium	ug/L	<0.182	<0.182	<0.274	<0.274	<0.182	<0.182	<0.182	<0.182	0.642 U*	0.566 U*
Boron	ug/L	<38.6	114 U*	<60.1	64.5 J	57.7 U*	43.1 U*	260	261	237	235
Cadmium	ug/L	<0.217	<0.217	<0.217	<0.217	<0.125	<0.125	0.958 J	1.05	0.980 J	0.938 J
Calcium Chromium	ug/L	133,000 <1.53	139,000 <1.53	136,000 <1.53	130,000 <1.53	161,000 <1.53	163,000 1.61 J	162,000 1.76 U*	166,000 1.96 U*	163,000 <1.53	166,000 <1.53
Cobalt	ug/L	<0.134	<0.134	<0.261	<0.261	2.19	2.13	80.7	79.2	<1.53	<1.53 79.5
Copper	ug/L ug/L	<0.134 <0.627	<0.134	<1.14	<1.14	<0.627	0.723 J	1.71 U*	0.894 U*	<0.627	1.98 U*
Iron	ug/L	66,100	64,200	61,700	61,600	<0.027	0.7233	-	-	<0.027	-
Lead	ug/L ug/L	<0.128	<0.128	<0.167	<0.167	- 0.251 J	0.226 J	- 0.137 J	0.348 J	<0.128	- <0.128
Lithium	ug/L	<3.39	<3.39	1.16 J	<0.831	3.81 U*	4.42 U*	3.83 J	4.36 J	3.93 J	3.88 J
Magnesium	ug/L	19,000	19,700	20,100	19,100	34,800	35,000	24,500	24,400	25,200	25,500
Manganese	ug/L	3,800	3,970	3,520	3,720	-	-	-	-	-	-
Mercury	ug/L	<0.130	<0.130	<0.130	<0.130	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101
Molybdenum	ug/L	<0.610	<0.610	<0.610	0.615 J	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	<0.336	<0.336	<0.517	<0.517	0.359 J	0.469 J	15.8	16.1	16.5	16.2
Potassium	ug/L	876	880	877	868	1,010	1,020	5,300	5,290	5,440	5,490
Selenium	ug/L	<1.51	<1.51	<0.739	<0.739	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silicon	ug/L	15,600	16,700	17,600	16,800	-	-	-	-	-	-
Silver	ug/L	<0.177	<0.177	<0.223	<0.223	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	30.800	28,800	30,100	28,700	31,600	31,700	8,840	8,890	7,350	7,430
Thallium	ug/L	<0.148	0.409 U*	<0.472	<0.472	<0.148	<0.148	<0.148	<0.148	0.570 U*	0.205 U*
Vanadium	ug/L	<0.991	<0.991	<0.776	<0.776	<0.991	1.07	1.01	<0.991	<0.991	<0.991
Zinc	ug/L	<3.22	<3.22	<2.88	3.05 J	5.44 U*	5.06 U*	42.1	39.9	35.5	35.1
Radiological Parame	eters					•					
Radium-226	pCi/L	0.491 +/-(0.458)U	0.434 +/-(0.511)U	0.469 +/-(0.460)U	0.00229 +/-(0.272)U	0.623 +/-(0.591)U	0.342 +/-(0.539)U	0.411 +/-(0.399)U	0.322 +/-(0.433)U	0.823 +/-(0.675)U	0.768 +/-(0.632)U
Radium-228	pCi/L	0.220 +/-(0.385)U	0.262 +/-(0.308)U	0.137 +/-(0.331)U	0.436 +/-(0.577)U	0.519 +/-(0.407)U	0.260 +/-(0.446)U	0.192 +/-(0.277)U	0.214 +/-(0.273)U	0.511 +/-(0.398)U	-0.0265 +/-(0.258)U
Radium-226+228	pCi/L	0.710 +/-(0.599)U	0.696 +/-(0.597)U	0.606 +/-(0.567)U	0.438 +/-(0.638)U	1.14 +/-(0.718)U	0.602 +/-(0.700)U	0.603 +/-(0.486)U	0.535 +/-(0.512)U	1.33 +/-(0.784)U	0.768 +/-(0.682)U
Anions	P01/E	0.110 17 (0.000)0	0.000 17 (0.001)0	0.000 17 (0.001)0	0.400 17 (0.000)0	1.14 17 (0.110)0	0.002 17 (0.100)0	0.000 17 (0.400)0	0.000 17 (0.012)0	1.50 17 (0.10470	0.100 17 (0.002)0
									1.00	1.00	
Chloride	mg/L	5.54	5.89	5.55	7.86	3.30	3.38	4.15	4.32	4.90	4.56
Fluoride	mg/L	0.0625 J	0.139 U*	0.0944 U* 354	0.0793 J	0.0899 J 527	0.0861 J 527	0.0783 U*	0.0789 U*	0.0584 J	0.0508 J
Sulfate	mg/L	326	341	354	344	527	527	511	515	524 J	570 J
General Chemistry		•				•					
Alkalinity, Bicarbonate	mg/L	120	148	117	146	140	138	35.4	35.2	34.0	34.7
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<2.60	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
pH (lab)	SU	-	-		-	-	-				-
Total Dissolved Solids	mg/L	670 See notes on last page.	692	687	716	878	895	793	794	891	847

Sample Date Sample ID Parent Sample ID		4-Mar-20 WBF-GW-010-20200304	4-Mar-20 WBF-GW-DUP01-20200304 WBF-GW-010-20200304	29-Apr-20 WBF-GW-010-20200429	29-Apr-20 WBF-GW-DUP01-20200429 WBF-GW-010-20200429	8-Jul-20 WBF-GW-010-20200708	25-Mar-21 WBF-GW-WBF-106-03252021	19-Aug-21 WBF-GW-WBF-106-08192021	21-Apr-22 WBF-GW-WBF-106-04212022	17-Oct-22 WBF-GW-WBF-106-10172022
Sample Depth Sample Type Program	Units	32.6 ft Normal Environmental Sample EIP	32.6 ft Field Duplicate Sample EIP	32.6 ft Normal Environmental Sample EIP	32.6 ft Field Duplicate Sample EIP	32.6 ft Normal Environmental Sample EIP	32.6 ft Normal Environmental Sample EIP	32.6 ft Normal Environmental Sample EIP	32.6 ft Normal Environmental Sample CCR Program	32.6 ft Normal Environmental Sampl
Total Metals										
Aluminum	ug/L	-	-	-	-	-	18.7 J	39.7	<15.5	27.0 J
Antimony	ug/L	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.506	<0.506
rsenic	ug/L	0.468 J	0.576 J	0.921 U*	0.921 U*	1.66 U*	0.414 J	0.731 U*	<0.282	0.382 J
arium	ug/L	33.2	33.0	27.7	27.6	35.9	18.8	42.1	17.6	24.5
eryllium	ug/L	<0.182	<0.182	<0.182	<0.182	<0.182	0.198 J	0.186 J	<0.274	<0.274
oron	ug/L	212	217	66.4 J	51.5 J	65.2 U*	200	252 U*	199	234
admium	ug/L	0.354 J	0.375 J	<0.217	<0.217	0.218 J	0.720 J	0.375 J	0.722 J	0.614 J
alcium	ug/L	161,000	161,000	160,000	160,000	158,000	143,000	148,000	132,000	135,000
Chromium	ug/L	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53
Cobalt	ug/L	72.4	73.4	25.9	26.3	10.3	63.6	68.0	59.2	64.7
Copper	ug/L	<0.627	<0.627	3.89 U*	2.33 U*	<0.627	<0.627	<0.627	<1.14	<1.14
ron	ug/L	-	-	-	-	-	23,300	30,500	20,800	23,500
.ead	ug/L	<0.128	0.208 J	0.138 U*	0.131 U*	0.223 U*	<0.128	<0.128	<0.167	<0.167
ithium	ug/L	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39	2.10 J	2.27 J
lagnesium	ug/L	23,000	23,300	28,400	28,400	29,800	19,900	21,100	18,500	19,700
langanese	ug/L	-	-	-	-	-	13,400	14,900	11,300 J	14,100
Mercury	ug/L	<0.101	<0.101	<0.130	<0.130	<0.130	<0.130	<0.130	<0.130	<0.130
Volybdenum	ug/L	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	13.8	14.0	4.57	4.69	1.79 U*	12.7	12.8	11.5	12.8
Potassium	ug/L	4,720	4,770	2,740	2,750	1,580	4,840	5,180	4,810	5,470
Selenium	ug/L	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<0.739	<0.739
Silicon	ug/L	-	-	-	-	-	8,910	11,200	9,730 J	11,000
Silver	ug/L	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.223	<0.223
Sodium	ug/L	8,240	8,250	27,900	27,900	29,200	7,390	8,060	6,850	8,010
hallium	ug/L	<0.148	<0.148	0.153 U*	<0.148	0.307 U*	<0.148	<0.148	<0.472	<0.472
/anadium	ug/L	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.776	<0.776
linc	ug/L	34.4	36.2	10.8	11.2	6.09	30.1	34.1	26.5	30.3
Radiological Parame	ters									
Radium-226	pCi/L	0.433 +/-(0.540)U	0.558 +/-(0.618)U	1.21 +/-(0.751)J	0.213 +/-(0.523)UJ	0.461 +/-(0.509)U	0.0151 +/-(0.290)U	0.533 +/-(0.580)U	-0.0324 +/-(0.415)U	0.659 +/-(0.459)
Radium-228	pCi/L	0.179 +/-(0.247)U	0.326 +/-(0.460)U	0.575 +/-(0.387)	0.151 +/-(0.313)U	-0.116 +/-(0.432)U	0.461 +/-(0.501)U	0.107 +/-(0.271)U	0.0967 +/-(0.315)U	-0.219 +/-(0.435)U
adium-226+228	pCi/L	0.612 +/-(0.594)U	0.884 +/-(0.770)U	1.78 +/-(0.845)J	0.364 +/-(0.609)UJ	0.461 +/-(0.668)U	0.477 +/-(0.579)U	0.640 +/-(0.640)U	0.0967 +/-(0.521)U	0.659 +/-(0.633)J
nions										
Chloride	mg/L	4.88	4.86	4.50	4.84	4.96	4.02	3.75	7.11	7.79
luoride	mg/L	0.0267 J	0.0291 J	0.132 U*	0.140 U*	0.133 U*	0.0305 J	0.0778 U*	0.0642 J	0.0628 J
Sulfate	mg/L	550	522	453	465	481	484	464	427	434
Seneral Chemistry			00.0.1	77.4	00.0	100	5.00		200.0	01.0
Ikalinity, Bicarbonate	mg/L	10.9 J	20.6 J	77.1	69.2	122	<5.00	44.0	22.0	31.8
Alkalinity, Carbonate	mg/L	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<2.60
oH (lab)	SU	-	-	-	-	-	-	-	-	-
Fotal Dissolved Solids	mg/L	791	794	862	836	885	740	741	636	726

15.2 measured concentration did not exceed the indicated standard
< 0.03 analyte was not detected at a concentration greater than the Method Detection Limit
- Parameter not analyzed / not available.
ft feet
ID Identification
J quantitation is approximate due to limitations identified during data validation
U* result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level
UJ This compound was not detected, but the reporting or detection limit should be considered estimated due to a bias identified during data validation.
mg/L milligrams per Liter
pCi/L picocuries per Liter
ug/L micrograms per Liter
SU Standard Units

Page 18 of 18

Sample Location							MW-1						
Sample Date Sample ID Parent Sample ID		13-Apr-16 WBF-MW-1-0416	6-Jul-16 WBF-MW-1-0716	16-Oct-18 WBF-MW-1-GW-101618	2-Apr-19 WBF-MW-1-GW-040219	23-Oct-19 WBF-GW-MW1-102319	29-Apr-20 WBF-GW-MW1-042920	5-Oct-20 WBF-GW-MW1-100520	26-Apr-21 WBF-GW-MW1-04262021	6-Oct-21 WBF-GW-MW1-10062021	19-Apr-22 WBF-GW-MW-1-04192022	18-Oct-22 WBF-GW-MW-1-10182022	
ample Depth ample Type	Units	28.5 ft Normal Environmental Sample State Compliance	28.5 ft Normal Environmental Sample										
ield Parameters				1		1		1	1		1	1	
Dissolved Oxygen	%	-	-	-	-	-	-	-	43.5	27.3	14.2	31.2	
Dissolved Oxygen	mg/L	0.1	0.1	1.17	0.87	0.73	1.10	0.44	4.21	2.40	1.38	2.95	
ORP	mV	351	345	326	382	345	398	335	139	156	136	128	
oH (field)	SU	5.7	5.7	6	6.34	5.93	5.54	5.83	5.83	5.91	5.87	5.91	
Specific Cond. (Field)	uS/cm	462	407	473	755	488	371	446	484	467	441	449	
emperature, Water (C)	DEG C	-	-	18.8	17.2	17.7	11.87	18.76	18.2	20.18	17.88	17.87	
Turbidity, field	NTU			0.52	1 72	0.99		1	2 35		4 16	3 32	

Sample Location							MW-2					
Sample Date Sample ID Parent Sample ID		13-Apr-16 WBF-MW-2-0416	6-Jul-16 WBF-MW-2-0716	16-Oct-18 WBF-MW-2-GW-101618	3-Apr-19 WBF-MW-2-GW-040319	22-Oct-19 WBF-GW-MW2-102219	29-Apr-20 WBF-GW-MW2-042920	5-Oct-20 WBF-GW-MW2-100520	28-Apr-21 WBF-GW-MW2-04282021	6-Oct-21 WBF-GW-MW2-10062021	19-Apr-22 WBF-GW-MW-2-04192022	19-Oct-22 WBF-GW-MW-2-10192022
Sample Depth Sample Type Program	Units	27.5 ft Normal Environmental Sample State Compliance	27.5 ft Normal Environmental Sampl									
Field Parameters												
Dissolved Oxygen	%	-	-	-	-	-	-	-	12.9	16.9	23.2	18.3
Dissolved Oxygen	mg/L	0.1	0.1	1.21	0.97	1.07	1.43	0.30	1.23	1.47	2.26	1.70
ORP	mV	442	447	359	367	374	432	381	258	197	128	139
pH (field)	SU	6	6.1	6.33	5.89	6.3	6.19	6.28	6.25	6.33	6.30	6.29
Specific Cond. (Field)	uS/cm	260	261	186	473	194	211	209	217	228	244	217
Temperature, Water (C)	DEG C	-	-	19.51	15.5	19.5	19.44	19.80	18.25	20.00	16.99	18.72
Turbidity, field	NTU	1		0.61	0.79	2.1	0.43	0.53	0.33	0.57	0.00	0.96

Sample Location						M	N-3					
Sample Date Sample ID Parent Sample ID Sample Depth		13-Apr-16 WBF-MW-3-0416 26.5 ft	6-Jul-16 WBF-MW-3-0716 26.5 ft	3-Apr-19 WBF-MW-3-GW-040319 26.5 ft	23-Oct-19 WBF-GW-MW3-102319 26.5 ft	28-Apr-20 WBF-GW-MW3-042820 26.5 ft	6-Oct-20 WBF-GW-MW3-100620 26.5 ft	28-Apr-21 WBF-GW-MW3-04282021 26.5 ft	5-Oct-21 WBF-GW-MW3-10052021 26.5 ft	20-Apr-22 WBF-GW-MW-3-04202022 26.5 ft	19-Oct-22 WBF-GW-MW-3-10192022 26.5 ft	
Sample Type Program	Units	Normal Environmental Sample State Compliance										
Field Parameters	0/							28.1	11.6	24.0	29.1	
Dissolved Oxygen Dissolved Oxygen	76 mg/L	0.1	0.1	0.58	0.44	2.12	1.86	2.75	11.6 1.10	34.9 3.32	28.1 2.60	
ORP pH (field)	mV SU	213 6.2	251 6.1	421 6.22	289 6.29	388 6.10	314 6.01	281 6.17	192 5.96	88 6.09	163 6.15	
Specific Cond. (Field)	uS/cm	475	408	198	426	315	293	301	280	281	336	
Temperature, Water (C) Turbidity, field	DEG C NTU	-	-	16.54 0.24	18.9	16.68	18.50 3.22	18.21	19.60 0.35	17.81	18.84	

Sample Location						WBF-100				
Sample Date		17-Oct-18	2-Apr-19	22-Oct-19	28-Apr-20	6-Oct-20	26-Apr-21	5-Oct-21	20-Apr-22	18-Oct-22
Sample ID		WBF-100-GW-101718	WBF-100-GW-040219	WBF-GW-100-102219	WBF-GW-100-042820	WBF-GW-100-100620	WBF-GW-100-04262021	WBF-GW-100-10052021	WBF-GW-WBF-100-04202022	WBF-GW-WBF-100-10182022
Parent Sample ID										
Sample Depth		53.5 ft								
Sample Type		Normal Environmental Sample								
Program	Units	State Compliance								
Field Parameters			1	1	1	1		1	1	
Dissolved Oxygen	%	-		-	-	-	8.4	34.2	4.9	29.5
Dissolved Oxygen	mg/L	1.8	1.27	1.69	0.19	0.90	0.79	3.08	0.49	2.86
ORP	mV	378	411	366	349	406	192	197	58	147
pH (field)	SU	6.36	6.28	6.38	6.39	6.30	6.36	6.27	6.39	6.01
Specific Cond. (Field)	uS/cm	827	388	821	771	803	840	891	879	889
opecine cond. (nield)		17.04	16.74	18.55	16.2	18.62	18.07	18.50	16.2	16.72
Temperature, Water (C)	DEG C	17.04	10.74	10.00	10.2	10.02	10101			10112

32022

Page 4 of 10

Sample Location						WBF-101				
Sample Date Sample ID Parent Sample ID		27-Aug-19 WBF-GW-005-20190827	31-Oct-19 WBF-GW-005-20191031	9-Jan-20 WBF-GW-005-20200109	3-Mar-20 WBF-GW-005-20200303	29-Apr-20 WBF-GW-005-20200429	7-Jul-20 WBF-GW-005-20200707	23-Mar-21 WBF-GW-WBF-101-03232021	19-Apr-22 WBF-GW-WBF-101-04192022	18-Oct-22 WBF-GW-WBF-101-1018202
Sample Depth Sample Type Program	Units	32.2 ft Normal Environmental Sample EIP	32.2 ft Normal Environmental Sample CCR Program	32.2 ft Normal Environmental Samp						
Field Parameters		ł		1			1		1	I
Dissolved Oxygen	%	7.2	4.3	3.8	2.8	6.2	4.3	1.8	3.6	4.1
Dissolved Oxygen	mg/L	0.64	0.41	0.38	0.27	0.66	0.38	0.18	0.33	0.40
ORP	mV	-105.8	-34.1	-44.8	28.7	-54.6	-87.6	33.2	-29.8	-113.5
pH (field)	SU	6.67	6.65	6.43	5.76	6.48	6.66	5.91	6.39	6.79
Specific Cond. (Field)	uS/cm	666	667	1,026	1,508	859	843	1,790	1,276	989
		21.5	20.2	15.3	17.6	18.2	21.4	15.5	18.9	16.5
Temperature, Water (C)	DEG C	21.0								

See notes on last page.

82022

Page 5 of 10

Sample Location					WBF	-102			
Sample Date Sample ID Parent Sample ID Sample Depth Sample Type Program	Units	28-Aug-19 WBF-GW-006-20190828 23 ft Normal Environmental Sample EIP	30-Oct-19 WBF-GW-006-20191030 23 ft Normal Environmental Sample EIP	8-Jan-20 WBF-GW-006-20200108 23 ft Normal Environmental Sample EIP	3-Mar-20 WBF-GW-006-20200303 23 ft Normal Environmental Sample EIP	27-Apr-20 WBF-GW-006-20200427 23 ft Normal Environmental Sample EIP	7-Jul-20 WBF-GW-006-20200707 23 ft Normal Environmental Sample EIP	24-Mar-21 WBF-GW-WBF-102-03242021 23 ft Normal Environmental Sample EIP	21-Apr-22 WBF-GW-WBF-102-04212022 23 ft Normal Environmental Sampl CCR Program
Field Parameters	I								
Dissolved Oxygen	%	40.0	24.2	59.0	36.9	27.8	7.0	32.7	48.1
Dissolved Oxygen	mg/L	3.55	2.26	5.80	3.60	2.70	0.65	3.30	4.62
	mV	121.7	35.0	64.1	76.1	69.8	197.9	122.1	172.6
ORP			0.00	6.93	6.98	6.62	6.52	6.82	6.76
	SU	6.94	6.60						
pH (field)	SU uS/cm	6.94 1,588	1,253	547.3	527.7	739	1,305	640	821
ORP pH (field) Specific Cond. (Field) Temperature, Water (C)					527.7 16.9	739 17.0	1,305 18.4	640 14.7	821 17.2

Sample Location						WBF-103				
Sample Date Sample ID Parent Sample ID		27-Aug-19 WBF-GW-007-20190827	29-Oct-19 WBF-GW-007-20191029	7-Jan-20 WBF-GW-007-20200107	3-Mar-20 WBF-GW-007-20200303	28-Apr-20 WBF-GW-007-20200428	7-Jul-20 WBF-GW-007-20200707	23-Mar-21 WBF-GW-WBF-103-03232021	21-Apr-22 WBF-GW-WBF-103-04212022	18-Oct-22 WBF-GW-WBF-103-1018202
Sample Depth Sample Type Program	Units	19.5 ft Normal Environmental Sample EIP	19.5 ft Normal Environmental Sample CCR Program	19.5 ft Normal Environmental Samp						
Field Parameters										
Dissolved Oxygen	%	11.4	2.5	13.5	21.5	17.6	12.7	15.8	22.8	18.9
Dissolved Oxygen	mg/L	1.04	0.22	1.26	2.14	1.84	1.19	1.47	2.27	1.75
ORP	mV	248.0	23.9	326.3	121.6	237.6	139.9	349.8	200.2	319.0
pH (field)	SU	5.48	5.68	5.79	5.52	5.15	5.21	5.45	5.83	5.47
Specific Cond. (Field)	uS/cm	989.7	299.5	352.4	153.9	178.0	184.0	217	359.1	123.3
Temperature, Water (C)	DEG C	19.8	21.5	17.4	15.9	15.8	20.5	18.1	15.9	19.0
	NTU	1.56	4 17	4 63	0.86	0.78	2 99	4 44	0.67	0.13

2022

Page 7 of 10

Sample Location	1					WBF	-104				
Sample Date Sample ID Parent Sample ID		27-Aug-19 WBF-GW-008-20190827	29-Oct-19 WBF-GW-008-20191029	7-Jan-20 WBF-GW-008-20200107	4-Mar-20 WBF-GW-008-20200304	28-Apr-20 WBF-GW-008-20200428	8-Jul-20 WBF-GW-008-20200708	24-Mar-21 WBF-GW-WBF-104-03242021	19-Aug-21 WBF-GW-WBF-104-08192021	20-Apr-22 WBF-GW-WBF-104-04202022	19-Oct-22 WBF-GW-WBF-104-10192022
Sample Depth Sample Type Program	Units	26.4 ft Normal Environmental Sample EIP	26.4 ft Normal Environmental Sample CCR Program	26.4 ft Normal Environmental Sampl							
Field Parameters		<u> </u>		1	1		I	1	1		
Dissolved Oxygen	%	21.0	7.8	7.2	4.0	8.5	6.3	6.3	9.7	4.0	4.9
Dissolved Oxygen	mg/L	1.82	0.70	0.79	0.40	0.83	0.60	0.56	0.88	0.39	0.47
ORP	mV	149.0	5.1	266.4	102.4	145.9	149.3	226.2	124.1	257.4	247.7
pH (field)	SU	5.50	5.48	5.78	5.54	5.48	5.34	5.37	5.34	5.32	5.49
Specific Cond. (Field)	uS/cm	2,645	2,147	1,313	1,904	2,150	2,741	2,740	2,590	2,664	2,680
Temperature, Water (C)	DEG C	22.4	21.7	15.5	15.0	17.4	20.9	19.2	20.6	15.8	17.9
Turbidity, field	NTU	1.81	0.13	0.35	1.45	0.76	0.41	0.42	0.34	3.90	0.16

Sample Location						WBI	-105				
Sample Date Sample ID Parent Sample ID		28-Aug-19 WBF-GW-009-20190828	30-Oct-19 WBF-GW-009-20191030	8-Jan-20 WBF-GW-009-20200108	4-Mar-20 WBF-GW-009-20200304	28-Apr-20 WBF-GW-009-20200428	7-Jul-20 WBF-GW-009-20200707	25-Mar-21 WBF-GW-WBF-105-03252021	19-Aug-21 WBF-GW-WBF-105-08192021	20-Apr-22 WBF-GW-WBF-105-04202022	17-Oct-22 WBF-GW-WBF-105-10172022
Sample Depth Sample Type Program	Units	35.1 ft Normal Environmental Sample EIP	35.1 ft Normal Environmental Sample CCR Program	35.1 ft Normal Environmental Sampl							
Field Parameters		<u> </u>		1	1	1		1	1	1	1
Dissolved Oxygen	%	4.0	2.8	3.3	1.9	3.0	4.2	1.8	4.6	2.4	4.4
Dissolved Oxygen	mg/L	0.35	0.26	0.34	0.18	0.27	0.36	0.18	0.42	0.22	0.38
ORP	mV	-125.0	-46.4	-102.9	-119.0	-116.1	-97.8	-115.2	-78.8	-121.8	-115.2
pH (field)	SU	6.53	6.51	6.69	6.70	6.52	6.52	6.67	6.60	6.71	6.73
Specific Cond. (Field)	uS/cm	972	964	1,034	892	1,016	1,070	1,080	990	1,029	1,048
Temperature, Water (C)	DEG C	21.6	19.2	15.3	17.1	19.5	23.5	17.2	20.5	18.2	21.4
Turbidity, field	NTU	4.22	4.04	4 59	4 4E	4.50	2 70	9.79	2.07	4 5 1	2.00

Sample Location						WBI	-106				
Sample Date Sample ID Parent Sample ID		28-Aug-19 WBF-GW-010-20190828	30-Oct-19 WBF-GW-010-20191030	8-Jan-20 WBF-GW-010-20200108	4-Mar-20 WBF-GW-010-20200304	29-Apr-20 WBF-GW-010-20200429	8-Jul-20 WBF-GW-010-20200708	25-Mar-21 WBF-GW-WBF-106-03252021	19-Aug-21 WBF-GW-WBF-106-08192021	21-Apr-22 WBF-GW-WBF-106-04212022	17-Oct-22 WBF-GW-WBF-106-10172022
Sample Depth Sample Type Program	Units	32.6 ft Normal Environmental Sample EIP	32.6 ft Normal Environmental Sample CCR Program	32.6 ft Normal Environmental Sample							
Field Parameters		ł	1	1	1	1				1	
Dissolved Oxygen	%	2.5	5.1	5.5	2.9	4.6	3.3	2.4	4.7	11.8	3.7
Dissolved Oxygen	mg/L	0.24	0.48	0.54	0.27	0.44	0.30	0.24	0.43	1.08	0.35
ORP	mV	-66.5	48.3	121.0	64.2	3.2	-44.9	79.9	73.1	91.9	80.1
pH (field)	SU	6.32	5.59	5.46	5.61	6.07	6.13	5.50	5.62	5.52	5.56
Specific Cond. (Field)	uS/cm	1,122	984	1,071	891	1,086	1,174	980	910	860	926
Temperature, Water (C)	DEG C	20.4	19.6	16.6	17.0	18.5	21.0	15.0	20.7	19.3	21.3
Turbidity, field	NTU	8.15	2.01	4 95	3.07	58.7	6.95	0.70	4 78	0.00	4.02

Notes:

Please note that units have been	converted automatically in this table, and significant figures may not have been maintained.
-	Parameter not analyzed / not available.
%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
J	quantitation is approximate due to limitations identified during data validation
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

Table H.1-9 - Screening Levels for GroundwaterWatts Barr Fossil Plant

CCR Parameters	Groundwater	Screening Levels
	(µg/L)	Source
CCR Rule Appendix III Constituents :		
Boron	4,000	RSL
Calcium		
Chloride	250,000	SMCL
Fluoride	4,000	MCL
рН	6.5-8.5 S.U.	SMCL
Sulfate	250,000	SMCL
Total Dissolved Solids	500,000	SMCL
CCR Rule Appendix IV Constituents :		
Antimony	6	MCL
Arsenic	10	MCL
Barium	2,000	MCL
Beryllium	4	MCL
Cadmium	5	MCL
Chromium (total)	100	MCL
Cobalt	6	CCR Rule GWPS
Fluoride	4,000	MCL
Lead	15	CCR Rule GWPS
Lithium	40	CCR Rule GWPS
Mercury	2	MCL
Molybdenum	100	CCR Rule GWPS
Radium-226 & 228	5 pCi/L	MCL
Selenium	50	MCL
Thallium	2	MCL
TDEC Appendix I Constituents :		
Copper	1,300	MCLG
Nickel	100	TN MCL
Silver	100	TN MCL
Vanadium	86	RSL
Zinc	5,000	SMCL

Notes:

CCR - coal combustion residuals

CCR Rule - Coal Combustion Residuals rule, USEPA Title 40, Code of Federal Regulations, Part 257

GWPS - groundwater protection standards

MCL - USEPA maximum contaminant level

MCLG - Maximum contaminant level goal

pCi/L - picocuries per liter

RSL - USEPA regional screening level

SMCL - USEPA secondary maximum contaminant level

S.U. - standard units

TN MCL - maximum contaminant level promulgated by State of Tennessee

TDEC - Tennessee Department of Environmental and Conservation

µg/L - micrograms per liter

USEPA - United States Environmental Protection Agency

Table H.1-10 - Summary of Statistically Significant Concentrations/Values Watts Bar Fossil Plant

Parameter	Background		Upgradient			Ash Pond		:	Slag Disposal Are	a
Falameter	WBF-103	MW-1	WBF-100	WBF-102	MW-2	MW-3	WBF-101	WBF-104	WBF-105	WBF-106
CCR Rule Appendix III F	Parameters		•	•			•	•	•	•
Boron	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Chloride	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Fluoride ¹	Green	Green	Green	Green	Green	Green	Green	Green*	Green	Green
рН	Red	Red	Red	Green	Red	Red	Green	Red	Green	Red
Sulfate	Green	Green	Green	Green	Green	Green	Green	Red	Red	Red
Total Dissolved Solids	Green	Green	Red	Green	Green	Green	Green	Red	Red	Red
CCR Rule Appendix IV I	Parameters									
Antimony	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Arsenic	Green*	Green	Green	Green	Green*	Green	Green	Green	Green	Green
Barium	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Beryllium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green	Green*	Green*
Cadmium	Green*	Green*	Green*	Green*	Green*	Green*	Green	Red	Green*	Green
Chromium	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Cobalt	Green	Red	Green*	Green ²	Green*	Green	Green	Red	Green*	Red
Lead	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Lithium	Green*	Green	Green	Green*	Green	Green	Green*	Green	Green*	Green
Mercury	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Molybdenum	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
Rad226+228	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Selenium	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
Thallium	Green*	Green*	Green*	Green	Green*	Green*	Green*	Green*	Green*	Green*
TDEC Appendix I Param	neters									
Copper	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Nickel	Green	Green	Green	Green*	Green	Green	Green	Green	Green*	Green
Silver	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*	Green*
Vanadium	Green*	Green	Green*	Green*	Green	Green	Green*	Green*	Green*	Green*
Zinc	Green*	Green	Green*	Green*	Green*	Green*	Green	Green	Green*	Green

No statistically significant concentration greater than or equal to the GSL for constituents other than pH and no statistically significant difference outside the GSL range for pH

Limited dataset (sample size <5 or <4 detected values), but none of the available results are greater than or equal to the GSL or outside the GSL range for pH.

Statistically significant concentration greater than or equal to the GSL for constituents other than pH or a statistically significant difference outside the GSL range for pH.

Notes:

CCR Rule - Title 40, Code of Federal Regulations, Part 257

GSL - Groundwater Screening Level

Green

Green*

Red

TDEC - Tennessee Department of Environment and Conservation

Bold colors are used to represent CCR Rule Appendix IV Parameter and TDEC Appendix I Parameter results while subdued colors represent CCR Rule Appendix III Parameter results.

¹Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table, fluoride has been grouped with the Appendix III constituents to avoid duplication of results.

²For Cobalt at WBF-102, a detected concentration of 11.1 μg/L, which was greater than the GSL (6 μg/L), was observed for a single sampling event in August, 2019. Since that sampling event, cobalt at WBF-102 has been analyzed for an additional eight sampling events that took place between October 2019 and April 2022. The cobalt concentration at WBF-102 has been less than the GSL for cobalt for all eight subsequent sampling events and has been non-detect with a reported detection limit of ≤0.261 for the last seven sampling events. Because there were only two detected values (both from 2019), this well-constituent pair was not initially categorized for analysis by linear regression and confidence band/confidence interval. However, due to the single exceedance of the GSL, a confidence band was generated for this well-constituent pair based on a replacement of the non-detect values with the full detection limit. The results of this confidence band analysis are shown in Appendix E.3-D.

Well	Constituent Type	Constituent	p-value	Trend summary ¹
WBF-103	CCR Rule Appendix III Parameters	pH (field)	0.7349	No trend detected
MW-1	CCR Rule Appendix III Parameters	pH (field)	0.6425	No trend detected
	CCR Rule Appendix IV Parameters	Cobalt	0.0765	No trend detected
WBF-100	CCR Rule Appendix III Parameters	pH (field)	0.1745	No trend detected
		Sulfate	0.0941	No trend detected
		Total dissolved solids	0.4268	No trend detected
WBF-102	CCR Rule Appendix III Parameters	Sulfate	0.1548	No trend detected
		Total dissolved solids	0.1784	No trend detected
	CCR Rule Appendix IV Parameters	Cobalt	0.2431	No trend detected
MW-2	CCR Rule Appendix III Parameters	pH (field)	0.0405	Increasing
MW-3	CCR Rule Appendix III Parameters	pH (field)	0.7873	No trend detected
WBF-101	CCR Rule Appendix III Parameters	pH (field)	0.8232	No trend detected
		Sulfate	0.7076	No trend detected
		Total dissolved solids	0.6272	No trend detected
	CCR Rule Appendix IV Parameters	Cobalt	0.941	No trend detected
WBF-104	CCR Rule Appendix III Parameters	Boron	0.0757	No trend detected
		pH (field)	0.1694	No trend detected
		Sulfate	0.2552	No trend detected
		Total dissolved solids	0.5816	No trend detected
	CCR Rule Appendix IV Parameters	Cadmium	0.0525	No trend detected
		Cobalt	0.0063	Increasing
	TDEC Appendix I Paramters	Nickel	0.0016	Increasing
WBF-105	CCR Rule Appendix III Parameters	Sulfate	0.5959	No trend detected
		Total dissolved solids	0.1088	No trend detected
WBF-106	CCR Rule Appendix III Parameters	pH (field)	0.1891	No trend detected
		Sulfate	0.0035	Decreasing
		Total dissolved solids	0.005	Decreasing
	CCR Rule Appendix IV Parameters	Cobalt	0.4628	No trend detected

Notes

CCR Rule - Title 40, Code of Federal Regulations, Part 257

1. Trend evaluated using linear regression. Slope considered significant when p<0.05.

2. Fluoride is both a CCR Rule Appendix III and CCR Rule Appendix IV constituent. In this table,

fluoride has been grouped with the Appendix III constituents only to avoid duplication of results.

EXHIBITS

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Exhibit No. H.1-1

Title **Monitoring Well and Piezometer** Network

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project Location	1			175668050
Spring City, Tenn	essee			ared by MB on 2022-07-13 iew by MW on 2022-07-13
0	150	300	450	600 Feet
	1:1,800 (At orig	ginal docum	ent size of 22	

Legend

Groundwater Investigation Monitoring Well Other Monitoring Well

Piezometer, groundwater label in blue text, pore
water label in yellow highlighted black text(e.g., WBF-B02C)
(e.g., WBF-B02A) 2018 Imagery Boundary

CCR Unit Area (Approximate)

Closed Metal Cleaning Pond (Approximate)

Consolidated and Capped CCR Area (Approximate) Drainage Improvements Area; Stormwater Pond (Former Ash Pond)

CCR: Coal combustion residuals

Notes

Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and BING Imagery

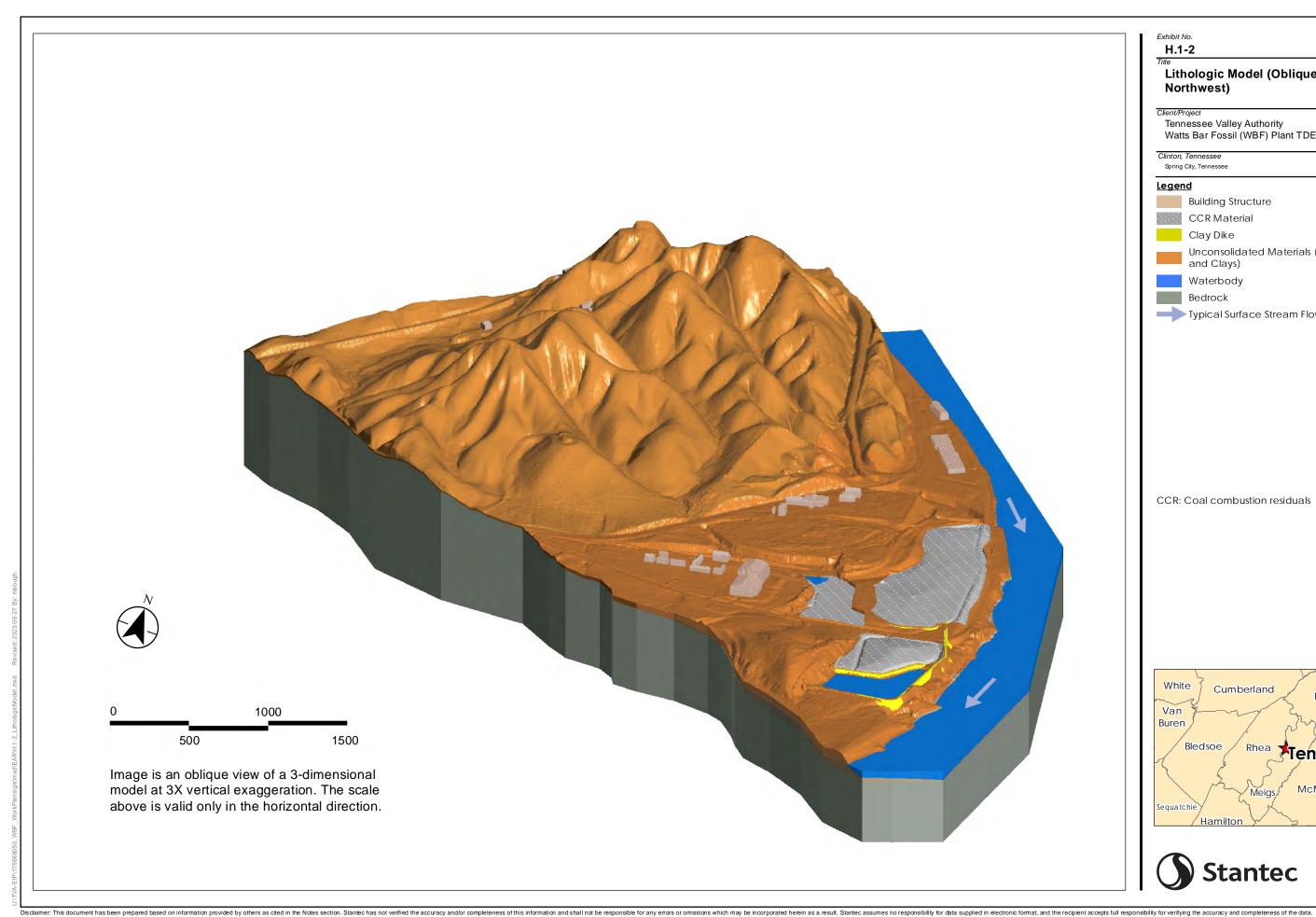


Exhibit No.

H.1-2

Title Lithologic Model (Oblique View Looking Northwest)

Client/Project

75668050

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Clinton, Tennessee Prepared by DMB on 2023-09-27 TR by MD on 2023-09-27 IR Review by RB on 2023-09-27 Spring City, Tennessee Legend **Building Structure** CCR Material Clay Dike Unconsolidated Materials (Primarily Alluvial Silts and Clays) Waterbody Bedrock Typical Surface Stream Flow Direction CCR: Coal combustion residuals Knox White Cumberland Roane Van Loudon Buren Bledsoe Rhea Tennessee Monroe McMinn Meigs Sequatchie Hamilton Stantec

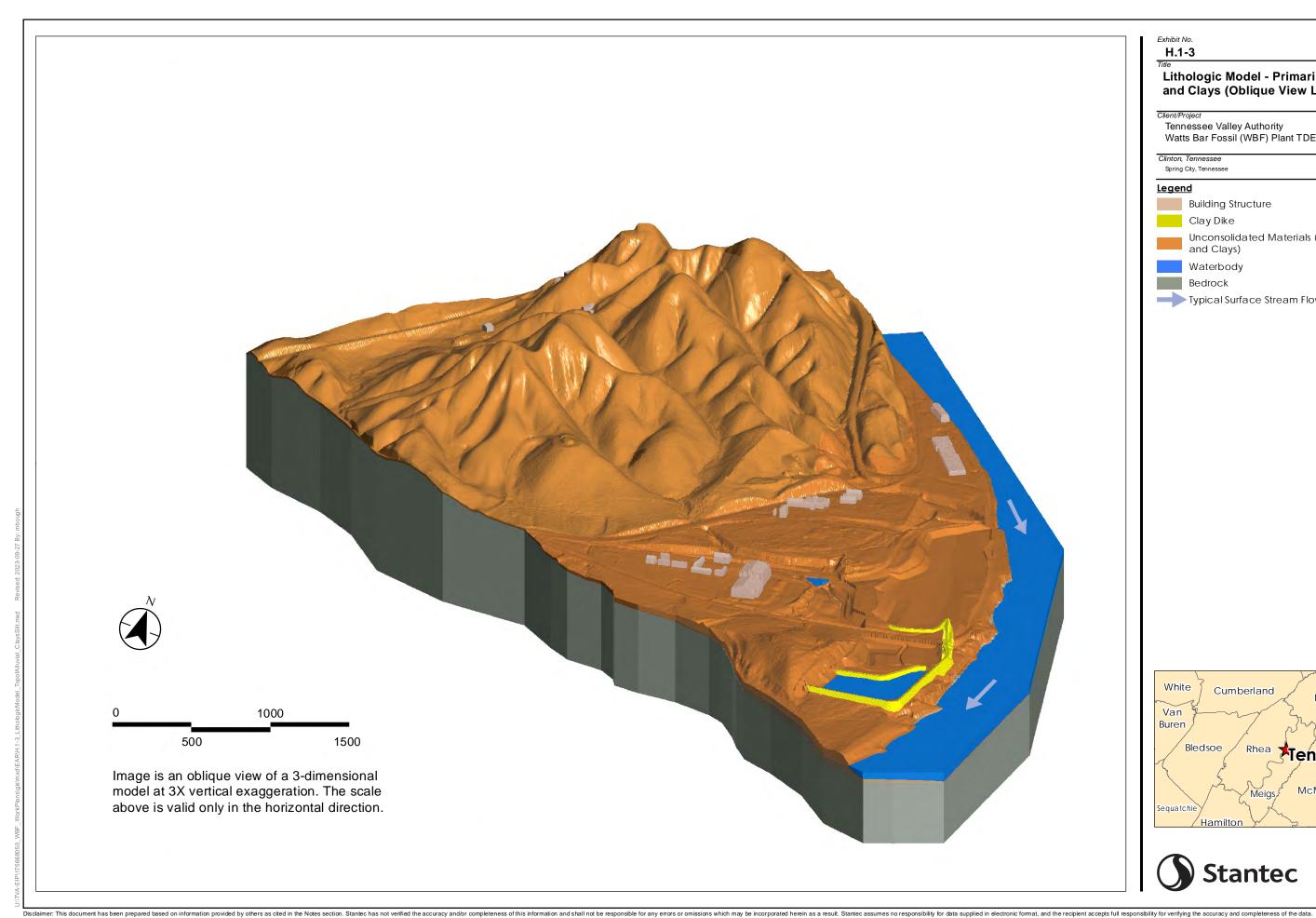
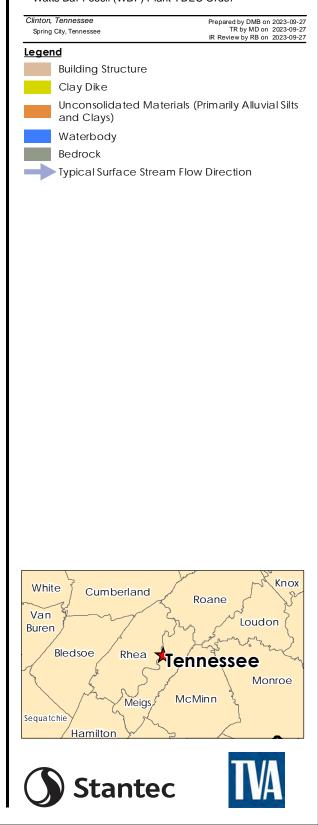


Exhibit No.


H.1-3

Title Lithologic Model - Primarily Alluvial Silts and Clays (Oblique View Looking Northwest)

75668050

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

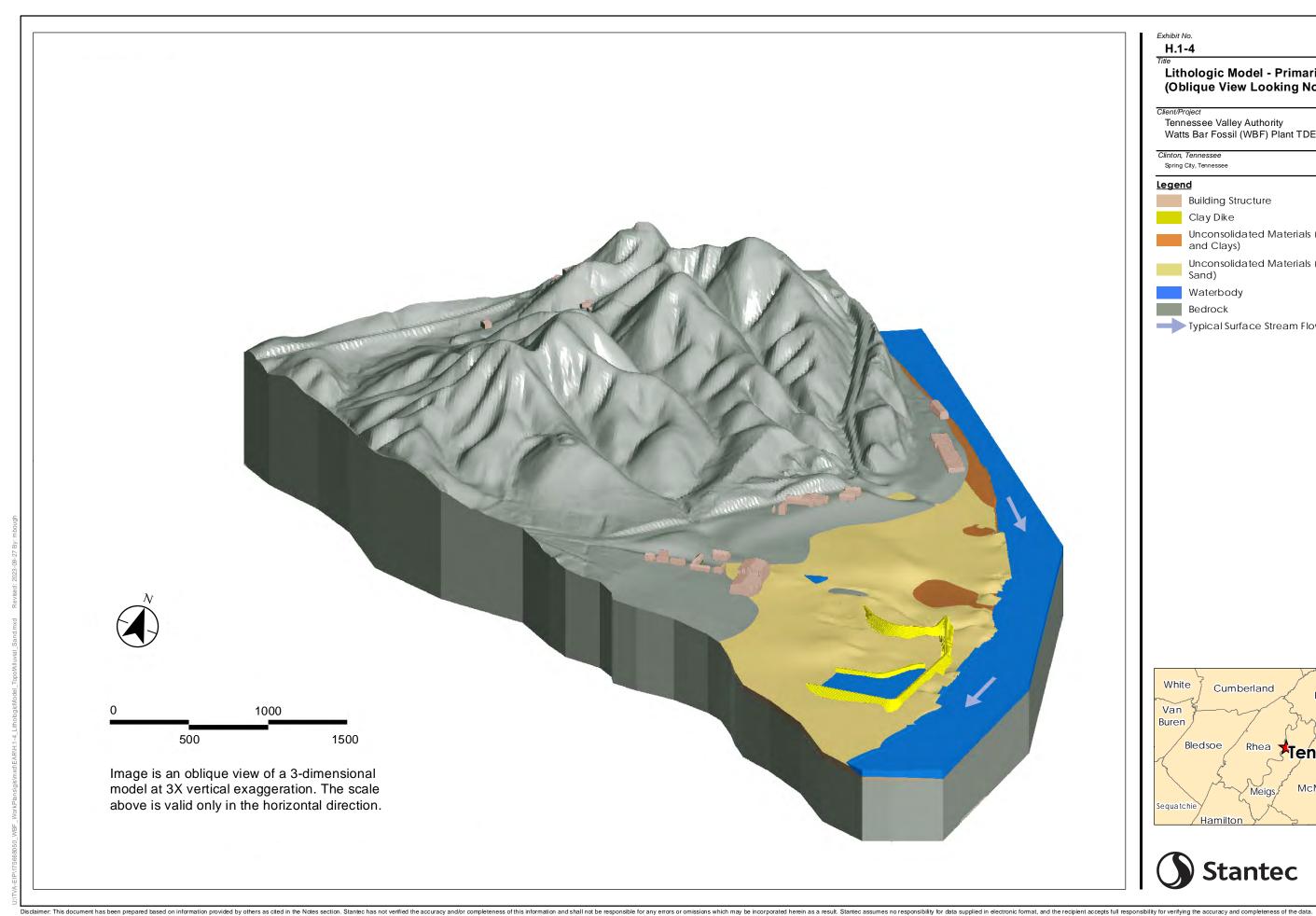


Exhibit No.

H.1-4 Title

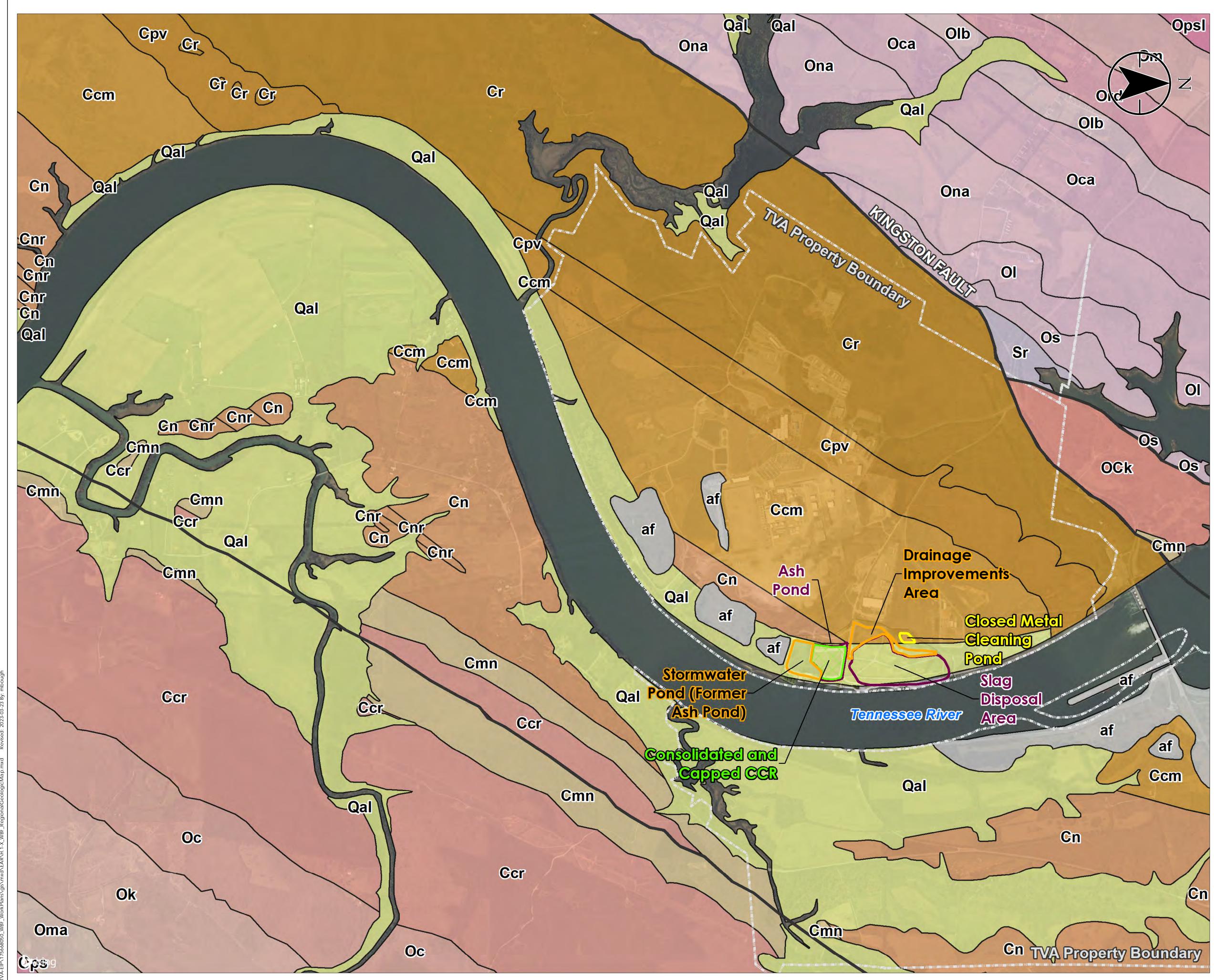
Lithologic Model - Primarily Alluvial Sand (Oblique View Looking Northwest)

75668050

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order Clinton, Tennessee Prepared by DMB on 2023-09-27 TR by MD on 2023-09-27 IR Review by RB on 2023-09-27 Spring City, Tennessee Legend Building Structure Clay Dike Unconsolidated Materials (Primarily Alluvial Silts and Clays) Unconsolidated Materials (Primarily Alluvial Sand) Waterbody Bedrock Typical Surface Stream Flow Direction Knox

Exhibit No. H.1-5


Title Geologic Map with Top of Bedrock Contours

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project Lo Spring C	ity, Tenne	ssee				175668050 MB on 2023-08-16 EM on 2023-08-16
	0	150	300	450	60	00 Feet
		1:1,800 (At ori	ginal docu	ment size o	of 22x34)	
_ege	end					
	Top of	Bedrock Eleva	ation Cont	our (2 ft inte	erval)	
_	 lop of 	Bedrock Eleva	ation Cont	our (10 ft in	terval)	
	2018 In	nagery Bounc	dary			
	CCR M	lanagement	Unit Area (Approxima	te)	
	Closed	I Metal Clean	ing Pond (A	Approxima	te)	
	Conso	lidated and C	Capped CC	CR Area (Aj	pproximate	e)
		ge Improvem er Ash Pond) (.			er Pond	
eologic	Formatio	ons				
	af - Art	ificial Fill				
	Qal - C	Quaternary Su	rficial Depo	osits		
	Cn / C	nr - Cambriar	n Nolichucł	ky Shale		
	Ccm -	Cambrian Co	onasauga I	Viddle Gro	up	
CCR:	Coalco	mbustion res	siduals			
otes						
Image	ery Provid	stem: NAD 1 ded by TVA (9/12/2018) and TN D	epartmer	nt of
arcgis	/rest/ser	- Basemaps vices/BASEM	APS/IMAG	SERY/Maps	Server)	V/
		o: USGS TVA, ata used to r		-		ace
shown	herein i	s summarized	d in Table	C.5 (Appe		~
White	Cur	mberland	Roane		Knox	Sevie
/an Buren				Loudon	Te	nnessee
	s Bar Fossil	Plant Rhea			in the second se	Blount
5	and the second second	Meigs			2	Swain
	Jan -	La for	McMinn	A Mor	nroe	
Sequatchie	Y	Y	<u>ې</u>		5	Graham
$\langle \rangle$	Hamilton	1		w		2
}/		(Bradley	{	1	Nortl	Cherokee

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Exhibit No. H.1-6

Regional Geologic Map

Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Spring City, Tennessee		Te		ed by MB on 2023-03 w by MD on 2023-03
		IE		
0	850	1,700	2,550	3,400 Feet
1:10	,200 (At origi	nal documer	nt size of 22	
gend				
Fault				
CCR Management	Unit Area (App	proximate)		
Closed Metal Clear	ning Pond (App	proximate)		
Consolidated and (Capped CCR A	Area (Approxim	ate)	
Drainage Improven Pond) (Approximat Diogic Formations		rmwater Pond	(Former Ash	
af - Artificial Fill				
Qal - Quaternary Su	urficial Deposits	5		
Sr - Silurian Rockwo	od Formation			
Os - Ordovician Sec	quatchie Forma	ation		
Ona - Ordovician N	lashville Group	Undivided		
Ol - Ordovician Leip	pers Limestone			
Oca - Ordovician C	Carters Limestor	ne		
Olb - Ordovician Le	banon Limesto	one		
Ord - Ordovician Ri	dley Limestone			
Om - Ordovician M	urfreesboro Lin	nestone		
Ops - Ordovician Po				
Opsl - Ordovician P				
OCk - Ordovician/C				
Oma - Ordovician I				
Ok - Ordovician Kin				
Oc - Ordovician Ch Ccr - Cambrian Co				
Cmn - Cambrian M				
Cn / Cnr - Cambria	-			
Ccm - Cambrian C	-			
Cpv - Cambrian Pu	mpkin Valley Sl	hale		
Cr - Cambrian Rom	e Formation			
tes CCR: Co	alcombusti	ion residuals		
Coordinate Syste Imagery Provideo	l by TVA (9/	12/2018) an	d BING Ima	agery
Geologic Map: U	SGSTVA, De		~K	m h
White Cumber	land	Roane	Kn	iox 5 m / Se
n Buren	\sim z_{r}		Loudon	Tennesse
Watts Bar Fossil Plan				}
Bledsoe	Rhea		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Blount
La ht	Meigs			Swair
< pre-	Jer Jer	McMinn	Monroe	Am
quatchie	X]	Graham
	y ~	, <u>_</u>	\sim	
Hamilton	Bradley) 	2	Cherokee
ζζ	/	Polk	1	lorth Clay
2 {	7		Ca	iroling
	6-177	nte		

Page 01 of 01

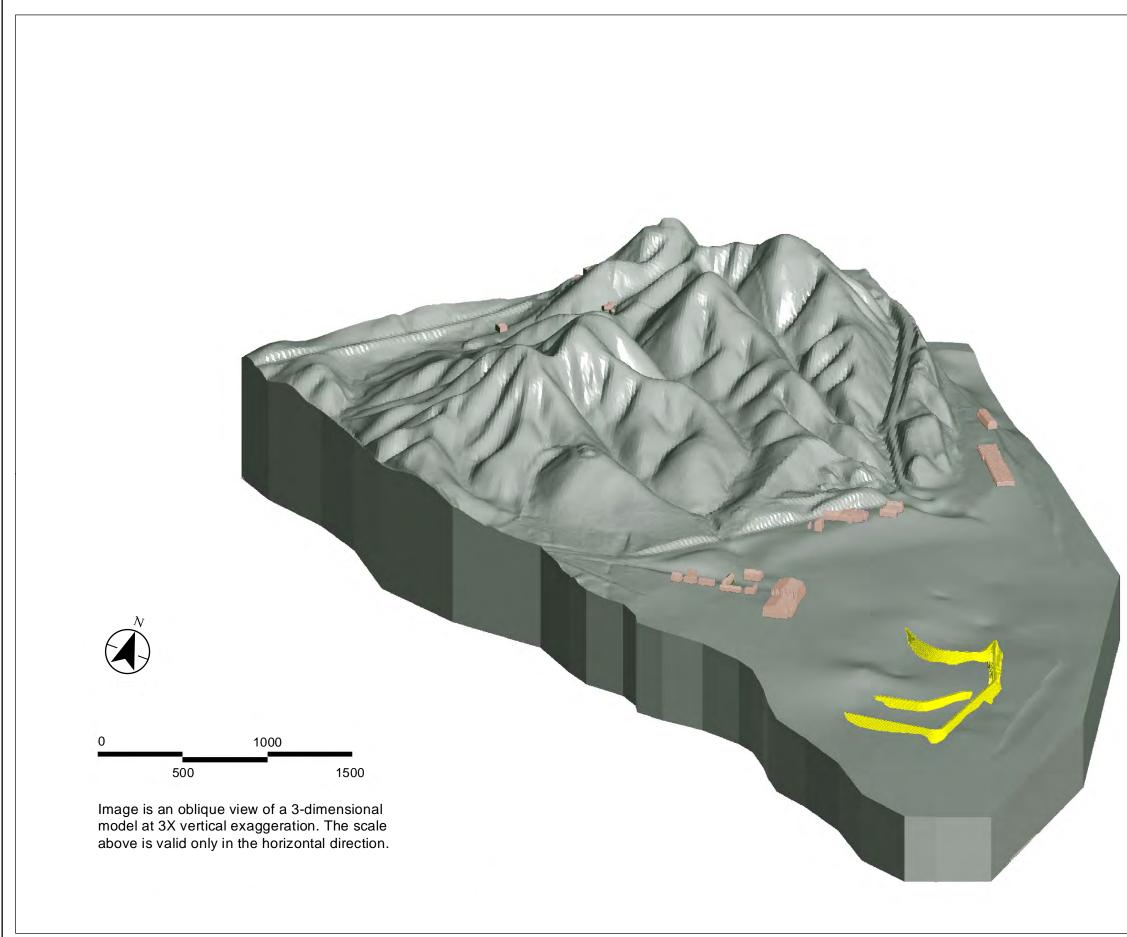
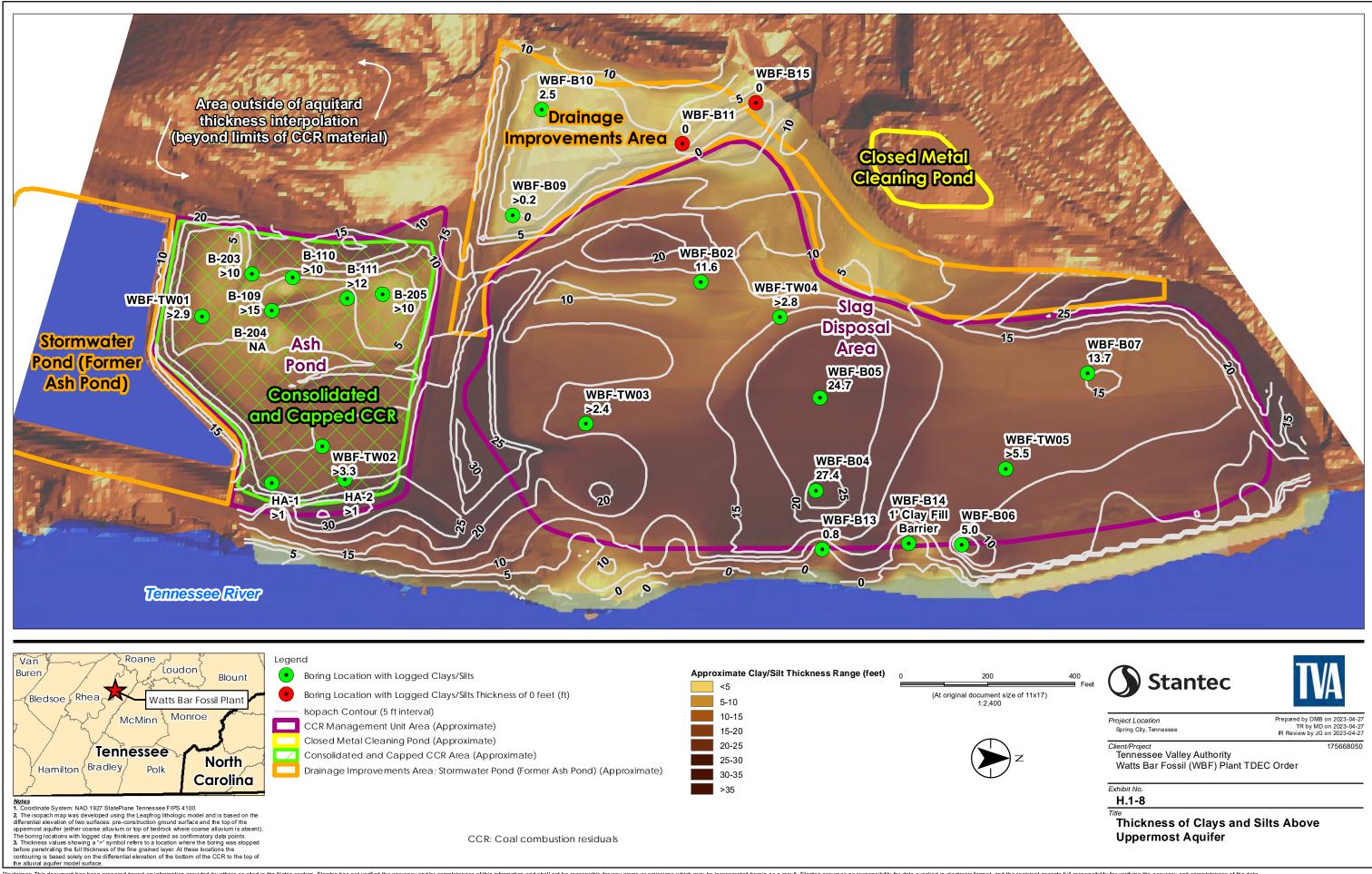


Exhibit No.


Title Lithologic Model - Top of Bedrock (Oblique View Looking Northwest)

75668050

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Clinton, Tennessee Spring City, Tennessee	Prepared by DMB on 2023-09-2 TR by MD on 2023-09-2 IR Review by RB on 2023-09-2
Legend	
Building Structure	
Clay Dike	
Bedrock	
Typical Surface Strea	m Flow Direction
	1 cm 120
White Cumberland	Knox
	Roane
Van	
Van Buren	Roane
Van	Roane Loudon
Van Buren	Roane Loudon Tennessee
Van Buren Biedsoe Rhea	Roane Loudon Tennessee Monroe
Van Buren Bledsoe Rhea Meigs	Roane Loudon Tennessee
Van Buren Bledsoe Rhea Meigs	Roane Loudon Tennessee Monroe
Van Buren Bledsoe Rhea Meigs	Roane Loudon Tennessee Monroe
Van Buren Bledsoe Rhea Meigs	Roane Loudon Tennessee Monroe McMinn
Van Buren Bledsoe Rhea Meigs Sequatchie Hamilton	Roane Loudon Tennessee Monroe McMinn
Van Buren Bledsoe Rhea Sequatchie	Roane Loudon Tennessee Monroe McMinn

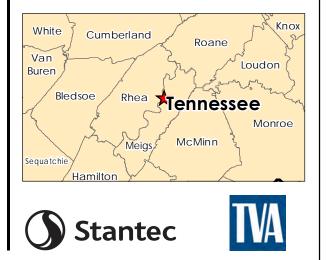
Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for verifying the accuracy and completeness of the data.

H.1-9 Title

Lithologic Model - Physiographic Setting (Oblique View Looking Northwest)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order


Clinton, Tennessee	Prepared by DMB on 2023-10-04
Spring City, Tennessee	TR by MD on 2023-10-04
	IR Review by RB on 2023-10-04

75668050

Legend

Typical Surface Stream Flow Direction

Study Area

Exhibit No. **H.1-10**

Groundwater Elevation Contour Map, Event #6 (July 6, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project Location Spring City, Tennessee		Te	175668050 Prepared by DMB on 2022-07-21 Technical Review by MD on 2022-07-21		
	0	150	300	450	600 Feet
	1:1,	800 (At origin	al documen	it size of 22x3	
_eg	jend				
		er Investigatio er elevation in	0		l (ft amsl)
•	Other Monit groundwate	toring Well er elevation in	ft amsl		
		groundwater label in yellow			(e.g., WBF-B02C) <mark>(e.g., WBF-B02A)</mark>
¢	Temporary pore water	well in CCR elevation in ft	amsl; value n	ot used for cc	ontouring
	Interpolated amsl)	d Groundwate	er Contour (5 f	t interval; elev	vations are in ft
	- Groundwat	er Contour (5	ft interval; ele	vations are in	ft amsl)
	2018 Image	ry Boundary			
	CCR Unit Ar	ea (Approxim	ate)		
	Closed Metal Cleaning Pond (Approximate)				
	Consolidate	ed and Cappe	ed CCR Area	(Approximate)
	Drainage In	nprovements ,	Area; Stormwa	ater Pond (For	mer Ash Pond)

CCR: Coal combustion residuals

River Gauge (Not Shown - See Note 4) surface water elevation in ft amsl

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

*** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

Notes

- 1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
- Imagery Provided by TVA (9/12/2018) and BING Imagery
 Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment
- Surface water elevation is measured from the tailwater reading from Watts Bar Dam located ~4,000 ft North of well WBF-106
 For PZ's with multiple instruments in CCR material, the reading with
- the highest pore water elevation is displayed, unless that reading is suspected of being erroneous.

Page 01 of 01

Exhibit No. H.1-11

WBF Instrumentation Used for Surface Water / Pore Water / Groundwater Hydrograph Comparison

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project Location				175668050
Spring City, Tennessee Prepare		ared by MB on 2023-08-22 view by MD on 2023-08-22		
0	150	300	450	600

1:1,800 (At original document size of 22x34)

Legend

Piezometer

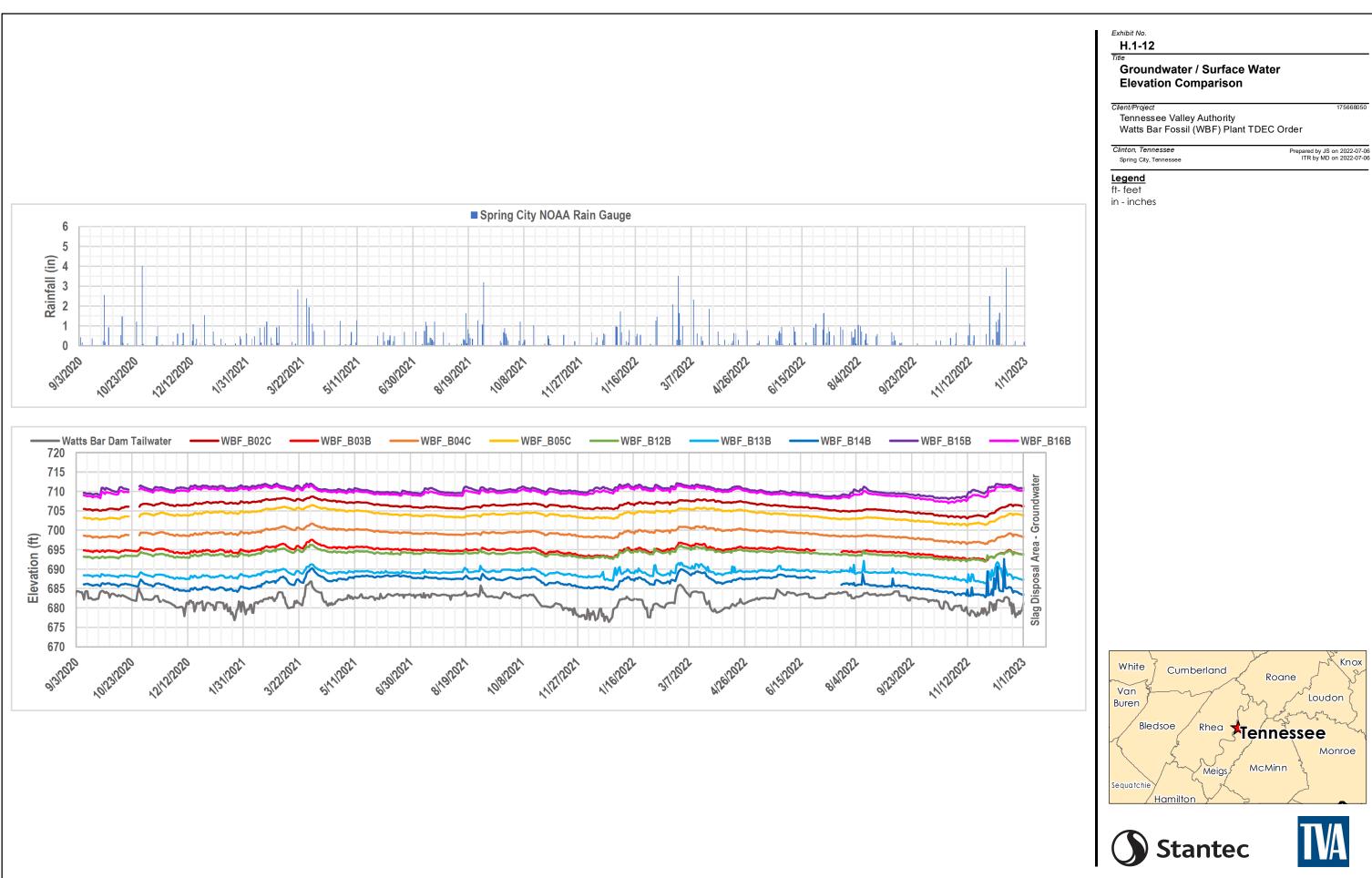
2018 Imagery Boundary

CCR Unit Area (Approximate)

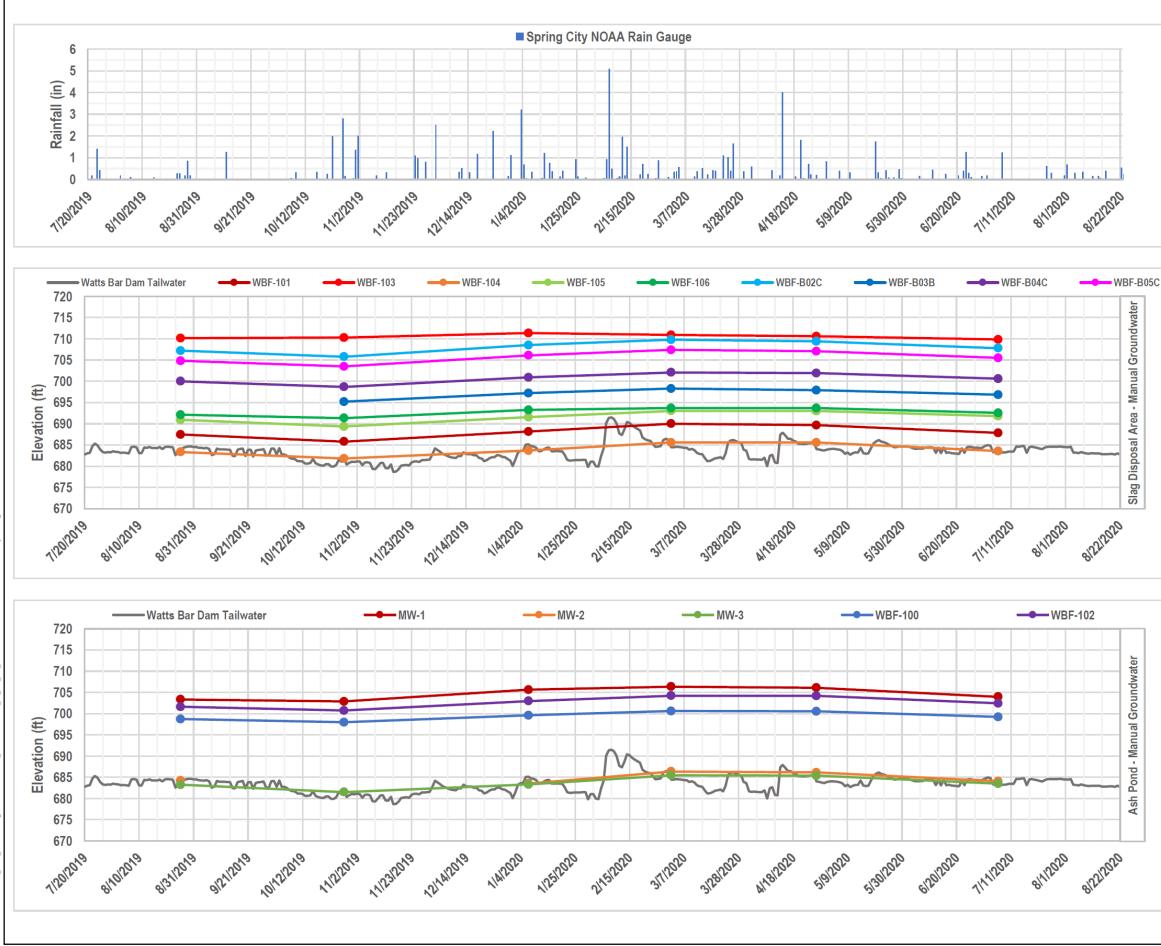
Closed Metal Cleaning Pond (Approximate)

Consolidated and Capped CCR Area (Approximate)

Drainage Improvements Area; Stormwater Pond (Former Ash Pond)


CCR: Coal combustion residuals

Notes


Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and BING Imagery

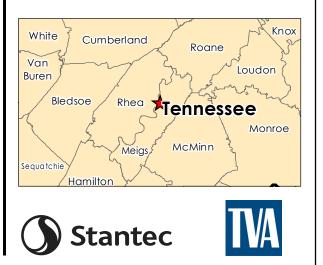
U:\TVA-EIP\175688050_WBF_WorkPlans\gis\mxdIEAR\H.1-11_ConcentrationsB_CL_SO_CO_WBF-106.mxd Revised: 2022-06-29 By: mbou

H.1-13

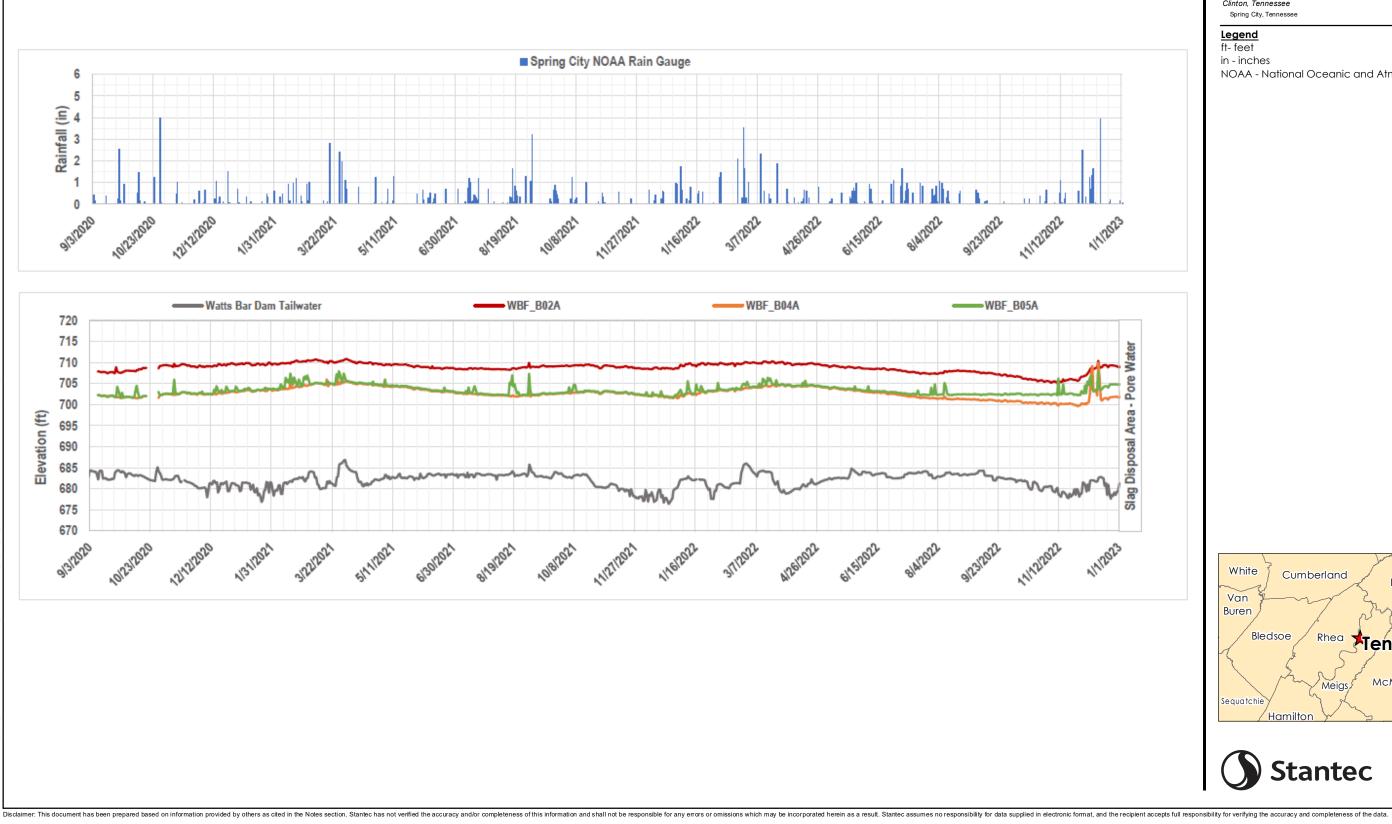
Title

Groundwater / Surface Water Elevation Comparison - Manual Instrumentation

Client/Project


Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Clinton, Tennessee Spring City, Tennessee Prepared by JS on 2022-07-06 ITR by MD on 2022-07-06


175668050

Legend

ft- feet in - inches

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

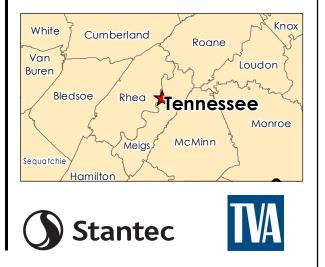
H.1-14 Title

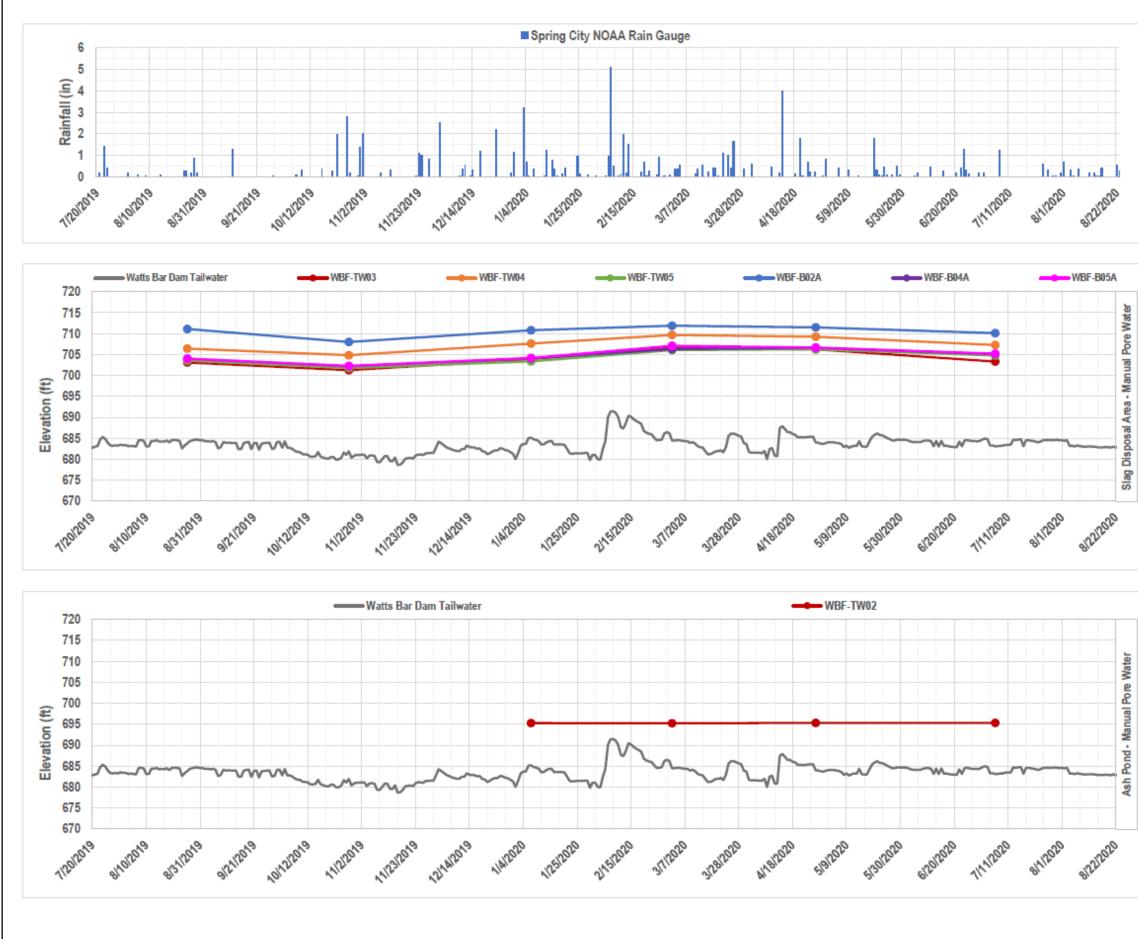
Pore Water / Surface Water Elevation Comparison

Client/Project

Clinton, Tennessee

Spring City, Tennessee


175668050


Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

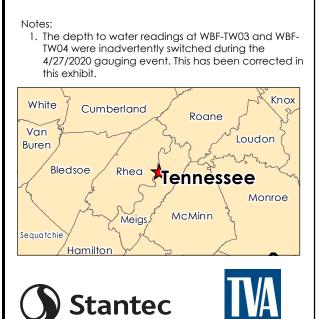
Prepared by JS on 2022-07-06 ITR by MD on 2022-07-06

Legend

ft- feet in - inches NOAA - National Oceanic and Atmospheric Administration

H.1-15

Pore water / Surface Water Elevation Comparison - Manual Instrumentation


Client/Project Tennessee Valley Authority 175668050

Watts Bar Fossil (WBF) Plant TDEC Order

Clinton, Tennessee Spring City, Tennessee Prepared by JS on 2022-07-06 ITR by MD on 2022-07-06

Legend

ft- feet in - inches NOAA - National Oceanic and Atmospheric Administration

bing

Exhibit No. H.1-16

Summary of Statistical Evaluation of Groundwater Analytical Results for CCR Rule Appendix IV and TDEC Appendix I Constituents

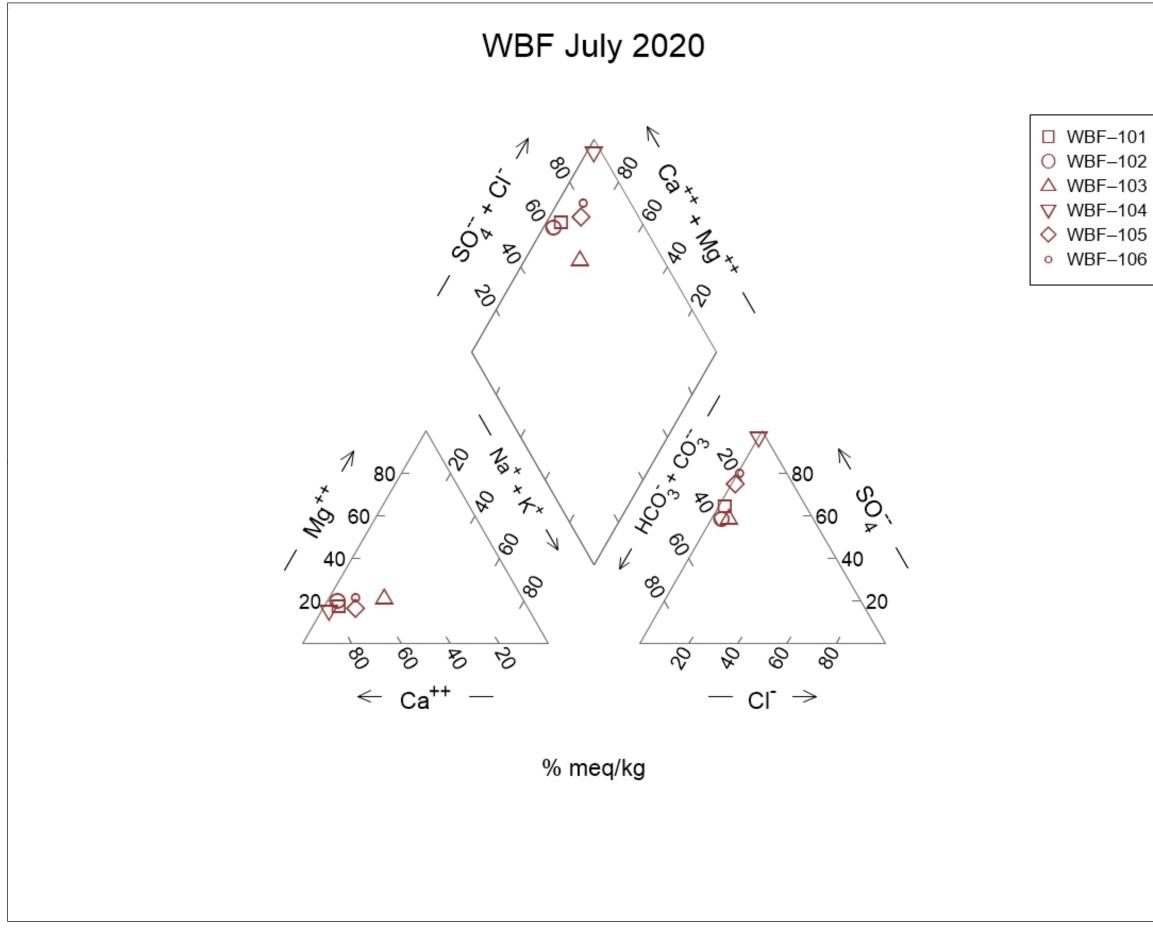
Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project L	ocation				175668050
Spring City, Tennessee		Prepared by MB on 2023-04-0 Technical Review by LP on 2023-04-0			
	0	150	300	450	600 Feet
	1:1	1,800 (At orig	jinal docum	ent size of 22	
ea	end				
LUY	CIIG				
•	EIP Progr	am Well			
۲	TDEC No	on-Registered	d Site Wells		
÷	Piezome	ter			
•	Tempora	ary Well withi	n CCR Mate	erial	
	2018 lma	agery Bound	ary		
٢	CCR Uni	t Area (Appr	oximate)		
	Closed N	Metal Cleani	ng Pond (Ap	oproximate)	

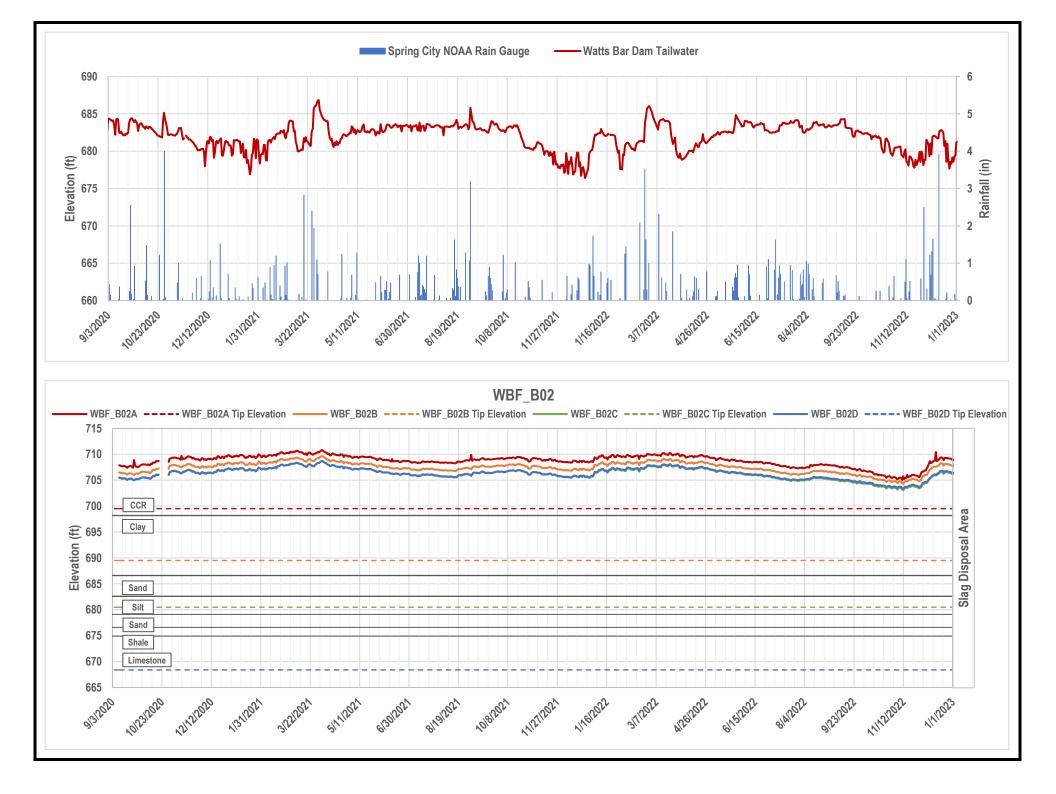
Consolidated and Capped CCR Area (Approximate) Drainage Improvements Area; Stormwater Pond

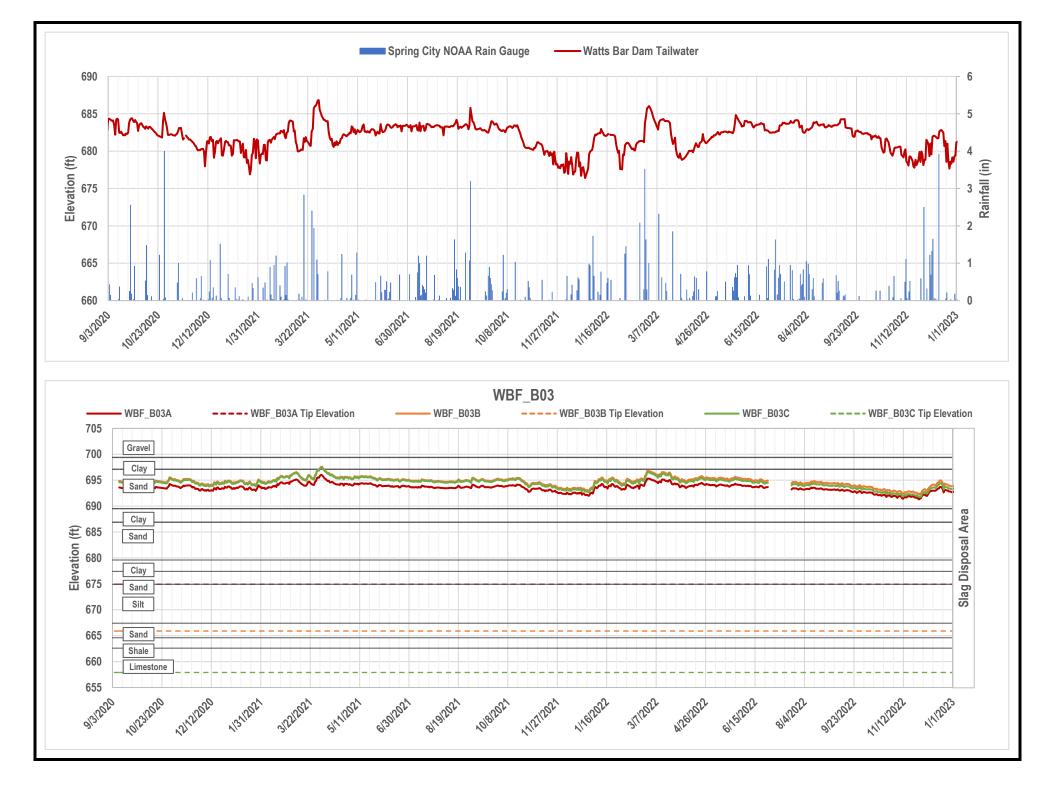
(Former Ash Pond) (Approximate)

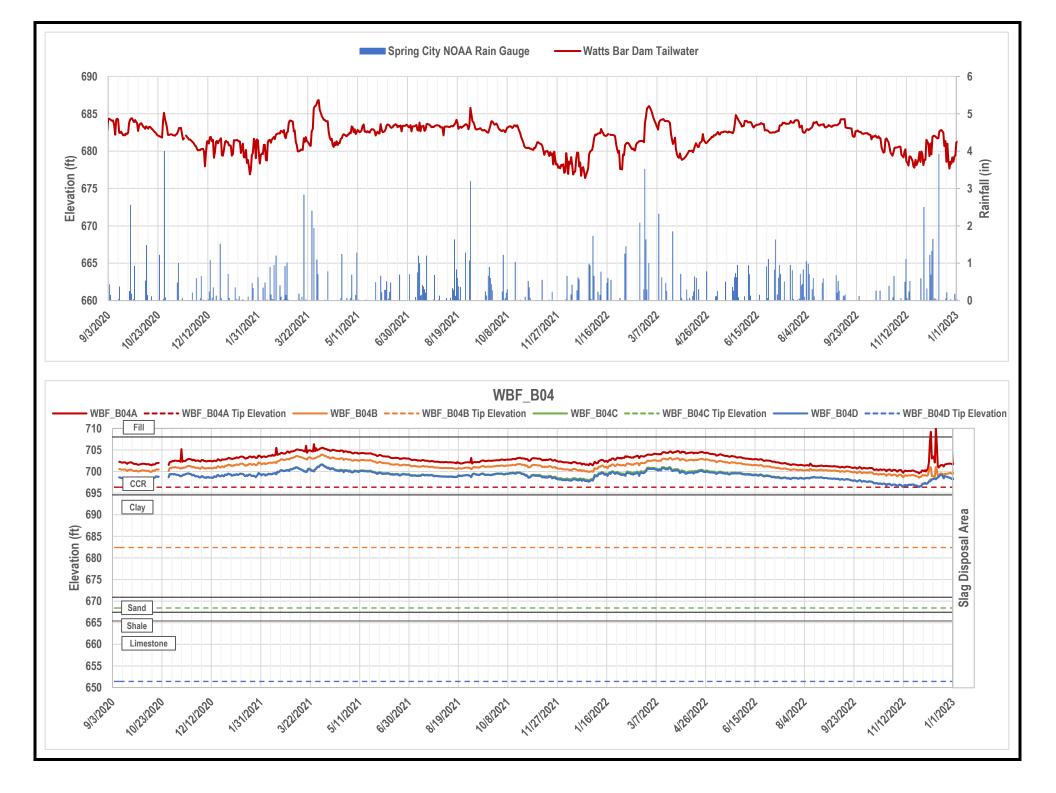

CCR: Coal combustion residuals

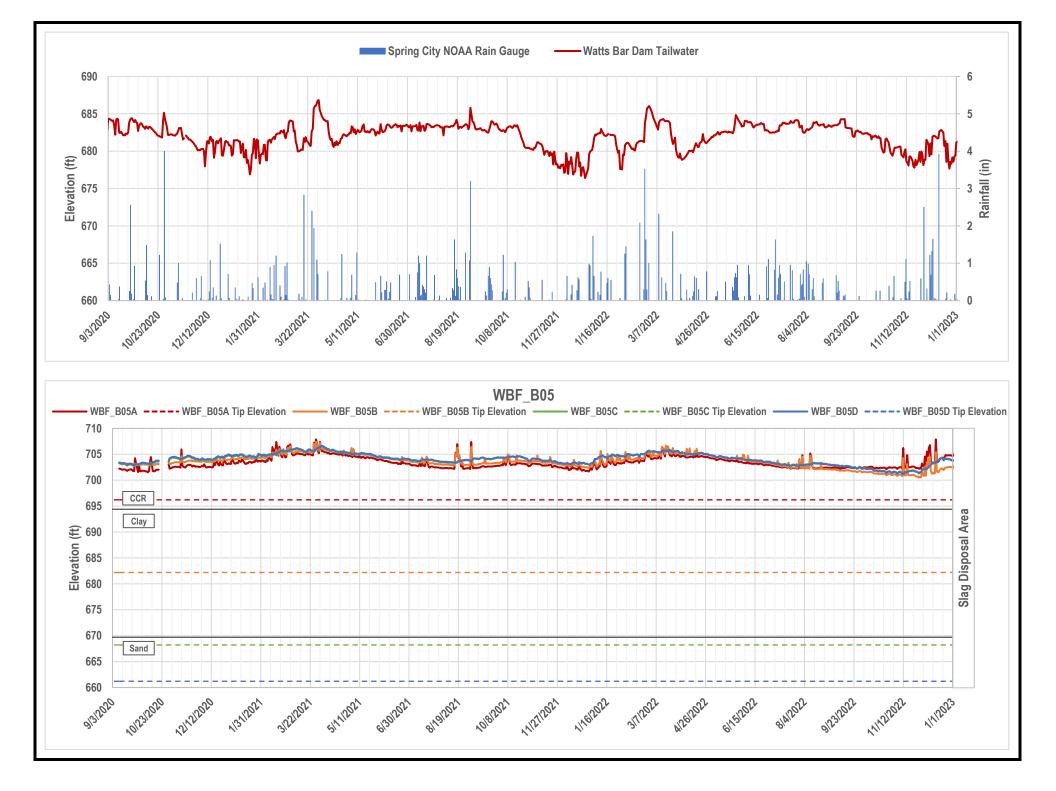
Notes

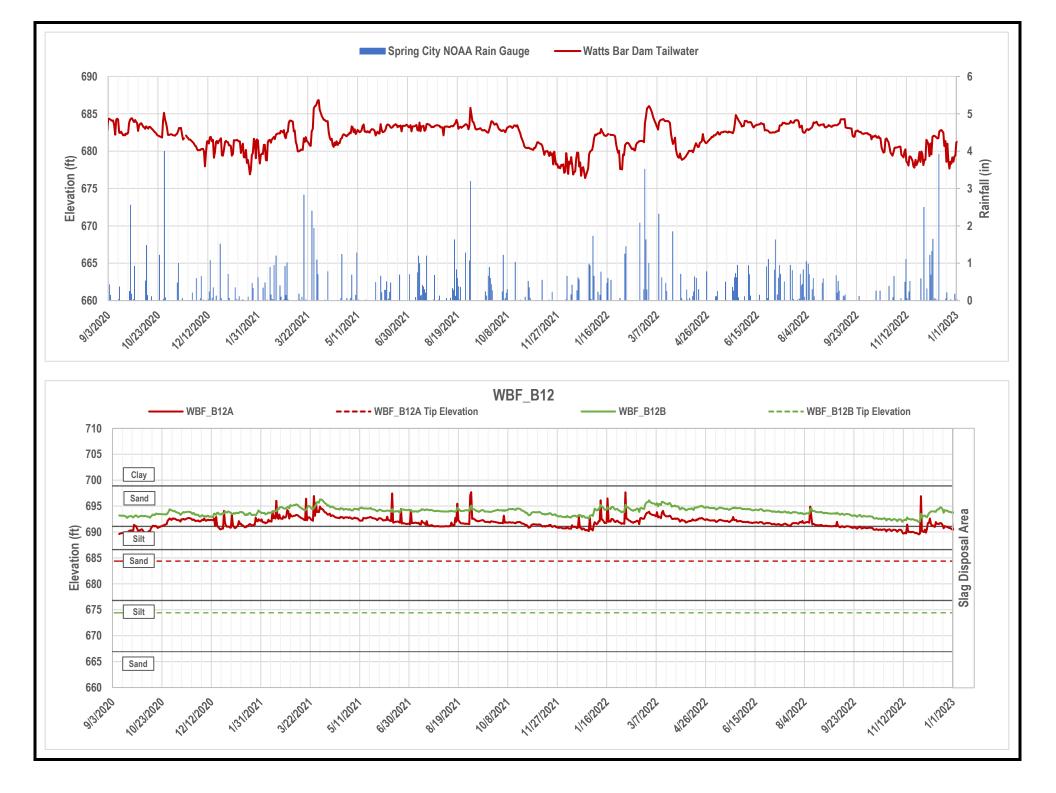
1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

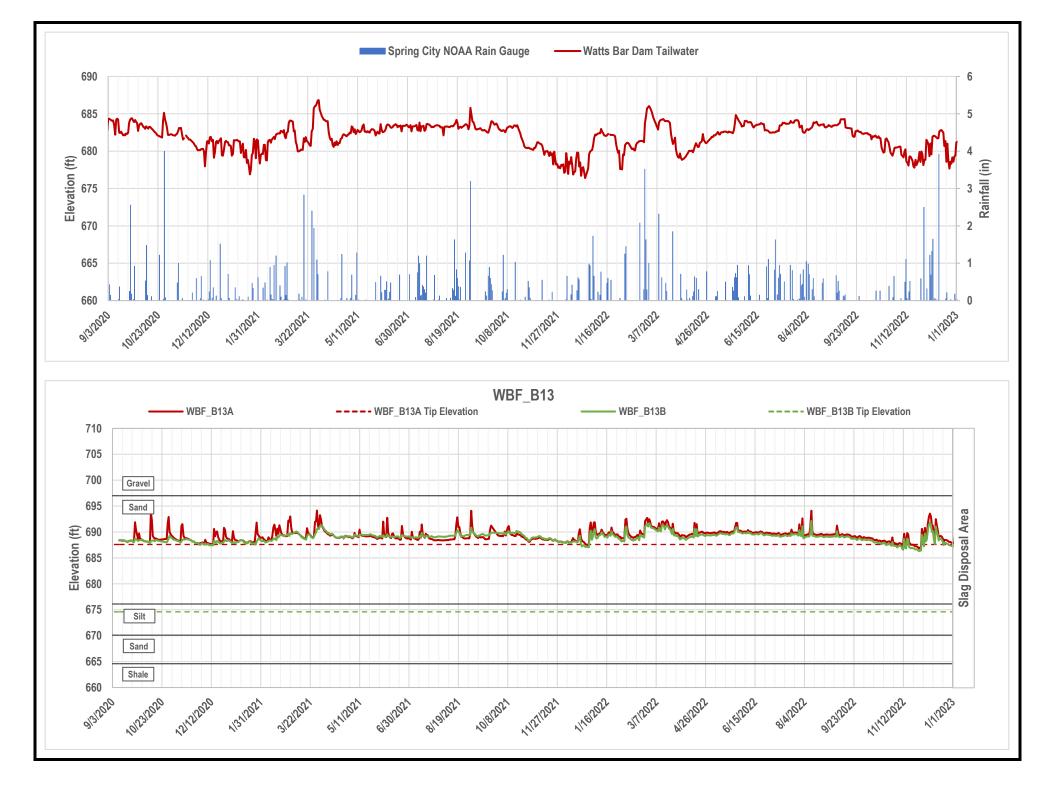


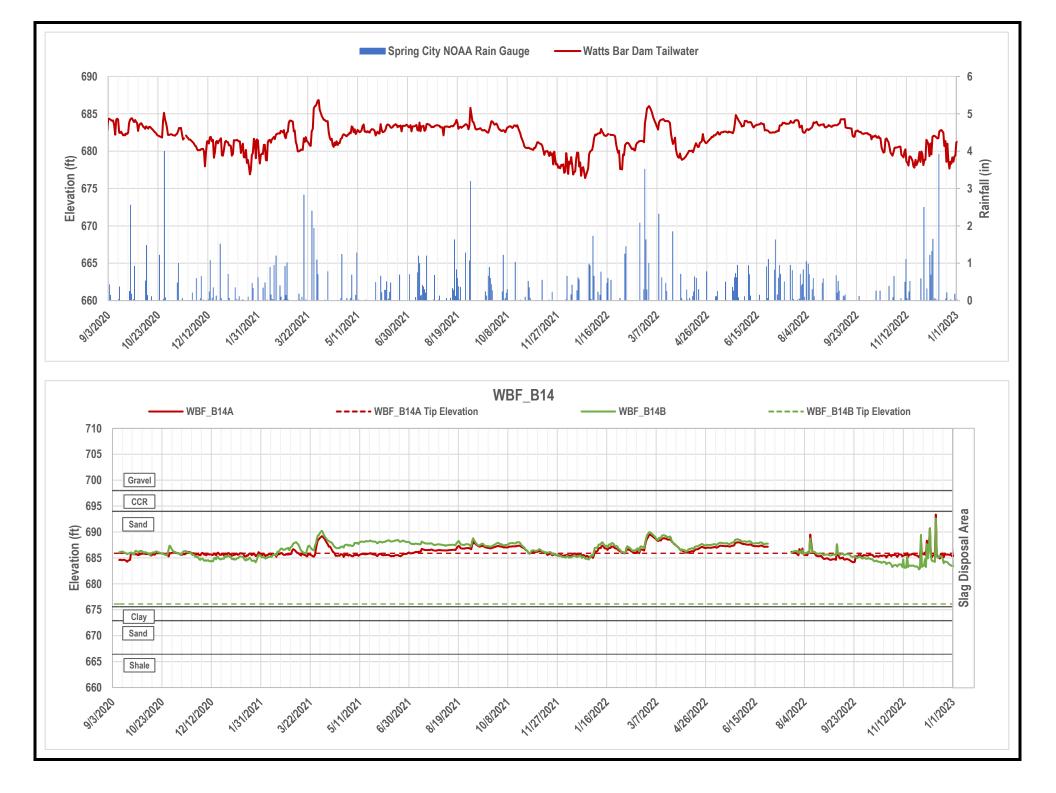


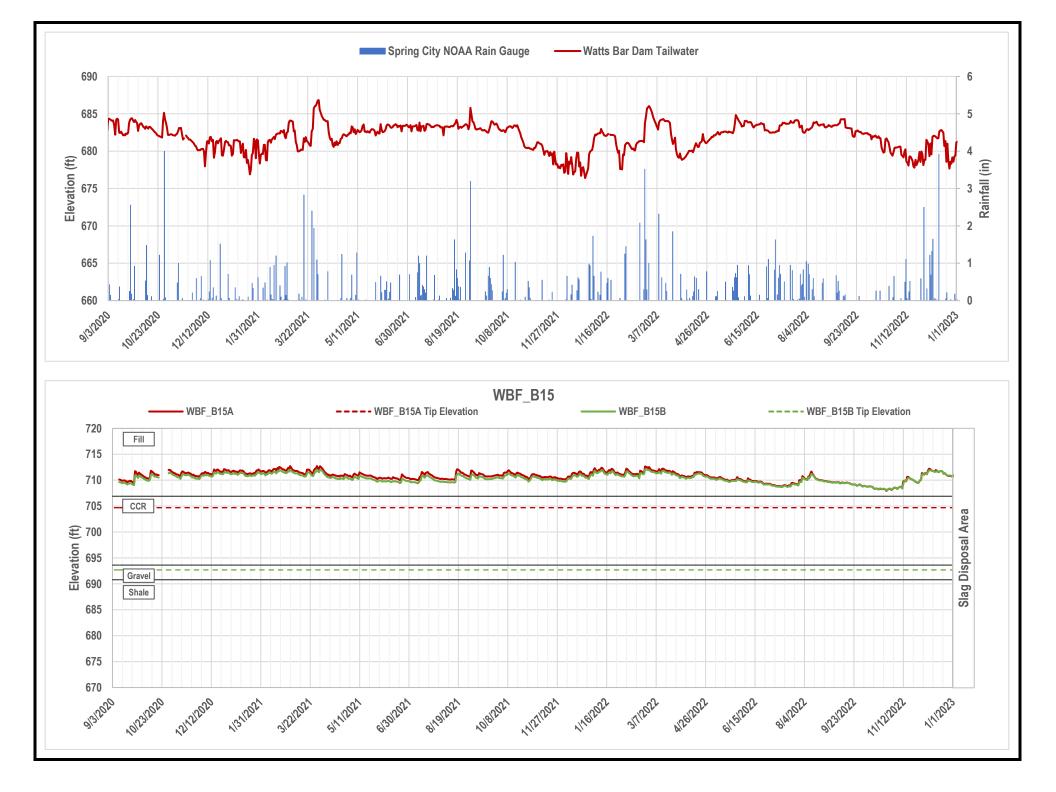

Tite Piper Diagram - July	2020	
Client/Project 17566 Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order		
Clinton, Tennessee Spring City, Tennessee	Prepared by DMB on 2022- TR by BL on 2022- IR Review by RB on 2022-	
Legend		
Notes 1. % meq/kg - Percent millio 2. Ca ⁺⁺ - Calcium 3. Cl ⁻ - Chloride 4. CO ₃ - Carbonate 5. HCO ₃ - Bicarbonate 6. K ⁺ - Potassium 7. Mg ⁺⁺ - Magnesium 8. Na ⁺ - Sodium 9. SO ₄ - Sulfate	equivalent per kilogram	
White Cumberland Van Buren Bledsoe Rhea	Roane Loudon (
Sequatchie Hamilton	Monroe McMinn	

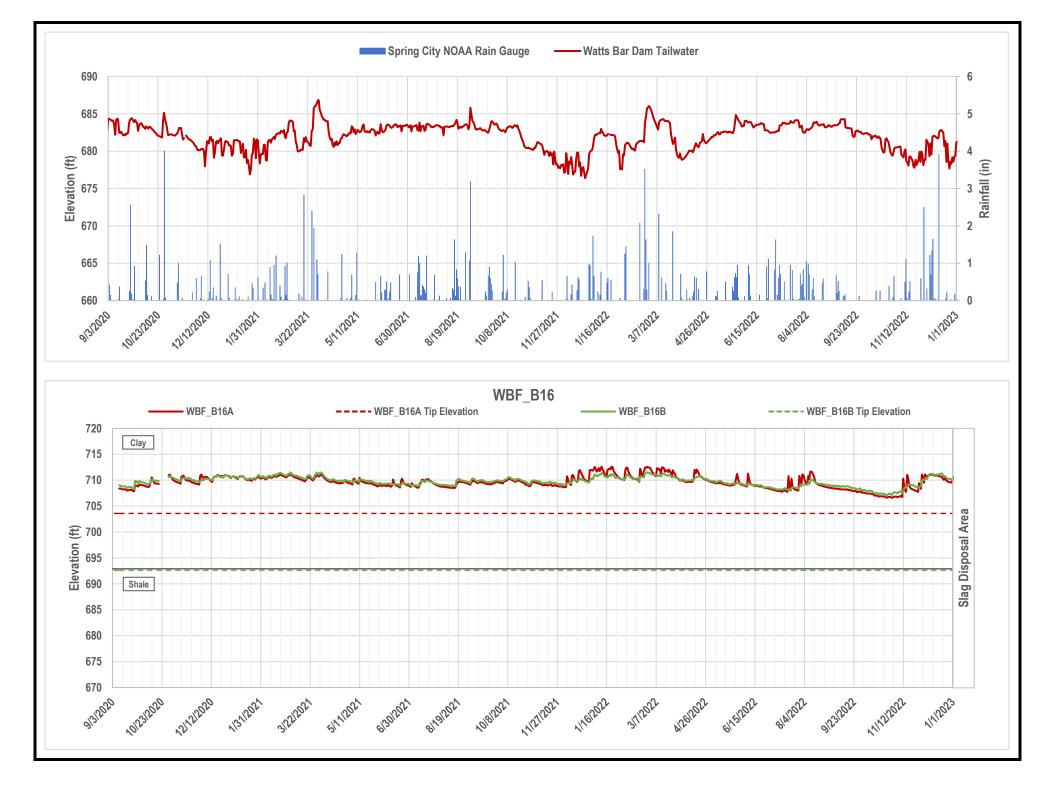

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for verifying the accuracy and/or completeness of the data.

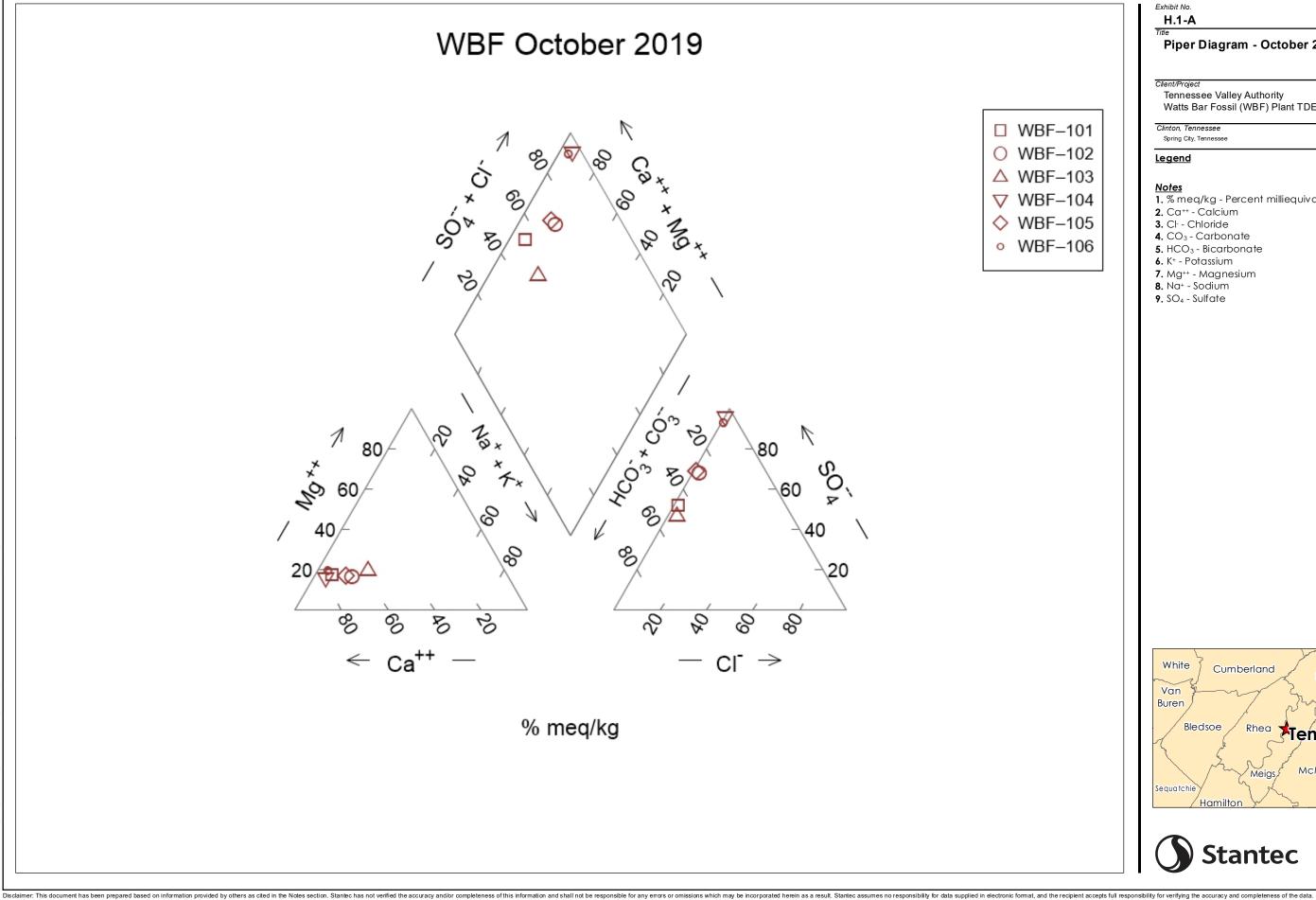

ATTACHMENT H.1-A HYDROGRAPHS

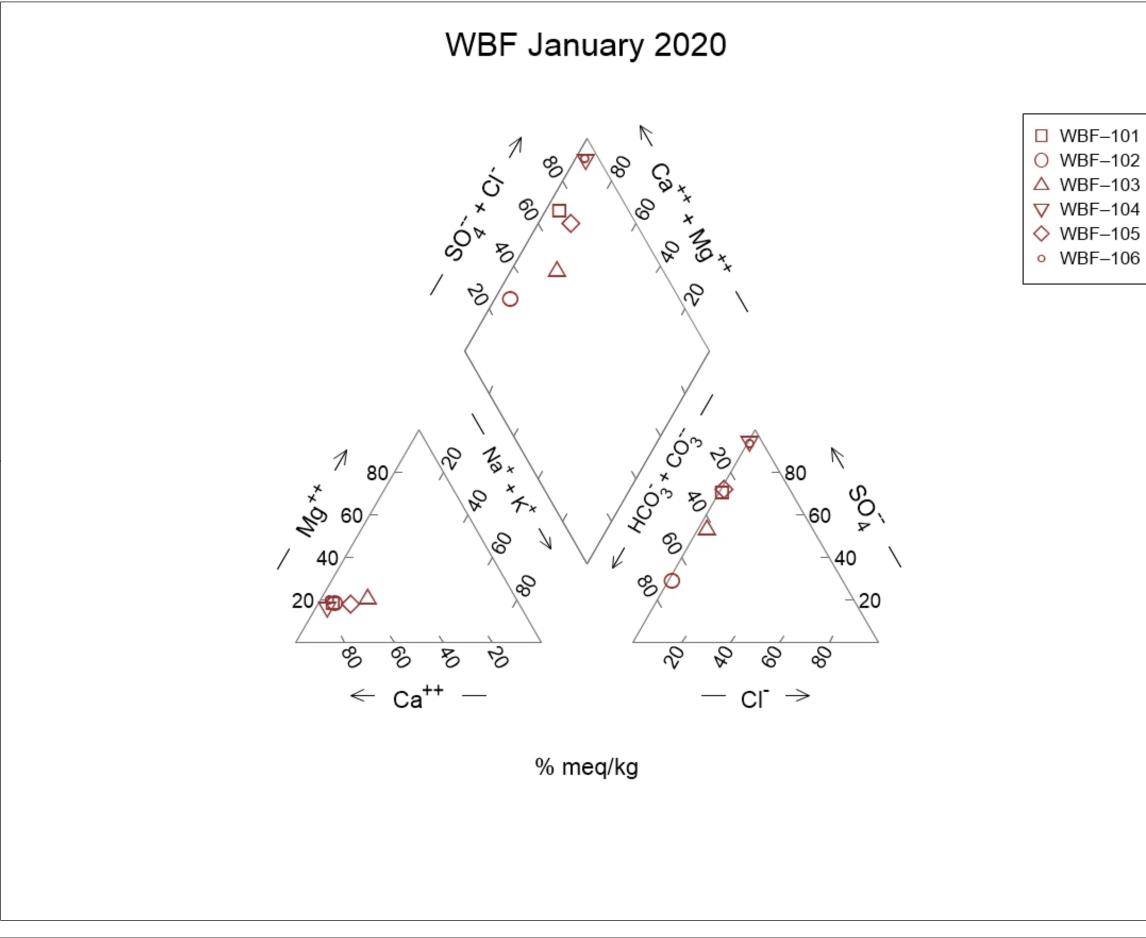




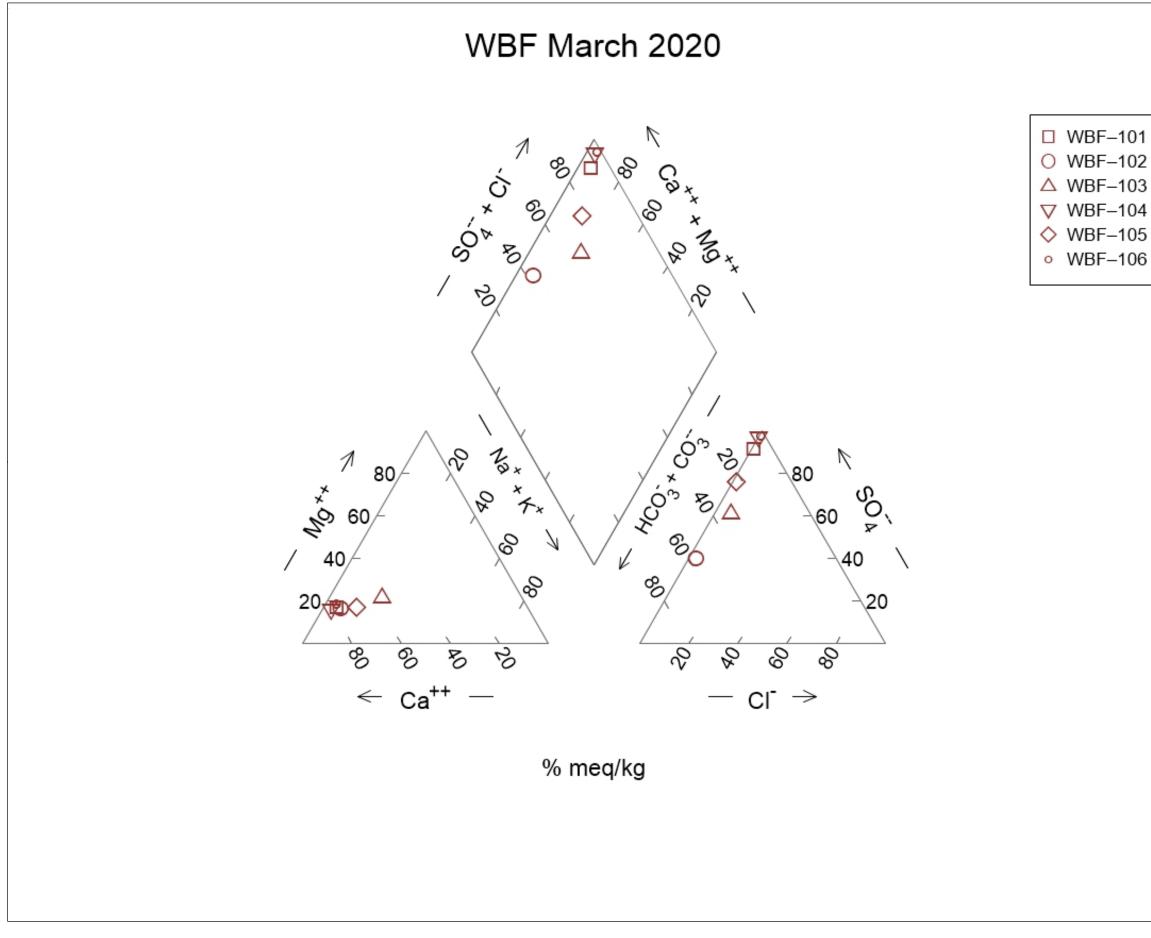




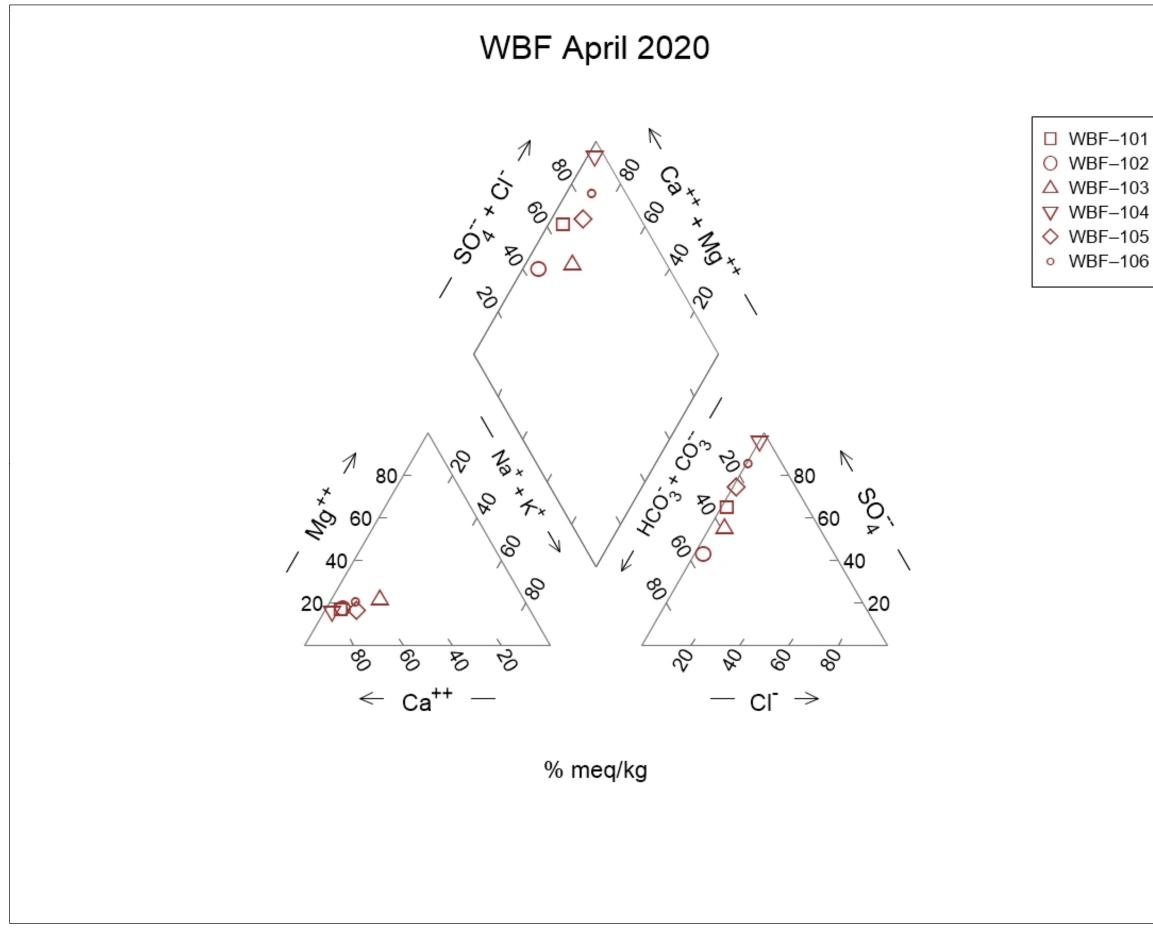




ATTACHMENT H.1-B PIPER DIAGRAMS



Piper Diagram - Octo	oder 2019		
Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Pla	-		
Clinton, Tennessee Spring City, Tennessee	Prepared by DMB on 202 TR by BL on 202 IR Review by RB on 202		
Legend	·		
Notes 1. % meq/kg - Percent milli 2. Ca ⁺⁺ - Calcium 3. Cl ⁻ - Chloride 4. CO ₃ - Carbonate 5. HCO ₃ - Bicarbonate 6. K ⁺ - Potassium 7. Mg ⁺⁺ - Magnesium 8. Na ⁺ - Sodium 9. SO ₄ - Sulfate	equivalent per kilogram		
Y. 504 - Suirate			
White Cumberland Van Buren Bledsoe Rhea	Roane Loudon Tennessee		
Sequatchie Meigs	McMinn		


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for verifying the accuracy and/or completeness of the data.

Piper Diagram - Jan	uary 2020	
Client/Project 17566 Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order		
Clinton, Tennessee Spring City, Tennessee	Prepared by DMB on 2022- TR by BL on 2022- IR Review by RB on 2022-	
Legend		
Notes 1. % meq/kg - Percent mill 2. Ca ⁺⁺ - Calcium 3. Cl ⁻ - Chloride 4. CO ₃ - Carbonate 5. HCO ₃ - Bicarbonate 6. K ⁺ - Potassium 7. Mg ⁺⁺ - Magnesium 8. Na ⁺ - Sodium 9. SO ₄ - Sulfate	iequivalent per kilogram	
7.004 00ndro		
	James Job	
White Cumberland Van Buren Bledsoe Rhea	Roane Loudon Tennessee	
Sequatchie Hamilton	Monroe	
Sequatchie		

Tite Piper Diagram - Marc	h 2020
Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plan	175668 It TDEC Order
Clinton, Tennessee Spring City, Tennessee	Prepared by DMB on 2022-0 TR by BL on 2022-0 IR Review by RB on 2022-0
Legend	
Notes 1. % meq/kg - Percent millie 2. Ca ⁺⁺ - Calcium 3. Cl ⁻ - Chloride 4. CO ₃ - Carbonate 5. HCO ₃ - Bicarbonate 5. HCO ₃ - Bicarbonate 6. K ⁺ - Potassium 7. Mg ⁺⁺ - Magnesium 8. Na ⁺ - Sodium 9. SO ₄ - Sulfate	quivalent per kilogram
9. SO4 - Sulfate	
White Cumberland Van Buren Bledsoe Rhea	Roane Loudon
	Tennessee Monroe

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for verifying the accuracy and/or completeness of the data.

^{Tite} Piper Diagram - Apı	il 2020		
	Client/Project 17566 Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order		
Clinton, Tennessee Spring City, Tennessee	Prepared by DMB on 2022- TR by BL on 2022- IR Review by RB on 2022-		
Legend			
Notes 1. % meq/kg - Percent mil 2. Ca ⁺⁺ - Calcium 3. Cl ⁻ - Chloride 4. CO ₃ - Carbonate 5. HCO ₃ - Bicarbonate 6. K ⁺ - Potassium 7. Mg ⁺⁺ - Magnesium 8. Na ⁺ - Sodium 9. SO ₄ - Sulfate	liequivalent per kilogram		
	dama of Kn		
White Cumberland Van Buren Bledsoe Rhea	Roane Loudon		
Sequatchie Hamilton	McMinn		
Stante			

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for verifying the accuracy and/or completeness of the data.

APPENDIX H.2 HYDROGEOLOGY INVESTIGATION SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Hydrogeological Investigation Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Watts Bar Fossil Plant Spring City, Tennessee

November 9, 2020

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

WATTS BAR FOSSIL PLANT HYDROGEOLOGICAL INVESTIGATION SAMPLING AND ANALYSIS REPORT

Revision Record

Revision	Description	Date
0	Submittal to TDEC	September 28, 2020
1	Addresses October 26, 2020 TDEC Review Comments and Issued for TDEC	November 9, 2020

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Hydrogeological Investigation Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule, and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Will Mur Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by _____. IM. K

James M. Kerr, Jr., Senior Principal Geologist

Approved by

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

ABBREVIATIONSIII					
1.0	INTRODU	CTION	1		
2.0	OBJECTIVE AND SCOPE				
3.0	FIELD AC	TIVITIES	3		
3.1	WORK LC	CATIONS	4		
	3.1.1	Background Locations	4		
	3.1.2	Coal Combustion Residuals Unit Locations	4		
3.2	DOCUME	NTATION	5		
	3.2.1	Field Forms	6		
	3.2.2	Photographs	7		
3.3	DRILLING	AND SAMPLING	8		
	3.3.1	Drilling	8		
	3.3.2	Soil Sampling			
3.4	MONITOR	RING WELL INSTALLATION1			
	3.4.1	Well Installation1	0		
	3.4.2	Well Development1			
	3.4.3	Hydraulic Conductivity (Slug) Testing1			
	3.4.4	Pump Installation1			
	3.4.5	Well Surveys1			
3.5	INVESTIG	ATION DERIVED WASTE1	3		
3.6		NS1			
	3.6.1	Variations in Scope1			
	3.6.2	Variations in Procedures1	4		
4.0	SUMMAR	Y1	5		
5.0	D REFERENCES16				
LIST OF TABLES Table 1. Summary of Boring and Monitoring Well Locations					

LIST OF APPENDICES

APPENDIX A – EXHIBITS

Exhibit A.1 Site Map and Monitoring Well Locations

APPENDIX B – TABLES

Table B.1	Summary of Monitoring	Well Construction Specifications
-----------	-----------------------	----------------------------------

- Table B.2Summary of Well Development Data
- Table B.3
 Summary of Hydraulic Conductivity Testing Results
- Table B.4Summary of Pump Installation Details
- Table B.5
 Summary of Monitoring Well Survey Data

LIST OF APPENDICES (CONTINUED)

APPENDIX C – SUBSURFACE LOGS AND WELL INSTALLATION DETAILS

- Subsurface Logs Well Installation Details Attachment C.1
- Attachment C.2

APPENDIX D – PHOTOGRAPHS OF SOIL BORINGS AND MONITORING WELLS

- Attachment D.1 Photographic Log of Soil Lithology
- Photographic Log of Monitoring Wells Attachment D.2

APPENDIX E – SLUG TEST RESULTS

Abbreviations

ASTM	American Society for Testing and Materials		
CCR	Coal Combustion Residuals		
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104		
CFR	Code of Federal Regulations		
COC	Chain-of-Custody		
DPT	Direct Push Technology		
EAR	Environmental Assessment Report		
EIP	Environmental Investigation Plan		
ENV	Environmental		
EnvStds	Environmental Standards, Inc.		
FSP	Field Sampling Personnel		
ft bgs	Feet Below Ground Surface		
GPS	Global Positioning System		
HGI	Hydrogeological Investigation		
HSA	Hollow-Stem Auger		
IDW	Investigation Derived Waste		
PG	Professional Geologist		
PPE	Personal Protective Equipment		
PVC	Polyvinyl Chloride		
QAPP	Quality Assurance Project Plan		
SAP	Sampling and Analysis Plan		
SAR	Sampling and Analysis Report		
Stantec	Stantec Consulting Services Inc.		
TDEC	Tennessee Department of Environment and Conservation		
TDEC Order	Commissioner's Order No. OGC15-0177		
TI	Technical Instruction		
TVA	Tennessee Valley Authority		
WBF Plant	Watts Bar Fossil Plant		

WATTS BAR FOSSIL PLANT HYDROGEOLOGICAL INVESTIGATION SAMPLING AND ANALYSIS REPORT

Introduction November 9, 2020

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR), on behalf of the Tennessee Valley Authority (TVA), to document activities related to a hydrogeological investigation (HGI) at TVA's Watts Bar Fossil (WBF) Plant located in Spring City, Tennessee.

The purpose of the HGI was to install permanent monitoring wells to evaluate hydrogeological conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to summarize activities completed to meet the objectives of the HGI Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the HGI represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The evaluation of the results from this HGI will consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs, and will be presented in the Environmental Assessment Report (EAR).

The HGI activities were performed in conjunction with the background soil investigation at the WBF Plant and in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order:

- Hydrogeological Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Background Soil SAP (Stantec 2018c)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The hydrogeological and background soil investigations were implemented in accordance with TVA- and TDEC-approved Programmatic- and Project-specific changes. Minor variations in scope and procedures from those outlined in the WBF Plant HGI SAP and Background Soil SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

HGI field work consisted of two primary activities – drilling and sampling, and permanent monitoring well installation. Quality Assurance oversight of field data acquisition protocols, sampling practices, and data review were performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

Objective and Scope November 9, 2020

2.0 OBJECTIVE AND SCOPE

The primary objective of the HGI conducted pursuant to the HGI SAP was to install permanent monitoring wells to evaluate hydrogeological conditions at the WBF Plant in response to the TDEC Order. The activities conducted during the HGI support data collection for the groundwater and background soil investigations at the WBF Plant, including groundwater level measurements, and groundwater and background soil sample collection for analysis of CCR-related constituents.

The approach for the HGI was to:

- Identify permanent downgradient monitoring well and background well locations targeting unconsolidated materials at the WBF Plant
- Use direct push technology (DPT), hollow-stem auger (HSA), and roto-sonic drilling techniques to collect soil samples at staked monitoring locations approved by TDEC and considered suitable for the drill rigs to safely drill
- Complete monitoring well installation, well development, hydraulic conductivity (slug) testing, pump installation, and survey activities.

The scope of work of the HGI consisted of the following tasks:

- Confirming drilling locations for planned permanent downgradient monitoring well and background well locations using global positioning system (GPS) survey
- Drilling and logging soil borings for geotechnical and lithologic information
- Collecting soil samples for analysis of geotechnical parameters (if deemed warranted), and CCRrelated constituents from the background monitoring well boring locations (as part of the Background Soil SAP)
- Installing permanent monitoring wells in the borings and constructing surface completions
- Developing permanent monitoring wells and conducting slug tests to estimate hydraulic conductivity for evaluation of hydrogeologic conditions for the EAR
- Surveying each permanent monitoring well.

Details on each activity are presented in the sections below. Groundwater level measurements and sampling are being conducted as part of six groundwater monitoring events being performed pursuant to the Groundwater Investigation SAP and reported in a series of Groundwater Investigation SARs for the WBF Plant. Soil sampling for CCR-related constituents was performed in accordance with the Background Soil SAP and reported in the WBF Plant Background Soil Investigation SAR.

Field Activities November 9, 2020

3.0 FIELD ACTIVITIES

HGI field activities were conducted between May 29 and October 11, 2019, and consisted of DPT, HSA, and roto-sonic drilling; monitoring well installation; well development; slug tests; pump installation; and well surveys. Prior to initiating field activities, TVA conducted environmental reviews, obtained necessary permits, and performed utility clearances as necessary to complete the field work.

Stantec performed HGI field activities based on guidance and specifications listed in TVA's Environmental (ENV) Technical Instructions (TIs), the SAPs, and the QAPP prepared by EnvStds, except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, oversight of select field activities, field documentation, and centralized data management were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During the HGI, Stantec conducted the following field activities:

- Confirmed drilling locations for planned monitoring well and background monitoring well locations
- Drilled 13 soil borings in the vicinity of proposed well locations to pre-screen the soil characteristics in these areas prior to advancement of well borings
- Drilled nine soil borings for installation of four permanent monitoring wells and two background monitoring wells, under the direction of a Stantec Professional Geologist (PG) licensed in the State of Tennessee
- Collected soil samples using a DPT dual tube, HSA split-spoon sampler, or roto-sonic core barrel to develop a continuous boring log/soil profile for each well boring, and for potential analysis of geotechnical parameters (if deemed warranted)
- Collected two soil samples and one field duplicate for analysis of CCR-related constituents from the screened interval depth range of two background monitoring well borings
- Installed permanent monitoring wells in six borings
- Developed each well and conducted slug tests in five wells to estimate hydraulic conductivity.

Following monitoring well installation, TVA constructed surface completions and surveyed each new permanent well.

Field Activities November 9, 2020

3.1 WORK LOCATIONS

The HGI field activities were conducted at six soil boring/monitoring well locations at the WBF Plant under the HGI scope of work. As approved by TVA and TDEC, either two or three DPT pre-screen soil borings were advanced within 25 feet of each proposed well location to evaluate soil characteristics in these areas prior to well drilling and installation. This approach was used due to limited historical information in the areas of the proposed monitoring well and background well locations. A total of 13 pre-screen borings were completed as follows:

- Borings WBF-101A and WBF-101B near proposed well WBF-101
- Borings WBF-102A and WBF-102B near proposed well WBF-102
- Borings WBF-103A and WBF-103B near proposed well WBF-103
- Borings WBF-104A and WBF-104B near proposed well WBF-104
- Borings WBF-105A, WBF-105B, and WBF-105C near proposed well WBF-105
- Borings WBF-106A and WBF-106B near proposed well WBF-106.

Due to the presence of CCR material encountered in the three pre-screen borings for well WBF-105, the well was relocated to the southwest following approval by TDEC.

Based on information collected from the pre-screen borings, the borings at the proposed monitoring well and background well locations were advanced using HSA or roto-sonic methods, as described below. The HGI boring/monitoring well locations are shown on Exhibit A.1 in Appendix A and are described in Table 1 following Section 3.1.2. Tables B.1 through B.5 in Appendix B provide data and information obtained at the HGI boring/monitoring well locations as described in Section 3.4. The pre-screen boring locations are shown on Exhibit A.1 in Appendix A, and subsurface logs for these locations are provided in Attachment C.1 in Appendix C.

3.1.1 Background Locations

Soil samples were collected from within the anticipated depth range for the well screened interval at two background monitoring well location borings as described in Section 3.3.2.2 and the Background Soil SAP. Two background monitoring wells (WBF-102 and WBF-103) were installed in unconsolidated materials to provide groundwater samples that have not been affected by the CCR units and to be representative of background conditions. As shown in Table 1, one location (proposed well WBF-102) required multiple borings to complete the HGI background well installation.

3.1.2 Coal Combustion Residuals Unit Locations

Four permanent monitoring wells (WBF-101, WBF-104, WBF-105, and WBF-106) were installed in unconsolidated materials near the CCR units to provide locations to evaluate groundwater flow and quality in these areas as summarized below.

Field Activities November 9, 2020

Boring ID	Well ID	Location	Rationale
WBF-101	WBF-101	Northeast corner of the closed Ash Pond	To assess local groundwater flow and quality downgradient of the CCR units
WBF-102	NC	West of the closed Ash Pond	Well not installed, boring did not encounter groundwater
WBF-102Alt	NC	West of the closed Ash Pond	Well not installed, boring encountered construction debris between 4.5 and 6 feet below ground surface
WBF-102Alt1	NC	West of the closed Ash Pond	Well not installed, boring encountered CCR material at 6 feet below ground surface
WBF-102Alt2 (Sonic)	WBF-102	West of the closed Ash Pond	To assess groundwater flow and quality at a background location
WBF-103	WBF-103	West of the closed Slag Disposal Area, south of former coal yard storage area	To assess groundwater flow and quality at a background location
WBF-104	WBF-104	Southeast of the closed Slag Disposal Area	To assess local groundwater flow and quality downgradient of the CCR units
WBF-105/ WBF-105 (Sonic)	WBF-105	East of the closed Slag Disposal Area	To assess local groundwater flow and quality downgradient of the CCR units
WBF-106	WBF-106	Northeast of the closed Slag Disposal Area	To assess local groundwater flow and quality downgradient of the CCR units

Table 1. Summary of Boring and Monitoring Well Locations

Notes:

Pre-screen soil borings are listed in Section 3.1 above.

ID Identification

NC Not completed

3.2 DOCUMENTATION

Stantec maintained HGI field documentation in general accordance with ENV-TI-05.80.03, *Field Record Keeping*, the HGI SAP, and the QAPP. Field documentation for background soil sampling activities is described in the WBF Plant Background Soil Investigation SAR. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Field activities and data were primarily recorded on program-specific field forms. Additional information regarding HGI field documentation is provided below.

Field Activities November 9, 2020

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the HGI included:

- Daily Field Activity Log
- Subsurface Boring Log
- Chain-of-Custody (COC)
- Monitoring Well Installation Field Log
- Well Development Form
- Slug Test Data Form
- QED Well Wizard Dedicated Sampling Pump Installation Checklist
- Well Pump Calibration Form.

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were also documented on the *Daily Field Activity Log*.

3.2.1.2 Subsurface Boring Log

A Stantec PG licensed in the State of Tennessee prepared a *Subsurface Log* for each boring. The log documented time, boring location, drilling personnel, tooling/equipment used, depth to water, sample number, sample recovery, blow counts (for HSA borings), soil lithology, and other relevant observations. Soil color was logged per the appropriate Munsell Soil Color Chart (Munsell Color 2009). Information from these logs was used to construct the subsurface logs provided in Attachment C.1 in Appendix C.

3.2.1.3 Chain-of-Custody

Stantec FSP completed *COC* documentation for each geotechnical soil sample collected during the HGI. As described above, documentation of soil sample collection and analysis of CCR-related constituents for the background soil samples collected during the HGI are reported in the WBF Plant Background Soil Investigation SAR.

Information on the geotechnical sample *COC* included the sample ID, sample location, sample depth, type of sample, sampling date, and sample custody record. *COCs* were completed in general accordance with *ENV-TI-05.80.02:* Sample Labeling and Custody and reviewed by the laboratory manager.

Field Activities November 9, 2020

3.2.1.4 Monitoring Well Installation Field Log

A Stantec PG licensed in the State of Tennessee prepared a *Monitoring Well installation Field Log* for each monitoring well. The log documented the well location, well installation date(s), well installation materials, well depth, screened interval, depth interval for each backfill material, and surface completion details (protective casing, concrete pad, bollards, etc.). Information from these logs was used to construct the well installation details provided in Attachment C.2 in Appendix C.

3.2.1.5 Well Development Form

Stantec FSP completed a *Well Development Form* for each monitoring well. The form documented well location, well development date(s), elapsed time since development started, depth to water, purge rate, cumulative purge volume, and water quality parameter measurements throughout and at completion of the development process.

3.2.1.6 Slug Test Data Form

Stantec FSP completed a *Slug Test Data Form* for the hydraulic conductivity tests performed at the monitoring wells. The form primarily documented well location, slug test date(s), and initial and final water level measurements before and after each slug test attempt. The water level measurements during the tests were recorded by an automated pressure transducer and data recorder and subsequently downloaded.

3.2.1.7 QED Well Wizard Dedicated Sampling Pump Installation Checklist

Stantec FSP installed a dedicated bladder pump system in each monitoring well to facilitate subsequent groundwater sampling events. A *QED Well Wizard Dedicated Sampling Pump Installation Checklist* was prepared for each monitoring well to document the well information, pump information, initial testing results, and any relevant comments.

3.2.1.8 Well Pump Calibration Form

Stantec FSP performed a calibration procedure on the dedicated pump in each monitoring well and recorded the results on a *Well Pump Calibration Form*. Each form documented the well location, date, time, depth to water, flow rate, flow volume, and water quality stabilization measurements during and at completion of the calibration.

3.2.2 Photographs

In addition to documentation of field activities described above, photographs were taken to document the field investigation. A photographic log of soil cores recovered from the borings and surface completions of installed monitoring wells are provided in Attachments D.1 and D.2, respectively, in Appendix D.

Field Activities November 9, 2020

3.3 DRILLING AND SAMPLING

The following sections present drilling and soil sampling procedures used in the HGI. Additional information for drilling and sampling procedures at the two background monitoring well locations is provided in the Background Soil Investigation SAR. Drilling and sampling activities were performed under the direction of a Stantec PG licensed in the State of Tennessee.

3.3.1 Drilling

The HGI borings were advanced using three drilling methods: DPT, HSA, and/or roto-sonic.

3.3.1.1 Direct Push Technology

Thirteen pre-screen soil borings were advanced in the vicinity of proposed well locations and completed using DPT. Stantec utilized the subcontractor Hawkston Drilling for these borings, who provided a driller licensed in Tennessee to operate a track-mounted DPT rig with a dual tube soil sampling system equipped with 60-inch long polyvinyl chloride (PVC) liners. Soil samples were recovered for lithologic description and photographic documentation. Completed boreholes were tremie-backfilled with a 30% solids bentonite grout.

3.3.1.2 Hollow-Stem Auger

Nine monitoring well installation borings were advanced by Stantec drillers licensed in Tennessee using HSA drilling techniques following procedures provided in American Society for Testing and Materials (ASTM) D6151: *Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling*. HSA borings were generally advanced using a 4.25-inch inside diameter auger to advance the pilot boring (resulting in approximately an 8-inch borehole diameter). Standard penetration test sampling was conducted continuously in accordance with ASTM D1586 *Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils* and consisted of dropping a 140-pound hammer from a height of 30 inches, to drive a standard size 2-inch diameter split-spoon sampler to a depth of 18 inches. Blow-counts were recorded for each six inches of penetration. Soil samples were recovered for lithologic description, photographic documentation, and sample collection. Following removal, the augers and split-spoon samplers were decontaminated using a high-pressure steam cleaner and potable water after use at each boring.

Three HSA borings (WBF-102, WBF-102Alt, and WBF-102Alt1) were abandoned and backfilled after the initial pilot boring and not completed as permanent wells. The augers were withdrawn, and each borehole was tremie-backfilled using a 30% solids bentonite grout.

Four HSA borings (WBF-101, WBF-103, WBF-104, and WBF-106) were completed as planned and finished with the installation of a permanent monitoring well. After reaching the targeted depth, the augers were withdrawn, and the borehole was overdrilled using an 8.25-inch inside diameter auger (resulting in approximately a 13-inch borehole diameter). Well installation procedures for the boreholes completed as permanent wells are described in Section 3.4.

Field Activities November 9, 2020

Two HSA borings (WBF-102Alt2 (Sonic) and WBF-105/WBF-105 (Sonic)) were tremie-backfilled using a 30% solids bentonite grout after the initial pilot boring and subsequently re-drilled using a roto-sonic drill rig as described in Section 3.3.1.3 below.

3.3.1.3 Roto-Sonic

Two borings (WBF-102Alt2 (Sonic) and WBF-105/WBF-105 (Sonic)), which started as HSA borings, were subsequently completed using roto-sonic techniques due to the presence of CCR material in the shallow soil layers. With TVA and TDEC approval, the drilling methodology was changed at these boring locations in order to minimize the possible migration of CCR material downward in the boreholes. Stantec utilized the subcontractor M&W Drilling for the roto-sonic portion of these borings, who provided a driller licensed in Tennessee to operate a truck-mounted roto-sonic drilling rig.

Boring WBF-102Alt2 (Sonic) was initially advanced to a depth of 10 feet below ground surface (ft bgs) as an HSA pilot boring using 8.25-inch inside diameter augers (resulting in approximately a 13-inch borehole diameter). This portion of the boring was not sampled or logged because of its close proximity to WBF-102Alt1, which was sampled and logged. The augers were withdrawn, and the borehole was tremie-backfilled with a 30% solids bentonite grout. A 10-inch diameter PVC casing sleeve was then inserted into the borehole through the grout column to a depth of 10 ft bgs to isolate the CCR material in the shallow soils from the interior of the casing. Subsequently, the roto-sonic rig was maneuvered over the borehole and advanced a 6-inch diameter steel core barrel and 8-inch diameter steel casing to 21 ft bgs nested within the grout-filled 10-inch PVC casing. The 6-inch diameter core barrel was withdrawn to facilitate subsequent installation of the monitoring well as described in Section 3.4. The 10-inch diameter PVC casing was left in place and cut off just below surface grade.

The process at boring WBF-105/WBF-105 (Sonic) was similar in most respects to boring WBF-102Alt2 (Sonic). Boring WBF-105/WBF-105 (Sonic) was initially drilled as a 4.25-inch inside diameter HSA pilot boring advanced to 19.5 ft bgs. CCR material was identified in shallow soils to a depth of approximately 9 ft bgs. The borehole was overdrilled using 8.25-inch inside diameter augers to 18 ft bgs. The augers were withdrawn, and the borehole was tremie-backfilled with a 30% solids bentonite grout. A 10-inch diameter PVC casing was installed to 18 ft bgs through the grout column. The roto-sonic 6-inch diameter core barrel and 8-inch diameter core barrel was withdrawn to facilitate subsequent installation of the monitoring well as described in Section 3.4. The 10-inch diameter PVC casing was left in place and cut off just below surface grade.

3.3.2 Soil Sampling

During advancement of each boring, the Stantec PG prepared field subsurface logs using a mobile data collection platform. Inputs included a description of subsurface lithology, sample recovery, color using the Munsell Soil Color Chart, and other relevant parameters as required by the SAPs and TIs. Subsurface logs for the WBF Plant HGI are presented in Attachment C.1 in Appendix C.

Soil samples recovered from each boring were examined to provide lithologic information for a continuous boring log/soil profile and for analysis, as described below.

Field Activities November 9, 2020

3.3.2.1 Geotechnical Sampling

At HSA borings, following preparation of the subsurface logs, geotechnical soil samples were placed in laboratory-provided glass jars and labeled in general accordance with the SAP. FSP secured the caps on each bottle, and confirmed it was labeled legibly and externally clean before placing the sample container in a box for storage prior to transport to the laboratory. Geotechnical sample information was recorded on a *COC* as described above in Section 3.2.1.3. The samples were temporarily placed in a secure storage unit onsite under custody protocols until transport and submittal to the geotechnical laboratory.

Stantec personnel transported and submitted the geotechnical samples to the Stantec Geotechnical Laboratory in Lexington, Kentucky. No geotechnical samples were tested since they were not needed for additional lithologic and geotechnical information and they remain stored at the Stantec laboratory.

3.3.2.2 CCR Parameter Sampling

Soil samples were collected from background monitoring well boring locations for analysis of CCR-related constituents following procedures in the Background Soil SAP. Two soil samples and one field duplicate were collected from the screened interval depth range of the two background monitoring well borings and submitted for laboratory analysis:

- Boring WBF-102Alt2 (Sonic) was completed as well WBF-102 one sample and one field duplicate sample were collected (17.5 to 19.5 ft bgs)
- Boring WBF-103 was completed as well WBF-103 one sample was collected (12.0 to 15.0 ft bgs).

As specified in the WBF Plant Background Soil SAP, the soil samples collected from the background monitoring well boring were analyzed for CCR-related constituents listed in Appendices III and IV of Title 40 of the Code of Federal Regulations (CFR) Part 257 (40 CFR 257). In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with the TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents are hereafter referred to as "CCR Parameters".

Background soil sampling investigation activities, including sampling procedures, laboratory information, and analytical results are presented in the WBF Plant Background Soil Investigation SAR.

3.4 MONITORING WELL INSTALLATION

3.4.1 Well Installation

Monitoring wells were installed in the borings by qualified drill crews working under the direction of a Stantec PG and a licensed Tennessee driller. Well installation was carried out in general accordance with ENV-TI-05.80.25, *Monitoring Well and Piezometer Installation and Development*. Well construction details are documented on the Well Installation Details provided in Attachment C.2 in Appendix C.

Field Activities November 9, 2020

The lowest portions of the borings were backfilled with sand filter pack (20/40 mesh). The monitoring well was installed above the backfilled portion. Monitoring wells consisted of a four-inch diameter Schedule 40 PVC pre-packed well screen (0.010-inch slots) and riser. The screen and riser consisted of flush-joint, threaded PVC pipe. The screen length was selected based on the results of the boring log and the target stratum and was either 4.8 feet or 9.8 feet. A four-inch diameter Schedule 40 PVC bottom well plug measuring approximately 0.4 feet in length was threaded onto the bottom of the screen. The PVC riser extended a minimum of 2.5 feet above the ground surface and was capped with a temporary plug or slip cap. The annular space was backfilled with a sand filter pack extending approximately two feet above and six inches below the screen. A bentonite pellet seal approximately two feet thick was placed on top of the sand filter pack. The sand filter pack and bentonite pellets were either placed by tremie method or poured slowly into the annular space of the drill tooling to prevent bridging.

After the bentonite pellet seal had sufficiently hydrated for a duration equal to or greater than the minimum recommended by the manufacturer (a minimum of four hours), the remaining annular space was backfilled with a 30% solids bentonite grout. The grout was placed by tremie method through one-inch diameter PVC pipe using pumps gauged to allow the installation crew to monitor pressures during the grouting process.

Subsequent monitoring well surface completions consisted of an above-grade steel locking protective cover anchored to a concrete surface pad. The protective cover extended above the concrete pad and the annular space was filled with sand or pea gravel to about six inches below the top of PVC casing. Steel protective bollards were installed near each corner of the concrete pad and filled with concrete.

A summary of monitoring well construction specifications is presented in Table B.1 in Appendix B. Full construction details are presented in the Well Installation Details provided in Attachment C.2 in Appendix C.

3.4.2 Well Development

Each new monitoring well was developed in accordance with ENV-TI-05.80.25, *Monitoring Well and Piezometer Installation and Development* by a combination of bailing, surging, and pumping after a minimum of 24 hours following well installation. First, a three-inch diameter PVC bailer was lowered and raised within the screened intervals to create a slight surging action to dislodge particles within the wells and sand filter packs. Then the bailer was used to remove turbid water from the well. Baseline readings of turbidity, pH, temperature, and specific conductance were measured using a calibrated YSI Pro Plus water quality meter and a calibrated Hach 2100Q turbidity meter. This process of alternately surging and bailing was repeated several times to decrease the water turbidity within the wells. Lastly, a submersible pump was employed to further develop the wells until stabilization criteria for turbidity (\leq 10 Nephelometric Turbidity Units), pH (\pm 0.1 Standard Unit), temperature (\pm 10%), and specific conductance (\pm 10%) were achieved. The target turbidity value was based on well purging criteria specified in ENV-TI-05.80.42, *Groundwater Sampling* at the time of development. Well development details were recorded on the *Well Development Form.* A summary of initial and final water quality measurements is presented in Table B.2 in Appendix B. Field Activities November 9, 2020

3.4.3 Hydraulic Conductivity (Slug) Testing

After development, Stantec performed slug tests in five of the six monitoring wells to estimate hydraulic conductivity. Monitoring well WBF-102 could not be tested, because it was repeatedly dry or had insufficient water column to conduct the tests. The slug tests were performed in accordance with ASTM D4044: *Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers*. A pressure transducer with a data recorder was used to collect water level information from the wells.

Three rising-head and three falling-head slug tests were performed at each well, as shown in Table B.3 in Appendix B. Each well was tested by taking an initial measurement of the static water level followed by the insertion of the pressure transducer into the well. After the transducer had been installed, a falling-head slug test was conducted by introducing a solid slug (e.g., PVC pipe filled with sand) into the well to cause a nearly instantaneous rise in the water level. The water levels were then recorded at regular intervals until reaching near initial static levels. After the first test concluded, a rising-head slug test was conducted by removing the slug to cause a nearly instantaneous drop in the water level. Water levels were recorded until near initial static water levels were reached again. The procedure of alternating a falling-head and a rising-head slug test was conducted three times at each well. The data were recorded electronically by the transducer and downloaded into a data collector. Raw data were checked in the field for discrepancies prior to demobilizing from the WBF Plant.

The field data were analyzed using AQTESOLV[™] Version 4.50 Professional software to estimate the hydraulic conductivity of the saturated soils in the screened interval. Calculated hydraulic conductivities are summarized in Table B.3 in Appendix B, and the software output package is provided in Appendix E. The following assumption and method were utilized for the calculations:

• The analysis was completed using the Bouwer-Rice method. The solution was matched to the normalized plotted recovery data between 70-80% recovery.

3.4.4 Pump Installation

A new, decontaminated, QED Environmental Systems, Inc. brand dedicated bladder pump was installed in each new monitoring well after well development was completed. The pump model installed in each well was either a P1150 if the water column height above the pump intake was less than 10 feet, or a model P1101M if it was more than 10 feet. Each pump intake was placed at approximately the mid-point of the well screened interval or the mid-point of the saturated portion of the well screened interval for future groundwater sampling. Following pump installation, the pumps were calibrated in general accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Well pump placement depths, installation calculations, and calibration details were recorded on the QED Well Wizard Dedicated Sampling Pump Installation Checklist and the Dedicated Pump Calibration Form. Pump installation information is provided in Table B.4 in Appendix B.

Field Activities November 9, 2020

3.4.5 Well Surveys

After the surface completions for each monitoring well were installed, the well was professionally surveyed using a survey-grade GPS for horizontal and vertical control. Measurements were calculated relative to the coordinate systems used by the WBF Plant. Well survey information is provided in Table B.5 in Appendix B.

3.5 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during the HGI included:

- Soil cuttings
- Well development water
- Decontamination fluids
- Personal protective equipment (PPE)
- General trash.

IDW was handled in general accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.25, *Monitoring Well and Piezometer Installation and Development*; the HGI SAP; the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW were coordinated with the WBF Plant facility management. Soil cuttings, decontamination fluids, and well development water were managed as authorized by WBF Plant facility management and in accordance with the HGI SAP. Used disposable PPE (e.g., nitrile gloves) and general trash were placed in garbage bags and disposed of in a municipal waste dumpster onsite.

3.6 VARIATIONS

The proposed scope and procedures for the HGI were outlined in the SAP, QAPP, applicable TVA TIs, and ASTM standards as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for the HGI at the WBF Plant.

3.6.1 Variations in Scope

Variations in scope are provided below.

• The location of boring WBF-102 was relocated three times due to encountering construction debris, CCR materials, or refusal before reaching groundwater. The final well location approved by TDEC was originally designated as WBF-102Alt2 (Sonic) and renamed as well WBF-102.

Field Activities November 9, 2020

- The location of well WBF-105 was relocated to the southwest as approved by TDEC because three pre-screen borings encountered CCR materials.
- Monitoring well WBF-102 could not be slug tested due to insufficient water column height within the casing. Slug tests were performed at the other monitoring wells installed during the HGI.
- Geotechnical samples were not analyzed as specified in the SAP because sufficient lithologic and geotechnical information were available from other EIP drilling activities to meet the objectives of the HGI.

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

 Borings WBF-102Alt2 (Sonic) and WBF-105/WBF-105 (Sonic) encountered CCR material in the shallow soils. As described in Section 3.3.1.3, the drilling methodology was modified, as approved by TVA and TDEC, to minimize CCR material migration deeper into the boreholes. These borings were completed with the installation of monitoring wells WBF-102 and WBF-105, respectively.

Summary November 9, 2020

4.0 SUMMARY

The data presented in this report are from the HGI at the WBF Plant. Six permanent monitoring wells were installed during the HGI to support data collection for the groundwater and background soil investigations at the WBF Plant, including groundwater level measurements, and groundwater and background soil sample collection for analysis of CCR Parameters. The scope of work for the HGI included:

- Drilled 13 pre-screen soil borings in the vicinities of proposed monitoring well locations
- Drilled nine soil borings for installation of four permanent monitoring wells and two background monitoring wells
- Collected soil samples to develop a continuous boring log/soil profile for each boring
- Collected two soil samples and one field duplicate for analysis of CCR Parameters from the screened interval depth range of two background monitoring well borings
- Installed permanent monitoring wells in six of the borings and constructed surface completions
- Developed each new monitoring well
- Conducted slug tests in five new monitoring wells to estimate hydraulic conductivity
- Surveyed each new monitoring well.

A summary of boring and monitoring well locations is presented in Table 1. Monitoring well construction specifications, well development, hydraulic testing results, pump installation details, and survey information are presented in Tables B.1 through B.5, respectively. Background soil sampling information and analytical results are reported in the Background Soil Investigation SAR, and groundwater level measurements and sampling analytical results are reported in a series of Groundwater Investigation SARs for the WBF Plant.

Stantec has completed this HGI at the WBF Plant in Spring City, Tennessee, in accordance with the HGI SAP as documented herein. The data collected during the HGI are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. HGI drilling and well installation data will be evaluated along with data collected under other TDEC Order SAPs, including but not limited to, the background soil investigation and the six sampling events of the groundwater investigation, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References November 9, 2020

5.0 **REFERENCES**

- American Society for Testing and Materials (ASTM). D6151: Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling.
- ASTM. D1586: Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils.
- ASTM. D4044: Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers.
- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. Prepared for Tennessee Valley Authority. November 2018.

Munsell Color. 2009. Munsell Soil Color Book.

- Stantec Consulting Services Inc. (Stantec). 2018a. *Hydrogeological Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018c. *Background Soil Sampling and Analysis Plan, Watts Bar Fossil Plant*. Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

TVA. ENV-TI-05.80.03, Field Record Keeping.

TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.

TVA. ENV-TI-05.80.25, Monitoring Well and Piezometer Installation and Development.

TVA. ENV-TI-05.80.42, Groundwater Sampling.

APPENDIX A - EXHIBITS

nployees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Exhibit No. **A**.1

Title Site Map and Monitoring Well Locations

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project Lo	ocation				175668050
Spring C	ity, Tennesse	ee			red by MB on 2020-07-09 ew by MW on 2020-07-09
	0	150	300	450	600 Feet
	1:1	,800 (At orig	inal docum	ent size of 22	x34)
Lege	end				
•	Monitorir	ng Well (Surv	ey 8/26/201	9) Boring Na	•
\bigcirc	Drilled ar	nd Abandon	ed Borehol	e Boring Na	mə
	2018 lma	igery Bound	ary		
	CCR Unit	Area (Appr	oximate)		
	Closed C	Chemical Po	nd (Approxi	mate)	
	Consolid	ated and C	apped CCF	Area (Appro	oximate)
	Drainage Ash Ponc		ents Area; Si	ormwater Po	ond (Former

Notes

Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and ESRI World Imagery
 Boring Name? As-drilled boring location not surveyed. Horizontal coordinates based on field measurements. Vertical coordinates based on 2017 LIDAR surfaces.

APPENDIX B - TABLES

Table B.1 - Summary of Monitoring Well Construction SpecificationsWatts Bar Fossil PlantMay-October 2019

	Top of	Casing	E	Bottom of We	ell			Screene	d Interval		
Well ID	Stickup	Elevation	Depth	Depth	Elevation	Depth Top	Depth Bottom	Depth Top	Depth Bottom	Elevation Top	Elevation Bottom
	ft ags	ft NGVD29	ft bgs	ft btoc	ft NGVD29	ft bgs	ft bgs	ft btoc	ft btoc	ft NGVD29	ft NGVD29
WBF-101	4.4	703.15	33.1	37.5	665.6	22.9	32.7	27.3	37.1	675.8	666.0
WBF-102	4.8	723.98	19.8	24.6	699.4	14.6	19.4	19.4	24.2	704.6	699.8
WBF-103	4.0	725.09	18.2	22.2	702.9	13.0	17.8	17.0	21.8	708.1	703.3
WBF-104	3.4	697.45	28.3	31.7	665.8	18.1	27.9	21.5	31.3	676.0	666.2
WBF-105	4.7	704.50	32.7	37.4	667.1	27.5	32.3	32.2	37.0	672.3	667.5
WBF-106	4.7	706.34	33.3	38.0	668.4	23.1	32.9	27.8	37.6	678.5	668.7

Notes:

ags	above ground surface
bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
NGVD29	National Geodetic Vertical Datum of 1929

1. Measurement data are from Well Installation Details (Appendix C.2).

2. Wells were surveyed on August 26, 2019.

Table B.2 - Summary of Well Development DataWatts Bar Fossil PlantMay-October 2019

	рН		Turbidity		Specific Conductance		Temperature	
Well ID	Initial	Final	Initial	Final	Initial	Final	Initial	Final
			NTU	NTU	uS/cm	uS/cm	DEG C	DEG C
WBF-101	7.18	6.58	>1,000	9.68	423.9	630	18.7	21.0
WBF-102	6.68	6.41	>1,000	8.53	1,143	1,361	20.4	21.8
WBF-103	6.54	5.39	>1,000	5.72	216.9	341.8	19.3	20.0
WBF-104	6.11	6.11	>1,000	8.92	1,664	2,443	22.0	22.8
WBF-105	6.56	6.54	>1,000	2.96	759	1,021	22.8	19.7
WBF-106	6.49	6.13	>1,000	2.48	1,060	1,159	18.9	19.1

Notes:

>	result greater than
DEG C	degrees Celsius
ID	identification
NTU	Nephelometric Turbidity Unit
uS/cm	microSiemens per centimeter

Table B.3 - Summary of Hydraulic Conductivity Testing ResultsWatts Bar Fossil PlantMay-October 2019

	Saturated	Number	of Tests	Average Hydraulic	Average Hydraulic	
Well ID	Thickness	Falling Head	Rising Head	Conductivity	Conductivity	
	ft			ft/day	cm/s	
WBF-101	14.67	3	3	0.5411	1.91E-04	
WBF-103	5.59	3	3	20.59	7.26E-03	
WBF-104	15.32	3	3	0.6400	2.26E-04	
WBF-105	22.34	3	3	1.373	4.85E-04	
WBF-106	22.16	3	3	0.7648	2.70E-04	

Notes:

cm/s	centimeters per second
ft	feet
ID	identification

Table B.4 - Summary of Pump Installation DetailsWatts Bar Fossil PlantMay-October 2019

		Bottom of Well		Groundwater Level		Pump Intake			
Well ID	Top of Casing Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Water Column Above Intake	
	ft NGVD29	ft btoc	ft NGVD29	ft btoc	ft NGVD29	ft btoc	ft NGVD29	ft	
WBF-101	703.15	37.51	665.64	15.31	687.84	32.2	671.0	16.9	
WBF-102	723.98	24.56	699.42	22.00	701.98	23.0	701.0	1.0	
WBF-103	725.09	22.22	702.87	14.78	710.31	19.5	705.6	4.7	
WBF-104	697.45	31.66	665.79	13.03	684.42	26.4	671.1	13.4	
WBF-105	704.50	37.43	667.07	12.70	691.80	35.1	669.4	22.4	
WBF-106	706.34	37.94	668.40	13.83	692.51	32.6	673.7	18.8	

Notes:

btoc	below top of casing
ft	feet
NGVD29	National Geodetic Vertical Datum of 1929

1. Wells were surveyed on August 26, 2019.

2. Depth data are from *QED Well Wizard Dedicated Sampling Pump Installation Checklists* dated August 14-15, 2019. Depth to groundwater level was measured prior to pump insertion. Pump intake and water column above intake rounded to nearest 0.1 foot.

Table B.5 - Summary of Monitoring Well Survey DataWatts Bar Fossil PlantMay-October 2019

Well ID	WBF Plant Local Northing	WBF Plant Local Easting	Latitude	Longitude	Ground Surface Elevation
	ft NAD27	ft NAD27	DMS NAD27	DMS NAD27	ft NGVD29
WBF-101	443,876.99	2,362,987.15	35° 36' 18.70"	-84° 46' 44.09"	698.7
WBF-102	443,745.53	2,362,237.49	35° 36' 17.49"	-84° 46' 53.19"	719.2
WBF-103	444,765.49	2,361,678.22	35° 36' 27.64"	-84° 46' 59.80"	721.1
WBF-104	444,336.57	2,363,103.76	35° 36' 23.23"	-84° 46' 42.61"	694.1
WBF-105	445,050.70	2,363,041.85	35° 36' 30.30"	-84° 46' 43.25"	699.8
WBF-106	445,872.50	2,362,862.26	35° 36' 38.45"	-84° 46' 45.30"	701.7

Notes:

DMS	Degrees, Minutes, Seconds
ft	feet
ID	identification
NAD27	North American Datum of 1927
NGVD29	National Geodetic Vertical Datum of 1929

1. Wells were surveyed on August 26, 2019. Coordinates are for the top of well casing, except ground surface elevation which is adjacent to the concrete well pad. Northing and Easting coordinates rounded to the nearest 0.01 feet. Latitude and Longitude rounded to the nearest 0.01 degree. Ground surface elevations rounded to the nearest 0.1 feet.

APPENDIX C – SUBSURFACE LOGS AND WELL INSTALLATION DETAILS

ATTACHMENT C.1

Subsurface Logs

Subsurface Boring Legend

Lithology Graphics

Symbol	Lithology
	Fill
	Top Soil
070707070 00000000 07007000 07007000	Gravel
0 0 0 0 9 8 8 0 8 8	Well Graded Gravel (GW)
0 0 0 0 9 0 0 0 0 0 0	Poorly Graded Gravel (GP)
	Silty Gravel (GM)
	Silty, Clayey Gravel (GC-GM)
	Clayey Gravel (GC)
	Well Graded Gravel with Silt (GW-GM)
	Well Graded Gravel with Clay (GW-GC)
	Poorly Graded Gravel with Silt (GP-GM)
	Poorly Graded Gravel with Clay (GP-GC)
••••	Well Graded Sand (SW)
	Poorly Graded Sand (SP)
	Silty Sand (SM)
	Silty, Clayey Sand (SC-SM)
	Clayey Sand (SC)
	Well Graded Sand with Silt (SW-SM)
$\boxed{\cdot \cdot \mathbb{Z}}$	Well Graded Sand with Clay (SW-SC)
	Poorly Graded Sand with Silt (SP-SM)
	Poorly Graded Sand with Clay (SP-SC)
	Silt (ML)
	Silty Clay (CL-ML)
	Lean Clay (CL)
	Organic Silt (OL)
	Elastic Silt (MH)
	Fat Clay (CH)
	Organic Clay (OH)
	Shale
$\begin{array}{c} \times \times \times \times \\ \times \times \times \times \\ \times & \times & \times \end{array}$	Siltstone
	Coal
	Limestone
· · · · · · · · · · · · · · · · · · ·	Sandstone

Other Graphics

Symbol	Description
	Denotes environmental analytical sample interval
	Denotes SS sample interval
	Denotes ST sample interval
	Denotes DP sample interval
	Denotes RS sample interval
	Denotes RC sample interval
Ā	First water level reading
Ţ	Second water level reading
 Co	mmon Abbreviations

Common Abbreviations

Abbreviation	Definition
DP	Direct Push
HA	Hand Auger
HSA	Hollow Stem Auger
N/A	Not Applicable
NR	Not Recorded
RC	Rock Core
RQD	Rock Quality Designation
RS	Rotary Sonic
SS	Split Spoon
ST	Shelby Tube
WH	Weight of Hammer
WR	Weight of Rod

General Notes

The boring logs include sample numbering used during drilling. For assigned Environmental Analytical Sample ID numbers, see relevant Environmental Chain-of- Custody forms from the drilling date range listed on each log.

For pH readings and additional field data, see applicable field documentation (e.g., Soil pH Data Form) from the drilling date range listed on each log.

Lithology Graphics are based on TVA drafting standards.

Client Temessase Valley Authority Boring Location 443,876.69 N 2,362.987.15 E NAD27 Plant Locat Project Number T7566050 Surface Elevation e98.7 ml Elevation Datum NSVD29 Project Location Rea Co, Spring City, Temessase Date Startafe Oate Startafe Oate Startafe Drilling Contractor Starta Daget N to Water 10.5 ft Date/Time N/A Drilling Contractor Starta Daget N to Water N/A Date/Time N/A Overduit Doning (Type and Size) -1.14" HSA.2" SS w/o liners Coverduit Depth 34.0 ft Sampler Hammer Type Automatic Weight 140 B Drop 30" Efficiency N/A Borehole Azimuth MA Borehole Inclination (from Vertical) N/A Reckewel By C. Kocks 0 0.0 688.7 Top of Hole Rock Core ROD % Run Ft Rec. R Rec. % 1 1.5 697.2 Cushed store, grass and topsoil, (FLL) SS0160 0.7 - 1.5 0.9 12.4-7 2 0.0 688.7 Top of Hole	С	lient E	Borehole	ID N/A	A	Stantec Boring	g N	o. WBF	-101			
Project Number Traceados Surface Elevation Bear.n Elevation Date Started Completed 6/12/19 Project Name WBF TDEC Order Date Started 0/11/19 Completed 6/12/19 Date Started 0/11/19 Completed 6/12/19 20/12/19/12/20 Date Started Date Time 6/12/19 Date Time MA MA NA Date Time MA Date Time MA MA MA MA Date Time MA MA MA MA MA Date Time MA MA MA MA Date T										7.15	E NAD27	Plant Local
Project Name WBF TDEC Order Date Started 6/11/19 Completed 6/12/19 Inspector 0.8 Uud Logger S.Budd Depth to Water N/A Date Started Date Started Date Started Depth to Water N/A Overburden Drilling and Sampling Tools (Type and Size) M/A Date Started Dill Rig Type and ID CME 850XR. #953 Overburden Drilling and Sampling Tools (Type and Size) N/A Depth to Water N/A Overdrill Tooling (Type and Size) N/A Borehole Inclination (from Vertical) N/A Borehole Azimuth N/A Borehole Inclination (from Vertical) N/A N/A Borehole Azimuth N/A Borehole Inclination (from Vertical) N/A N/A Depth Pt ² Elevation Grade atom, grass and topsoli, (FLL) Stortag 0.0 - 0.7 BlowsPsi 1 1.5 697.2 Top of Hole Stortag 0.0 - 0.7 BlowsPsi 2 0.0 - 0.7 0.9 12.8-7 Stortag Stortag 0.2.9 12.8-7			Number			-						
Project Location Resea Co. Spring City, Tennessee Depth to Water INA Date/Time 6/12/19 12:30 Inspector 6. Budd Logger G. Budd Dift IR G Type and ID CWE BSXR, #953 N/A Date/Time 6/12/19 12:30 Overburden Dmilling and Sampling Tools (Type and Size) +1/4* HSA.2* SS w/o liners Overdrill Depth 34.0 ft Sampler Hammer Type Automate Weight 140.b Drop 30* Efficiency N/A Borehole Azimuth N/A Borehole Inclination (from Vertical) N/A N/A Borehole Azimuth N/A Borehole Inclination (from Vertical) N/A N/A Depth Pt [*] Elevation Graphic Description Overburden: Sample* ² Roc. Ft Borehole N/A 1 1.6 697.2 Top of Hole Crusted stone, grass and topolit, [FILL] Stol ag 0.0 -0.07 0.9 1.1 6-5-7 3 3.5 605.2 Crusted stone, grass and topolit, [FILL] Stol ag 0.0 -0.7 0.9 1.2 3-4-5 1 1.6		-						-				
Inspector G. Budd Logger G. Budd Depth to Water NA Date/Time NA Drilling Contractor Sampler Overdrill Depth 34.0 ft Sampler Hammer Type Automatic Weight 140 b Drop 30" Efficiency NA Borehole Azimuth NA Borehole Inclination (from Vertical) NA NA Reviewed By C. Kocka Approved By LPrice Efficiency NA 0 0.0 688.7 Top of Hole Description Rec. Ft Sampler		-										
Drilling Contractor Stantec Consuling Services Inc. Drill Rig Type and ID_CME 850XR, #963 Overburden Drilling and Sampling Tools (Type and Size) NA Overdrill Tooling (Type and Size) NA Overdrill Tooling (Type and Size) 8-1/4" HSA, 2" SS w/o liners Sampler Harmer Type Automatic Borehole Azimuth NA Borehole Azimuth Sample Zimuth		-		-						me	N/A	
N/A Overdrill Tooling (Type and Size) N/A Sampler Hammer Type Automatic Weight 140.lb Drop 30" Efficiency N/A Sampler Hammer Type Automatic Weight 140.lb Drop 30" Efficiency N/A N/A Borehole Inclination (from Vertical) N/A N/A Lithology C. Kocka Approved By L Price Lithology Depth Ft ² Rec. Ft Blows/PSi Depth Ft ² Rec. Ft Blows/PSi Lithology Cruched stone, grass and topsoill, [FLL] 0 0.7 698.7 Top of Hole 0 0.7 880.7 0.9 12.8-7 1 1.5 697.2 LEAN CLAY, CL, 7.5YR 5/6 (strong brown) and 7.5YR 6/6 (strong brown). SS036G 3.5 -4.5 1.2 3.4-5 Godd ablow, with												
Overdrill Tooling (Type and Size) 8-1/4" HSA overdrill of boring Overdrill Deph 34.0 ft Sampler Hammer Type Automatic Weight 140 b Drop 30" Efficiency N/A Borehole Azimuth N/A Borehole Inclination (from Vertical) N/A N/A Reviewed By C. Kocka Approved By L Price N/A Deph Ft ² Elevation Graphic Description Rock Core: RQD % Run Ft Rec. Ft Rec. Ft Rec. Ft Rec. % 0 0.0 698.7 Top of Hole Status Status Status Status 0.0 1.5 Rec. Ft Rec. Ft Rec. % 1 1.5 697.2 LEAN CLAY, CL, 7.5YR 5/6 (strong brown) and 7.5YR 6/7 (gray), stift to medium stift. dry, with sandstore gravel, FtLL] Status Status Status Status 1.1 6-5-7 3 3.5 695.2 SANDY LEAN CLAY, CL, 7.5YR 5/6 (strong brown), low to medium plasticity, sort, moist, with some very fme sand, with organics Status Status 1.4 2-2 3-4-5 1.5 3-4-4 <td>0</td> <td>verbu</td> <td>rden Dril</td> <td>ling and</td> <td>Sampling Tools (Type and Size)</td> <td>4-1/4" HSA, 2" \$</td> <td>SS w</td> <td>v/o liners</td> <td></td> <td></td> <td></td> <td></td>	0	verbu	rden Dril	ling and	Sampling Tools (Type and Size)	4-1/4" HSA, 2" \$	SS w	v/o liners				
Sampler Hammer Type Automatic Weight 140 lb Drop 30" Efficiency N/A Borehole Azimuth N/A Borehole Inclination (from Vertical) N/A N/A Reviewed By C. Kocka Approved By Price N/A N/A Depth Ft ² Elevation Graphic Description Rock Core: RGD % Run Ft Rec. Ft Blows/PSI 0 0.0 698.7 Top of Hole Crushed store, grass and topsoil, [FILL] S801aG 0.0 -0.7 9 0.9 12.8-7 1 1.5 697.2 Crushed store, grass and topsoil, [FILL] S801aG 0.0 -0.7 9 0.9 12.8-7 2 LEAN CLAY, CL, 7.5YR 5/6 (strong brown) and 7.5YR 5/6 (strong brown), low to medium plasticity, soft, moist, with some very fine sand, with organics S803aG 3.0 - 3.5 1.1 6-7 4 1.5 SANDY LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS03GG 3.0 - 3.5 1.3 3.2-4 8 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medi			•	•	• • • • • • • • • • • • • • • • • • •							
Borehole Azimuth Reviewed By N/A Borehole Inclination (from Vertical) N/A Linclogy C. Kocka Approved By L. Price Deph Ft ² Elevation Graphic Description Overburder: Sample'2 Depth Ft ² Rec. Ft Rec. % 0 0.7 698.7 Top of Hole Rock Core RQD % Run Ft Rec. Ft Rec. % 1 1.5 697.2 Unsettine gravel from 0.0'to 0.4'to 0.4'										De	pth _3	4.0 ft
Reviewed By C. Kocka Approved By L. Price Lithology Description Overburden: Sample ¹² Depth Ft ² Rec. Ft Blows/PSi 0 0.0 698.7 Top of Hole Rock Core: ROD % Run Ft Rec. Ft Blows/PSi 1 1.5 697.2 Crushed store, grass and topsoil, [FILL] SS01aG 0.0 - 0.7 0.9 12.8-7 2 LEN CLAY, CL, 7.5YR 5/6 (strong brown) and V. TSYR 6/1 (dry), with sandstone gravel, [FILL] SS02G 1.5 - 3.0 1.1 6-5-7 3 3.5 695.2 SANDY LEAN CLAY, CL, 7.5YR 3/6 (strong brown), and V. FIFLIL] SS03aG 3.0 - 3.5 1.2 3-4-4 5 I IEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, very stift, dry, with sandstone gravel, FIFLI SS03G 6.0 - 7.5 1.3 3-2-4 6 SS06G 7.5 - 9.0 1.4 2-2-3 1.5 2-2-3 9 SS07G 9.0 - 10.5 1.5 1.5 2-2-3 11 I I Clayey sand lens, wet from 13.5' to 14.0' </td <td></td> <td></td> <td></td> <td></td> <td></td> <td> ·</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>						·			•			
Lithology Depth Fl^2 Elevation Graphic Description Overburden: Sample l^2 Depth Fl^2 Rec. Fl Blows/PSI 0 0.0 698.7 Top of Hole Rock Core RQD % Run Ft Rec. Fl								•	Vertical)	N/.	A	
Depth Ft ² Elevation Graphic Description Rock Core: RQD % Run Ft Rec. Ft Rec. % 0 0.0 698.7 Top of Hole 1 1 5 0 0.0 698.7 0.9 12.8-7 1 1.5 697.2 Limestone gravel from 0.0 to 0.4' SS014G 0.0 - 0.7 6 0.9 12.8-7 2	L R	eview	ed By	C. Ko	cka	Approved By		L. Price				
0 0.0 698.7 Top of Hole 0 0 1 0.7 698.0 Cushed stone, grass and topsoill, [FILL] SS01aG 0.0 - 0.7 5 1 1.5 697.2 LEAN CLAY, CL, 7.5YR 5/6 (strong brown) and Vimestone and chert gravel, [FILL] SS01aG 0.0 - 0.7 5 0.9 12-8-7 3 3.5 695.2 Variability, very stiff, dry, with sandstone gravel, [FILL] SS03aG 3.0 - 3.5 1.1 6-5-7 4 1 LEAN CLAY, CL, 7.5YR 5/6 (strong brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS03aG 3.0 - 3.5 1.2 3-4-5 5 1 LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS03G 3.5 - 4.5 1.5 3-4-4 8 9 10 710.5 688.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS03G 1.5 - 1.2.0 1.5 1.5 2-2-3 9 10 710.5 688.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist									•			Blows/PSI
0 0.7 698.0 Crushed store, grass and topsoill, [FILL] SS01aG 0.0 - 0.7 6 1 1.5 697.2 LEAN CLAY, CL, 7.SYR 5/6 (strong brown) and 7.SYR 6/1 (gray), stift medium stift, dry, with uimestone and chert gravel, [FILL] SS01aG 0.0 - 0.7 5 3 5 695.2 SANDY LEAN CLAY, CL, 7.SYR 5/6 (strong brown), low to medium stift, dry, with sandstone gravel, [FILL] SS03aG 3.0 - 3.5 1.1 6-5-7 4 IEAN CLAY, CL, 7.SYR 5/6 (strong brown), low to medium plasticity, very stift, dry, with sandstone gravel, [FILL] SS03aG 3.0 - 3.5 1.2 3.4-5 5 IEAN CLAY, CL, 7.SYR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS04G 4.5 - 6.0 1.5 3.4-4 6 SS06G 7.5 - 9.0 1.4 2-2-3 9 SS07G 9.0 - 10.5 1.5 2-1-3 10 V10.5 688.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS07G 9.0 - 10.5 1.5 2-1-3 11 Clayey sand lens, wet from 13.5' to 14.0' SS10G 13.5 - 15.0 1.4 WH-1-1 14 Clayey sand lens, wet fr	Dept	th Ft ³		Graphic		Rock Core:		RQD %	Run Ft	 .	Rec. Ft	Rec. %
1 0.0 0000 0000 0000 0000 0.0 12.8-7 1 1.5 697.2 LEAN CLAY, CL, 7.5YR 56 (strong brown) and 7.5YR 6/1 (gray), stiff to medium stiff, dry, with limestone and chert gravel, [FILL] SS01bG 0.7 - 1.5 0.9 12.8-7 3 3.5 695.2 SANDY LEAN CLAY, CL, 7.5YR 5/6 (strong brown), low plasticity, very stiff, dry, with sandstone gravel, [FILL] SS03aG 3.0 - 3.5 1.1 6-5-7 4 1.5 SANDY LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS03bG 3.5 - 4.5 1.2 3-4.4 6 SS05G 6.0 - 7.5 1.3 3-2.4 3-4.4 7 SS05G 6.0 - 7.5 1.3 3-2.4 3-4.4 8 SS05G 6.0 - 7.5 1.4 2-2.3 3-4.4 9 SS05G 6.0 - 7.5 1.4 2-2.3 3-4.4 10 Y10.5 668.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS06G 10.5 - 12.0 1.5 1.5 2-1.3 11 Clayey sand lens, wet from 13.5' to 14.0' SS11G	- 0	0.0	698.7	୦୫୦୫୦୫୦			$\left \right $					
1 1.5 697.2 LEAN CLAY, CL, 7.5YR 5/6 (strong brown) and 7.5YR 6/1 (gray), stiff to medium stiff, dry, with limestone and chert gravel, FILL] SS02G 1.5 - 3.0 1.1 6-5-7 3 3.5 695.2 SANDY LEAN CLAY, CL, 7.5YR 5/6 (strong brown), low to medium plasticity, very stift, dry, with sandstone gravel, IFILL] SS03GG 3.0 - 3.5 1.2 3.4-5 -4 IEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS04G 4.5 - 6.0 1.5 3.4-4 -6 SS05G 6.0 - 7.5 1.3 3-24 3.4-5 -7 SS05G 6.0 - 7.5 1.3 3-24 3.5 -8 SS05G 6.0 - 7.5 1.4 2-2.3 3.5 -10 V10.5 688.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS07G 9.0 - 10.5 1.5 2-2.3 -11 Intervention medium plasticity, very soft to soft, moist SS08G 10.5 - 12.0 1.5 2-1.3 -11 Intervention medium plasticity, very soft to soft, moist SS08G 12.0 - 13.5 1.5 1-2.2 -11 Intere organics from 15.0' to 18.5		0.7	698.0	is is is in the second s		_L] /~	$\left \right $			0.0 - 1	0.9	12-8-7
2 7.5YR 6/1 (gray), stiff to medium stiff, dry, with limestone and chert gravel. [FILL] SS02G 1.5 - 3.0 1.1 6-5.7 3 3.5 695.2 SANDY LEAN CLAY, CL, 7.5YR 5/6 (strong brown), low plasticity, very stiff, dry, with sandstone gravel, [FILL] SS03G 3.0 - 3.5 5 1.2 3.4-5 5 LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS04G 4.5 - 6.0 6 1.5 3.4-4 - 7 SS05G 6.0 - 7.5 6 1.3 3-24 - 8 SS06G 7.5 - 9.0 6 1.4 2-2-3 - 9 SS07G 9.0 - 10.5 6 1.5 2-1-3 - 10 10.5 688.2 SS07G 9.0 - 10.5 6 1.5 2-2-3 - 11 .	- 1	1.5	697.2		·	rown) and		SS01bG	0.7 - 1.5	1.5		-
3 3.5 695.2 SANDY LEAN CLAY, CL, 7.5YR 5/6 (strong brown), low to medium plasticity, soft, moist, with sandstone gravel, [FILL] SS03aG 3.0 - 3.5 5 1.2 3.4-5 -5 LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS04G 4.5 - 6.0 6 1.5 3.4-4 - -6 SS05G 6.0 - 7.5 1.3 3-24 - -7 SS05G 6.0 - 7.5 1.3 3-24 - -8 SS05G 6.0 - 7.5 1.3 3-24 - -9 SS07G 9.0 - 10.5 6 1.5 2-2-3 - 10 10.5 688.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS07G 9.0 - 10.5 6 1.5 2-1-3 - 11 Interview of the medium plasticity, very soft to soft, moist SS08G 10.5 - 12.0 6 1.5 1.2 - 11 Clayey sand lens, wet from 13.5' to 14.0' SS10G 13.5 - 15.0 6 1.5 1.2 - - 14 Clayey sand lens, wet from 15.0' to 16.5' <td>- 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00000</td> <td>45 00</td> <td>1.5</td> <td></td> <td></td>	- 2							00000	45 00	1.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					limestone and chert gravel, [FILL]]		5502G	1.5 - 3.0	- 3.0	1.1	6-5-7
4 $FILI$ SS03bG 3.5 - 4.5 1.2 3.4.4 5 LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS04G 4.5 - 6.0 1.5 3.4.4 6 SS05G 6.0 - 7.5 1.3 3.2.4 3.5 7 SS05G 6.0 - 7.5 1.3 3.2.4 3.5 8 SS05G 6.0 - 7.5 1.3 3.2.4 3.5 9 SS05G 6.0 - 7.5 1.3 3.2.4 3.5 10 10.5 688.2 SS07G 9.0 - 10.5 1.5 2.2.3 3.5 11 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS08G 10.5 - 12.0 1.5 2.1.3 3.5 11 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS08G 10.5 - 12.0 1.5 1.5 2.1.3 13 Clayey sand lens, wet from 13.5' to 14.0' SS10G 13.5 - 15.0 1.4 WH-1.1 1.5 1.5 1.2.2 1.5 1.2.2 1.5 1.2.2 1.5 1.2.2 1.5	- 3	3.5	695.2			0 /·		SS03aG	3.0 - 3.5	ω	1	-
5 LEAN CLAY, CL, 7.5YR 3/4 (dark brown), low to medium plasticity, soft, moist, with some very fine sand, with organics SS04G 4.5 - 6.0 1.5 3.4.4 6 SS05G 6.0 - 7.5 1.3 3.2.4 1.3 3.2.4 7 SS05G 6.0 - 7.5 1.3 3.2.4 1.3 3.2.4 9 SS05G 6.0 - 7.5 1.4 2.2.3 1.4 2.2.3 10 10.5 688.2 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS07G 9.0 - 10.5 1.5 2.2.3 11 SANDY LEAN CLAY, CL, 7.5YR 4/6 (strong brown), low to medium plasticity, very soft to soft, moist SS08G 10.5 - 12.0 1.5 1.5 2.2.3 13 Clayey sand lens, wet from 13.5' to 14.0' SS10G 13.5 - 15.0 1.4 WH-1-1 15 Trace organics from 15.0' to 16.5' SS11G 15.0 - 16.5 1.5 1.2.2 1.5 16 17 SS12G 16.5 - 18.0 1.5 1.5 1.2.2	- 4					stone gravel,		SS03bG	3.5 - 4.5	0 - 4.5	1.2	3-4-5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					<u> </u>	wn). low to						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 5				medium plasticity, soft, moist, with sor			SS04G	4.5 - 6.0	4.5 - 6.	1.5	3-4-4
7 8 8 8 8 1.4 2-2-3 9 10 10.5 688.2 1.4 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-1-3 1.5 2-1-3 1.5 2-1-3 1.5 2-1-3 1.5 1.5 2-1-3 1.5 1.5 1.5 1.2-2 1.5 1.5 1.2-2 <td< td=""><td>- 6</td><td></td><td></td><td></td><td>sand, with organics</td><td></td><td></td><td></td><td></td><td></td><td> </td><td>-</td></td<>	- 6				sand, with organics							-
7 8 8 8 8 1.4 2-2-3 9 10 10.5 688.2 1.4 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-2-3 1.5 2-1-3 1.5 2-1-3 1.5 2-1-3 1.5 2-1-3 1.5 1.5 2-1-3 1.5 1.5 1.5 1.2-2 1.5 1.5 1.2-2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SS05G</td><td>60-75</td><td>6.0 -</td><td>1.3</td><td>3-2-4</td></td<>								SS05G	60-75	6.0 -	1.3	3-2-4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 7							00000	0.0 1.0	7.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 8							00000	75 00	7.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								SS06G	1.5 - 9.0	- 9.0	1.4	2-2-3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										9.		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^{2/13/20}							SS07G	9.0 - 10.5	0 - 10.5	1.5	2-2-3 _
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30.GDT	710.5	688.2	+++		atrong knows \	$\left \right $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11 - 10							SS08G	10.5 - 12.0	0.5 - 1	1.5	2-1-3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 12									2.0		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ECSUB			$\langle / / \rangle$				SS00G	12 0 - 13 5	12.0 -	15	1_2_2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	^{II} – 13							00090	12.0 - 13.3	13.5	1.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	н Настания				Clayey sand lens, wet from 13.5' to 14	.0'				13.5		-
$\frac{15}{16}$ $15.0 - 16.5$ $\frac{15}{10}$ 1.5 $1-2-2$ -17 $SS12G$ $16.5 - 18.0$ $\frac{15}{10}$ 1.5 $1-1-2$	TDEC							SS10G	13.5 - 15.0	- 15.0	1.4	WH-1-1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	^{la} ∕ ₉ − 15				Trace organics from 15 0' to 16 5'					1.5		_
SS12G 16.5 - 18.0 5 1.5 1-1-2	- 16							SS11G	15.0 - 16.5	5.0 - 16.	1.5	1-2-2
	LOG									σ		
	¹ 88 − 17							SS12G	16.5 - 18.0	16.5 - 1	1.5	1-1-2
		18.0	680.7							8.0		

Client	Borehole	ID N/A		Stantec Boring	g N	o. WBF	-101			
Client		Tennes	see Valley Authority	Boring Locatio			99 N; 2,362,987	.15	E NAD27	7 Plant Local
Projec	t Number	175668	050	Surface Eleva	tio	n <u>698.7 ft</u>	Elevatio	on [Datum_	NGVD29
	Lithology			Overburden:	ę	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PS
Depth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
18 19			CLAYEY SAND, SC, 10YR 5/6 (yellow	wish brown),		SS13G	18.0 - 19.5	18.0 - 19.5	1.5	WH-1-1
20 21			Sandy clay lenses from 19.5' to 21.0'			SS14G	19.5 - 21.0	19.5 - 21.0	1.5	WH-WH-
22						SS15G	21.0 - 22.5	21.0 - 22.5	1.5	WH-1-1
23 24			With fragments of sandstone from 23.	.8' to 24.0'		SS16G	22.5 - 24.0	22.5 - 24.0	1.2	WH-1-1
25			Color change to 10YR 5/1 (gray) at 24	4.0'		SS17G	24.0 - 25.5	24.0 - 25.5	1.5	WH-WH-V
26 27			Color change to 10YR 5/6 (yellowish sandy clay at 25.5'	brown), with		SS18G	25.5 - 27.0	25.5 - 27.0	1.0	WH-WH-V
28						SS19G	27.0 - 28.5	27.0 - 28.5	1.5	WH-WH-
29 29.5	669.2					SS20aG	28.5 - 29.5	28.5 - 30	1.5	WH-1-1
30			SILTY SAND, SM, 10YR 5/1 (gray), fi wet	ne, very loose,		SS20bG SS21G	29.5 - 30.0 30.0 - 31.5	.0 30.0 - 31.9	1.5	1-1-4
32 32.7	666.0		Abundant wood fragments from 31.3' Sandy clay lens at 32.0'	to 32.7'		SS22aG	31.5 - 32.7	5 31.5 - 33.0	1.5	2-4-9
33 34 34.0 34.5	664.7 664.2	· · · · · · · · · · · · · · · · · · ·	WELL GRADED SAND WITH GRAVE 5/1 (gray), very fine to coarse, mediur gravel subangular to subrounded			SS22bG SS23aG SS23bG	32.7 - 33.0 33.0 - 34.0 34.0 - 34.5	33.0 - 34.5	1.5	3-24-19
<u> </u>	004.2		Shale, green gray, moderately hard, o Weathered	calcareous,			07.0 - 07.0			<u> </u>
			No Refusal / Bottom of Hole at 34.5 Ft.							
			Top of Rock = 34.0 Ft. Top of Rock Elevation = 664.7 Ft.							
		G = 2: a,b,o	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground su	nvironmental and G				nple)	

Page: 1 of 2

	lient F	Borehole		A	Stantec Boring		-101A				
	lient			ssee Valley Authority	Boring Locatic		54 N; 2,362,991	77 F		Plant Local	
		Number			Surface Eleva	-					
				DEC Order	_ Surface Elevation 698.5 ft Elevation Datum NGV Date Started 5/30/19 Completed 5/30/19						
	-	Location		ea Co, Spring City, Tennessee	Depth to Wate		Date/Tir			9 16:01	
	-	or G. Bu			Depth to Wate		Date/Til Date/Tir		N/A	10.01	
	•			Logger <u>G. Budd</u> wkston (Subcontractor)	Drill Rig Type			ne			
	-			Sampling Tools (Type and Size)	• • •						
			-	ling Tools (Type and Size) N/A							
		-		and Size) N/A			Overdrill	Dep	oth N	I/A	
		-		N/A Weight N/A	Drop N	I/A	 Efficiency		I/A		
	•	le Azimut	• •	N/A 3	Borehole Incli	nation (from	•	N/A	١		
R	eview	ed By _	C. Ko	cka	Approved By	L. Price					
	L	ithology			Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dept	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %	
- 0	0.0	698.5	فير ومر ومر	Top of Hole							
	-0.3-0.7	- <u>698.2</u> - <u>697.8</u>	0202020	Grass and topsoil							
- 1				Limestone gravel, [FILL]	/					-	
- 2				SANDY LEAN CLAY SOME GRAVEL,	CL, 7.5YR 5/6					-	
				(strong brown) and 7.5YR 6/1 (gray), o	lry, with	DP01	0.0 - 5.0	0.0 - 5.	3.7	N/A	
- 3	3.3	695.2	[[]]	limestone and chert gravel, [FILL]				0			
- 4				LEAN CLAY WITH SAND, CL, 7.5YR							
				brown), low to medium plasticity, mois	L						
- 5				Soft, with organics at 5.0'						_	
- 6				,							
- 7						DP02	5.0 - 10.0	5.0 -	4.8	N/A	
- 8						DF02	5.0 - 10.0	10.0	4.0	IN/A	
								1 111			
- 9										-	
_ର – 10										_	
01 6/22/											
0:00000000000000000000000000000000000	7									-	
⁶¹⁰² – 12	-							5		-	
BSUK						DP03	10.0 - 15.0	0 - 15.0	4.7	N/A	
୩ _{୦୦} ୦୦ ଅ								°		-	
⊑ G_– 14										-	
ORUE	15.0	683.5									
10 - 11 - 11 - 12 - 110 - 11 - 12 - 110 -	-	-	////	SANDY LEAN CLAY, CL, 7.5YR 3/4 (0	lark brown),					-	
16 – 16				low to medium plasticity, soft, moist						-	
1756684			//								
² – 17						DP04	15.0 - 20.0	15.0 - 2	5.0	N/A	
- 18			//					i0.0		-	
<u>ت</u>	19.0	679.5	$\langle / / \rangle$					1 1/1			

Page: 2 of 2

Client I	Borehole	IDN/A		Stantec Boring	No. WBF	-101A			
Client		Tennes	see Valley Authority	Boring Location	n <u>443,887.</u>	54 N; 2,362,991	1.77 E	NAD27	Plant Loca
Project	Number	175668	050	Surface Elevat	ion <u>698.5 ft</u>	Elevatio	on Da	atum_1	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	l	Rec. Ft	Blows/PS
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %
19 20 21 22 23 24 25 26 27			CLAYEY SAND, SC, 7.5YR 3/4 (dark moist Color change to 7.5YR 4/4 (brown) a Wet at 21.6' With manganese at 25.1' Color change to 10YR 5/1 (gray), wet	t 20.0'	DP05	20.0 - 25.0 25.0 - 30.0	20.0 - 25.0 25.0 - 25.0	2.1	N/A N/A
28 29 30 31 31.0 31.5	668.5 667.5 667.0		SILTY SAND, SM, 10YR 5/1 (gray), f	ine, wet			30.0 30.	5.0	
32 33 33.0	665.5		Wood POORLY GRADED SAND, SP, 10YF wet With trace fragments of sandstone fro	om 32.8' to 33.0'	DP07	30.0 - 33.0	0 - 33.0 33.	2.3	N/A
34 34.0	664.5		_ WELL GRADED SAND WITH GRAV √fine to coarse, wet	EL, SW, very	DP08	33.0 - 35.0	0 - 35.0	0.8	N/A
₃₅ 35.0	663.5		⊂ Shale, green gray, hard, calcareous						
		based 1: E = G =	Bedrock Refusal / Bottom of Hole at 35.0 Ft. Top of Rock = 34.0 Ft. Top of Rock Elevation = 664.5 Ft. ed boring location not surveyed. Horizo on 2017 LiDAR surfaces. Environmental Sample Custody (two Sp Geotechnical Sample Custody	lit Spoons may be re	quired to obta	in sufficient sar		coordina	ates
		2: a,b,c 3: Dep	c denote Split Spoon divided between E ths are reported in feet below ground su	nvironmental and Ge irface	otecnnical Sa	mpies			

С	lient F	Borehole	ID N/A	λ	Stantec Boring	n No. WBF	-101B		
	lient			see Valley Authority			54 N; 2,362,991.77	E NAD27	Plant Local
		Number		· · · · ·	Surface Eleva				
	-			DEC Order	Date Started		Completed		
	-			ea Co, Spring City, Tennessee	Depth to Wate				0 16:03
	-	or G. B			Depth to Wate				
	•			wkston (Subcontractor)	Drill Rig Type	· · · · · · · · · · · · · · · · · · ·			
	•			Sampling Tools (Type and Size)					
			-	ling Tools (Type and Size) N/A					
		-	•	and Size) N/A			Overdrill D	epth N	N/A
		-		N/A Weight N/A	Drop N	I/A		N/A	
		le Azimu			Borehole Inclir	nation (from	Vertical) N	/A	
R	leview	ed By	C. Ko	cka	Approved By	•			
	l	_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 0	0.0	698.9		Top of Hole					
Ű	0.3	698.6	0303030	Grass, topsoil				20	
- 1	1.2	697.7	0202020	Limestone gravel, [FILL]))	_
- 2				LEAN CLAY WITH SAND, CL, 5YR 5/	8 (yellowish				_
				red) and 5YR 6/1 (gray), dry, [FILL]		DP01	0.0 - 5.0	1.6	N/A
- 3							Ŭ))	_
- 4))	-
								\$	
- 5								Ϋ́.	_
- 6				Color change to 7.5YR 3/4 (dark brown	n), medium			\$ <u>}</u>	_
Ű				plasticity, moist, with organics at 5.3'					
- 7							5.0	((_
						DP02	5.0 - 10.0	1.5	N/A
- 8								20	_
- 9))	_
2/20	10.0	688.9))	
59 – 10 Eg	10.0	000.0	///	SANDY LEAN CLAY, CL, 7.5YR 3/4 (dark brown),			Μ Ι	
⁰⁰²⁹⁰⁶ - 11				medium plasticity, moist	-				_
F DT 20				With trace gravel, subrounded from 10	0.0' to 15.0'			\$ <u>}</u>	
^M SBD - 12	-						10.0		-
Sec	¥-					DP03	10.0 - 15.0	4.6	N/A
L GP J								11	
- 14))	-
н 10 1))	
®_− 15								∭	_
⁸⁹⁹⁵² - 16									-
NG LOG									
TVA EPP DORNHOLOG 772020 000000 0000 00000 0000 0000 000						DP04	15.0 - 20.0	3.3	N/A
₹ <u>10</u>			///				20.0 20.0		

Page: 2 of 2

Client	Borehole	IDN/A		Stantec Boring	No. WBF	-101B		
Client		Tenness	see Valley Authority	Boring Locatio	n <u>443,892.</u>	54 N; 2,362,991.7	77 E NAD27	Plant Loca
Projec	t Number	1756680	050	Surface Elevat	ion <u>698.9 ft</u>	Elevation	Datum_1	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/P
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
 18 19 20 21 22 23 24 24.4 	674.5		SANDY LEAN CLAY, CL, 7.5YR 3/4 medium plasticity, moist <i>(Continued</i> With clayey sand at 20.0'		DP05	20.0 - 25.0	4.8	N/A
25 25.2	673.7		CLAYEY SAND, SC, 10YR 4/1 (dark	gray), fine, wet				
26 27			SILTY SAND SOME CLAY, SM, 10 gray), fine, wet	′R 4/1 (dark		P C	ол	
28 29 30 <u>30.0</u>	668.9			(grou) fing wat	DP06	25.0 - 30.0	4.3	N/A
31 31.5	667.4		CLAYEY SAND, SC, 10YR 4/1 (dark	, gray), line, wet	DP07	30.0 - 33.0	3.0	N/A
32			POORLY GRADED SAND, SP, 10Y gray), fine, wet	R 4/1 (dark		30.0 - 33.0	3.0	N/A
33 33.0	665.9		√Fragments of sandstone from 32.8' t		DP08	33.0 - 34.0	۵.5 (IIII)	N/A
<u>34</u> 34.0	664.9	<u> </u>	WELL GRADED GRAVEL WITH SA 5/2 (grayish brown), fine to medium, to rounded				<u></u>	
			Bedrock Refusal / Bottom of Hole at 34.0 Ft.	,				
		based (1: E = I G = (2: a,b,c	ed boring location not surveyed. Horizo on 2017 LiDAR surfaces. Environmental Sample Custody (two S Geotechnical Sample Custody e denote Split Spoon divided between B hs are reported in feet below ground s	plit Spoons may be re Environmental and Ge	equired to obta	in sufficient samp		ates

Page: 1 of 2

С	lient E	Borehole	ID_N/A	Α	Stantec Boring	j No	. WBF	-102			
C	lient		Tennes	see Valley Authority	Boring Location				3.94	E NAD27	Plant Local
P	roject	Number	175668	050	Surface Elevat	tion	721.7 ft	Elevatio	on E)atum №	IGVD29
P	roject	Name	WBF T	DEC Order	Date Started		6/18/19	 Comple	eted	6/19/1	9
	-			ea Co, Spring City, Tennessee	Depth to Water	r	0.0 ft	 Date/Ti			9 12:53
	-		-	Logger _G. Budd	Depth to Water			 Date/Ti	me	6/19/1	9 12:53
				Intec Consulting Services Inc.	Drill Rig Type a			850XR, #953			
0	verbu	rden Dril	ling and	Sampling Tools (Type and Size)4-1/4" HSA, 3" S	Sw/	o liners				
R	ock D	rilling and	d Samp	ling Tools (Type and Size)	A						
0	verdri	II Tooling	ј (Туре а	and Size) 8-1/4" HSA overdrill of b				Overdril	l De	pth _N	I/A
	-			v	b Drop <u>30</u>			Efficiency		N/A	
		le Azimu			Borehole Inclin		•	Vertical)	N//	Ą	
R	eview	ed By _	C. Ko	cka	Approved By	L	. Price				
		_ithology			Overburden:	Sa	ample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	F	RQD %	Run Ft		Rec. Ft	Rec. %
- 0 -	0.0	721.7		Top of Hole		\parallel	SS01aG	00.04			
	0.4	721.3	0303030	Grass and topsoil				0.0 - 0.4	0.0 -	1.5	5-17-15
- 1				Crushed stone, clay fill and limestone	gravel fill,		SS01bG	0.4 - 1.5	1.5		
- 2			6262626	[FILL]			SS02aG	1.5 - 2.5	<u>1</u> .5		-
	2.5	719.2	iğ çö çö ğ	Trace CCR at 1.8'	dala kurana X		SS02bG	2.5 - 3.0	- 3.0	1.3	11-12-11
- 3				LEAN CLAY, CL, 10YR 4/2 (dark gray 10YR 4/3 (brown), low to medium plas			330203	2.5 - 5.0			-
- 4				stiff to very stiff, dry to moist, with gray			SS03G	3.0 - 4.5	3.0 - 4.5	1.5	5-7-8
·				limestone gravel, [FILL] Color change to 10YR 6/8 (brownish y	(allow) and				-		
- 5	5.2	716.5		\sim 10YR 5/1 (gray) at 3.0'	/ellow) and		SS04aG	4.5 - 5.2	4.5 -	1.5	5-6-9
- 6				SANDY LEAN CLAY SOME GRAVEL	., CL, 10YR 4/4		SS04bG	5.2 - 6.0	6.0		
ľ				(dark yellowish brown), medium stiff, i				~~	6.0		
- 7				fragments of shale, chert, limestone, a gravel subrounded to rounded, [FILL]	and alluvial fine		SS05G	6.0 - 7.5	- 7.5	1.2	6-7-9
				graver capicaliaca to realiaca, [i int]					7		
- 8							SS06G	7.5 - 9.0	.5 - 9.0	1.3	4-6-7
- 9											-
21/20				Color change to 10YR 4/3 (brown) an (gray), low plasticity, very soft to soft,			SS07G	9.0 - 10.5	9.0 - 11	1.5	1-3-4
97 – 10 197				(gray), ion placadly, ion pointe con, 9.0'					3.5		_
EIP BORINGLOG 776660509, WeF, TREC, ORDER, GPJ 17EC SUBSURE OF 2010250162016201620162016201620162016201620162				Color change to 10YR 4/2 (dark gravit			SS08G	10 5 10 0	10.5 -	1.5	256
. RF DT 2				organics and some fragments of siltst	one at 10.5'		33000	10.5 - 12.0	- 12.0	1.5	2-5-6
12 12							SS09aG	12.0 - 12.4	12		=
	13.0	708.7		Color change to 7.5YR 6/8 (reddish ye $\overline{2}$ 5VR 6/4 (grav) at 12.4	ellow) and		SS09bG	12.4 - 13.0	0 - 13.	1.5	2-6-14 _
DER.GP				\7.5YR 6/1 (gray) at 12.4'	/		SS09cG	13.0 - 13.5	5		
ਲ <mark>ੋ</mark> – 14				POORLY GRADED SAND WITH CLA 6/8 (reddish yellow) and 7.5YR 6/1 (gr			SS10G	13.5 - 15.0	13.5 - 15	1.5	8-18-19
₽ ■ 15				medium dense, dry to moist					5.0		_
88050							SS11G	15.0 - 16.5	15.0 -	1.5	6-6-26
⁸ – 16	16.5	705.2					00110	10.0 - 10.0	. 16.5	1.5	0-0-20
01911 - 17			••••	Sandstone in split spoon shoe from 10	6.3' to 16.5'				16.	1	_
LEIP BU				POORLY GRADED SAND, SP, 7.5YF			SS12G	16.5 - 18.0	5 - 18.0	1.5	22-19-14
<u>الم</u>	18.0	703.7		yellow), fine to medium, medium dens	se, dry to moist				3		

Stantec Consulting Services Inc.

Page: 2 of 2

Client Borehole ID N/A		Stantec Boring	No. WBF	-102		
	see Valley Authority	Boring Location		3 N; 2,362,223.9	4 E NAD27	Plant Local
Project Number 175668		Surface Elevat		Elevation		
Lithology		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³ Elevation Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	With fragments of sandstone and quar 16.8' WELL GRADED SAND, SW, 7.5YR 6/ yellow), very fine to coarse, loose, well gravel, fine, subrounded LEAN CLAY, CL, 7.5YR 6/8 (reddish y 7.5YR 5/1 (gray), medium stiff to hard, iron oxide staining Color change to 10YR 5/2 (grayish brocent Clayey weathered siltstone Refusal / Bottom of Hole at 21.0 Ft. Top of Rock = 20.8 Ft. Top of Rock Elevation = 700.9 Ft. led boring location not surveyed. Horizon on 2017 LIDAR surfaces. Environmental Sample Custody (two Spl Geotechnical Sample Custody c denote Split Spoon divided between Err ths are reported in feet below ground sur- surfaces.	tz from 16.5' to /8 (reddish ;, with alluvial /ellow) and , moist to dry, own) at 20.0' ttal coordinates base it Spoons may be re	SS13aG SS13bG SS14G SS14G ed on field mea	n sufficient samp	1.5 1.5	7-6-8 7-28-50

Page: 1 of 2

	lient F	Borehole		A	Stantec Boring	n No	WBF	-102A			
	lient			see Valley Authority	Boring Location			93 N; 2,362,223	8.94	E NAD27	Plant Local
		Number			Surface Elevat			Elevatio			
	-			DEC Order	Date Started		5/29/19	Comple			
	-			ea Co, Spring City, Tennessee	Depth to Wate			·		N/A	<u> </u>
		or G. Bi			Depth to Wate	_					
	•			wkston (Subcontractor)	Drill Rig Type a						
	-			Sampling Tools (Type and Size)	0 71						
			-	ling Tools (Type and Size) N/A							
0	verdri	II Tooling	(Type	and Size) N/A				Overdril	De	pth _Ւ	/A
s	ample	er Hamme	er Type	WeightN/A	Drop _N/	/A		Efficiency	1	N/A	
В	oreho	le Azimu	th	N/A	Borehole Inclin	nati	on (from	Vertical)	N//	A	
R	leview	ed By _	C. Ko	cka	Approved By		Price				
	l	_ithology			Overburden:	S	ample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	721.7		Top of Hole							
	0.2	721.5 721.2	0000000	Grass and topsoil	/Ā						
- 1	-1.0-	720.7	///	└Crushed stone, limestone gravel, [FILL							-
- 2	2.0	719.7		_\WELL GRADED SAND, SW, 7.5YR 2.	5/1 (black),						_
	2.5	719.2		fine to medium, dry, [CCR]	/		DP01	0.0 - 5.0	0.0 - 0	3.1	N/A
- 3				LEAN CLAY, CL, 7.5YR 4/6 (strong br stiff, dry, trace CCR, with limestone an					Ö		-
				gravel, [FILL]							
- 4				SANDY LEAN CLAY, CL, 10YR 4/2 (d	ark gravish						-
- 5	5.0	716.7	///	brown), soft, moist, [FILL]					[4		
- 6				LEAN CLAY, CL, 7.5YR 4/4 (brown), r dry, with limestone gravel, [FILL]	nedium stiff,						-
-				SANDY LEAN CLAY, CL, 10YR 5/4 (y	ellowish						
- 7				brown), medium stiff, moist, with limes			DP02	5.0 - 10.0	5.0 -	3.2	N/A
- 8				subrounded to rounded, [FILL]			2.01		10.0	0.2	-
- 9											-
^{2725/2} – 10	10.0	711.7	///						[4		_
530.GD1	10.8	710.9		SANDY LEAN CLAY, CL, 7.5YR 4/1 (moist, abundant organics	dark gray), soft,						
11 - 1302	11.5	710.2		<u> </u>							-
12 12				SANDY LEAN CLAY, CL, 10YR 5/6 (y brown), stiff, moist							-
ECSUB				CLAYEY SAND, SC, 10YR 6/6 (brown	ish vellow).		DP03	10.0 - 15.0	0.0 - 15	1.8	N/A
= - 13				fine, moist	ion yonow),				5.0		-
RDER.O											_
6 – 14			$\langle / / \rangle$								-
₩ - 15				Low plasticity at 15 O					∣∦		_
566805	16.0	705.7	$\langle / / \rangle$	Low plasticity at 15.0'							
≌ – 16 ⁰				WELL GRADED SAND WITH GRAVE	L, SW, 7.5YR						-
9 17 – 17				6/8 (reddish yellow), very fine to coars subrounded to rounded	e, moist,				5		-
TVA EIP BORINGLOG 7756868050, WBF, TDEC, ORDER, GPJ 1 TDEC SUBSULAR DT 2019520, GDT				Chert and quartz fragments from 16.3	to 16.5' and		DP04	15.0 - 20.0	0 - 20.0	2.6	N/A
- - 10				Stantec Consul					1010	u	6/22/20

Stantec Consulting Services Inc.

TVA EIP BORING LOG

SUBSURFACE LOG

Page: 2 of 2

Client Borehole ID N/A				Stantec Boring No. WBF-102A						
Client Tennessee Valley Authority				Boring Location 443,718.93 N; 2,362,223.94 E NAD27 Plant Local						
Project Number 175668050				Surface Elevation 721.7 ft Elevation Datum_NGV				NGVD29		
Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI			
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	699.4 699.2 697.5 696.2 694.7		 16.8' to 17.0' WELL GRADED SAND WITH GRAVE 6/8 (reddish yellow), very fine to coars subrounded to rounded <i>(Continued)</i> Wet, with fragments of quartz, subang subrounded at 20.0' LEAN CLAY, CL, 10YR 5/2 (grayish b 10YR 5/8 (yellowish brown), dry, with weathered siltstone SILTY LEAN CLAY, CL, 10YR 6/6 (br medium plasticity, soft, moist LEAN CLAY, CL, 10YR 5/2 (grayish b 10YR 5/8 (yellowish brown), dry, with weathered siltstone CLAYEY POORLY GRADED GRAVE GC, 10YR 5/8 (yellowish brown), fine, fine to coarse SILTY LEAN CLAY, CL, 10YR 5/8 (ye and 10YR 3/2 (very dark grayish brow LEAN CLAY, CL, 10YR 5/2 (grayish b with abundant weathered siltstone Siltstone, dark gray, moderately hard Bedrock Refusal / Bottom of Hole at 27.5 Ft. 	se, moist, gular to rrown) and fragments of ownish yellow), rrown) and fragments of L WITH SAND, wet, sand is ellowish brown) rn), moist	DP05	20.0 - 22.5 22.5 22.5 - 27.5 22.5 22.5 - 27.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	2.5			
		based 1: E = G = 2: a,b,	Top of Rock = 27.0 Ft. Top of Rock Elevation = 694.7 Ft. led boring location not surveyed. Horizor on 2017 LIDAR surfaces. Environmental Sample Custody (two Spi Geotechnical Sample Custody c denote Split Spoon divided between Er ths are reported in feet below ground su	lit Spoons may be re nvironmental and Ge	equired to obta	in sufficient sample		- ites - - - - - - - - - - - - 		

Page: 1 of 1

Client Borehole ID N/A	Stantec Boring No. WBF-102Alt						
Client Tennessee Valley Authority	Boring Location 443,693.93 N; 2,362,223.95 E NAD27 Plant Loca						
Project Number 175668050	Surface Elevation 723.4 ft Elevation Datum NGVD29						
Project Name WBF TDEC Order	Date Started 6/19/19 Completed 6/20/19						
Project Location Rhea Co, Spring City, Tennessee	Depth to Water N/A Date/Time N/A						
Inspector _G. Budd Logger _G. Budd	Depth to Water N/A Date/Time N/A						
Drilling Contractor Stantec Consulting Services Inc.			850XR, #953				
Overburden Drilling and Sampling Tools (Type and Siz	e)4-1/4" HSA, 3" \$	SS w/o liners					
Rock Drilling and Sampling Tools (Type and Size)	I/A						
Overdrill Tooling (Type and Size)N/A			Overdrill	Depth	N/A		
Sampler Hammer Type Automatic Weight 14		0"	Efficiency	N/A			
Borehole AzimuthN/A	Borehole Incli	nation (from	Vertical)	N/A			
Reviewed By C. Kocka	Approved By	L. Price					
Lithology	Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS		
Depth Ft ³ Elevation Graphic Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %		
0.0 723.4 Top of Hole							
0.5 722.9 Grass and topsoil			0.0 / -	0.0			
1 1.5 721.9 724.9	and clay	SS01G	0.0 - 1.5 1.5 - 3.0	1.1 1.5	5-5-9		
	0YR 3/2 (verv						
dark grayish brown), very stiff, mois	t, hydrocarbon	SS02G		.5 - 1.4	14-10-7		
3 staining, Limestone gravel, fragmen	ts of siltstone and						
CCR, [FILL]		SS03G	3.0 - 4.5	³⁰ / ₀ 1.3	5-6-5		
4				4.5			
5 Wood pieces from 4.5' to 6.0'				4.0			
6.0 717.4		SS04G	4.5 - 6.0	⁵ -6.0	2-17-16		
6.0 717.4 /// No Refusal /							
Bottom of Hole at 6.0 Ft.							
		t	la - la - la la	f			
Boring abandoned at 6.0' bgs due to miscella fittings)	aneous waste encoun	tered (braided i	nose, chain-link	tencing, nyai	aulic		
1: E = Environmental Sample Custody (two S	Split Spoons may be r	equired to obta	in sufficient sam	ıple)			
G = Geotechnical Sample Custody 2: a,b,c denote Split Spoon divided between		eotechnical Sa	mples				
3: Depths are reported in feet below ground s	surface						

Page: 1 of 2

С	Client Borehole IDN/A				Stantec Boring No. WBF-102Alt1						
C	Client Tennessee Valley Authority				Boring Location 443,745.53 N; 2,362,234.49 E NAD27 Plant Local						
P	Project Number 175668050				Surface Elevation 719.5 ft Elevation Datum			Datum N	IGVD29		
P	Project Name WBF TDEC Order				Date Started 6/20/19 Completed 6/2			6/20/1	9		
	Project Location Rhea Co, Spring City, Tennessee				Depth to Wate	•					
In	Inspector _G. Budd Logger _G. Budd				Depth to Water N/A Date/Time N/A						
	Drilling Contractor Stantec Consulting Services Inc.				Drill Rig Type and ID CME 850XR, #953						
0	verbu	rden Drill	ling and	Sampling Tools (Type and Size)	4-1/4" HSA, 3" S	S w/o liners					
R	ock D	rilling and	d Samp	ling Tools (Type and Size) <u>N/A</u>							
		-		and Size) N/A			Overdrill	De	pth _	I/A	
S	ample	er Hamme	er Type	Automatic Weight 140)"			N/A		
		le Azimu			Borehole Inclin	•	Vertical)	N/.	A		
R	eview	ed By	C. Ko	cka	Approved By	L. Price					
		ithology			Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Dept	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %	
- 0	0.0	719.5		Top of Hole						_	
	-0.3 -0.6	71 <u>9.2</u> 718.9		Grass and topsoil		SS01aG	0.0 - 0.6	0.0 -	1.3	5-9-8	
- 1	1.5	718.0		Crushed stone, playland limestone gra	ivel	SS01bG	0.6 - 1.5	1.5	1.5	J-J - U -	
- 2			\square	WELL GRADED SAND, SW, 10Y 2/1	(), very fine to	SS02aG	1.5 - 2.2	1.5		0.7.0	
	3.0	716.5		coarse, loose, dry, [CCR]	/	SS02bG	2.2 - 3.0	- 3.0	1.5	8-7-6	
- 3	0.0	710.0	///	SANDY LEAN CLAY, CL, 10YR 5/6 (y and 10YR 5/1 (gray), medium stiff, mo				ω	1	-	
- 4				fragments of limestone and siltstone, [FILL]	SS03G	3.0 - 4.5	.0 - 4.5	1.5	6-9-9	
				Color change to 10YR 4/2 (dark grayis organics at 2.2'	h brown), with						
- 5				LEAN CLAY WITH SAND, CL, 10YR 6	C (browniab	SS04G	4.5 - 6.0	4.5 - 6	1.5	4-3-4	
- 6	6.0	713.5		_ yellow) and 10YR 4/2 (dark grayish bro				5.0			
Ŭ				medium plasticity, medium stiff, moist,		0.005	00 75	6.0 -	4.5	4.0.0	
- 7				reaction, with abundant fragments of c shale, limestone fragments, [CCR]	alcareous	SS05	6.0 - 7.5	- 7.5	1.5	4-6-6	
- 8				Trace CCR from 4.5' to 5.0'				.7			
			$\langle / / \rangle$	SANDY LEAN CLAY, CL, 10YR 4/3 (b	rown), medium	SS06G	7.5 - 9.0	.5 - 9.0	1.5	3-6-6	
- 9				stiff, moist, with fragments of siltstone,	,					-	
1	10.0	700.0		limestone, alluvial subrounded to roun to coarse, gravel, organics, [FILL]	uea, meaium	SS07aG	9.0 - 10.2	9.0 - 10	1.5	2-5-6	
- 10	10.2	709.3	///	SANDY LEAN CLAY, CL, 10YR 6/8 (b	rownish vellow)	SS07bG	10.2 - 10.5).5		-	
- 10 - 11 - 12 - 13 - 13 - 14 - 15 - 16 - 17				and 10YR 5/1 (gray), medium plasticity	y, soft to	SS08aG	10.5 - 11.0	10.5 -	0.9	3-3-6	
				medium stiff, moist, with fragments of	siltstone	SS08bG	11.0 - 12.0	- 12.0	0.9	5-5-0	
- 12				Fine sand lens at 10.5' Color change to 5YR 5/8 (yellowish re	d) and 5YR 6/1			12.	1	-	
- 13				(gray), low plasticity, increasing sand v	'	SS09G	12.0 - 13.5	0 - 13.	1.5	3-4-6	
	13.5	706.0	<i>444</i>	11.0'							
5 – 14			//	CLAYEY SAND, SC, 5YR 5/8 (yellowis 5YR 6/1 (gray), fine, very loose to loos		SS10G	13.5 - 15.0	3.5 - 1	1.5	3-4-8	
- 15	15.0	704.5		orix ori (gray), inte, very toose to toos				5.0		_	
000000				SANDY WELL GRADED GRAVEL, G		SS11G	15.0 - 16.5	15.0 -	1.3	27-38-50	
- 16			8 8 8 8 8 8	(strong brown) and 7.5YR 7/1 (light gra coarse, medium dense to very dense,			10.0 - 10.0	16.5	1.5	21-30 - 30 -	
- 17				oxide staining, alluvial fine to coarse, s	subrounded to			16.5		-	
	7		8 8 8 8 8 8 8 8 8	rounded, gravel, with some cobbles ar quartz	nd fragments of	SS12G	16.5 - 18.0	5 - 18.C	1.5	22-27-31	
L_18-	<u> </u>		'e 'e 'e	Stantec Consul						6/22/20	

Stantec Consulting Services Inc.

Client Boreh	ole IDN/A		Stantec Boring	g No. WBF	-102Alt1		
Client	Tennes	see Valley Authority	Boring Locatio		53 N; 2,362,234.4	9 E NAD27	Plant Local
Project Num	ber 1756680	050	Surface Eleva	tion 719.5 ft	Elevation	Datum I	NGVD29
Litholo	gy		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
-	tion Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	Color change to 7.5YR 3/1 (very dark 7.5YR 5/8 (strong brown), wet, with so 16.5' SANDY WELL GRADED GRAVEL W GW-GC, 7.5YR 5/8 (strong brown), ve coarse, wet, alluvial fine to coarse, su rounded, gravel	ITH CLAY,	SS13G SS14aG SS14bG	18.0 - 19.5 19.5 - 20.0 20.0 - 21.0	0.6	23-20-14 5-17-21
		LEAN CLAY, CL, 7.5YR 6/8 (reddish 7.5YR 5/1 (gray), medium stiff to hard iron oxide staining, clayey weathered	I, moist to dry,				
		No Refusal / Bottom of Hole at 21.0 Ft.					
	1: E = I G = 2: a,b,c	on 2017 LiDAR surfaces. Environmental Sample Custody (two Sp Geotechnical Sample Custody e denote Split Spoon divided between E hs are reported in feet below ground su	nvironmental and G			e)	

С	lient E	Borehole	ID N/A	N .	Stantec Borin	g N	o. WBF	-102Alt2 (Se	onic)	
	lient			see Valley Authority				53 N; 2,362,237.49		Plant Local
P	roject	Number		· · · ·	Surface Eleva					
	-	Name		DEC Order	Date Started		6/21/19	Completed		
	-	Location		ea Co, Spring City, Tennessee	Depth to Wate	er –	N/A	Date/Time		
	-	or E. Sr		Logger E. Smith	Depth to Wate			 Date/Time		
D	rilling	Contract	or M&	W Drilling (Subcontractor); Stantec	Drill Rig Type	an	d ID Geop	orobe GV5 Sonic; C	ME 850X	R, #953
0	verbu	rden Dril	ling and	Sampling Tools (Type and Size)	Sonic 6" Core E	Barre	el, 8" Steel (Casing; 8-1/4" HSA		
R	ock D	rilling and	d Samp	ling Tools (Type and Size)	Ň					
0	verdri	II Tooling	ј (Туре а	and Size) <u>N/A</u>				Overdrill De	epth _	N/A
Sa	ample	er Hamme	er Type	N/A Weight N/A	Drop _Ւ	N/A		Efficiency	N/A	
B	oreho	le Azimu	th	N/A	Borehole Incli	nat	ion (from	Vertical) N	/A	
R	eview	ed By	B. Eva	ans	Approved By		L. Price			
		Lithology			Overburden:	Ś	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dept	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft	Rec. Ft	Rec. %
- 0	0.0	719.2		Top of Hole						
				8-1/4" HSA was used on 6/21/19 to bl to 10.0' for the installation of a permar	-					
- 1				PVC surface casing. Boring was later						-
- 2				depth through the installed surface ca						_
				sonic drilling methods. Refer to the bo adjacent boring WBF-102Alt1 for desc						
- 3				material between 0-11.0' in the vicinity						-
- 4				WBF-102Alt2.						_
- 5										
- 6										_
- 0										_
- 7										-
- 8										-
- 9										-
^{9/21/20} – 10										
²⁶ – 10										_
130230.0	11.0	708.2	<u> </u>							-
RF DT 20	12.0	707.2		POORLY GRADED GRAVEL WITH S CLAY, GP-GM, 7.5YR 5/2 (brown), ve						
Insens	12.0	101.2		$\sqrt{\text{non-plastic, loose, wet}}$		1				-
<u> </u>				SANDY FAT CLAY, CH, 5YR 5/4 (red	dish brown),					-
ę.	14.0	705.2		very fine, high plasticity, very firm, mo	,		RS01	11.0 - 16.0	4.2	N/A
– 14	14.0	100.2	///	homogeneous, well graded				3.0 0		-
[₽] ₩ – 15				GRAVELLY WELL GRADED SAND, S (light reddish brown), very fine to fine,						_
38050_M			•	loose, moist, homogeneous, weak cer						
⁹⁹² – 16 -	16.0	703.2		– poorly graded gravel						-
SING LO	17.0	702.2		GRAVELLY POORLY GRADED SAN						
liv _g – 17 - ⊣⊒	-			5/4 (reddish brown), very fine to fine, l						-
≸ <u>10</u>					Iting Services In					9/21/20

Client E	Borehole II	D_N/A		Stantec Boring	No. WBF	-102Alt2 (Se	onic)	
Client		Tennes	see Valley Authority	Boring Location	1 <u>443,745.5</u>	53 N; 2,362,237.49	E NAD27	Plant Loca
Project	Number _	175668	050	Surface Elevati	on <u>719.2 ft</u>	Elevation	Datum_N	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
Depth Ft ³	Elevation (Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
18 19 20 21 21.0	700.2 699.2 698.2		SANDY POORLY GRADED GRAVE (dark reddish gray), fine to coarse, lo loose, moist, homogeneous (Contin SANDY POORLY GRADED GRAVE (reddish brown), fine to coarse, non t loose, moist, homogeneous, weak co SILTY POORLY GRADED GRAVEL	w plasticity, <i>pued)</i> L, GP, 5YR 5/4 to low plasticity, ementation	RS02E	16.0 - 21.0 16 ⁰ -21.0	5.0	N/A
			(reddish brown), fine to coarse, low p wet, homogeneous, weak cementation No Refusal / Bottom of Hole at 21.0 Ft.					
			Contrological Coursels On the	plit Spoons may be rec			-	
		2: a,b,o	Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground so	Environmental and Geo	otechnical Sar	nples		
		2: a,b,o	c denote Split Spoon divided between E	Environmental and Geo	otechnical Sar	nples		
		2: a,b,o	c denote Split Spoon divided between E	Environmental and Geo	otechnical Sar	nples		
		2: a,b,o	c denote Split Spoon divided between E	Environmental and Geo	otechnical Sar	nples		
		2: a,b,o	c denote Split Spoon divided between E	Environmental and Geo	otechnical Sar	nples		
		2: a,b,o	c denote Split Spoon divided between E	Environmental and Geo	otechnical Sar	nples		
		2: a,b,o	c denote Split Spoon divided between E	Environmental and Geo	otechnical Sar	nples		

Page: 1 of 2

	lient F	Borehole	ID N/A	Α	Stantec Boring		WBF-1	02B			
	lient		-	see Valley Authority	Boring Locatio				3.94	E NAD27	Plant Local
		Number			Surface Eleva						
	-			DEC Order	Date Started		29/19				
	•			ea Co, Spring City, Tennessee	Depth to Wate		٩				
	-		-	Logger G. Budd	Depth to Wate						
	-			wkston (Subcontractor)	Drill Rig Type			-			
0	verbu	rden Dril	ling and	Sampling Tools (Type and Size)	DPT-Direct Push	h –					
R	ock D	rilling an	d Samp	ling Tools (Type and Size) <u>N/A</u>							
		-		and Size) <u>N/A</u>				Overdril	l De	pth _	I/A
				N/A Weight N/A				fficiency		N/A	
		le Azimu			Borehole Inclin		•	ertical)	N//	A	
R	eview	ed By _	C. Ko	cka	Approved By	L. Pr	ice				
		ithology			Overburden:	Samp	ole ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQE)%	Run Ft		Rec. Ft	Rec. %
- 0	0.0	721.3		Top of Hole					+h		
	- <u>0.3</u> 1.0	721.0 720.3	0202020	Topsoil							
- 1	1.5	719.8		Limestone gravel, [FILL]					$\parallel ll$		-
- 2				WELL GRADED SAND, SW, 7.5YR 2. fine to medium, dry, [CCR]	5/1 (black),		P01	0.0 - 5.0	0.0 -	3.1	– N/A
- 3				LEAN CLAY, CL, 5YR 5/6 (yellowish re 5/2 (grayish brown), stiff, moist, with at					5.0		-
- 4				limestone gravel, [FILL]							-
- 5 - 6				Color change to 10YR 5/6 (yellowish b stiff, with shale, limestone, and some c							_
-				5.0'	-						
- 7						DI	P02	5.0 - 10.0	5.0 - 10.0	2.6	N/A
- 8											-
- 9											-
20.00	10.0	711.3									
al 10		-		SANDY LEAN CLAY, CL, 7.5YR 5/8 (s	strong brown),					T I	_
0 ⁰ 0000 – 11				low to medium plasticity, soft, moist							-
DT 2015			$\langle / / \rangle$								
12 – 12	12.5	708.8	///			DI	P03	10.0 - 15.0	10.0 - 1	1.9	- N/A
- 13				CLAYEY SAND, SC, 10YR 6/1 (gray) a	and 10YR 6/6				15.0	-	-
R.GPJ			$\langle / / \rangle$	(brownish yellow), fine, moist							
- 14		_									-
음 무 15	15.0 15.5	706.3 705.8									_
1422668020 ^{- MB}	13.3	105.0	₩ ₩	SANDY WELL GRADED GRAVEL WI GW-GC, 10YR 6/1 (gray) and 10YR 6/ yellow), very fine to coarse, moist	/						-
AV PLB BORINGTOR 126000007 MBF TPCC_ORDER/0PJ 126C SUBS/HF DI 20106201021 021/02 				SANDY WELL GRADED GRAVEL, GW (brown), very fine to coarse, moist to w			P04	15.0 - 20.0	15.0 - 20	3.4	- N/A
- 18			8 8 8 8 8 8 8 8 8	fragments of sandstone					9.0		-

Stantec Consulting Services Inc.

Client	Borehole	ID N/A		Stantec Boring	No. WBF	-102B		
Client			see Valley Authority	Boring Location			94 E NAD27	Plant Loca
Projec	t Number	175668	050	Surface Elevati		Elevation		
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
19 20 21 22 23	701.3		Wet from 17.0' to 20.0' Sample not recoverable		DP05	20.0 - 25.0	0.0	N/A
24 25.0	696.3		Bedrock Refusal /					
		1: E = G = 2: a,b,0	on 2017 LiDAR surfaces. Environmental Sample Custody (tw Geotechnical Sample Custody c denote Split Spoon divided betwe ths are reported in feet below grou	en Environmental and Ge			le)	
			J					

Stantec

С	lient E	Borehole	ID N/A	N N	Stantec Boring	g N	o. WBF	-103			
	lient			see Valley Authority	Boring Locatio				3.22	E NAD27	Plant Local
		Number		· · · · ·	Surface Eleva						
	-			DEC Order	Date Started			 Comple			
	-			ea Co, Spring City, Tennessee	Depth to Wate			·			9 12:28
	-			Logger G. Budd	Depth to Wate				me	N/A	
				ntec Consulting Services Inc.	Drill Rig Type	and	d ID CME	850XR, #953			
0	verbu	rden Dril	ling and	Sampling Tools (Type and Size)	4-1/4" HSA, 3" S	SS w	v/o liners				
		•	•	ling Tools (Type and Size) <u>N/A</u>							
				and Size)8-1/4" HSA overdrill of bo				Overdril		•	8.5 ft
	-			Automatic Weight 1401	•				_	N/A	
		le Azimu			Borehole Inclin		-	Vertical) _	N/.	A	
R	eview	ed By _	C. Ko	cka	Approved By		L. Price				
		ithology			Overburden:	S	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept	h Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	721.1		Top of Hole					\parallel		
	0.3	720.8		─_Topsoil, grass			SS01G	0.0 - 1.5	0.0 -	1.5	8-11-9
- 1				LEAN CLAY WITH GRAVEL, CL, 7.5)					1.5		-
- 2				brown), medium stiff, dry, limestone gr fragments of siltstone, [FILL]	averand		SS02aG	1.5 - 2.6	1.5		-
	2.6	718.5	0303030				SS02bG	2.6 - 3.0	- 3.0	1.4	8-6-10
- 3	3.5	717.6		Limestone gravel, 7.5YR 5/1 (gray), [F	ILL]		SS02bG SS03aG	2.0 - 3.0 3.0 - 3.5			-
- 4				LEAN CLAY, CL, 7.5YR 5/8 (strong br	own), very stiff,		SS03bG	3.5 - 4.5	.0 - 4.5	1.4	25-21-24
	4.5	716.6		moist, with limestone and siltstone gra	vel, organics,						
- 5	5.6	715.5		\manganese, [FILL]	/		SS04aG	4.5 - 5.6	4.5 - 6	1.5	
- 6	6.0	715.1		LEAN CLAY SOME SAND, CL, 7.5YR → brown) and 7.5YR 5/2 (brown), stiff, m			SS04bG	5.6 - 6.0	Ö		-
				sand, siltstone gravel, manganese, an	d organics,		SS05G	6.0 - 7.5	6.0 -	1.5	4-7-8
- 7]		00000	0.0 - 7.5	7.5	1.5	
- 8				LEAN CLAY, CL, 7.5YR 3/2 (dark brown abundant organics	wn), moist, with				7.5	1	-
				SANDY LEAN CLAY, CL, 10YR 5/4 (y	vellowish		SS06G	7.5 - 9.0	.5 - 9.0	1.2	3-5-6
- 9				brown), low plasticity, soft to medium s					9		-
§ - 10 ¥	7			fine sand Color change to 10YR 6/8 (brownish y	vallow) and		SS07G	9.0 - 10.5	.0 - 10.5	1.5	5-6-7
00.GDT				10YR 6/1 (gray), low to medium plastic					5	-	
³⁰⁶ 0- 11				still to very stiff, with fragments of sand	-		SS08G	10.5 - 12.0	10.5 -	1.5	14-19-26
12 - 12	12.2	708.9		to subangular, increasing with depth a	t 9.0'				12.0		_
L C SUBS	12.2	700.0		POORLY GRADED SAND, SP, 10YR	6/8 (brownish		00005	10.0 10.5	12.0		0 11 10
- 13				yellow), fine to medium, medium dens	·	2.0/15.0	SS09E	12.0 - 13.5	- 13.5	1.2	9-11-10 _
олония - 14				fragments of weathered sandstone Color change to N 2.5/ (black) at 12.9')-2019(13		_
				Color change to 10YR 5/6 (yellowish b	prown), loose to)606	SS10E	13.5 - 15.0	5 - 15.0	1.0	9-11-16
≝ – 15 -	15.0	706.1	///	_ medium dense at 13.5', weathered sat √fragments from 14.7' to 15.0'	ndstone						_
- 16			$\langle / / \rangle$				SS11G	15.0 - 16.5	5.0 - 16	1.5	21-36-32
2 10 3 10	16.5	704.6	<i> </i>	LEAN CLAY, CL, 10YR 5/6 (yellowish stiff to hard, dry to moist, iron oxide sta			00/0 -		3.5		-
	17.0	704.1	- A	∖highly weathered siltstone	/		SS12aG	16.5 - 17.0	16.5 -	1.5	- 14-32-48
				CLAYEY SAND, SC, 10YR 5/6 (yellow	vish brown),		SS12bG	17.0 - 18.0	18.0		11 02 40

Stantec Consulting Services Inc.

Client Borehole ID N/A	4	Stantec Boring No. WBF	-103		
Client Tennes	ssee Valley Authority		49 N; 2,361,678.22 I	E NAD27	Plant Local
Project Number 175668	3050	Surface Elevation 721.1 ft	Elevation D	0atum_ №	NGVD29
Lithology		Overburden: Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³ Elevation Graphic	Description	Rock Core: RQD %	Run Ft	Rec. Ft	Rec. %
- 18 18.5 702.6	fine to medium, wet LEAN CLAY, CL, 10YR 5/6 (yellowisl				_
	stiff to hard, dry to moist, iron oxide s highly weathered siltstone (Continue	taining, with			-
	No Refusal / Bottom of Hole at 18.5 Ft.				-
					-
					-
G =	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E				-
3: Dep	oths are reported in feet below ground su	irface	mpies		_
					_
					-
					-
					-
					-
					-
r 9/17/20					-
20198530.00					_
					-
DER. GPJ 1705					-
					-
v. osobesestr					_
EP BORNGLOG (7568806) WRF. TDEC, ORDER.GPJ TDEC SUBSURF DT 20198530.GDT 9/17/20					-
					_

Page: 1 of 2

CI	ient E	Borehole	ID N/A	A	Stantec Boring	g No	D. WBF	-103A			
CI	ient		Tennes	see Valley Authority	Boring Locatio).57	E NAD27	Plant Local
Pr	oject	Number	175668	3050	Surface Eleva	ition	721.5 ft	Elevatio	on E	atum N	IGVD29
	-			DEC Order	Date Started		5/29/19		eted	5/29/1	9
	-			ea Co, Spring City, Tennessee	Depth to Wate		7.4 ft	·		-	9 10:09
Ins	spect	or G. Bi	bbu	Logger _G. Budd	Depth to Wate				me	N/A	
Dr	rilling	Contract	or <u>Hav</u>	wkston (Subcontractor)	Drill Rig Type	and	ID Geop	orobe 3230DT			
0	verbu	rden Dril	ling and	l Sampling Tools (Type and Size)	DPT-Direct Pusl	h					
Ro	ock D	rilling and	d Samp	ling Tools (Type and Size) <u>N/A</u>							
		-		and Size) <u>N/A</u>				Overdril	l De	pth _N	I/A
				N/A Weight N/A				Efficiency		N/A	
		le Azimu			Borehole Inclin			Vertical)	N//	4	
Re	eview	ed By _	C. Ko	cka	Approved By		Price				
		ithology			Overburden:		ample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept		Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	721.5	uğuğuğ						+h		
		VELV									
- 1				SANDY LEAN CLAY, CL, 7.5YR 6/6 (I non to low plasticity, medium stiff, dry	reddish yellow),				9		
- 2							DP01	0.0 - 3.5) - 3.5	0.7	N/A
									$\parallel ll$		
- 3									ЦŴ		
- 4				Color change to 10YR 5/6 (yellowish b	orown), moist at				$\parallel ll$		
				3.5'					1 11		
- 5											-
- 6							DP02	3.5 - 8.5	3.5 - 8	2.4	N/A
									5		
-7 🛓	7										
- 8											
									#		
- 9				Medium plasticity, with fragments of sa 8.5'	andstone at						
- 10											-
- 11	11.5	710.0					DP03	8.5 - 13.5	5 - 13.5	4.0	N/A
- 12				POORLY GRADED SAND 13.5, SP, 7	7.5YR 5/6						
				(strong brown), fine, wet							
- 13	13.5	708.0		Color change to 7.5YR 5/6 (strong bro							
- 14			///	Color change to 7.5YR 5/6 (strong bro							
				LEAN CLAY, CL, 5YR 4/4 (reddish bro 3/2 (dark brown), non-plastic, stiff, dry							
- 15 -	15.0	706.5		weathered siltstone		$\left \right $					-
- 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17	16.1	705.4		SANDY LEAN CLAY, CL, 10YR 5/6 (y brown), non-plastic, medium stiff, mois			DP04	13.5 - 18.5	13.5 - 18.5	3.5	N/A
- 17				POORLY GRADED SAND, SP, 10YR brown), fine, wet	5/6 (yellowish						
			••••	<i>1. 1</i>							

Client	Borehole ID/	4	Stantec Boring	g No. WBF	-103A		
Client	Tennes	see Valley Authority	Boring Locatio		52 N; 2,361,650.5	7 E NAD27	Plant Loca
Project	t Number 175668	050	Surface Eleva	tion <u>721.5 ft</u>	Elevation	Datum_N	IGVD29
	Lithology		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
epth Ft ³	Elevation Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
8 <u>18.5</u> 9 <u>18.7</u> 9 <u>19.1</u> 20 21 <u>21.5</u>	703.0 702.8 702.4 702.4	CLAYEY SAND, SC, 10YR 5/6 (y fine, wet LEAN CLAY, CL, 5YR 4/4 (reddis low plasticity, moist Shale, light gray, hard, moderate	sh brown), non to	DP05 DP06	18.5 - 20.0 20.0 - 21.5	1.0	N/A N/A
		Top of Rock = 19.1 Ft. Top of Rock Elevation = 702.4 Ft led boring location not surveyed. Ho on 2017 LiDAR surfaces.		ed on field mea	asurements. Vertic	al coordina	ites
	G = 2: a,b,	Environmental Sample Custody (tw Geotechnical Sample Custody c denote Split Spoon divided betwe oths are reported in feet below grour	en Environmental and G			e)	

С	lient E	Borehole	ID N/A	A	Stantec Boring	g No. WBI	-103B		
С	lient		Tennes	see Valley Authority	Boring Locatio			58 E NAD27	Plant Local
Pi	roject	Number	175668	3050	Surface Elevat	tion 721.4 ft	Elevatio	n Datum I	NGVD29
Pi	roject	Name	WBF TI	DEC Order	Date Started	5/29/19	Complet	ed 5/29/*	19
	-			ea Co, Spring City, Tennessee	Depth to Wate	er 9.7 ft	Date/Tin	-	19 11:54
In	spect	or G. Bi	udd	Logger G. Budd	Depth to Wate		Date/Tin	ne N/A	
D	rilling	Contract	or Hav	wkston (Subcontractor)	Drill Rig Type	and ID Geo	probe 3230DT		
0	verbu	rden Drill	ling and	Sampling Tools (Type and Size)	DPT-Direct Push	n			
R	ock D	rilling and	d Samp	ling Tools (Type and Size) <u>N/A</u>					
		-		and Size) <u>N/A</u>			Overdrill	Depth _	N/A
	•		• •	N/A Weight N/A		/A	Efficiency	N/A	
		le Azimu			Borehole Inclin	•	Vertical)	N/A	
R	eview	ed By	C. Ko	cka	Approved By	L. Price			
		ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dept	h Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 0	0.0	721.4		Top of Hole					
	0.3	721.1		Topsoil, [FILL]				88	
- 1				SANDY LEAN CLAY, CL, 10YR 5/8 (y	,			221	-
- 2				and 10YR 4/1 (dark gray), dry, with silt limestone gravel throughout, [FILL]	stone and				_
2				Coal slag from 0.3' to 0.6'		DP01	0.0 - 5.0	4.6	N/A
- 3	3.5	717.9						5.0	-
	3.8	717.6	0305050	└Limestone gravel fill, [FILL]					
- 4				SANDY LEAN CLAY, CL, 5YR 4/4 (red	ddish brown)			(()	-
- 5				non to low plasticity, stiff, dry, [FILL]	laion brown),			<u>///</u>	_
				Color change to 5YR 5/6 (yellowish red oxide staining at 5.0'	d), moist, iron			((()	
- 6				With sandstone gravel and trace organ	nics from 5.0' to			(((-
- 7				7.0'				on (()	-
						DP02	5.0 - 10.0	⁰	N/A
- 8								°	-
- 9									-
8 V	7								
²²⁹ 一 10				Color change to 10YR 5/6 (yellowish b	rown) with			()))	-
9.0230.0 - 11				fragments of sandstone at 10.0'	iowij, with				-
DT 2015								(()	
^{HINSE} - 12								10	-
DECS	13.0	708.4				DP03	10.0 - 15.0	⁰ - 15:0	N/A
ਸ_ – 13 - ਰੁ:			••••	POORLY GRADED SAND, SP, 7.5YR	5/8 (strong				-
u 14 14	14.0	707.4		brown), fine, wet, with biotite and muse	covite)))	-
¹⁰⁰ - 15	15.0	706.4		LEAN CLAY, CL, 7.5YR 3/3 (dark brow _ plasticity, wet, with abundant weathered					_
	16.3	705.1		POORLY GRADED SAND, SP, 7.5YR fine, wet					-
EIP BORING LOG 776669050, WEF. TDEC, ORDER, GPJ J TDEC SUBSURF OT 20190500.600 (WEF. 2020) 				LEAN CLAY, CL, 7.5YR 4/4 (brown), r plasticity, moist, with abundant weather		DP04	15.0 - 19.5	4.5	N/A
≸ <mark>10</mark>			///	Stantec Consul				5	6/22/20

Stantec Consulting Services Inc.

С	lient E	Borehole	ID_N/A		Stantec Boring	No. WBF	-103B		
C C	lient		Tennes	see Valley Authority	Boring Locatio		53 N; 2,361,655.58	3 E NAD27	Plant Local
P	roject	Number	175668	050	Surface Eleval	tion <u>721.4 ft</u>	Elevation	Datum_N	NGVD29
		_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18	18.9	702.5							_
- 19	19.5	701.9	\smile	Shale, pale gray, hard, dry					_
				Bedrock Refusal / Bottom of Hole at 19.5 Ft. Top of Rock = 18.9 Ft.					-
				Top of Rock Elevation = 702.5 Ft.					_
			As-drill based	ed boring location not surveyed. Horiz on 2017 LiDAR surfaces.	ontal coordinates bas	ed on field mea	asurements. Vertic	al coordina	ites _
			G =	Environmental Sample Custody (two S Geotechnical Sample Custody				e)	_
			2: a,b,o	c denote Split Spoon divided between ths are reported in feet below ground s	Environmental and Ge surface	eotechnical Sa	mples		-
									_
									_
									_
									-
22/20									_
20190530.GDT 6/									_
CCSUBSURF DT									_
ORDER.GPJ TDEC SUBSURF DT 20190530.GDT									-
50_WBF_TDEC_C									-
4G LOG 1756680									_
VA EIP BORIN									-

Page: 1 of 2

Client Borehole ID N/A Stantec Boring No. WBF-104											
	ient			see Valley Authority	Boring Locatio				8.76 I	E NAD27	Plant Local
		Number			Surface Elevat						
	-			DEC Order	Date Started		6/13/19				
	-			ea Co, Spring City, Tennessee	Depth to Wate	_					19 13:20
	-		-	Logger G. Budd	Depth to Wate						
				intec Consulting Services Inc.	Drill Rig Type						
	-			Sampling Tools (Type and Size)							
			-	ling Tools (Type and Size) N/A							
Ov	/erdri	II Tooling	(Type	and Size)8-1/4" HSA overdrill of bo	ring			Overdrill	De	pth _2	27.7 ft
Sa	mple	er Hamme	er Type	Automatic Weight 140 lt	Drop <u>30</u>	0"		Efficiency	11	N/A	
Во	oreho	le Azimu	th	N/A	Borehole Inclin	nati	on (from	Vertical)	N//	A	
Re	eview	ed By _	C. Ko	cka	Approved By		L. Price				
		_ithology			Overburden:	S	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth	n Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 0 -	0.0	694.1	୦ጽ୦ጽ୦ጽ୦	Top of Hole							
- 1				Crushed stone, grass, topsoil, limestor chert, [FILL]	ne gravel,		SS01G	0.0 - 1.5	0.0 - 1.5	0.5	3-7-5
	1.5	692.6									
- 2				SANDY LEAN CLAY, CL, 10YR 2/2 (vi brown), soft to very soft, moist to wet	ery dark		SS02G	1.5 - 3.0	1.5 - 3.0	0.5	5-3-2
- 3				Wet from 3.0' to 4.5'					ω		-
- 4							SS03G	3.0 - 4.5	.0 - 4.5	0.8	WH-WH-WH_
- 5 -	5.0	689.1					SS04aG	4.5 - 5.0	4.5		
- 6				CLAYEY SAND, SC, 10YR 4/4 (dark y brown), fine, very loose, moist	ellowish		SS04bG	5.0 - 6.0	- 6.0	1.2	1-1-2
							SS05G	6.0 - 7.5	6.0 - 7	0.7	WH-1-1
- 7									5		-
- 8							SS06G	7.5 - 9.0	7.5 - 9	1.0	1-WH-1
- 9 -	9.0	685.1							0		-
10 <u>↓</u>	, -10 F	692.0		SANDY LEAN CLAY, CL, 10YR 4/4 (d brown), low plasticity, very soft, moist Sand lens, fine from 9.3' to 9.5'	ark yellowish		SS07G	9.0 - 10.5	9.0 - 10.5	0.9	WH-WH-WH
0630.GE	10.5 11.0	683.6 683.1	ITTT		owich brown		SS08aG	10.5 - 11.0	10		
11 – 15 15				SILTY SAND, SM, 10YR 4/4 (dark yell √ and 10YR 2/1 (black), very fine to fine,			SS08bG	11.0 - 12.0	10.5 - 12	1.2	1-1-1
- 12 -	12.0	682.1	///		· · /				0		-
				SANDY LEAN CLAY, CL, 10YR 4/3 (b 10YR 5/1 (gray), low plasticity, very so			SS09G	12.0 - 13.5	12.0 - 13.5	1.0	WH-1-1 _
EP BORING LOG 175666050_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20190530 GDT 20423 EP BORING LOG 175666050_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 204230 EP BORING LOG 175666050_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 204230 EP BORING LOG 125666050_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20430 EP BORING LOG 1256660_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20430 EP BORING LOG 1256660_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20430 EP BORING LOG 1256660_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20430 EP BORING LOG 125660_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20430 EP BORING LOG 12560_WHF_TDEC_CARDER GPT 10EC SUBSURF OT 20430 EP BORING LOG 12560_0				CLAYEY SAND, SC, 10YR 4/3 (brown (gray), fine, very loose, moist, with org- gravel, fine, subangular to subrounded	anics and		SS10G	13.5 - 15.0	13.5 - 15.0	1.1	WH-1-1
[₩] - 15 120089950 16							SS11G	15.0 - 16.5	15.0 - 16.5	1.0	
							SS12G	16.5 - 18.0	16.5 - 18.	0.5	2-4-4
≸ ₁₈ 	18.0	676.1	///						0		

Client E	Borehole	IDN/A		Stantec Boring	No. WBF	-104			
Client		Tennes	see Valley Authority	Boring Locatior		57 N; 2,363,103	.76	E NAD27	Plant Loca
Project	Number	175668	050	Surface Elevat	ion <u>694.1 ft</u>	Elevatio	on E	atum_I	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/P
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %
18 19 <u>19.5</u>	674.6	• • • • •	POORLY GRADED SAND, SP, 10YF yellowish brown), fine, very loose, we	et	SS13G	18.0 - 19.5	18.0 - 19.5	0.9	2-1-1
20			CLAYEY SAND, SC, 10YR 4/4 (dark brown), fine, very loose, wet	yellowish	SS14G	19.5 - 21.0	19.5 - 21.0 21	0.9	1-1-2
22 22.5	671.6		Color change to 10YR 4/4 (dark yello \10YR 5/1 (gray) at 22.0'	wish brown) and	SS15G SS16aG	21.0 - 22.5 22.5 - 23.5	.0 - 22.5 22.5	1.5	WH-1-
23.5 24	670.6		SANDY LEAN CLAY, CL, 10YR 4/6 (brown) and 10YR 5/1 (gray), very sol	t, moist	SS16bG	23.5 - 24.0	5 - 24.0 24.	1.5	WH-1-:
25 25.5	668.6		SILTY SAND, SM, 10YR 4/1 (dark gr loose, wet GRAVELLY WELL GRADED SAND,		SS17G	24.0 - 25.5	.0 - 25.5 21	0.5	1-1-3
²⁶ 27 27.5	666.6		(dark gray), very fine to coarse, very gravel, fine to medium, multicolored,	loose, wet, with	SS18G SS19aG	25.5 - 27.0 27.0 - 27.5	5.5 - 27.0	0.6	2-1-2
28 28 28.5	665.6		Shale, green gray, soft to moderately weathered, moist to dry	r hard, highly	SS19bG	27.5 - 28.5	7.0 - 28.5	1.2	8-12-29
			No Refusal / Bottom of Hole at 28.5 Ft. Top of Rock = 27.5 Ft. Top of Rock Elevation = 666.6 Ft.						
		G = 2: a,b,d	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground st	nvironmental and Ge			nple)		

С	lient F	Borehole	ID N/A	A	Stantec Boring	No. WBF	-104A		
	lient			ssee Valley Authority	Boring Locatio			4 E NAD27	Plant Local
		Number			Surface Eleva	-			
	-			DEC Order	Date Started				
	-			ea Co, Spring City, Tennessee	Depth to Wate		Date/Time	-	9 09:15
	-			Logger G. Budd	, Depth to Wate				
				wkston (Subcontractor)	Drill Rig Type				
	-			Sampling Tools (Type and Size)	• • •				
R	lock D	rilling and	d Samp	ling Tools (Type and Size)					
0	verdri	II Tooling	(Туре	and Size) N/A			Overdrill D	epth _^	N/A
s	ample	er Hamme	er Type	N/A Weight N/A	Drop _N	/A	Efficiency	N/A	
В	oreho	le Azimu	th	N/A	Borehole Inclin	nation (from	Vertical)	I/A	
R	leview	ed By _	C. Ko	ocka	Approved By	L. Price			
		_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	· · · · ·	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 0	0.0	691.2		Top of Hole					
	0.2	691.0	0202020	Grass, topsoil				(()	
- 1	1.0	690.2		Limestone gravel, [FILL]				222	-
- 2				LEAN CLAY, CL, 10YR 4/3 (brown), d	ry, with)))	_
				limestone gravel, [FILL]		DP01	0.0 - 5.0	1.9	N/A
- 3							5.0		-
- 4								(((-
- 5	5.3	685.9		Moist at 5.0'				Щ. –	_
	0.0	000.0		CLAYEY SAND, SC, 10YR 4/4 (dark y	vellowish			(((
- 6				brown), fine					-
- 7 5							0	///	-
	Ť					DP02	5.0 - 10.0	1.4	N/A
- 8							0.0		-
- 9									_
								(()	_
10 - 10	10.0	681.2	///		rown) fine low			<u> </u>	-
0630.GI			$\langle / / \rangle$	SANDY LEAN CLAY, CL, 10YR 4/3 (b plasticity, moist	nown), fine, low			(()	
06107 Ld								(((-
 			$\langle / / \rangle$				10		-
DECSU						DP03	10.0 - 15.0	2.9	N/A
₽ 13							0)))	-
- 14									-
, TDEC									
₩ - 15									-
7566805									
≚ – 16								(((-
							<u>σ</u>	(((-
VA EIP						DP04	15.0 - 20.0	2.7	N/A
- 10	1	1		1		1 1	là	N N I	

Page: 2 of 2

Clie	ent E	Borehole	ID _N/A		Stantec Boring	g No. WBF	-104A		
Clie	ent		Tennes	see Valley Authority			11 N; 2,363,121.04	E NAD27	Plant Local
Pro	oject	Number	175668	050	Surface Eleva	tion <u>691.2 ft</u>	Elevation	Datum_r	NGVD29
	l	_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth	Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19	20.0	671.2		SANDY LEAN CLAY, CL, 10YR 4/3 (b plasticity, moist <i>(Continued)</i>	prown), fine, low				
- 20 -	22.5	668.7		POORLY GRADED SAND, SP, 10YR fine, wet Color change to 10YR 5/2 (grayish bro		DP05	20.0 - 24.0 :24	3.7	N/A
- 23	24.0	667.2		SILTY SAND, SM, 10YR 3/1 (very dar wet	rk gray), fine,		0		
- 25				WELL GRADED SAND, SW, 10YR 5/. brown), very fine to coarse, wet, with f subangular to subrounded		DP06	24.0 - 26.5	1.5	N/A
-26 -	26.0 26.5	665.2 664.7	• • • • • • • •	_ Shale, green gray, hard, weathered, c	alcareous		55		
			-	Bedrock Refusal / Bottom of Hole at 26.5 Ft.				1111	

Top of Rock = 26.0 Ft. Top of Rock Elevation = 665.2 Ft.

1: E = Environmental Sample Custody (two Split Spoons may be required to obtain sufficient sample) G = Geotechnical Sample Custody

2: a,b,c denote Split Spoon divided between Environmental and Geotechnical Samples 3: Depths are reported in feet below ground surface

Page: 1 of 2

Client Borehole ID N/A Stantec Boring No. WBF-104B Client Tennessee Valley Authority Boring Location 444,325.11 N; 2,363,116.04 Project Number 175668050 Surface Elevation 691.2 ft Elevation ID Project Name WBF TDEC Order Date Started 5/31/19 Completed Project Location Rhea Co, Spring City, Tennessee Depth to Water N/A Date/Time Inspector G. Budd Logger G. Budd Depth to Water N/A Date/Time	Datum_1 15/31/ [/] N/A	NGVD29
Project Number 175668050 Surface Elevation 691.2 ft Elevation Elevation Project Name WBF TDEC Order Date Started 5/31/19 Completed Project Location Rhea Co, Spring City, Tennessee Depth to Water N/A Date/Time	Datum_1 15/31/ [/] N/A	NGVD29
Project Name WBF TDEC Order Date Started 5/31/19 Completed Project Location Rhea Co, Spring City, Tennessee Depth to Water N/A Date/Time	5/31/ ² N/A	
Project Location Rhea Co, Spring City, Tennessee Depth to Water N/A Date/Time	N/A	
		I
Logger Deptil to Water Date/ Time	N/A	
Drilling Contractor Hawkston (Subcontractor) Drill Rig Type and ID Geoprobe 3230DT		
Overburden Drilling and Sampling Tools (Type and Size) DPT-Direct Push		
Rock Drilling and Sampling Tools (Type and Size) N/A		
Overdrill Tooling (Type and Size) N/A Overdrill De	epth I	N/A
	N/A	
	/A	
Reviewed By C. Kocka Approved By L. Price		
Lithology Overburden: Sample ^{1,2} Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³ Elevation Graphic Description Rock Core: RQD % Run Ft	Rec. Ft	Rec. %
0.0 691.2 Top of Hole		
0.2 691.0 Grass and topsoil		
- 1 1.3 689.9 200000 Limestone gravel, [FILL]))	_
SANDY LEAN CLAY, CL, 10YR 2/2 (very dark		
brown), dry	2.0	N/A
		-
		-
5.0 686.2	4	_
CLAYEY SAND, SC, 10YR 4/4 (dark yellowish		
- 6 brown), fine, moist	21	-
7 7.0 684.2		_
POORLY GRADED SAND, SP, 10YR 4/4 (dark DP02 5.0 - 10.0	2.3	N/A
- 8 yellowish brown) and 10YR 2/1 (black), fine, moist		-
		_
	4	_
SANDY LEAN CLAY, CL, 10YR 4/3 (brown) and		
10YR 5/1 (gray), moist		-
		-
DP03 10.0 - 15.0	4.2	N/A
		-
		-
= 15 15.0 676.2	H I	_
000000 10.3 680.9 SANDY LEAN CLAY, CL, 10YR 4/3 (brown) and 10YR 5/1 (gray), moist 11 100 res DP03 10.0 - 15.0 12 100 res 10.0 - 15.0 DP03 13 15.0 676.2 10.0 - 15.0 16 16.0 675.2 SILTY SAND, SM, 10YR 4/4 (dark yellowish brown), fine, wet DP04 15.0 - 20.0 100 15.0 - 20.0 0 15.0 - 20.0 0		-
16.8 674.4 CLAYEY SAND, SC, 10YR 4/4 (dark yellowish		
brown), fine, wet		-
B DP04 15.0 - 20.0 K	2.2	N/A

Clie	ent B	orehole	ID N/A		Stantec Boring	g No. WBF	-104B		
Clie	ent		Tennes	see Valley Authority	Boring Locatio		11 N; 2,363,116.0	04 E NAD27	Plant Local
Pro	oject	Number	175668	050	Surface Eleva	tion 691.2 ft	Elevation	n Datum_N	IGVD29
		ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth	Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
18 19 20 2	20.5	670.7		POORLY GRADED SAND, SP, 10YF yellowish brown), fine, wet <i>(Continue</i>					
21 22	21.8	669.4		SANDY LEAN CLAY, CL, 10YR 3/3 (10YR 4/1 (dark gray), low plasticity, w	vet		1		
23				CLAYEY SAND, SC, 10YR 3/3 (dark 10YR 4/1 (dark gray), fine, wet	DIOWITJ AITU	DP05	20.0 - 25.0	5.0	N/A
	24.2 25.0	667.0 666.2		SILTY SAND, SM, 10YR 3/1 (very da					
26 27	27.9	663.3		WELL GRADED SAND, SW, 10YR 3, gray), very fine to coarse, wet, with gr subrounded		DP06	25.0 - 28.5	م م ک ک ک	N/A
28	28.5	662.7		Shale, green gray, hard, calcareous					
				Bedrock Refusal / Bottom of Hole at 28.5 Ft. Top of Rock = 27.9 Ft. Top of Rock Elevation = 663.3 Ft.					
				ed boring location not surveyed. Horizon on 2017 LiDAR surfaces.	ntal coordinates bas	ed on field mea	asurements. Verti	ical coordina	tes
			G = 2: a,b,o	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground su	nvironmental and G			ole)	

СІ	ient E	Borehole	ID N/A	N N	Stantec Boring	No. WBF	-105			
	ient		-	see Valley Authority	Boring Location		70 N; 2,363,041	.85 E	NAD27	Plant Local
Pr	oject	Number			Surface Elevat	-	Elevatio			
	-			DEC Order	Date Started	6/24/19	 Comple		6/25/ ⁻	<u> </u>
	-	Locatior		ea Co, Spring City, Tennessee	Depth to Wate	r N/A	Date/Tir		N/A	
	-	or G. B		Logger G. Budd	Depth to Wate		Date/Tir	me	N/A	
Dr	rilling	Contract	or <u>Sta</u>	ntec Consulting Services Inc.	Drill Rig Type a	and ID CME	850XR, #953			
0	verbu	rden Dril	ling and	Sampling Tools (Type and Size)	4-1/4" HSA, 2" S	S w/o liners				
		-	•	ling Tools (Type and Size)N/A						
		-		and Size)8-1/4" HSA overdrill of bo			Overdrill			18.0 ft
	•		• •	Automatic Weight 140	•)"	Efficiency		/A	
		le Azimu			Borehole Inclin	-	Vertical)	N/A		
Re	eview	ed By _	C. Ko	ска	Approved By					
		_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept		Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	F	Rec. Ft	Rec. %
- 0	0.0	699.8	୦୫୦୫୦୫୦	Top of Hole						
			6262626	Crushed stone, limestone gravel with s	some clay	SS01G	0.0 - 1.5	0.0 - 1	1.5	7-15-12
- 1	1.5	698.3						σ		-
- 2				WELL GRADED SAND TRACE CLAY		SS02G	1.5 - 3.0	<u>-</u> 1 57	1.4	13-14-13
				2/1 (black), very fine to coarse, mediur loose, dry, [CCR]	m dense to	33020	1.5 - 5.0	- 3.0	1.4	13-14-13
- 3				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				3.		-
- 4						SS03G	3.0 - 4.5) - 4.5	1.5	6-8-10 _
- 5						SS04G	4.5 - 6.0	1.5 - 6.0	1.5	7-7-13
- 6	6.2	693.6	• • •			SS05aG	6.0 - 6.2			-
	6.8	693.0		SANDY LEAN CLAY, CL, 5YR 4/4 (red	· _	SS05bG	6.2 - 6.8	6.0 -	1.5	10-11-11
- 7	7.0	<u> </u>		and 10YR 5/4 (yellowish brown), stiff, with fragments of siltstone, [FILL]	dry to moist,	SS05cG	6.8 - 7.5	.5		-
- 8	7.8	692.0	///	WELL GRADED SAND, SW, 10YR 5/6	3 (vellowish	SS06aG	7.5 - 7.8	7.5 -	1.1	6-4-3
	9.0	690.8		brown), very fine to coarse, medium de		SS06bG	7.8 - 9.0	. 9.0	1.1	0-4-3
-9			$\langle / / \rangle$		/┌┤			9.0		-
- 10	10 5	000.0		LEAN CLAY, CL, 10YR 3/2 (very dark		SS07G	9.0 - 10.5	- 10.5	1.5	WH-WH-WH
630.GD	10.5	689.3	htt	brown), soft, moist, with very fine sand fragments of CCR, [FILL]						
			 	SANDY LEAN CLAY, CL, 10YR 3/3 (d	ark brown), low	SS08G	10.5 - 12.0).5 - 12	1.5	WH-WH-2
- 12	12.0	687.8		plasticity, very soft, moist				0		-
DECSU				SILTY SAND SOME CLAY, SM, 10YR	8 4/3 (brown), /	SS09G	12.0 - 13.5	12.0 - 1	1.5	WH-1-1
II - 13				fine, very loose, moist	/			13.5	-	
OKDEH OKDEH				CLAYEY SAND, SC, 7.5YR 4/6 (strong very loose, moist to wet	g brown), fine,			13.5	1.0	-
F_TDEC				Wet from 12.5' to 13.5'		SS10G	13.5 - 15.0	- 15.0	1.3	1-2-4
[₩] _ 15								15		_
²⁸⁹⁹⁹¹ – 16	16 -	0.5.5.5				SS11G	15.0 - 16.5	0 - 16.5	1.3	2-3-3
16 LOG	16.5	683.3						<u>_</u>		
^{โช} ต – 17			$\langle / / \rangle$	SANDY LEAN CLAY, CL, 7.5YR 4/6 (s and 7.5YR 5/1 (gray), low to medium p		SS12G	16.5 - 18.0	6.5 - 18	1.5	1-2-3
10			///	soft, moist	-			3.0		

Stantec Consulting Services Inc.

								405		
		Borehole			Stantec Boring					
	lient			ee Valley Authority	Boring Locatio		-	70 N; 2,363,041.8		
	roject	Number	1756680	150	Surface Elevat	tior	1 <u>699.8 ft</u>	Elevation	Datum	NGVD29
		Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³	Rec. Ft	
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19	19.5	680.3					SS13G	18.0 - 19.5	1.5	
			of 19.4' Roto-sc 1: E = E G = (2: a,b,c	No Refusal / Bottom of Hole at 19.5 Ft.	ing to depth will continue to d y (two Split Spoons may be re etween Environmental and Ge	lepti equi	h through th ired to obta	ne permanent cas in sufficient samp	ing using	a depth
										-
10150										-
2000										
2										
ND CO										_
										-
2021										
										_
										-
nenoppe										_
										-

Page: 1 of 2

	lient F	Borehole	ID N/A	Α	Stantec Boring	n No	WBF	-105A			
	lient			see Valley Authority	Boring Locatio			31 N; 2,363,036	6.06	E NAD27	Plant Local
		Number			Surface Eleval	-		Elevatio			
	-			DEC Order	Date Started	-	6/4/19	Comple			
	-	Location		ea Co, Spring City, Tennessee	Depth to Wate		N/A	Date/Ti			
	-	or G. Bu		· · · · ·	Depth to Wate	··	N/A	Date/Til		-	
	•			wkston (Subcontractor)	Drill Rig Type	-	D Geop				
	-			Sampling Tools (Type and Size)	• • • •						
			-	ling Tools (Type and Size)							
0	verdri	II Tooling	(Туре	and Size) N/A				Overdrill	De	pth _N	J/A
	•		• •	N/A Weight N/A	Drop N			Efficiency		N/A	
		le Azimut		N/A	Borehole Inclin		•	Vertical)	N/.	A	
R	eview	ed By	C. Ko	cka	Approved By	L.	Price				
		_ithology			Overburden:	Sar	nple ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RC	2D %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	700.4	റക്കാകാ	Top of Hole							
				Crushed stone, limestone gravel							
- 1	1.5	698.9	0707070 000000 0000000 000000000000000								-
- 2	-			WELL GRADED SAND, SW, 10YR 2/2	1 (black), very						-
	2.7	697.7		fine to coarse, dry, [CCR]			DP01	0.0 - 5.0	0.0 - 5	2.9	N/A
- 3			a a for a for	CLAYEY GRAVEL, GC, 10YR 3/3 (dar	,				0		-
- 4				to medium, dry, limestone gravel, [FILI	-]						-
		0-									
- 5	5.0	695.4		WELL GRADED SAND WITH CLAY, S							-
- 6	5.7	694.7		$\overline{\}$ (dark yellowish brown), very fine to coa							-
Ĭ	6.3	694.1			/						
- 7				SILTY SAND, SM, 10YR 2/2 (very dar	k brown), fine,				5.0		-
- 8				moist, with trace CCR, [FILL]			DP02	5.0 - 10.0	- 10.0	3.1	N/A
Ĭ				POORLY GRADED SAND WITH CLA 4/3 (brown), fine, moist, [FILL]	r, 5P, 1.5YK						
- 9											-
- 10	10.0	690.4									_
100 - 10 - 11 - 12 - 133 - 144 - 155 - 166000001 - 00100001 - 00100001 - 001000001 - 001000001 - 0010000001 - 00100000000				CLAYEY SAND, SC, 7.5YR 4/3 (brown	n), fine, moist						
⁶⁹⁰⁶¹⁰⁷ - 11				to wet, [FILL] Trace CCR from 10.0' to 15.0'							-
- 12											-
							DP03	10.0 - 15.0	10.0 - 1	3.5	N/A
- 13									5.0		-
			//								
5 – 14											-
- 15									∣∦	4	-
NGNB000C											
≚ – 16											-
- 17	17.0	683.4	[]]						15		-
VAEIP				SANDY LEAN CLAY, CL, 7.5YR 4/3 (b) 7.5YR 5/1 (gray), low plasticity, moist	prown) and		DP04	15.0 - 20.0	.0 - 20.	3.7	N/A
-18-				r.orix ori (gray), low plasuoity, moist				1	الما	M	

Stantec Consulting Services Inc.

С	lient E	Borehole	ID_N/A		Stantec Boring	g No	o. WBF	-105A			
C C	lient		Tennes	see Valley Authority	Boring Locatio			31 N; 2,363,036	.06	E NAD27	Plant Local
P	roject	Number	175668	050	Surface Eleva	ition	700.4 ft	Elevatio	n [Datum_N	NGVD29
		ithology			Overburden:	S	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dept	th Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18 - 19		000 4		SANDY LEAN CLAY, CL, 7.5YR 4/3 (7.5YR 5/1 (gray), low plasticity, moist							-
- 20 - 21 - 22	20.0	680.4		SANDY LEAN CLAY, CL, 7.5YR 4/6 (and 7.5YR 5/1 (gray), low to medium					20		-
- 23 - 24							DP05	20.0 - 25.0	0.0 - 25.0	4.5	N/A -
- 25 - 26				Sand lens, wet from 26.0' to 26.2' and	28.6' to 28.8'						-
- 27 - 28 - 29							DP06	25.0 - 30.0	25.0 - 30.0	4.8	N/A -
- 30 - 31	30.5 31.5	669.9 668.9		Color change to 7.5YR 4/1 (dark gray Wet at 29.5' SILTY SAND, SM, 7.5YR 4/1 (dark gr fine, wet							-
- 32 - 33				POORLY GRADED SAND, SP, 7.5YF gray), fine, wet With silt at 32.9'	R 4/1 (dark		DP07	30.0 - 35.0	30.0 - 35.0	4.8	N/A -
	34.7 35.0	665.7 665.4	· · · · · · · · · · · · · · · · · · ·	Sandstone, light gray, moderately har weathered, grading to shale Bedrock Refusal / Bottom of Hole at 35.0 Ft. Top of Rock = 34.7 Ft. Top of Rock Elevation = 665.7 Ft.	d, moderately						
			G = 2: a,b,o	Environmental Sample Custody (two Spi Geotechnical Sample Custody c denote Split Spoon divided between Er ths are reported in feet below ground su	nvironmental and G				ple)	-

Page: 1 of 2

		Borehole		4	Stantec Boring		WBF	-105B			
	Client	borenoie	-	ssee Valley Authority	Boring Locatio			31 N; 2,363,036	3.06		Plant Local
		Number			Surface Eleva			Elevatio			
	-			DEC Order	Date Started		6/4/19				
	-	Location		ea Co, Spring City, Tennessee	Depth to Wate		N/A	Comple Date/Ti			
	-	or G. B		· · · ·	Depth to Wate		N/A	Date/Ti			
	•	-		wkston (Subcontractor)	Drill Rig Type				me		
	-			Sampling Tools (Type and Size)	0 71						
			-	ling Tools (Type and Size) N/A							
		-		and Size) N/A				Overdrill	De	pth N	I/A
		-		N/A Weight N/A	Drop N	J/A		Efficiency		N/A	
	•	le Azimu	• •	N/A 3	Borehole Incli			-	N/	A	
F	Review	ed By	C. Ko	cka	Approved By		-	,			
		_ithology			Overburden:	Sa	mple ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
De	pth Ft ³	Elevation	Graphic	Description	Rock Core:	R	QD %	Run Ft	.	Rec. Ft	Rec. %
- 0	0.0	700.1	0.20.20.20	Top of Hole							
				Limestone gravel, [FILL]					10		
- 1	1.2	698.9	6666666 66666666						$ \rangle$		-
- 2				WELL GRADED SAND, SW, 10YR 2/2	l (black), very						_
				fine to coarse, moist, [CCR]			DP01	0.0 - 5.0	0.0 -	3.1	N/A
- 3									5.0		-
									((
- 4									1 ((-
- 5									IЩ		_
-									1 11		
- 6	6.5	693.6							$ \rangle$		-
- 7	6.8	693.3	ŻŻŻ	¬ SANDY LEAN CLAY, CL, 5YR 4/4 (red)	ddish brown) 🖉				$ \rangle$		
Γ'				and 5YR 5/1 (gray), low to medium pla			DP02	5.0 - 10.0	5.0 - 1	3.9	N/A
- 8	7.9	692.2	177	with siltstone gravel, [FILL]	/				0.0		-
				WELL GRADED SAND, SW, 10YR 5/6					1 ((
- 9				brown), very fine to medium, moist, [FI					1 ((-
^{0722/20} – 10				SANDY LEAN CLAY, CL, 10YR 3/3 (d plasticity, moist, [FILL]	ark brown), low				IЩ		_
30.GDT				קומטנטנאָ, וווסוסג, <u>נו ובב</u> ן					1 1		
11 - 100									$ \rangle$		-
20 – 12	11.8	688.3									
			╟┇┠┇┝┇	SILTY SAND, SM, 10YR 5/6 (yellowish moist to wet	n brown), fine,		DP03	10.0 - 15.0	10.0 -	3.3	N/A
^B ₂ – 13			 	Wet at 12.8'					15.0		-
DER.GF			╟┇┝┇┝┇								
ଞ 14			╽┇┥╏┊╿								-
^무 쀻 - 15			╟╁╂╁╂┤						ļ		_
368050	16.0	604 4	╟╂╂╂┇								
⁹⁵ – 16	16.0	684.1		CLAYEY SAND, SC, 7.5YR 4/6 (strong	n brown) fine						-
DINING - 17	17.0	683.1		moist	g 510wi1), iiile,						_
A EIP BO				SANDY LEAN CLAY, CL, 7.5YR 4/6 (s	strong brown)		DP04	15.0 - 20.0	5.0 - 2	3.6	N/A
2 −1 8			<u> </u>		-				8		

Stantec Consulting Services Inc.

Client E	Borehole	IDN/A		Stantec Boring	No. WBF	-105B		
Client		Tennes	see Valley Authority	Boring Location		31 N; 2,363,036.06	E NAD27	Plant Local
Project	Number	175668	050	Surface Elevati	on <u>700.1 ft</u>	Elevation	Datum_ №	IGVD29
	_ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19 - 20 - 21 - 22	077.0		and 7.5YR 5/1 (gray), low to medium p SANDY LEAN CLAY, CL, 7.5YR 4/6 (and 7.5YR 5/1 (gray), low to medium p (<i>Continued</i>)	strong brown)		20		-
22.5 - 23 - 24 - 25	677.6		FAT CLAY WITH SAND, CH, 7.5YR 4 brown) and 7.5YR 5/1 (gray), medium plasticity, moist Medium plasticity, with maganese and	to high	DP05	20.0 - 25.0	4.7	N/A -
- 26 - 27 - 28 - 28 - 29	672.3 671.1		25.0' Sand lens, wet at 27.3' SANDY LEAN CLAY, CL, 7.5YR 5/1 (g plasticity, moist POORLY GRADED SAND, SP, 7.5YR		DP06	25.0 - 30.0 - 30.0	4.4	N/A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	670.1 669.8 668.1 666.0 665.6		brown), fine, moist to wet Wet at 29.5' Wood fragments SILTY SAND, SM, 7.5YR 4/1 (dark gra fine, wet CLAYEY SAND, SC, 7.5YR 4/1 (dark to fine, wet Wood fragments from 34.0' to 34.1'	ay), very fine to	DP07	30.0 - 34.5	4.5	N/A
		based 1: E = G =	Sandstone, moderately hard, moist Bedrock Refusal / Bottom of Hole at 34.5 Ft. Top of Rock = 34.1 Ft. Top of Rock Elevation = 666.0 Ft. ed boring location not surveyed. Horizon on 2017 LiDAR surfaces. Environmental Sample Custody (two Spl Geotechnical Sample Custody c denote Split Spoon divided between Er	it Spoons may be red	quired to obtai	in sufficient sample		- tes

Client	Borehole	ID <u>N</u> A	١	_ St	antec Boring	No. WBF	-105C		
Client		Tennes	see Valley Authority				63 N; 2,363,103.4	49 E NAD27	Plant Local
Project	Number	175668	050	Sı	urface Elevat	tion 698.6 ft	Elevation	n Datum_	NGVD29
Project	t Name	WBF TI	DEC Order	_ Da	ate Started	6/3/19	Complet	ed 6/4/1	9
-	Location		ea Co, Spring City, Tennessee	_ De	epth to Wate	r N/A	·	-	
Inspec	tor G. B	udd	Logger G. Budd	De	epth to Wate	r N/A	Date/Tim	ne N/A	
Drilling	Contract	or Hav	wkston (Subcontractor)	_ Di	rill Rig Type	and ID Geop	orobe 3230DT		
Overbu	urden Dril	ling and	Sampling Tools (Type and Siz	ze)	OPT-Direct Push	ı			
Rock [Drilling an	d Samp	ling Tools (Type and Size)	N/A					
Overdr	ill Tooling	(Туре а	and Size) <u>N/A</u>				Overdrill	Depth _	N/A
Sample	er Hammo	er Type	WeightN	I/A	Drop _N	/A	Efficiency	N/A	
	ole Azimu				orehole Inclir	•	Vertical)	N/A	
Reviev	ved By _	C. Ko	cka	Ap	oproved By	L. Price			
	Lithology				Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
Depth Ft ³	Elevation	Graphic	Description		Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
0.0	698.6	০ন০ন০ন০	Top of Hole						
			Limestone gravel, [FILL]						
1		00000000000000000000000000000000000000							
2 2.0	696.6	6666666 6666666)))	
	007.0		WELL GRADED SAND, SW, 7.5YI	R 2.5/1	(black),	DP01	0.0 - 5.0	00- 	N/A
3.0	695.6	111	fine to medium, dry, [CCR]					6 	
.			CLAYEY GRAVEL, GC, 7.5YR 5/8 and 7.5YR 2.5/1 (black), very fine t						
4		a for the for	[FILL]	to coars	se, dry,			((()	
5		a a a a a a						<u> </u>	
		a a a a a a						((()	
6		a a a a a a a						л ((()	
7		a a a a a a				DP02	5.0 - 8.5	2.3	N/A
		a a a a a a							
8 8.5	690 1	a a far a fa							
	030.1		WELL GRADED SAND, SW, 7.5YI	R 2 5/1	(black)			()))	
Ð		••••	very fine to coarse, wet, with trace						
10		• • •	subrounded, [CCR]					KK	
								α (()	
11		• • •				DP03	8.5 - 13.5	2.6	N/A
2									
		••••							
3									
								666	
14		• • • •						((()	
15									
16						DP04	13.5 - 18.5	2.8	N/A
		•••••						5	
17									
1	1	ان ہ '' ہ ''				1 1		1///	

Client E	Borehole IDN/A		Stantec Boring No. WBF-105C							
Client	Tennes	see Valley Authority	Boring Location				,363,103.49 E NAD27 Plant L			
Project	Number <u>175668</u>	050	Surface Eleva	ation	698.6 ft	Elevatio	on E	Datum_N	IGVD29	
	Lithology		Overburden:	Sa	mple ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI	
Depth Ft ³	Elevation Graphic	Description	Rock Core:	R	QD %	Run Ft	_	Rec. Ft	Rec. %	
- 18 - 19 - 20		WELL GRADED SAND, SW, 7.5YR 2 very fine to coarse, wet, with trace gra subrounded, [CCR] <i>(Continued)</i>			DP05	18.5 - 20.0	18.5 - 20.0	0.6	N/A	
- 21 - 22					DP06	20.0 - 22.5	20.0 - 22.5	0.6	N/A	
- 23 - 24					DP07	22.5 - 25.0	22.5 - 25.0	0.7	N/A	
- 25 - 26 - 27 27.5	671.1	Color change to 10YR 2/1 (black) and (dark grayish brown) at 25.0'	I 10YR 4/2		DP08	25.0 - 27.5	25.0 - 27.5	0.0	N/A	
$\begin{array}{c c} 21.3 \\ 28 \\ -29 \\ 29.5 \\ -30 \\ -31 \\ 31.5 \\ \end{array}$	669.8 669.1 668.6 667.1	WELL GRADED GRAVEL, GW, 10YF and 10YR 4/2 (dark grayish brown), v coarse, wet, subrounded to rounded, coarse sand, and organics SANDY LEAN CLAY, CL, 10YR 4/2 (brown), fine, low plasticity, wet, with fi wood GRAVELLY WELL GRADED SAND,	ery fine to with fine to dark grayish ragments of		DP09	27.5 - 31.5	27.5 - 31.5	2.6	N/A	
		(dark grayish brown), very fine to coa SANDY WELL GRADED GRAVEL, G (dark grayish brown), very fine to coa	6W, 10YR 4/2							
		No Refusal / Bottom of Hole at 31.5 Ft.	,							
	G = 2: a,b,	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between E ths are reported in feet below ground su	nvironmental and G				nple)		

С	lient E	Borehole	ID N/A	A	Stantec Borin	a No. WB	-105 (sonic))			
	lient			see Valley Authority			.70 N; 2,363,041.85		' Plant Local		
		Number		· · · · · · · · · · · · · · · · · · ·	Surface Eleva	-					
	-			DEC Order	Date Started		Completed		7/9/19		
	-	Location		ea Co, Spring City, Tennessee	Depth to Wate		·				
	-		-	Logger E. Smith	Depth to Wate		Date/Time	-			
	-			W Drilling (Subcontractor)	Drill Rig Type	and ID Geo	probe GV5 Sonic				
0	verbu	rden Dril	ling and	l Sampling Tools (Type and Size)	Sonic 6" Core E	Barrel, 8" Steel	Casing				
R	ock D	rilling an	d Samp	ling Tools (Type and Size)							
		-		and Size) <u>N/A</u>			Overdrill De	·	18.0 ft		
	-			N/A Weight N/A	Drop <u>N</u>		, _	N/A			
		le Azimu			Borehole Incli	•	i Vertical) N	/A			
R	eview	ed By _	C. Ko		Approved By	L. Price					
		ithology			Overburden:	•	Depth Ft ³	Rec. Ft	Blows/PSI		
Dept	h Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %		
- 0	0.0	699.8		Top of Hole							
				Boring was advanced using sonic met sampling.	hods without						
- 1				Boring was advanced to depth through					-		
- 2				permanent surface casing previously s of 19.4' in boring WBF-105. For litholo					-		
				descriptions of material from 0.0' -19.5							
- 3				boring log WBF-105.					-		
- 4									-		
- 5											
- 6									-		
- 7									-		
- 8									-		
- 9									-		
- 10											
630.GD											
11 - 11									-		
- 12									-		
DECSU											
^{IL} – 13									-		
- 14									-		
F_TDEC											
¹⁸ - 15									_		
²⁸⁹⁹⁵¹ – 16									-		
NGLOG											
01									-		
18 ¹											

Client I	Borehole I	D_N/A		Stantec Boring	No. WBF	-105 (sonic)		
Client		Tenness	see Valley Authority	Boring Locatio	n <u>445,050.7</u>	70 N; 2,363,041.85	E NAD27	Plant Local
Project	Number	1756680)50	Surface Elevat	tion <u>699.8 ft</u>	Elevation I	Datum_1	NGVD29
	Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS
Depth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 18 - 19 - 20 - 21 - 21 - 22 - 23 - 23 - 23 - 24 - 25 - 26 - 27 - 28	679.8		HDPE plastic auger plug blocked so soil sample recovered.	nic casing. No	RS01	20.0 - 30.0 ^{20.}	0.0	N/A
- 29 - 30 - 31 - 32 - 33 - 33	669.8 666.8		GRAVELLY SILTY SAND, SM, 10YF to coarse, dense, moist, no odor, no graded Shale, dark gray green to light gray g	staining, poorly green, very fine	RS02	30.0 - 35.0 ^{00.} -35.0	3.0	N/A
- 34 35.0	664.8		grained, moderately hard, laminated weathered, dry, no odor, no staining No Refusal /	, slightly				
		G = 0 2: a,b,c	Bottom of Hole at 35.0 Ft. Environmental Sample Custody (two S Geotechnical Sample Custody denote Split Spoon divided between E hs are reported in feet below ground s	Environmental and Ge			•)	

Page: 1 of 2

	Client E	Borehole	ID N/A	A	Stantec Boring	No. WBF	-106			
	Client			see Valley Authority	Boring Locatio			.26	E NAD27	Plant Local
F	Proiect	Number			Surface Eleva		Elevatio			
	-			DEC Order	Date Started					
	-	Location		ea Co, Spring City, Tennessee						9 12:35
				Logger G. Budd	Depth to Wate					
	-			Intec Consulting Services Inc.	Drill Rig Type					
	-			Sampling Tools (Type and Size)	• • •					
F	Rock D	rilling and	d Samp	ling Tools (Type and Size) N/A						
	Overdri	II Tooling	(Туре а	and Size)8-1/4" HSA overdrill of bo	pring		Overdrill	De	pth _3	34.5 ft
s	Sample	er Hamme	er Type	Automatic Weight 140	b Drop <u>3</u>	0"	Efficiency	1	N/A	
B	Boreho	le Azimu	th	N/A	Borehole Inclin	nation (from	Vertical)	N//	4	
F	Review	ed By _	C. Ko	cka	Approved By	L. Price				
		Lithology			Overburden:	Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Dep	oth Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft		Rec. Ft	Rec. %
- 0	0.0	701.7		Top of Hole						
	0.2	701.5		Grass and topsoil		SS01G	0.0 - 1.5	0.0 -	0.6	1-2-2
- 1				LEAN CLAY, CL, 5YR 5/8 (yellowish r				1.5		
- 2				plasticity, very soft, moist, with siltston sandstone gravel, trace CCR, [FILL]	e and			-		-
						SS02G	1.5 - 3.0	- 3.0	1.0	1-1-1
- 3										-
- 4						SS03G	3.0 - 4.5	3.0 - 4.	0.3	WH-WH-WH
	4.8	696.9				SS04aG	4.5 - 4.8			
- 5				SANDY LEAN CLAY, CL, 10YR 2/2 (v	ery dark	SS04bG	4.8 - 6.0	4.5 - 0	1.0	WH-1-3
- 6				brown), low plasticity, very soft, moist,	with trace	5504DG	4.0 - 0.0	3.0		_
	6.8	694.9		organics, CCR, [FILL]		SS05aG	6.0 - 6.8	6.0		4.0.0
- 7			[]]	CLAYEY SAND, SC, 10YR 4/4 (dark y	vellowish	SS05bG	6.8 - 7.5	- 7.5	1.1	1-2-2 _
- 8				brown), fine, very loose, moist to wet		SS06aG	7.5 - 8.3	7		
0				Trace CCR from 6.8' to 7.5' Sandstone fragments at 7.5'		SS06bG	8.3 - 9.0	7.5 - 9.0	0.5	2-1-2
- 9				J. J		000000	0.5 - 5.0			_
2120						SS07G	9.0 - 10.5	9.0 - 10	1.2	2-2-2
56 - 10 199								0.5		_
0190630						SS08G	10.5 - 12.0	10.5 -	1.5	1-2-2
2 DT 2	¥12.0	689.7				33000	10.3 - 12.0	. 12.0	1.3	1-2-2
nsens – 12	¥ '2.0	000.1	\square	LEAN CLAY, CL, 10YR 4/4 (dark yello	wish brown),			12.		_
 				low to medium plasticity, soft to mediu		SS09G	12.0 - 13.5	0 - 13.	1.5	2-3-5
DER.GP,								5		
ଅ <mark>ଳ 14</mark>						SS10G	13.5 - 15.0	13.5 - 1	1.5	1-4-5
Ē ∰ — 15								5.0		_
68050_V						00110	150 105	15.0 -	4 5	246
[₩]			//			SS11G	15.0 - 16.5	- 16.5	1.5	2-4-6 _
TVA EIP BORINGLOG 175600050 WBF. TDEC. ORDER GPT. TDEC SUBSURF OT 20190530 CDT 6522 - 11								16.		
LEIP BO			///			SS12G	16.5 - 18.0	5 - 18.	1.4	2-3-4
≜ <mark>18</mark>								0		

Client E	Borehole	IDN/A		Stantec Boring No. WBF-106						
Client		Tennes	see Valley Authority	Boring Location 445,872.50 N; 2,362,862.26 E NAD27 Plant Loc						Plant Local
Project	Number	175668	050	Surface Eleva	atio	n <u>701.7 ft</u>	Elevatio	on E	Datum_	NGVD29
	Lithology			Overburden:		Sample ^{1,2}	Depth Ft ³		Rec. Ft	Blows/PSI
Depth Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 18 - 19 	682.2		LEAN CLAY, CL, 10YR 4/4 (dark yello low to medium plasticity, soft to mediu (<i>Continued</i>)	ım stiff, moist		SS13G	18.0 - 19.5	18.0 - 19.5	1.5	2-2-4
- 20			Some very fine sand, manganese at 1 FAT CLAY, CH, 10YR 4/4 (dark yellow 10YR 6/1 (gray), medium to high plass	wish brown) and		SS14G	19.5 - 21.0	19.5 - 21.0	1.5	2-4-7
- 21 - 22			medium stiff, moist, with manganese a fine sand, increasing with depth			SS15G	21.0 - 22.5	21.0 - 22.5	1.5	2-4-4
- 23 - 24						SS16G	22.5 - 24.0	22.5 - 24.0	1.5	1-2-4
- 25 25.5	676.2					SS17G	24.0 - 25.5	24.0 - 25.5	1.5	2-3-4
- 26 27 27.0	674.7		SANDY LEAN CLAY, CL, 10YR 4/1 (or plasticity, soft to very soft, moist	dark gray), low		SS18G	25.5 - 27.0	25.5 - 27.0	1.3	4-1-2
- 27			CLAYEY SAND, SC, 10YR 4/1 (dark g loose, moist to wet Wet at 28.0'	gray), fine, very		SS19G	27.0 - 28.5	27.0 - 28.5	1.5	WH-WH-W
29 29.1	672.6					SS20aG	28.5 - 29.1	28.5		
- 30			POORLY GRADED SAND WITH CLA 10YR 4/1 (dark gray), fine, very loose Organics from 30.0' to 31.5'			SS20bG	29.1 - 30.0	- 30.0 30.	1.5	WH-WH-1
- 31 31.5	670.2		-			SS21G	30.0 - 31.5	0 - 31.5	1.5	WH-WH-W
- 32 - 33 <u>33.0</u>	668.7		POORLY GRADED SAND WITH SIL 10YR 4/1 (dark gray), fine, very loose			SS22G	31.5 - 33.0	31.5 - 33.0	1.2	WH-1-1
- 34 34.5	667.2	8 8	WELL GRADED GRAVEL WITH SAN 4/1 (dark gray), very fine to coarse, we to rounded, multi colored			SS23G	33.0 - 34.5	33.0 - 34.5	1.5	2-10-19
			No Refusal / Bottom of Hole at 34.5 Ft.							
		G = 2: a,b,o	Environmental Sample Custody (two Sp Geotechnical Sample Custody c denote Split Spoon divided between Er ths are reported in feet below ground su	nvironmental and G				nple))	

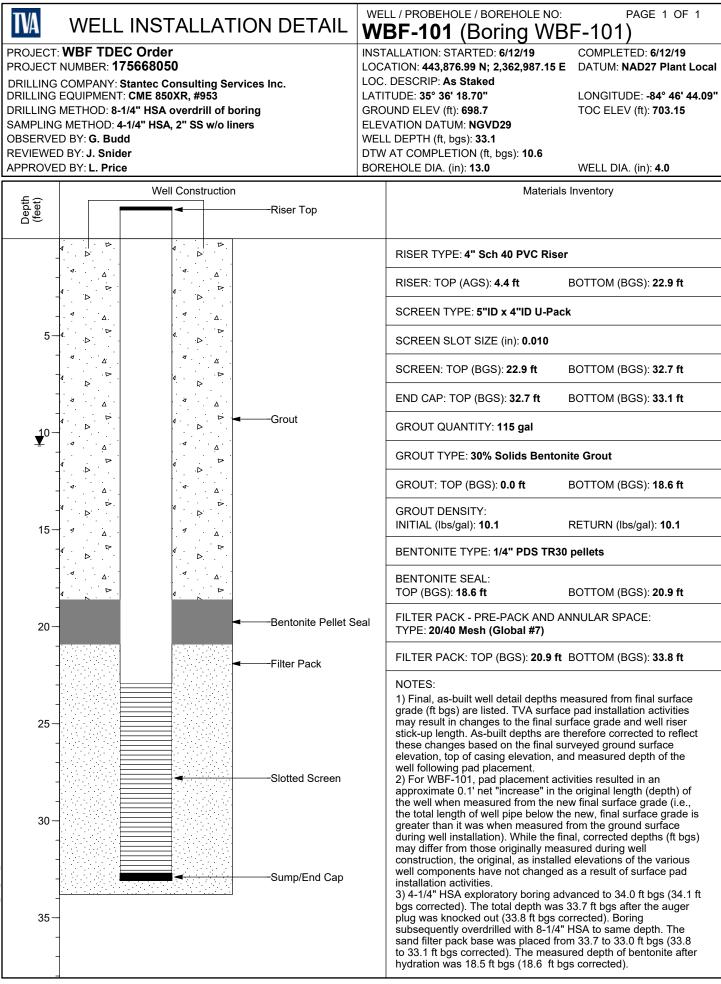
C	lient F	Borehole		A	Stantec Boring		-106A			
	lient			see Valley Authority	Boring Locatio)6 N; 2,362,847.	92 F N/	AD27	Plant I ocal
		Number			Surface Eleva		Elevatio			
	-			DEC Order	Date Started		Complet			
	-	Locatio		ea Co, Spring City, Tennessee	Depth to Wate		Oompice Date/Tin			10:28
		or G.B			Depth to Wate				N/A	
	•	-		wkston (Subcontractor)	Drill Rig Type					
	-			Sampling Tools (Type and Size)	• • •					
R	ock D	rilling an	d Samp	ling Tools (Type and Size)						
0	verdri	ll Tooling	g (Type a	and Size) <u>N/A</u>			Overdrill	Depth	1	1/A
	•		• •	N/A Weight N/A	·	I/A	Efficiency	N/A		
		le Azimu			Borehole Inclin		Vertical)	N/A		
	eview	ed By _	C. Ko	cka	Approved By	L. Price				
	l	ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Ree	c. Ft	Blows/PSI
Dept	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Re	c. Ft	Rec. %
- 0	0.0	704.6	فعر رفعن رفعان	Top of Hole					[
	-0.3-	- 704.3	× × × ×	─_Topsoil, grass						
- 1	1.2	703.4		CLAYEY GRAVEL, GC, 5YR 5/6 (yello						-
- 2				medium to coarse, dry, limestone grav	el fill, organics,					-
- 3				LEAN CLAY, CL, 7.5YR 6/8 (reddish y	(ellow) dry to	DP01	0.0 - 5.0	⁰ -5.0	.3	N/A
				moist, with CCR, siltstone gravel, [FILI	<i>,</i> .					-
- 4										-
- 5			$\langle / / \rangle$							_
	5.5	699.1	H		6/9 (raddiab					
- 6	6.8	697.8	$\langle / / \rangle$	LEAN CLAY SOME SAND, CL, 7.5YR yellow) and 7.5YR 7/1 (light gray), low						-
- 7	0.0	0.160	///	moist, with trace CCR, [FILL]				5.0		-
- 8				LEAN CLAY, CL, 7.5YR 3/2 (dark brow	wn), moist, with	DP02	5.0 - 10.0	- 10.0	.8	N/A
			$\langle / / \rangle$	some very fine sand						
- 9										-
- 10										_
120								(((
2000 - 11 - 12 - 13 - 13 - 14 - 13 - 14 - 15 - 16 - 17 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19			///							-
<u></u>	<u>Z</u>							10.0		-
5 			$\langle / / \rangle$			DP03	10.0 - 15.0	- 15.0	.8	N/A
NDS90	13.5	691.1	$\langle / / \rangle$							
°a− 14			///	LEAN CLAY WITH SAND, CL, 7.5YR low plasticity, moist, with organics	4/3 (brown),					-
- 15	15.0	689.6	$\langle / / \rangle$							_
				SANDY LEAN CLAY, CL, 10YR 4/4 (d brown), low plasticity, with organics	lark yellowish			(((
≝ – 16			$\langle / / \rangle$	browny, iow plasticity, with organics						-
ng – 17								15.0		-
- 18			$\langle / / \rangle$	Sand lens, fine from 17.4' to 17.5'		DP04	15.0 - 20.0	- 20.0	.2	N/A
bg – 19			$\langle / / \rangle$							-
<u> </u>			Y///							

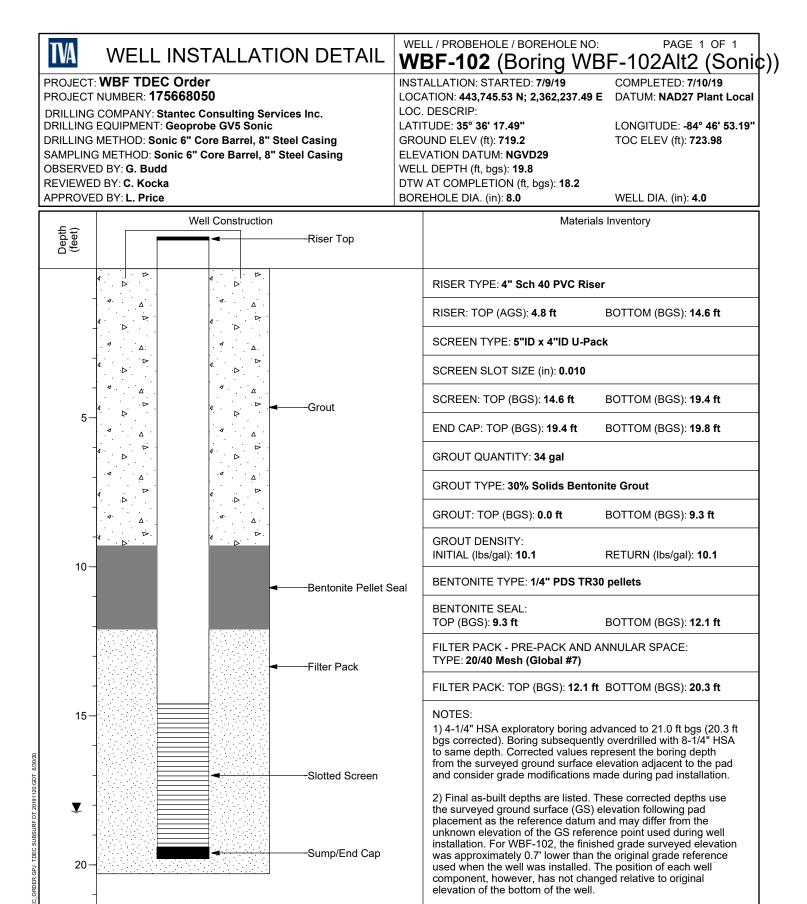
TVAI

SUBSURFACE LOG

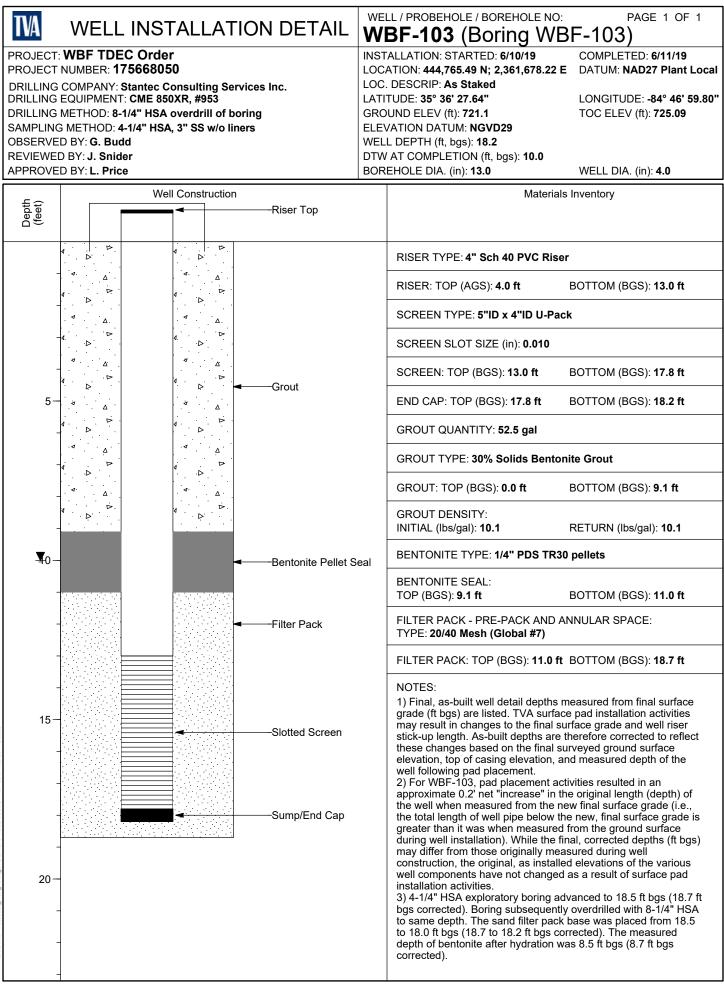
Cli	ent E	Borehole	ID_N/A		Stantec Boring	g N	o. WBF	-106A			
Cli	ent		Tennes	see Valley Authority	Boring Location			06 N; 2,362,847	.92	E NAD27	Plant Local
Pro	oject	Number	175668	050	Surface Eleva	atior	n <u>704.6 ft</u>	Elevatio	on E	Datum_N	IGVD29
	l	ithology			Overburden:			Depth Ft ³		Rec. Ft	Blows/PSI
Depth	ו Ft ³	Elevation	Graphic	Description	Rock Core:		RQD %	Run Ft		Rec. Ft	Rec. %
- 20 - 21				SANDY LEAN CLAY, CL, 10YR 4/4 (brown), low plasticity, with organics	-						
- 22 - 23 - 24	22.5	682.1		SANDY LEAN CLAY, CL, 7.5YR 4/4 7.5YR 5/1 (gray), low to medium plas abundant manganese			DP05	20.0 - 25.0	20.0 - 25.0	4.2	N/A
- 25	26.3	678.3		abandant manganoso							
- 27	27.0	677.6		CLAYEY SAND, SC, 7.5YR 4/4 (brov 5/1 (gray), fine, moist to wet SANDY LEAN CLAY, CL, 7.5YR 4/4			DP06	25.0 - 30.0	25.0 - 30.1	4.0	N/A
- 28 - 29				7.5YR 5/1 (gray), low to medium plas							
- 30 - 31 - 32				Color change to 7.5YR 4/1 (dark gray wet at 30.5'	r), low plasticity,		DP07	30.0 - 35.0	30.0	4.9	N/A
- 34	<u>33.6</u>	671.0		CLAYEY SAND, SC, 7.5YR 4/1 (dark	gray), fine, wet		DFUI	30.0 - 33.0	. 35.0	4.5	N/A
- 35 🗕	34.7 35.0	669.9 669.6		☐ Fragments of wood							
	35.4	669.2	8. 8. 8. 8. 8. 8. 8. 8. 8.	CLAYEY SAND, SC, 7.5YR 4/1 (dark	(grav), fine, wet						
- 36 - 37	36.8	667.8		WELL GRADED SAND, GW, 7.5YR 4			DP08	35.0 - 38.6	35.0 - 38.6	3.6	N/A
- 38	38.3 38.6	666.3 666.0		WELL GRADED GRAVEL, GC, very wet, subrounded to rounded, multicol fragments of wood							
				Shale, green gray, moderately hard							
				Bedrock Refusal / Bottom of Hole at 38.6 Ft.							
				Top of Rock = 38.3 Ft. Top of Rock Elevation = 666.3 Ft.							
			G =	Environmental Sample Custody (two Sp Geotechnical Sample Custody					nple)	
				c denote Split Spoon divided between E ths are reported in feet below ground su		JEOLE	scrinical Sal	npies			

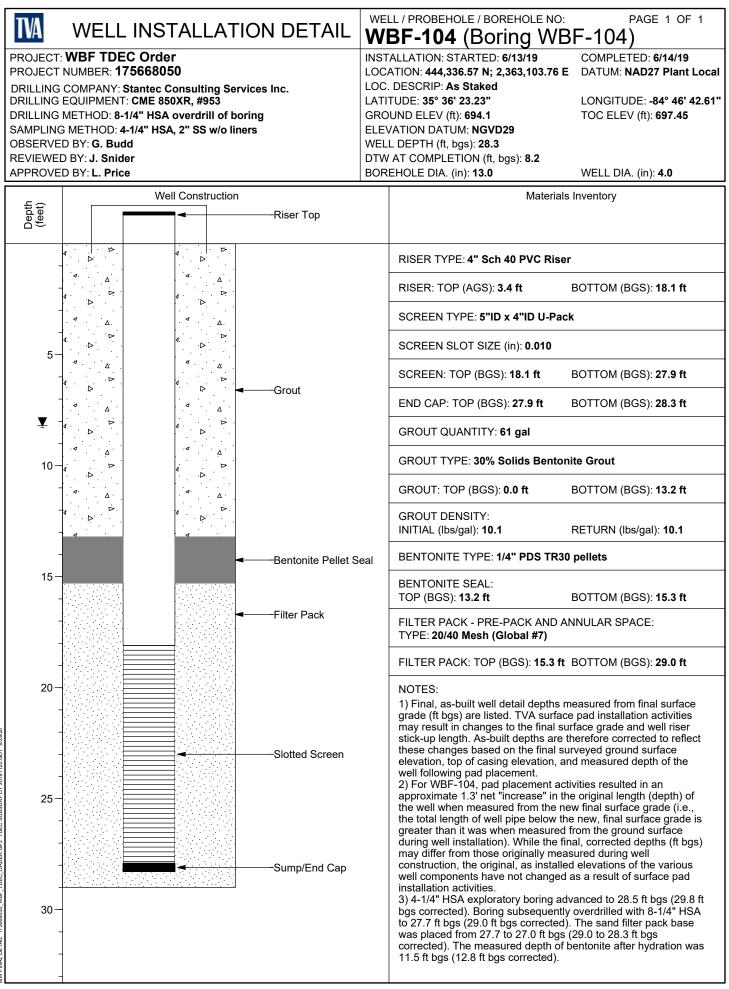
Page: 1 of 2

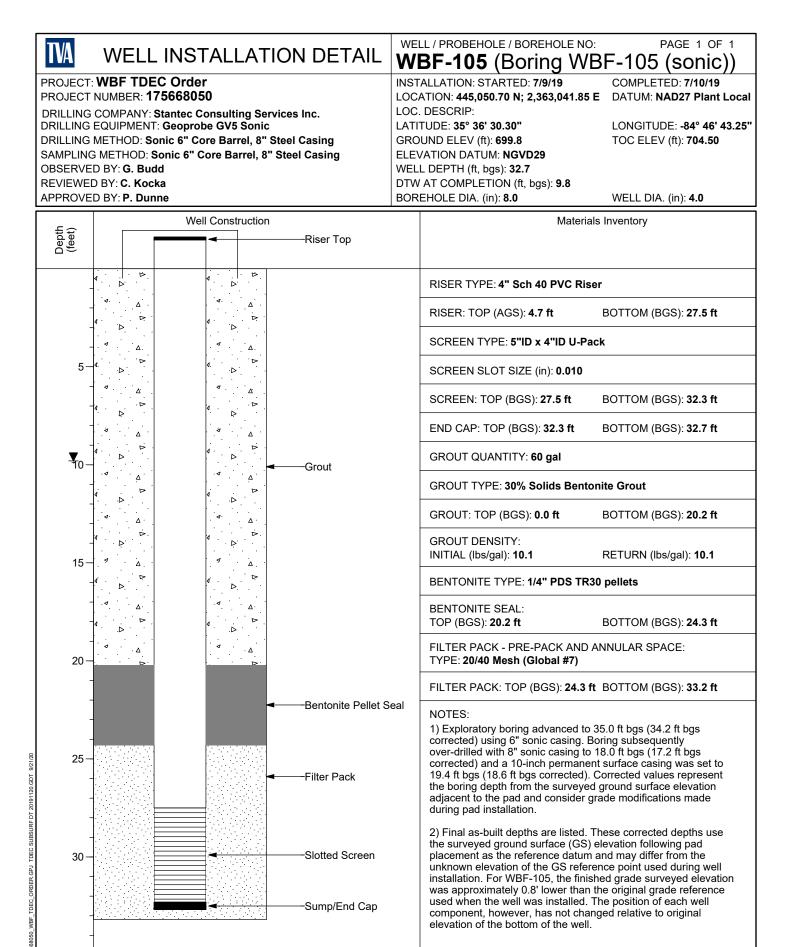

	lient F	Borehole	ID N/A	Α	Stantec Boring	No. WBF	-106B		
	lient		-	see Valley Authority	Boring Locatio		06 N; 2,362,847.9	2 E NAD27	Plant Local
		Number			Surface Elevat		Elevation		
	-			DEC Order	Date Started	6/5/19	 Complete		
	-	Location		ea Co, Spring City, Tennessee	Depth to Wate		Date/Tim	-	14:09
	-	or G. B		Logger G. Budd	Depth to Wate		Date/Tim		
	•			wkston (Subcontractor)	Drill Rig Type		probe 3230DT		
C	verbu	rden Dril	ling and	l Sampling Tools (Type and Size)	DPT-Direct Push	h			
R	lock D	rilling an	d Samp	ling Tools (Type and Size) <u>N/A</u>					
		-		and Size) <u>N/A</u>			Overdrill E	·	I/A
	•		• •	WeightN/A	Drop <u>N</u>		Efficiency	N/A	
		le Azimu		N/A	Borehole Inclin	•	Vertical)	N/A	
	eview	ed By	C. Ko		Approved By				
		ithology			Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PSI
Dep	th Ft ³	Elevation	Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %
- 0	0.0	704.4	nànànà I						
- 1		104.2		∖Topsoil, grass	/			((()	
Γ				LEAN CLAY, CL, 5YR 5/8 (yellowish r siltstone and sandstone gravel, trace ((()	_
- 2					· · · · · · · · · · · · · · · · · · ·		0.0		-
- 3	2.7	701.7		SANDY LEAN CLAY, CL, 10YR 2/2 (v	ony dark	DP01	0.0 - 5.0	4.0	N/A
Ů				brown), low plasticity, moist, with CCR					
- 4)))]	-
- 5								Щ I	_
- 6									_
- 7							ģ		-
	8.0	696.4				DP02	5.0 - 10.0	4.9	N/A
- 8				CLAYEY SAND, SC, 10YR 4/4 (dark y	vellowish				-
- 9				brown), fine, moist					-
10									
- 10								\mathbb{M}	
11 - 11	11.6	692.8)))	-
⁵⁰¹⁰⁰ ⊢ 12	11.0	092.0		SANDY LEAN CLAY, CL, 10YR 4/4 (d	ark vellowish				_
SURF D1	12.9	691.5		brown), low to medium plasticity, mois		DP03	10.0 - 15.0	3.3	N/A
∰ – 13				Sand lens, fine from 11.8' to 11.9'			0.0		-
⊑ <u>`</u> ≩ 14	¥			LEAN CLAY, CL, 10YR 4/4 (dark yello				KKI I	-
ORDER.(low to medium plasticity, with some ve	ary line sand			(((
ິຟ− 15				Manganese and organics from 15.0' to	20.0'			tti l	_
Han- 16			$\langle / / \rangle$						-
1756680									
5 – 17			$\langle / / \rangle$			DP04	15.0 - 20.0	5.0	N/A
IV EIP BORINGLOG 775600000 WBF_TDEC_ORDER.OPJ 1EC SUBSURF DT 2019050 GOTO 62220 - 111 - 112 - 113 - 114 - 115 - 116 - 117 - 117 - 118 - 118 -									-
TVAEF								K((
10				Stantec Consul					6/22/20


Client Borehole IDN/A	·	Stantec Boring No. WBF-106B							
Client Tennes	see Valley Authority	Boring Location 445,878.06 N; 2,362,847.92 E NAD27 Plan							
Project Number 175668	050	Surface Elevati	on <u>704.4 ft</u>	Elevation	Datum_N	NGVD29			
Lithology		Overburden:	Sample ^{1,2}	Depth Ft ³	Rec. Ft	Blows/PS			
Depth Ft ³ Elevation Graphic	Description	Rock Core:	RQD %	Run Ft	Rec. Ft	Rec. %			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FAT CLAY WITH SAND, CH, 10YR 4 yellowish brown) and 10YR 6/1 (gray) high plasticity, moist, with manganese SANDY LEAN CLAY, CL, 5YR 3/4 (da brown) and 10YR 4/1 (dark gray), low plasticity, moist SILTY CLAYEY SAND, SC, 10YR 4/1 fine, moist to wet Wet at 29.0' POORLY GRADED SAND, SP, 10YR wet POORLY GRADED SAND WITH CLA 10YR 5/1 (gray), fine), medium to a and organics ark reddish to medium (dark gray), c 5/1 (gray), fine,	DP05 DP06 DP07	20.0 - 25.0 25.0 - 30.0 30.0 - 35.0	4.8	N/A N/A			
based 1: E = G = 2: a,b,d	POORLY GRADED GRAVEL WITH S 10YR 5/1 (gray), very fine to coarse, w to rounded, multicolored Shale, green gray, weathered No Refusal / Bottom of Hole at 35.0 Ft.	wet, subangular	quired to obtai	in sufficient samp		ıtes			

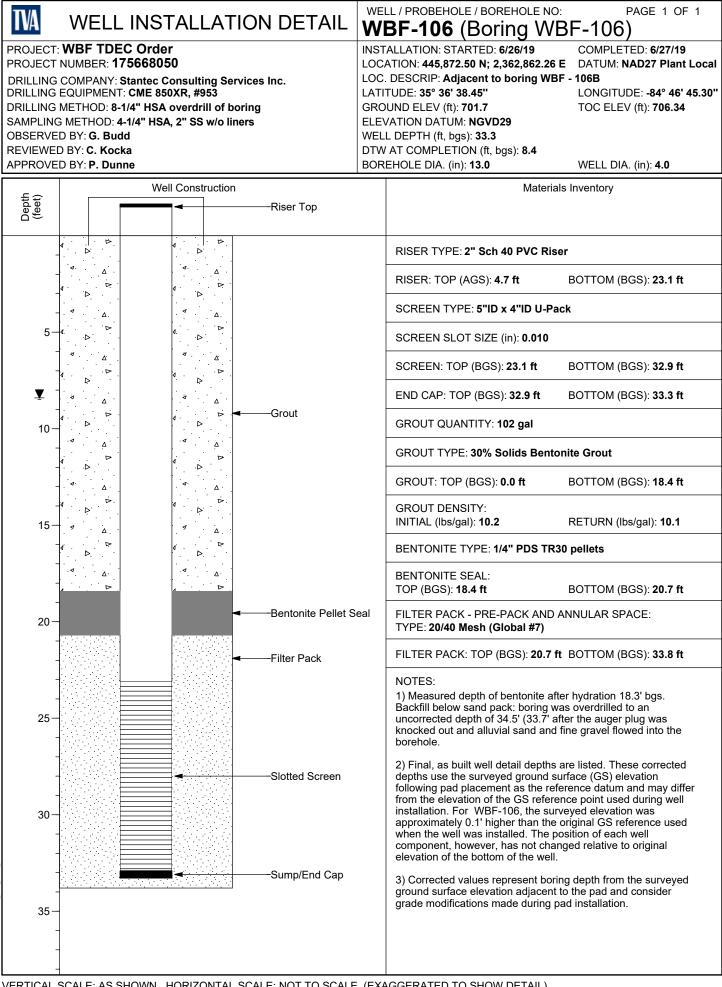
ATTACHMENT C.2


Well Installation Details




VERTICAL SCALE: AS SHOWN. HORIZONTAL SCALE: NOT TO SCALE (EXAGGERATED TO SHOW DETAIL)

VERTICAL SCALE: AS SHOWN. HORIZONTAL SCALE: NOT TO SCALE (EXAGGERATED TO SHOW DETAIL)



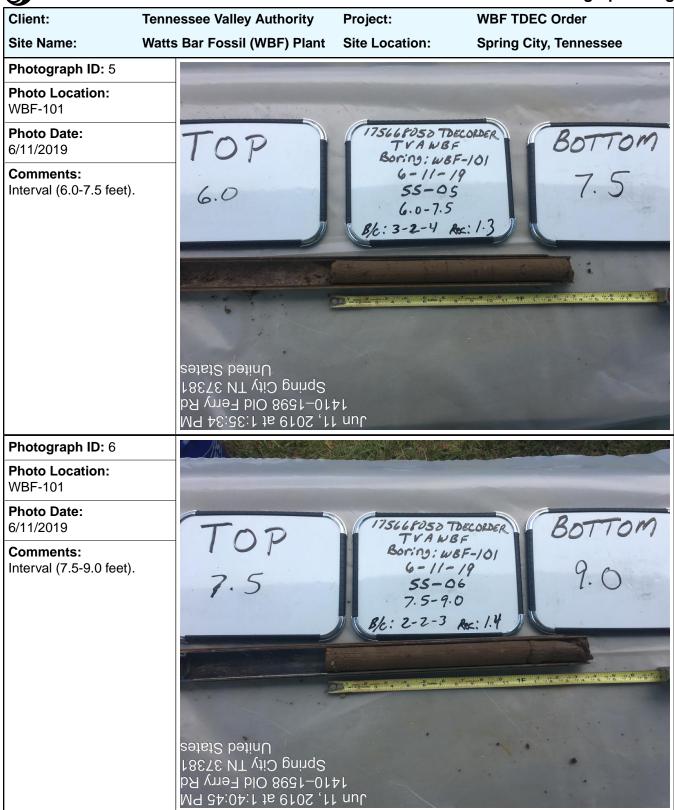
VERTICAL SCALE: AS SHOWN. HORIZONTAL SCALE: NOT TO SCALE (EXAGGERATED TO SHOW DETAIL)

35

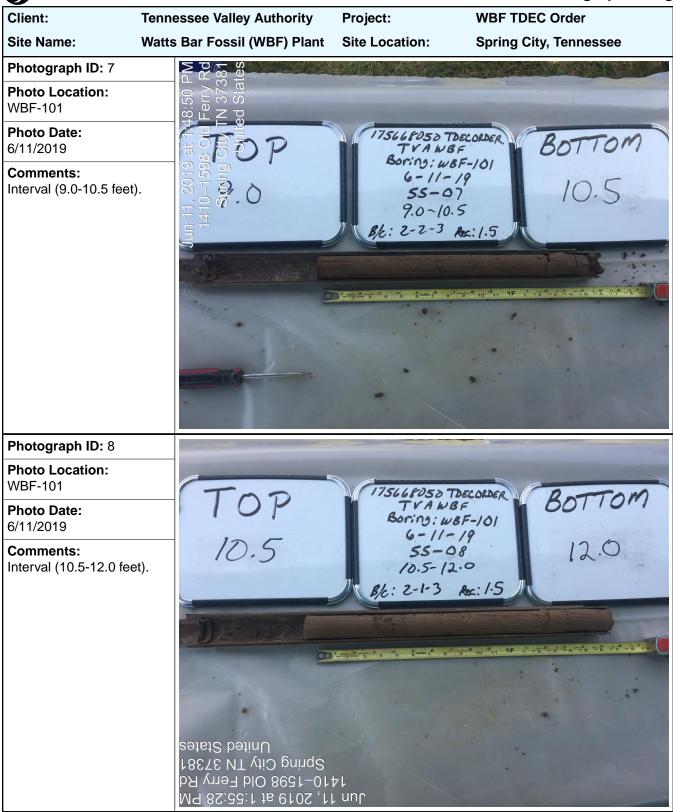
APPENDIX D – PHOTOGRAPHS OF SOIL BORINGS AND MONITORING WELLS

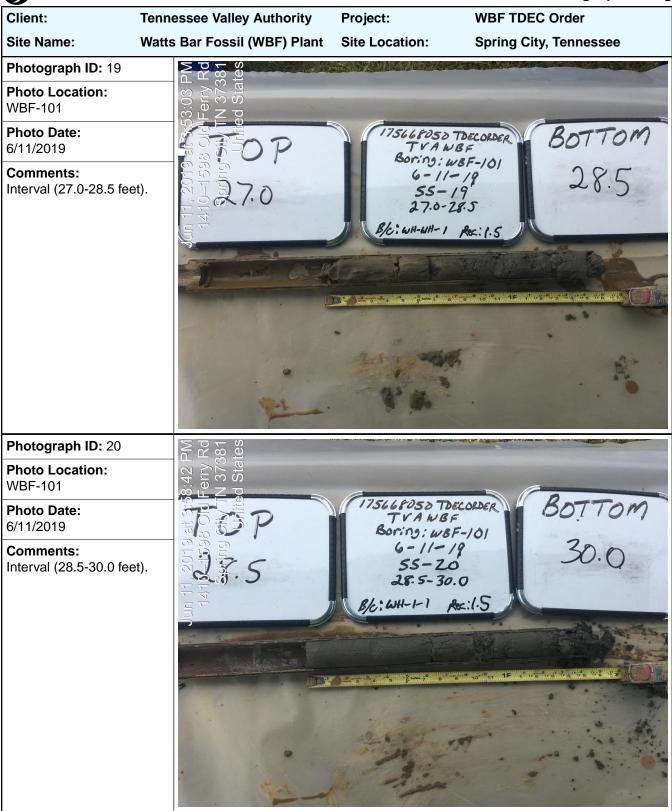
ATTACHMENT D.1

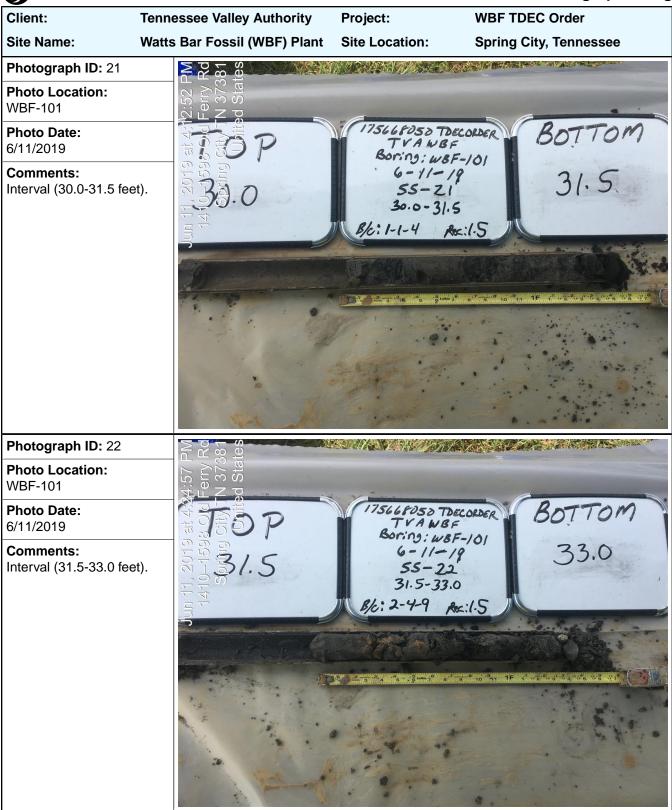
Photographic Log of Soil Lithology

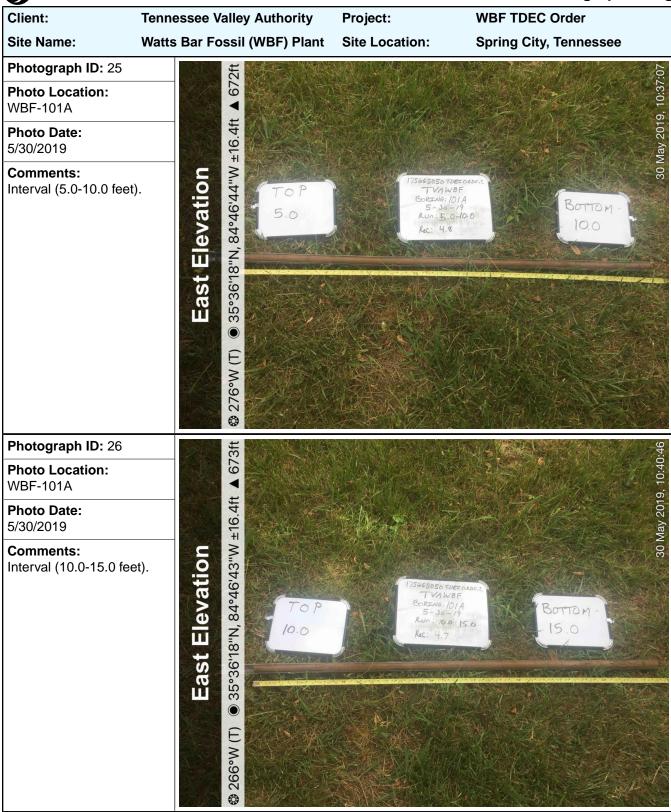


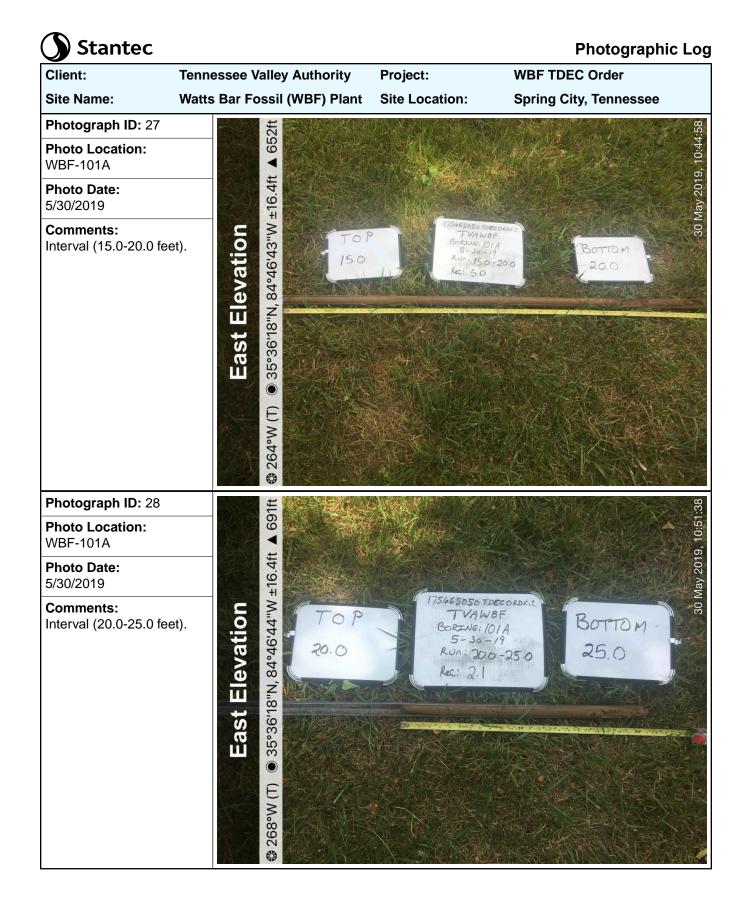
Client:	Tennessee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 1		and the second second second	
Photo Location: WBF-101		TVANB	E
Photo Date: 6/11/2019	TOP	Boring: WB. 6-11-1	F-101 BOTTOM
Comments: Interval (0.0-1.5 feet).	0.0	55-01 0.0-1,5 B/c: 12,6,7	5 1.5
	, 2019 هt ۲2:59:29 PM 10−1598 Old Ferry Rd 18573 VT (10 Pring City S7381 Pring Citates States		
Photograph ID: 2			
Photo Location: WBF-101		175668050 TD	SCORDER BOTTOM
Photo Date: 6/11/2019	TOP	TVA WBF Boring: WBF 6-11-1	F-101
Comments: Interval (1.5-3.0 feet).	16	55-02 1.5-3.0 B/c: 6,5,7 A	
			Jun 14, 2019 at 1:10:42 PM 1410–1598 Old Ferry Rc Spring City TN 3738 United States

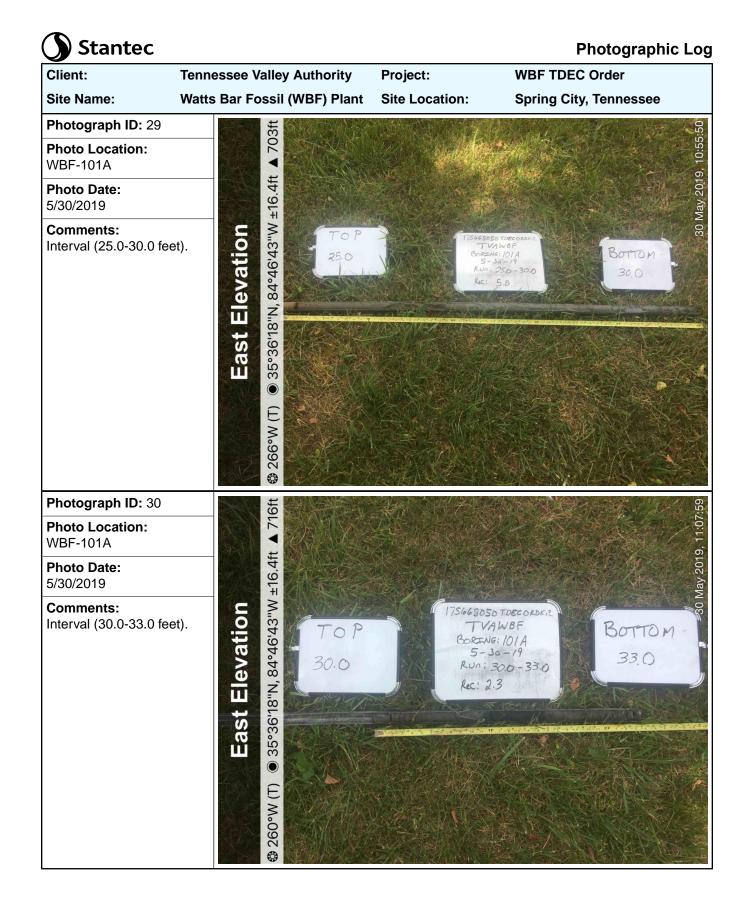


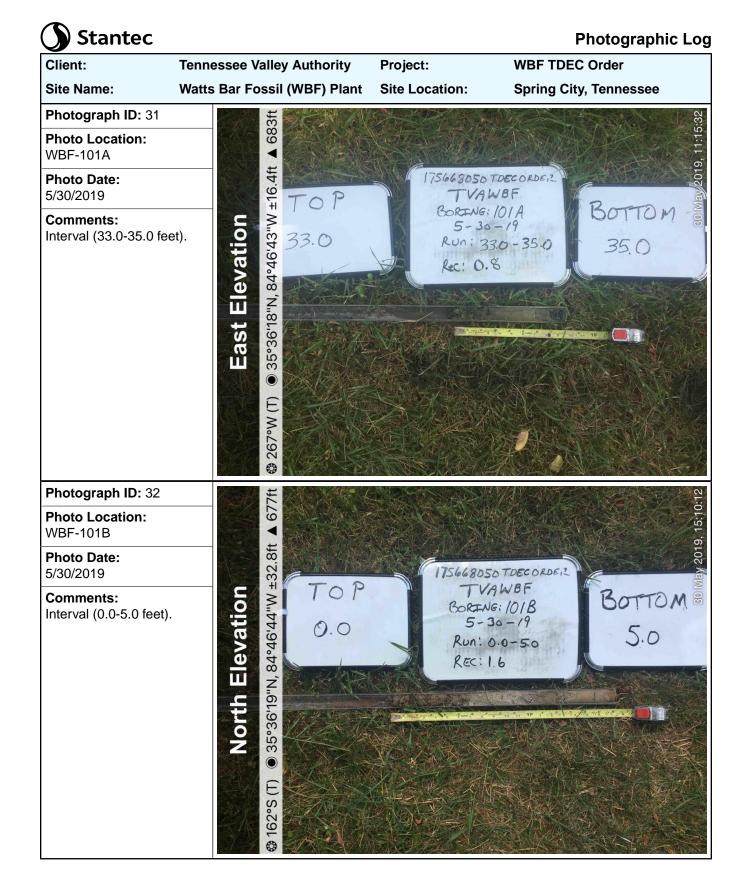


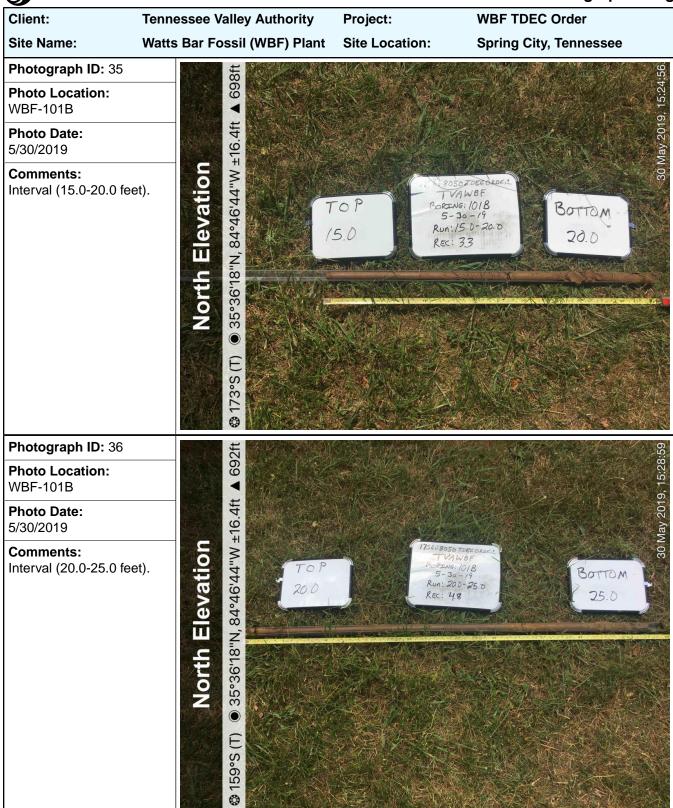


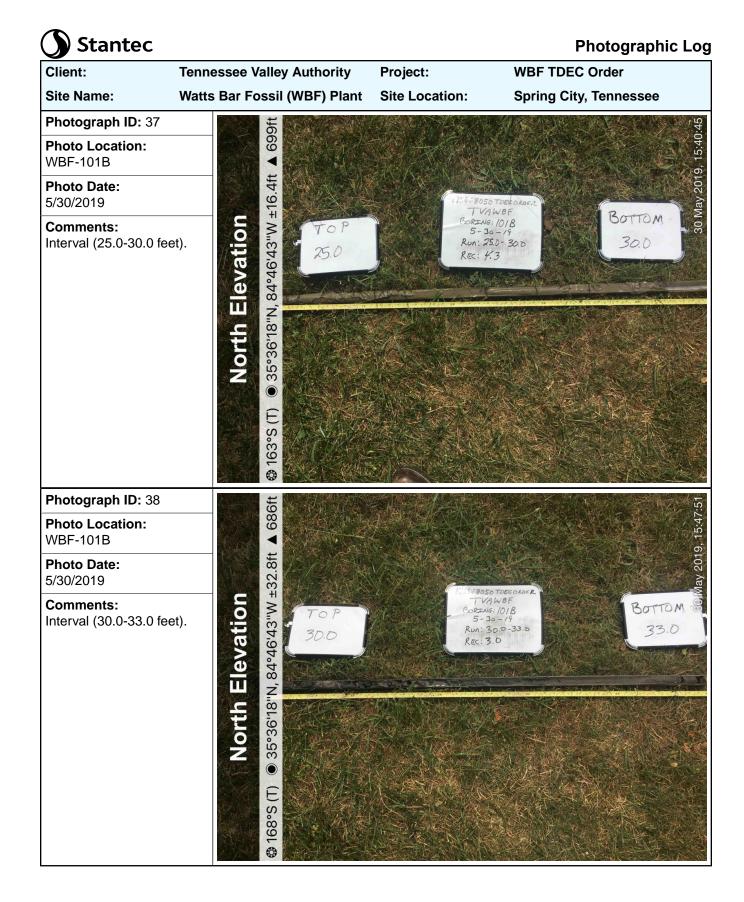


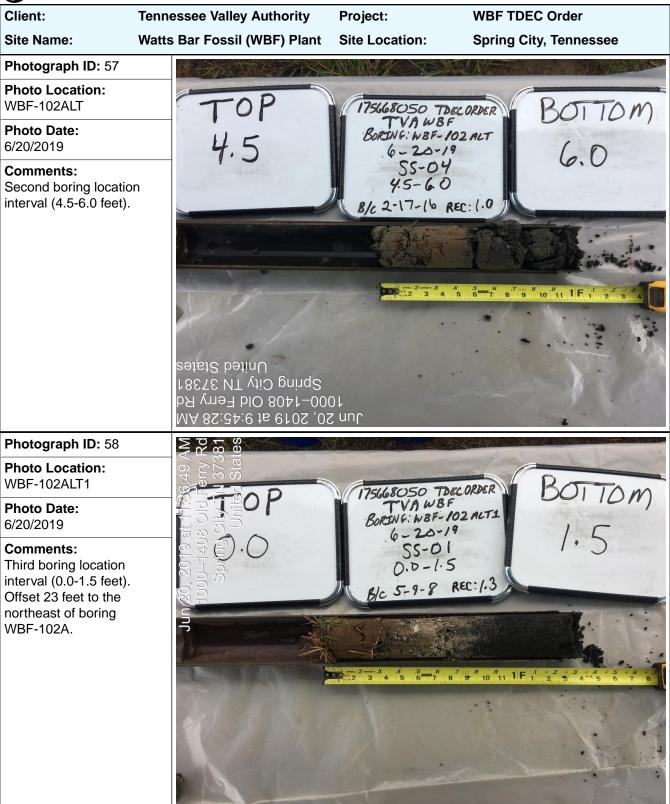


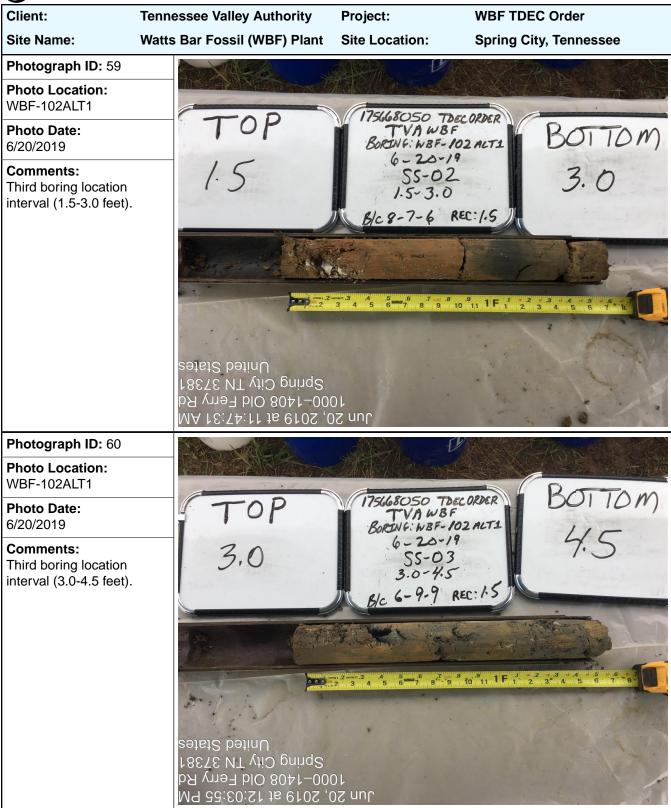


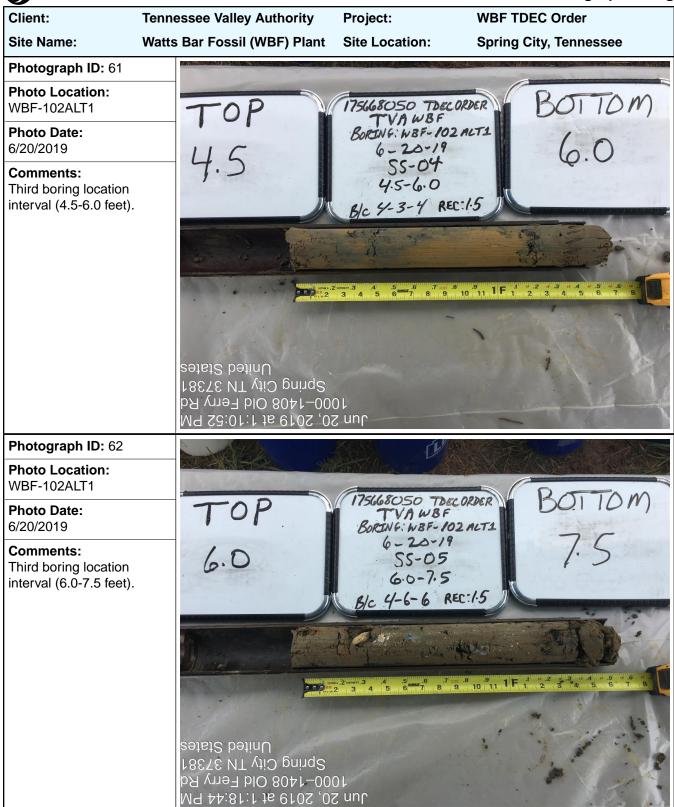

Client:	Tennessee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 23 Photo Location: WBF-101 Photo Date:	4:4046 PM Jud Ferry Rd y TN 37381 drud States	TYANGF	ELORDER BOTTOM
6/11/2019 Comments: Interval (33.0-34.5 fee	410-1598 Off 2019 at 2010-1598 Off 2017 2019 at 111, 2019 at	Boring: WBK 6-11-1 55-23 33.0-34.9 B/c:3-24-19	34.5
			5. * 10. 11. IF. 1 × 5 × 3 × 4 × 5 × 7 × 7
Photograph ID: 24	Git		5 Contraction of the second
Photo Location: WBF-101A	L ▲ 676ft		9, 10:30
Photo Date: 5/30/2019	±16.4ft		30 May 2019, 10:30:21
Comments: Interval (0.0-5.0 feet).	East Elevation	175663855 TREE Treverse Contractions Services Actions	A



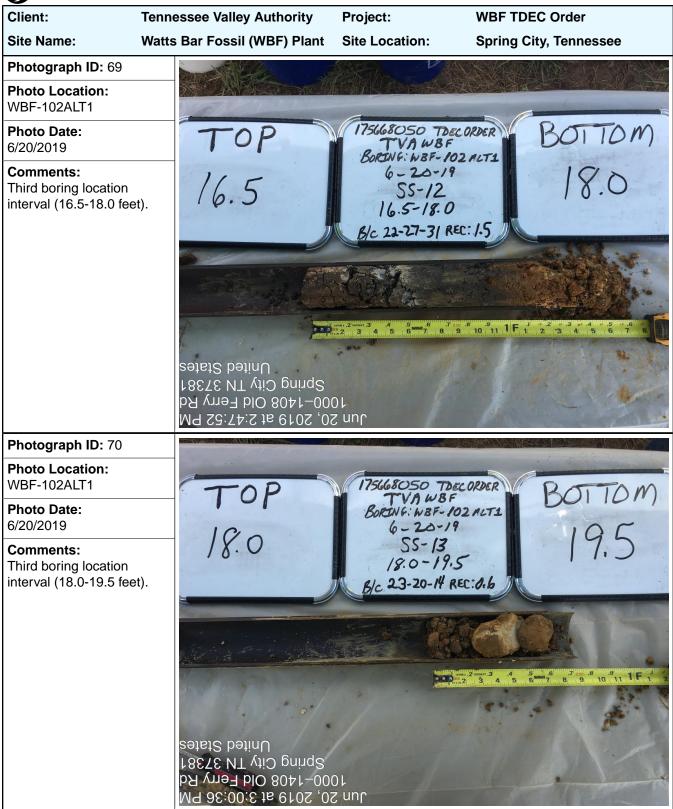


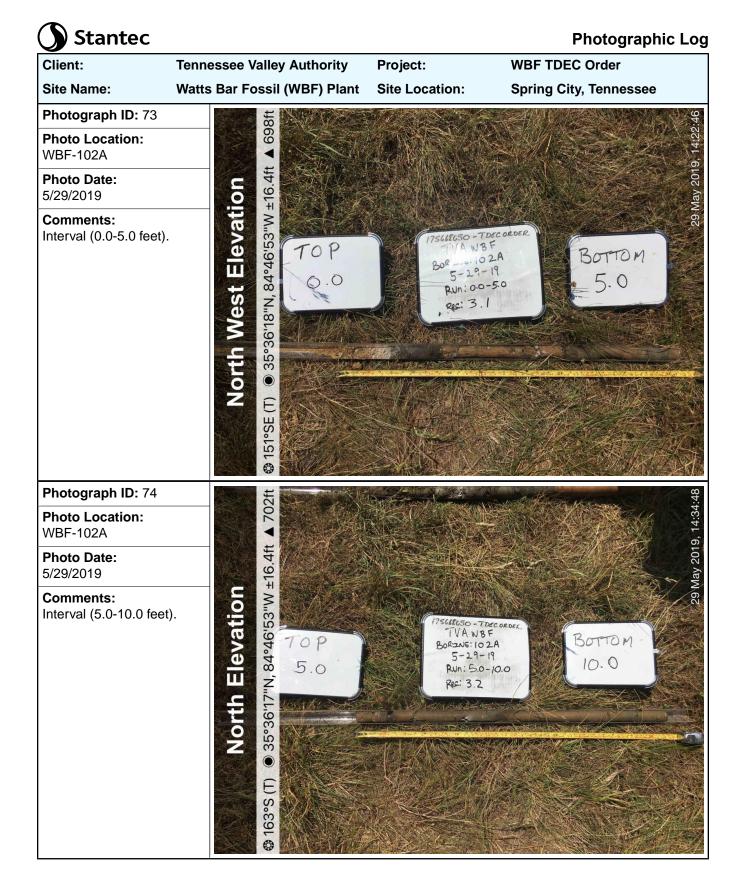




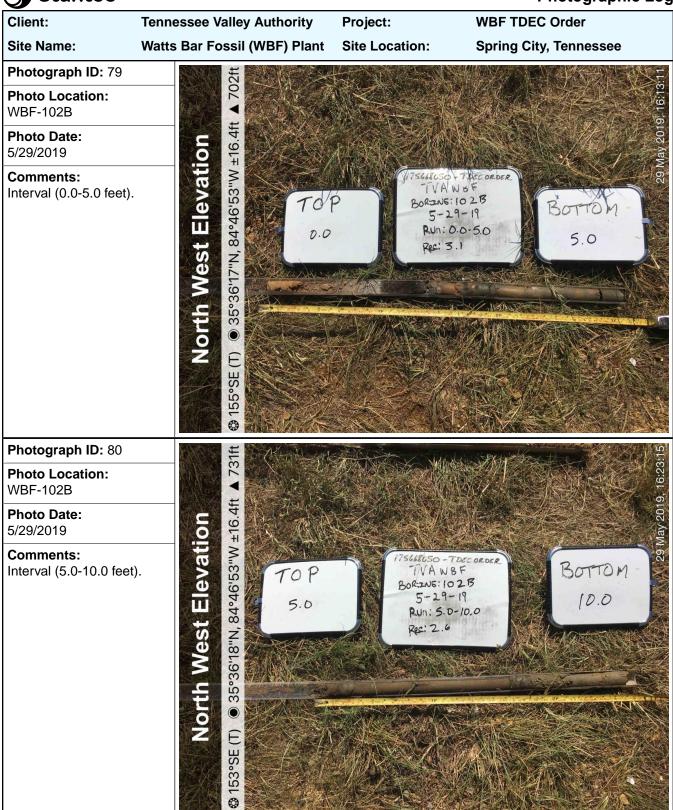


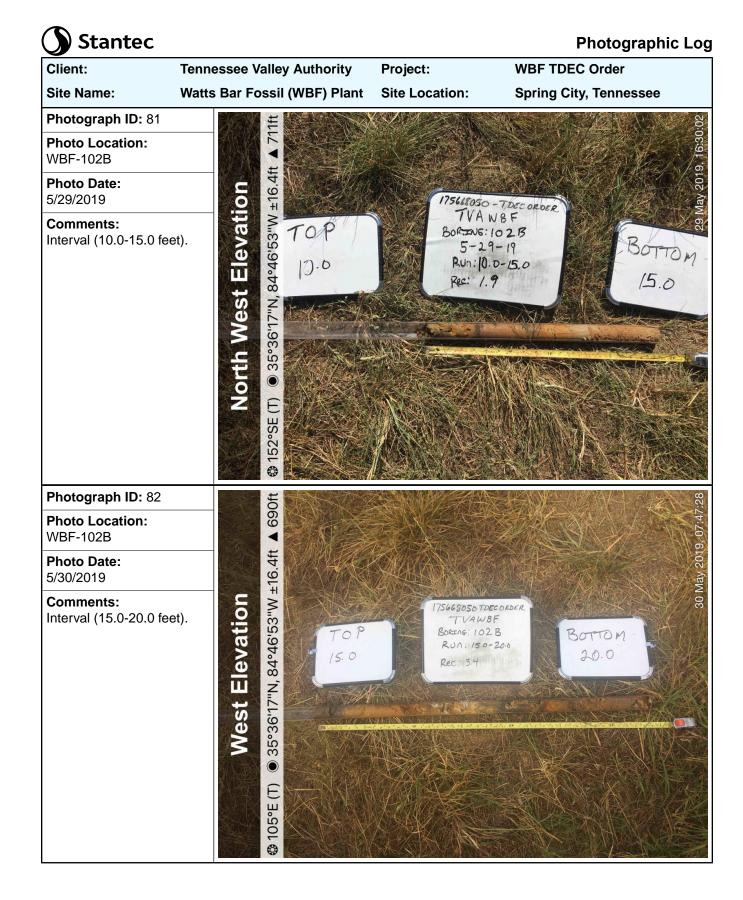
Client:	Tennessee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 63 Photo Location: WBF-102ALT1		A Constant	
Photo Date: 6/20/2019	TOP	175668050 TT TVA WB BORING: WBF-	F
Comments: Third boring location interval (7.5-9.0 feet).	7.5	6-20-1 SS-06 7.5-9.0 B/c 3-6-6	9.0
	sətst2 bətinU	2	3 10 11 1 F 1 2 3 4 5 6 7 8
Photograph ID: 64	0, 2019 هt 1:28:35 PM 00–1408 Old Ferry <mark>Rd</mark> 8pring City TN 37381		
Photo Location: WBF-102ALT1	1 - anorrow		
Photo Date: 6/20/2019	TOP	175668050 TT TVA WB BORING: WBF-	F
Comments: Third boring location interval (9.0-10.5 feet		6-20-1 SS-07 9.0-10. B/c Z-5-6	5 10.5
		the state	9 10 11 1 F 1 2 3 4 5 6 7 8
	0, 2019 هt 1:39:43 PM 00–1408 Old Ferry Rd 18575 UT نابع 21819 1685 United States		

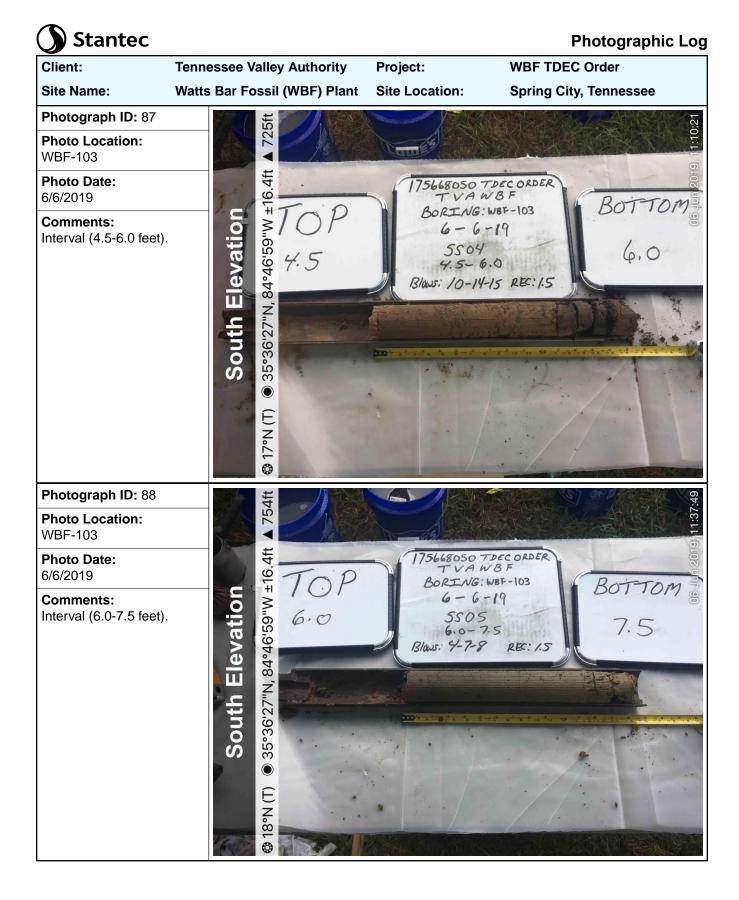




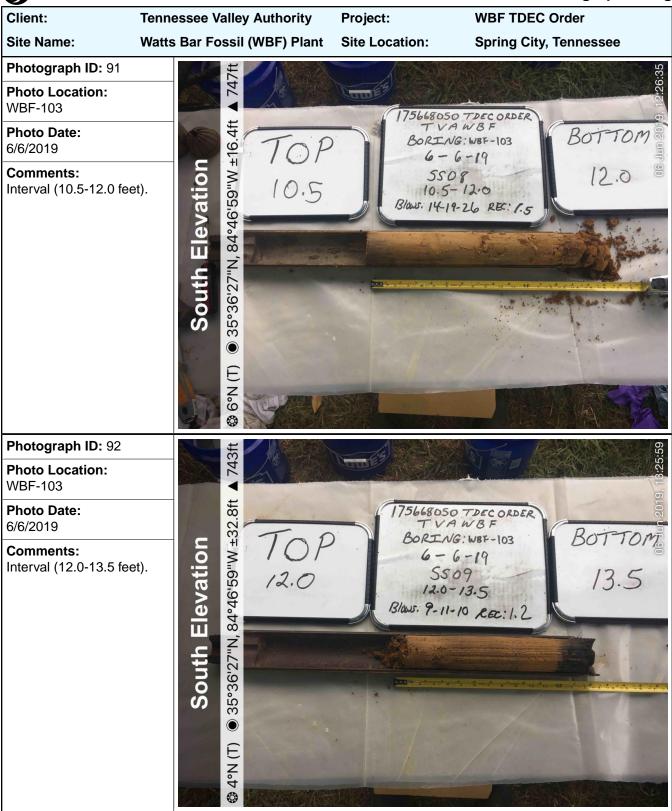
Client:	Tennessee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 71 Photo Location: WBF-102ALT1			
Photo Date: 6/20/2019	TOP	175668050 TDEC. TVA WBF BORING: WBF-102 6-20-19	ORDER BOITOM
Comments: Third boring location interval (19.5-21.0 fee	rt).	SS-14 19.5-21.0 B/c 5-17-21 REC	
Photograph ID: 72			
Photo Location: WBF-102ALT2 (Sonic)		
Photo Date: 7/8/2019			
Comments: Photo of sonic boring location interval (0.0-2 feet) unavailable. Offs feet east from WBF-102Alt1. Refer to photos for WBF-102A	et 3 o	No Photo Appli	cable

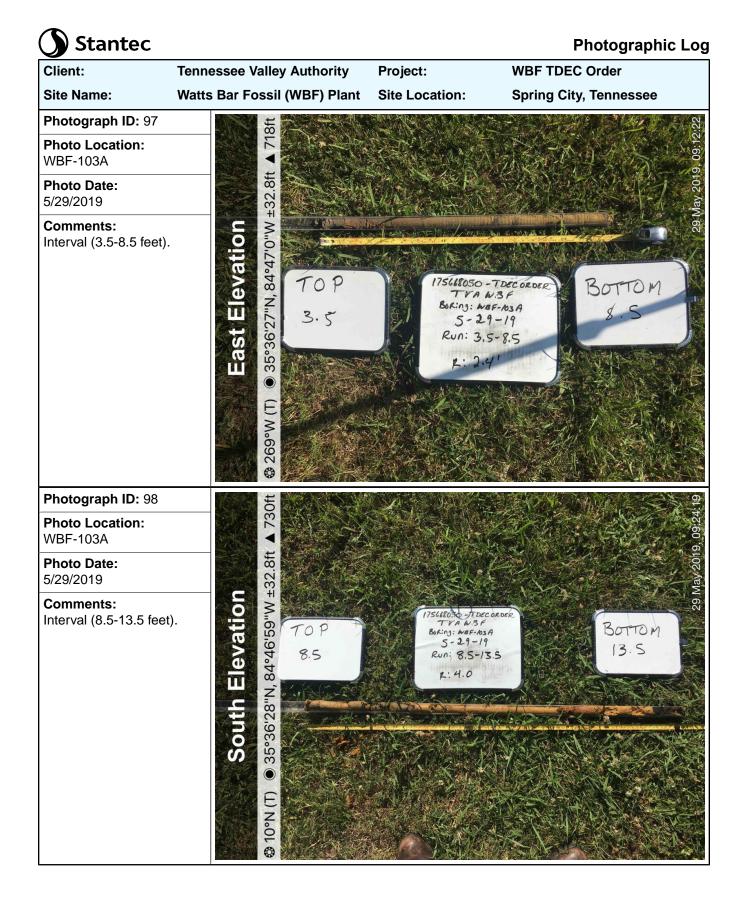


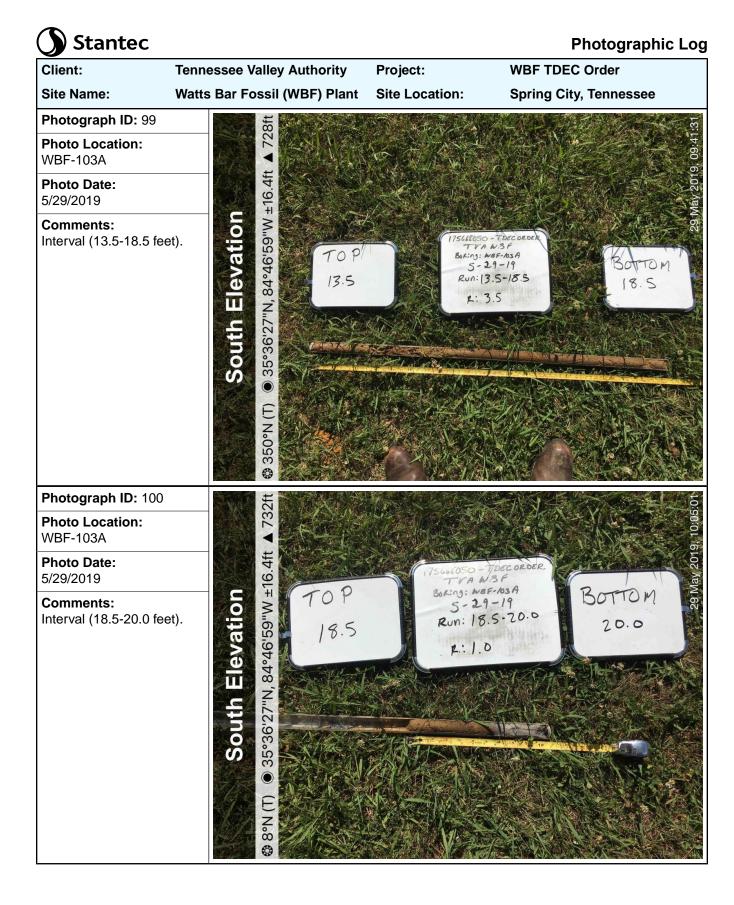


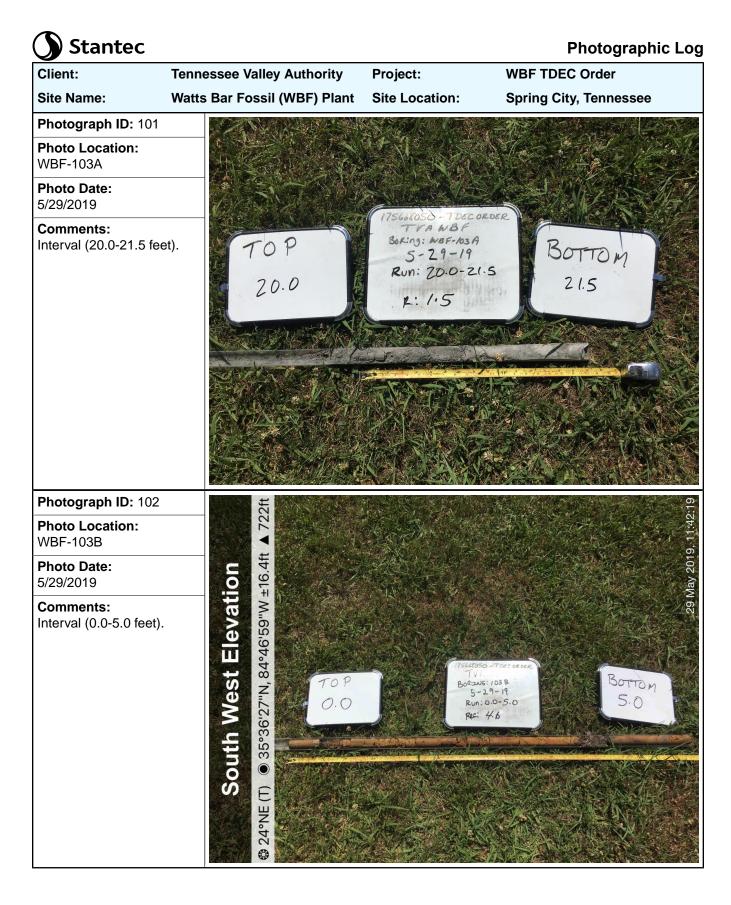


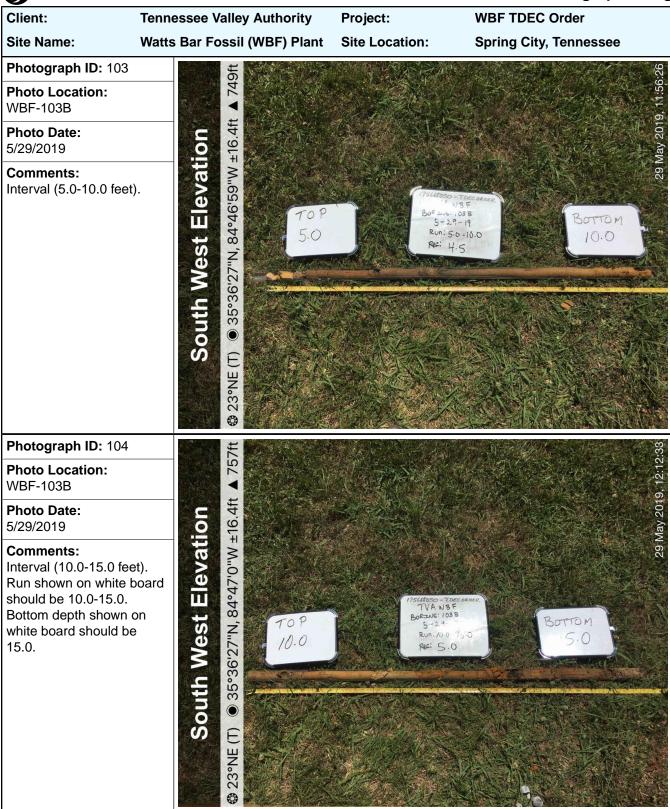
Client:	essee Valley Authority		Project:	WBF TDEC Order	
Site Name:	Watts	Bar Fos	sil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 83 Photo Location: WBF-102B					
Photo Date: 5/30/2019					
Comments: Interval (20.0-25.0 fee recovery, photo unavailable.	et) no			No Photo Applical	ble
Photograph ID: 84		4			57 (C)
Photo Location: WBF-103		- 708#		TTEL VIEw	9, 10:21:42
Photo Date: 6/6/2019		16 44	TOP	175668050 T TVA W BORING:	BF Q
Comments: Interval (0.0-1.5 feet).		and the second		6-6- 55-0 0.0-1 Blaus: 8-11-9	.5

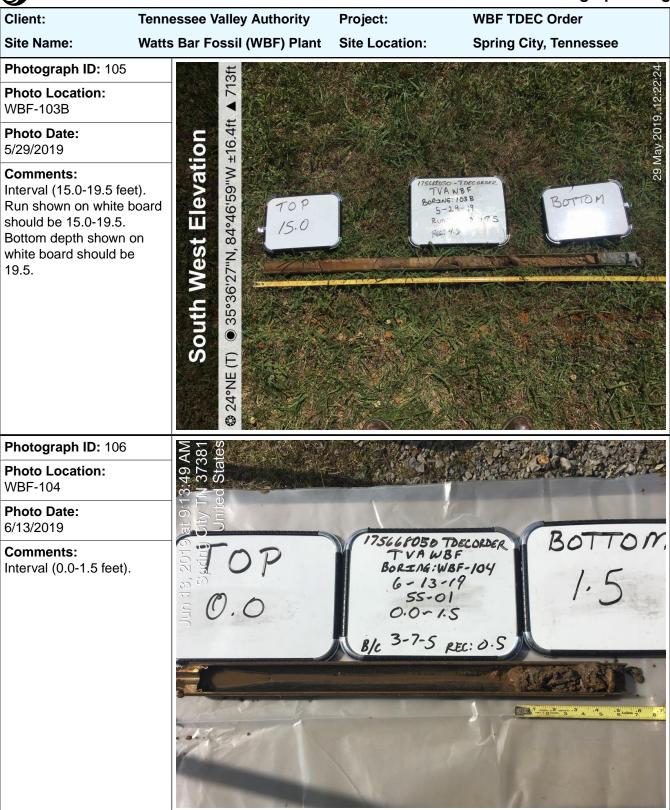


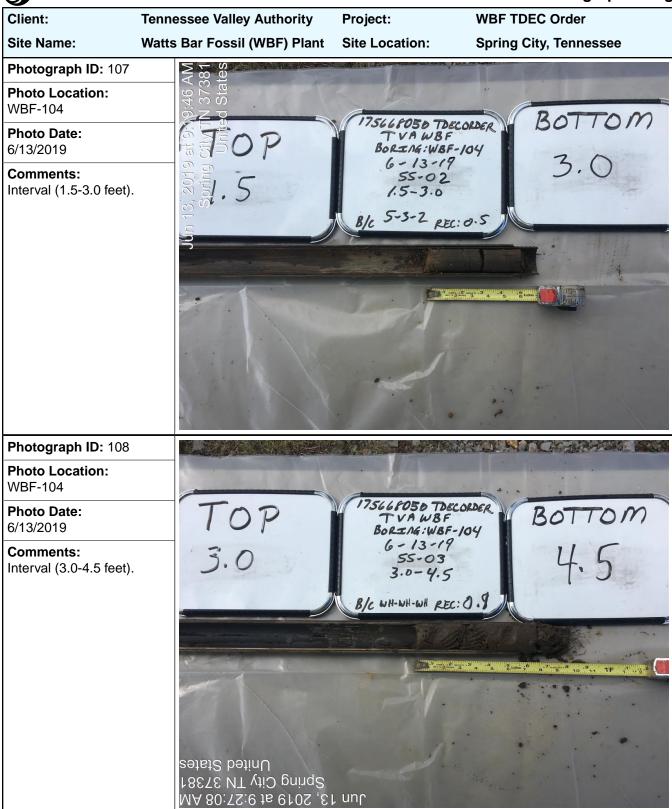


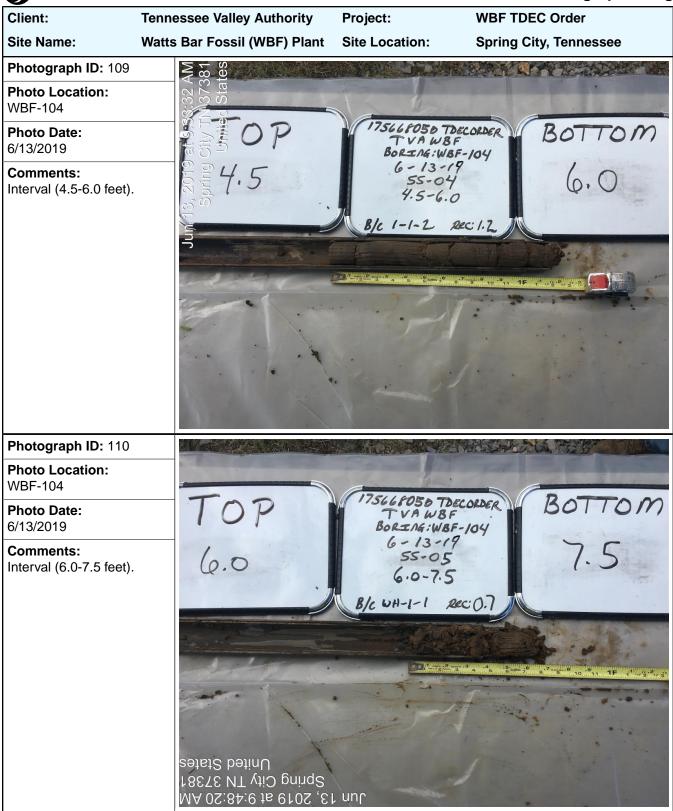


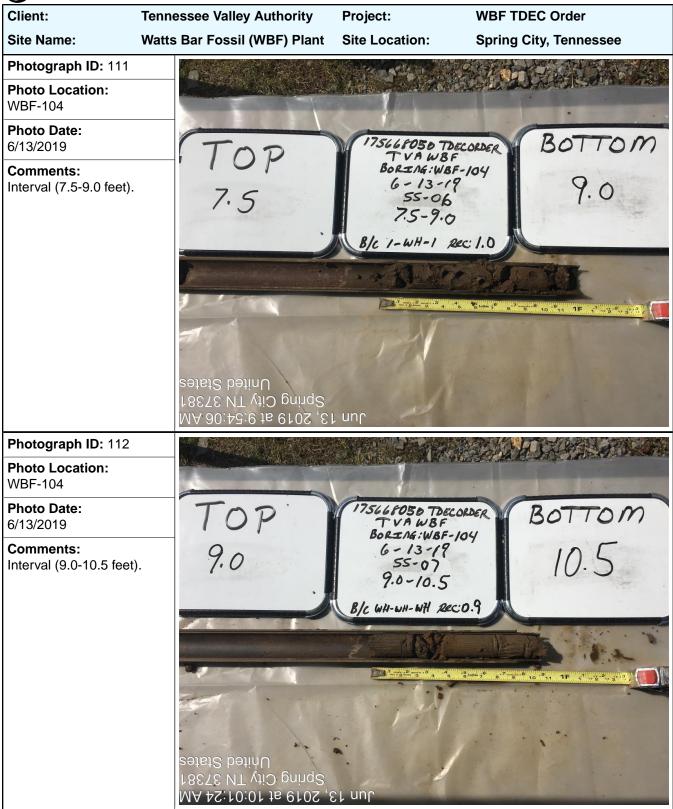

٢

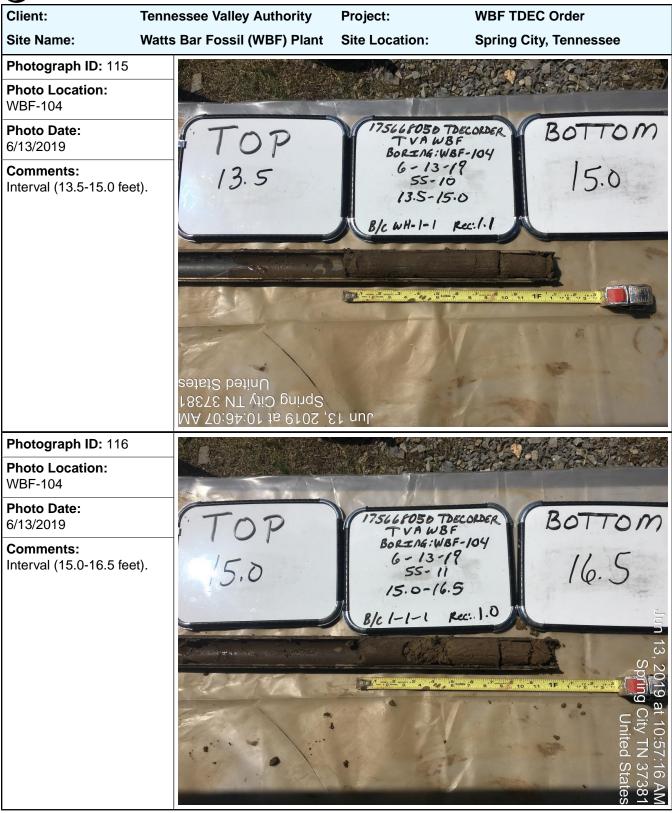


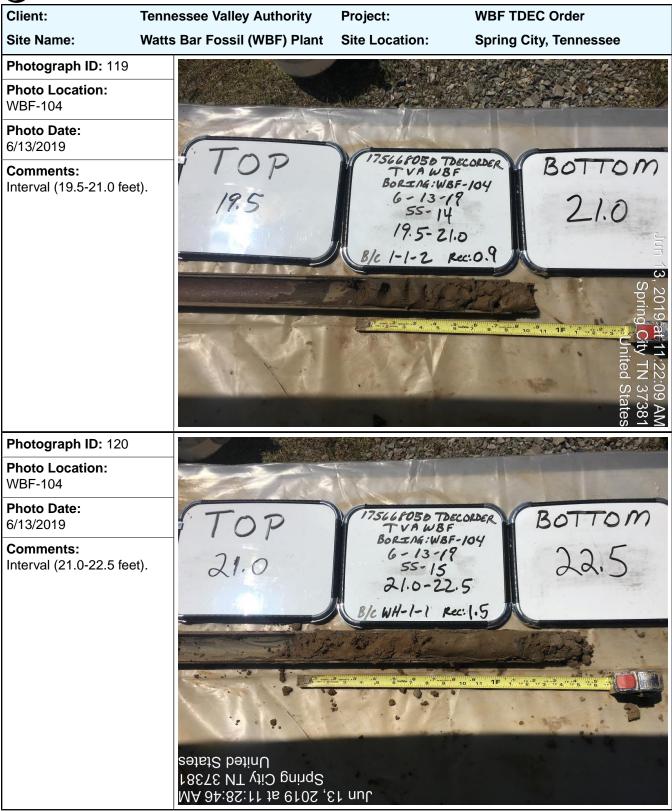


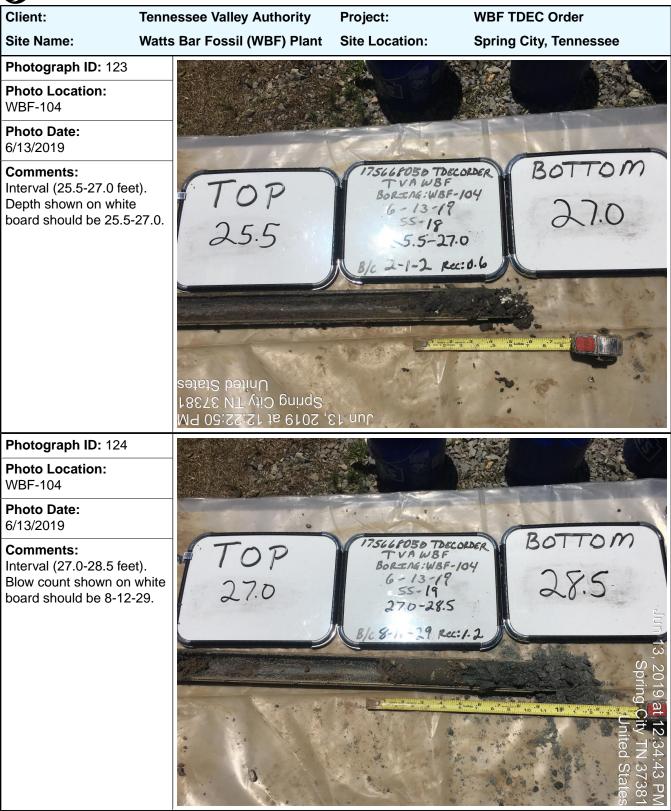


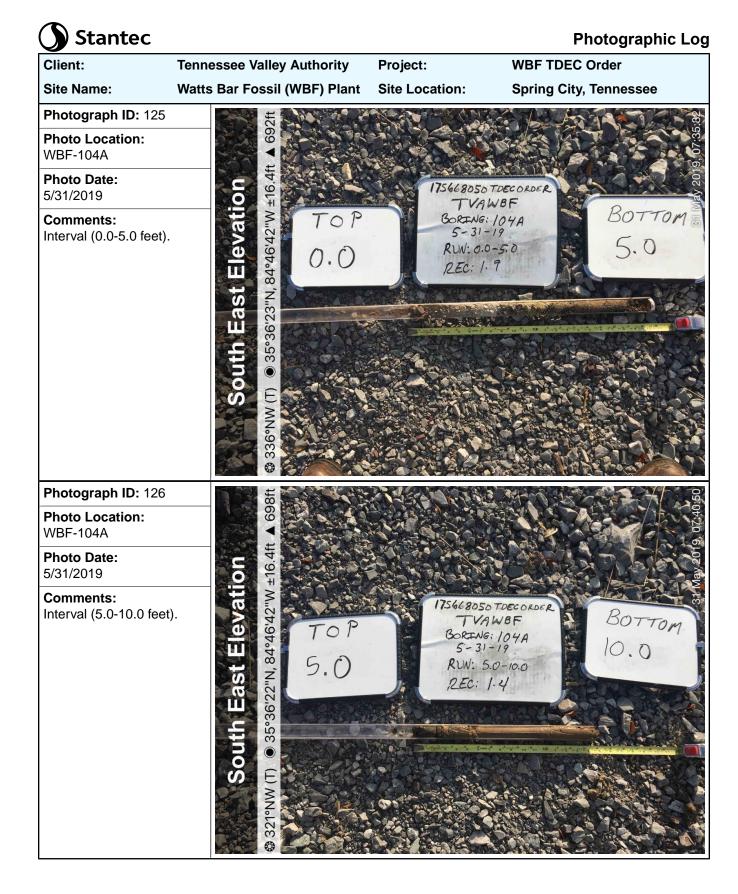


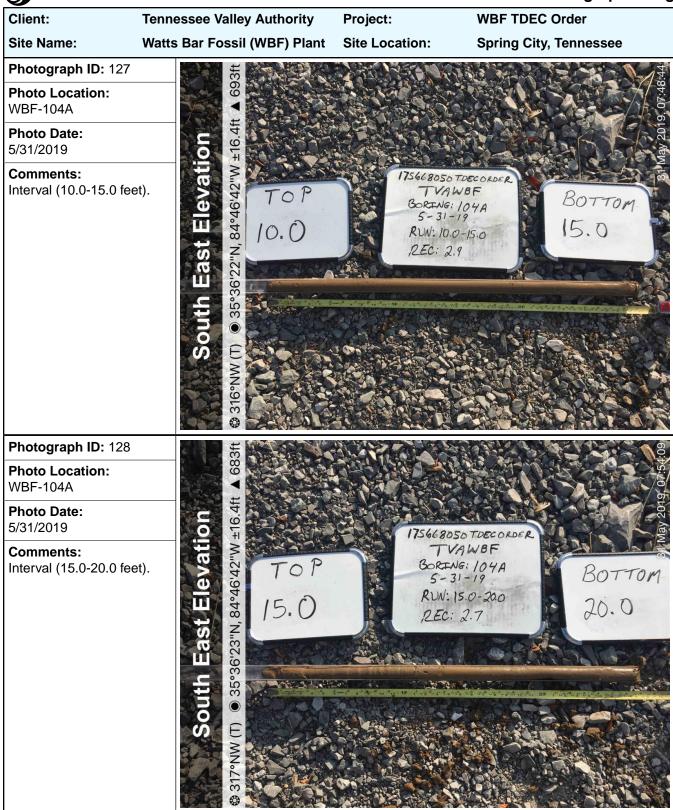


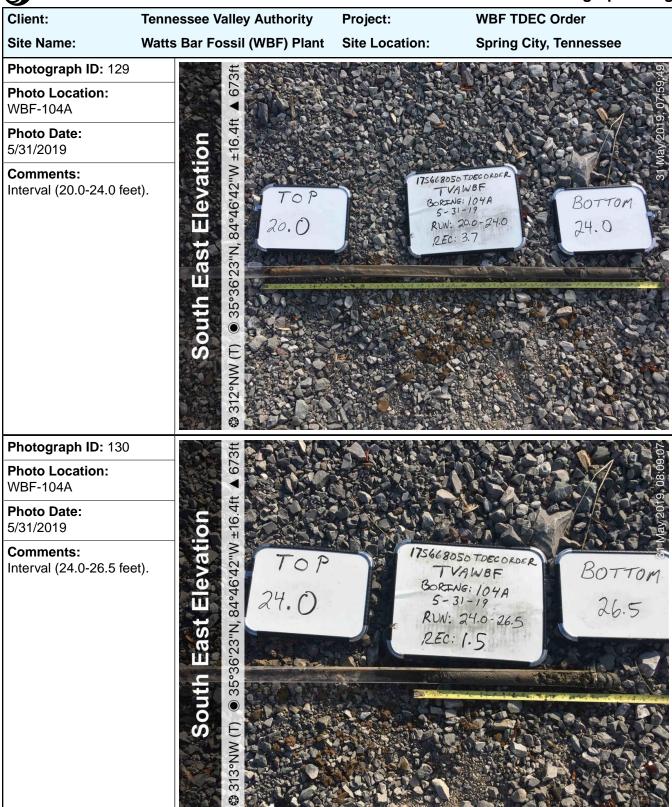












WBF-104B Photo Date: 5/31/2019

Comments: Interval (0.0-5.0 feet).

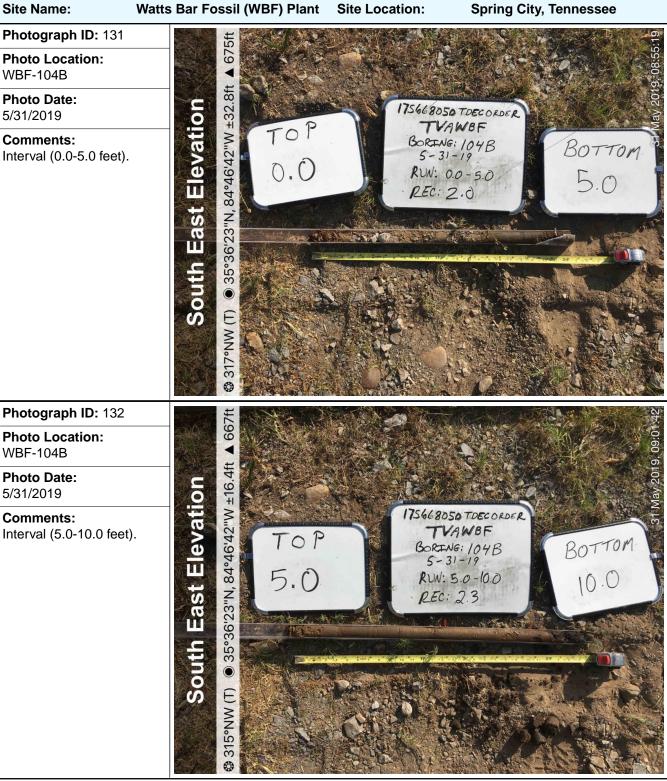
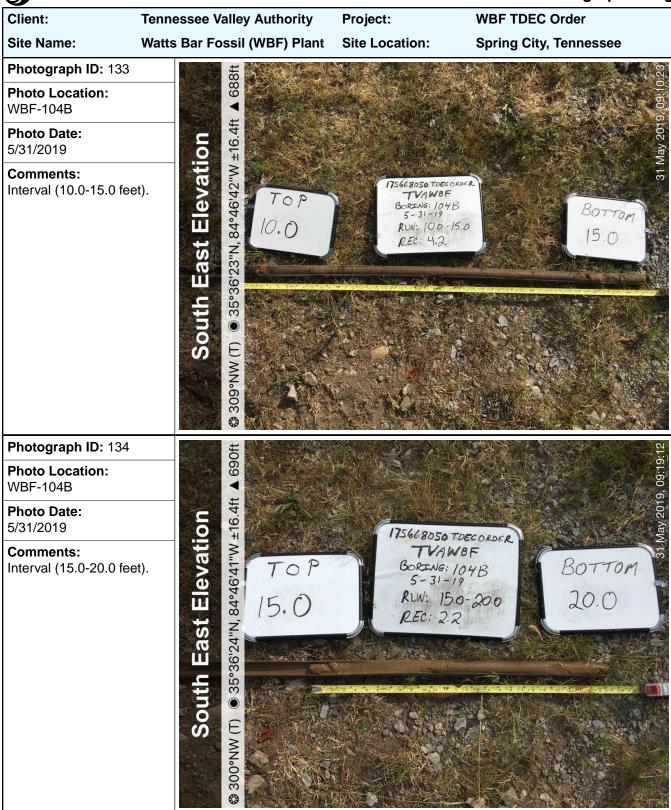

Photograph ID: 132 **Photo Location:** WBF-104B

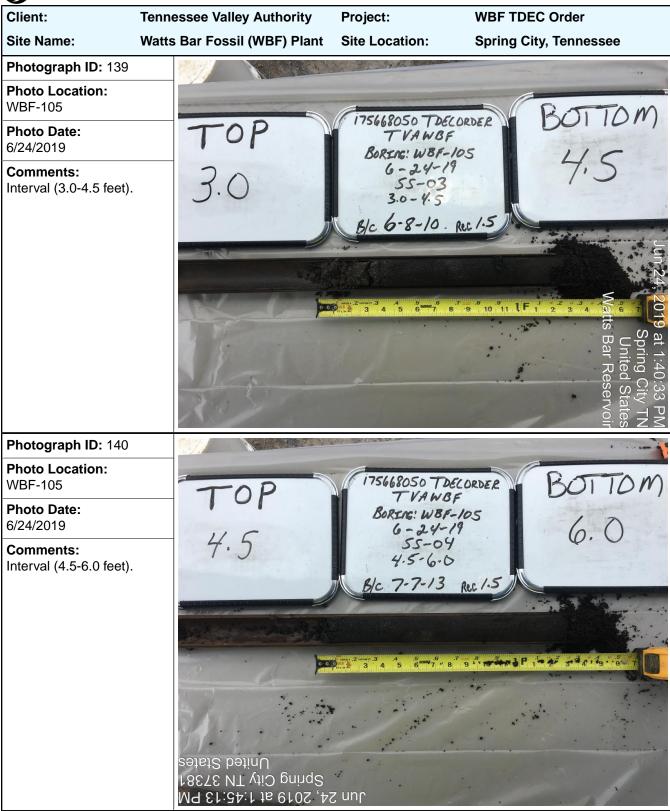
Photo Date: 5/31/2019

Comments: Interval (5.0-10.0 feet).


Photographic Log

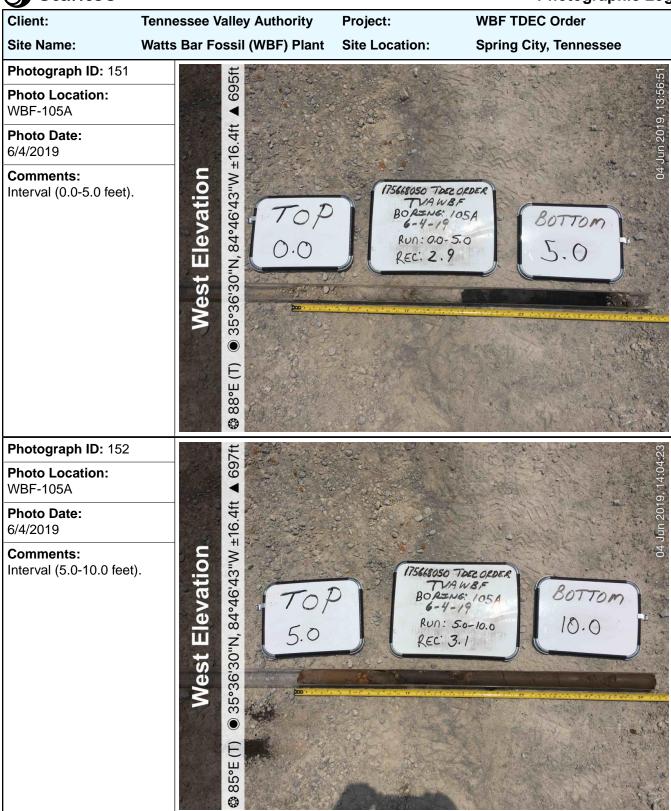
WBF TDEC Order

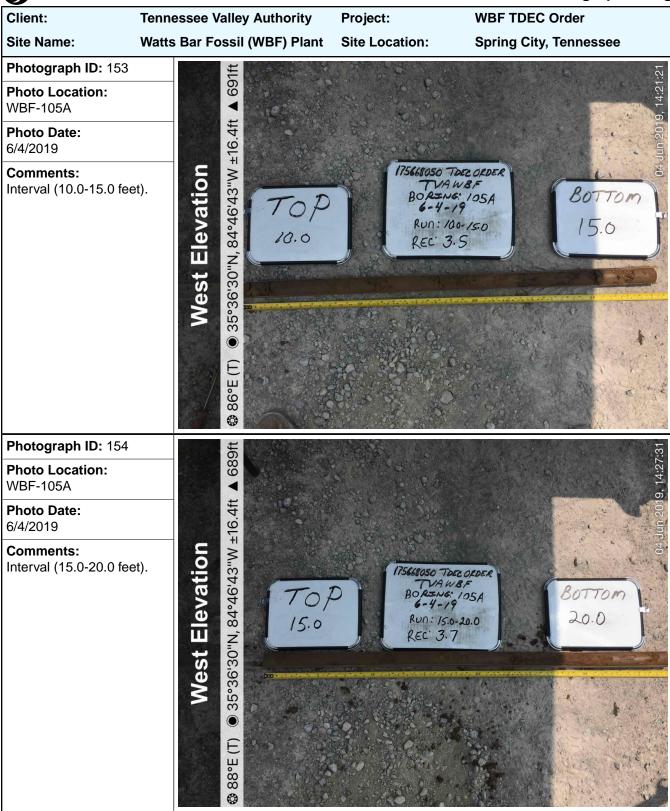
Project:



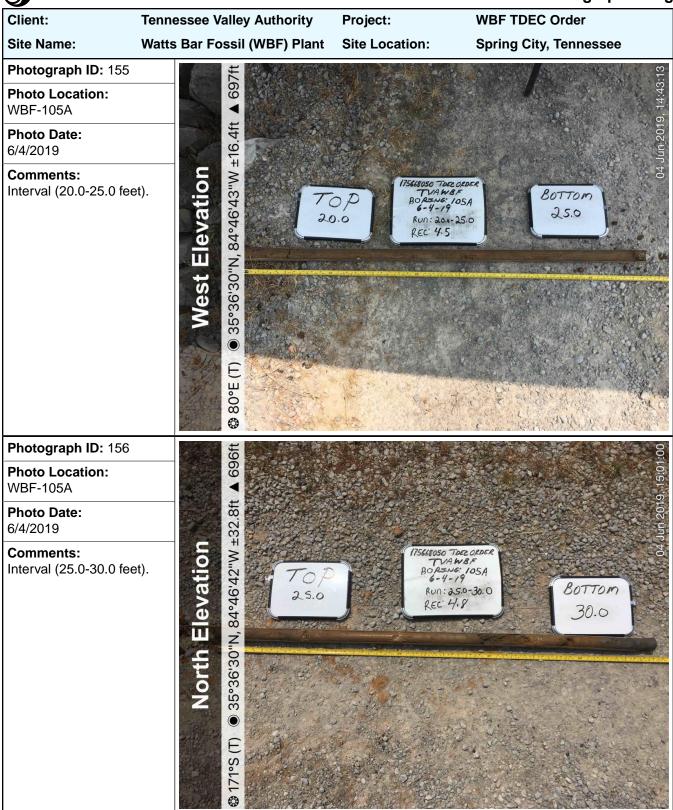


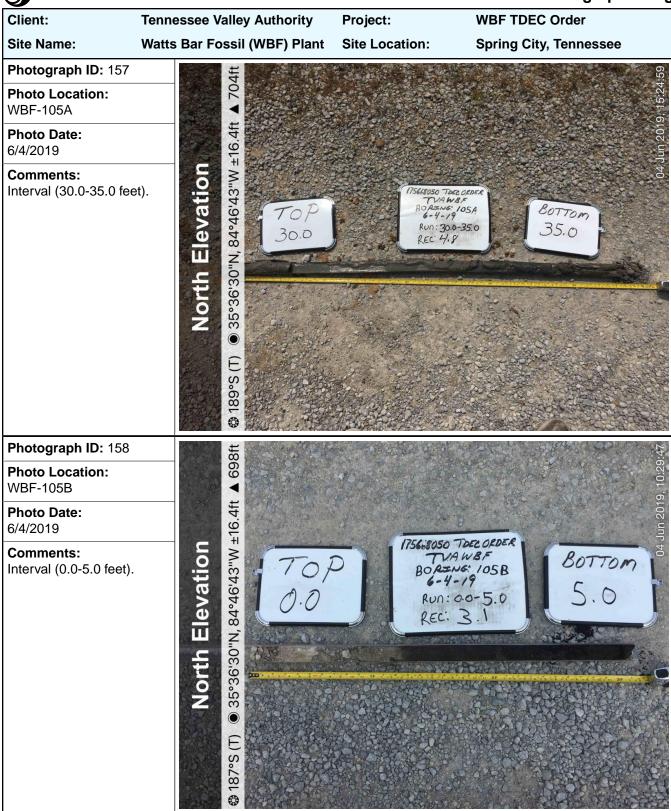


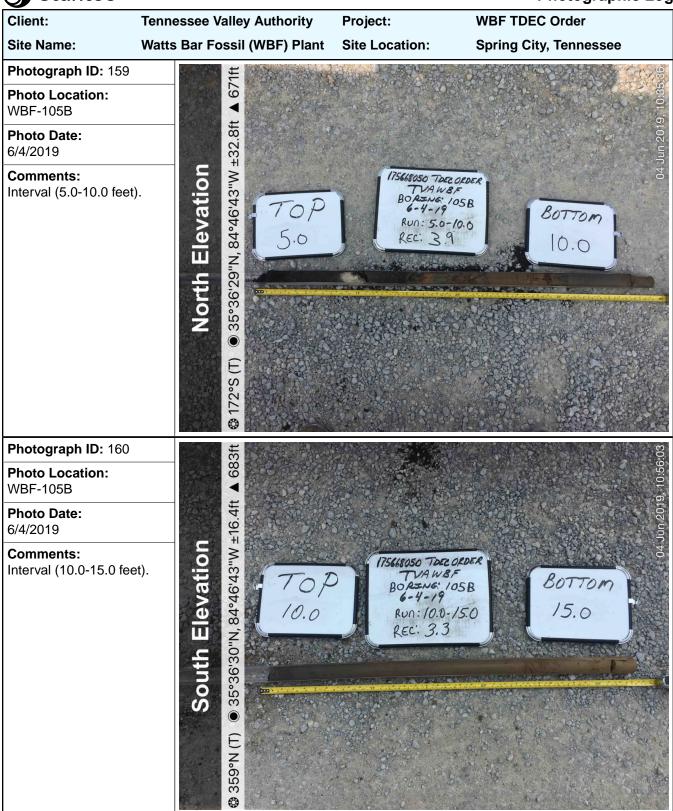


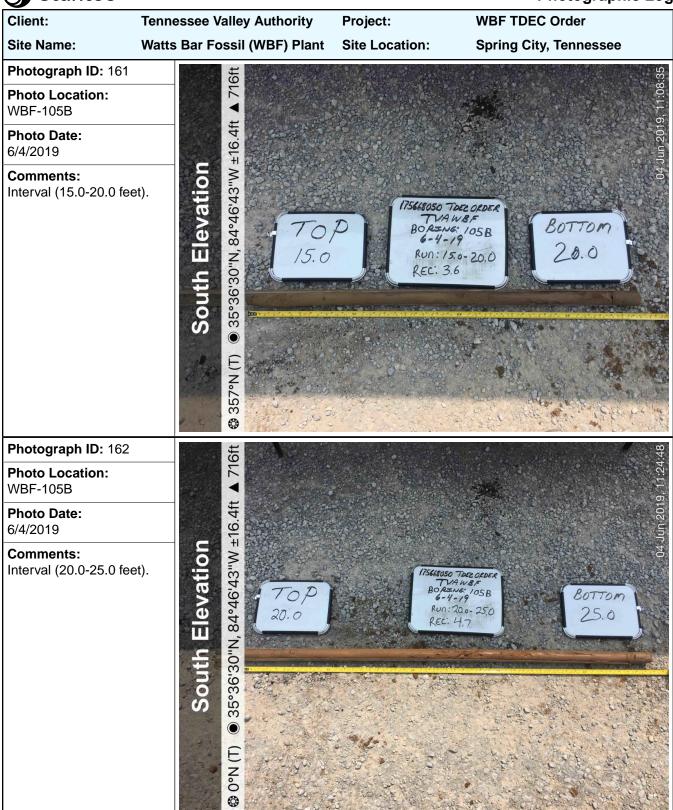


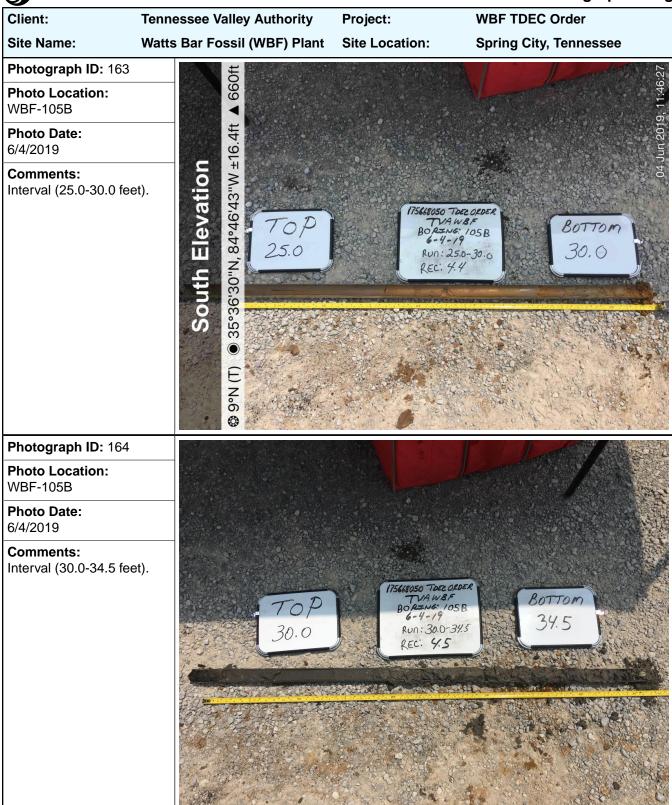
Client:	Tenne	essee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts	s Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 149				
Photo Location: WBF-105				
Photo Date: 6/24/2019				
Comments: Photo of interval (18.0 feet) unavailable.)-19.5		No Photo Applicat	ble
Photograph ID: 150				
Photo Location: WBF-105 (Sonic)				
Photo Date: 7/9/2019				
Comments: Photo of sonic boring location interval (20.0 feet) unavailable. Collocated with WBF- Refer to WBF-105 for interval (0.0-19.5 feet)	-35.0 105. photo		No Photo Applicat	ble

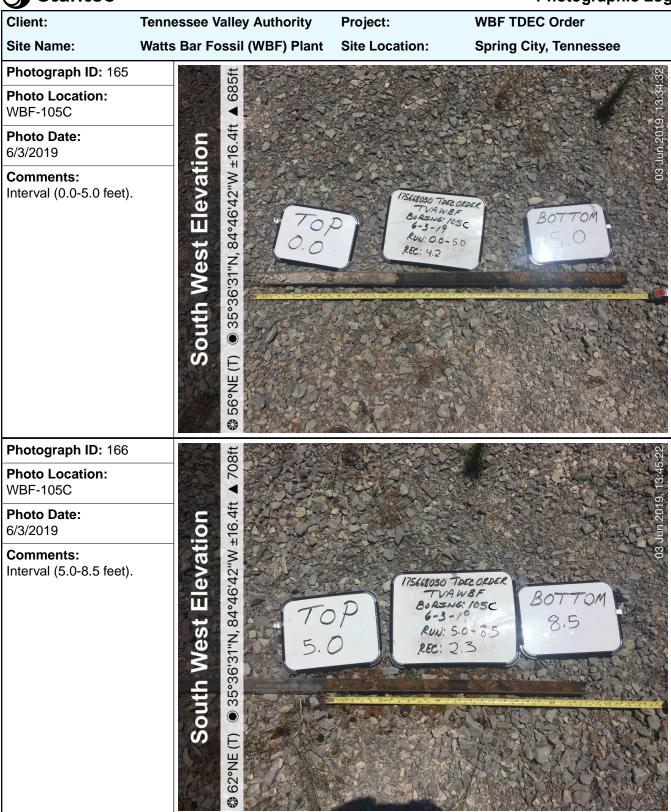


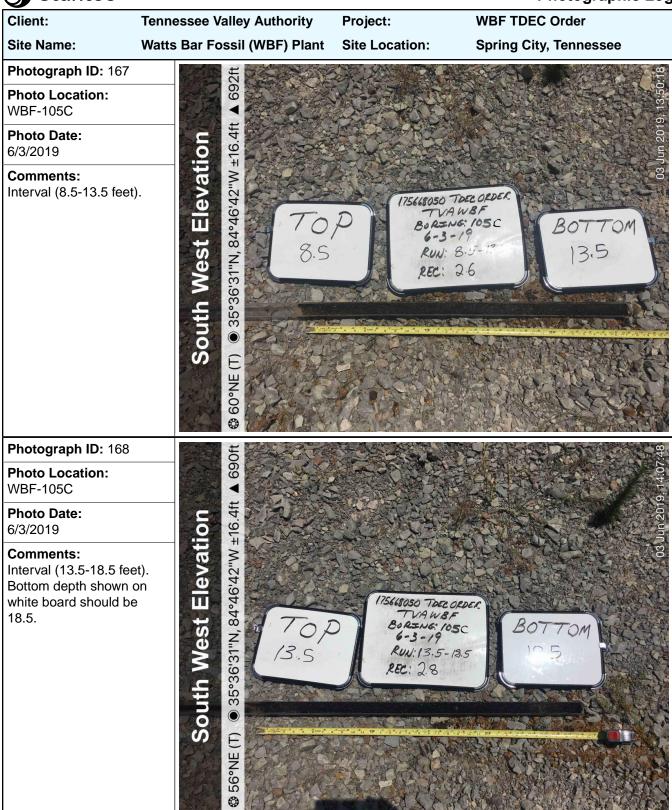


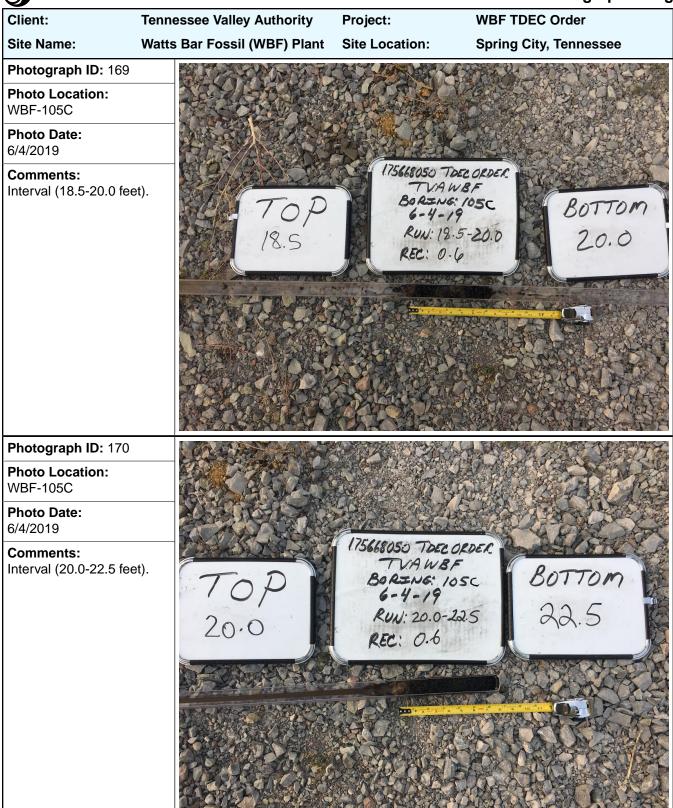


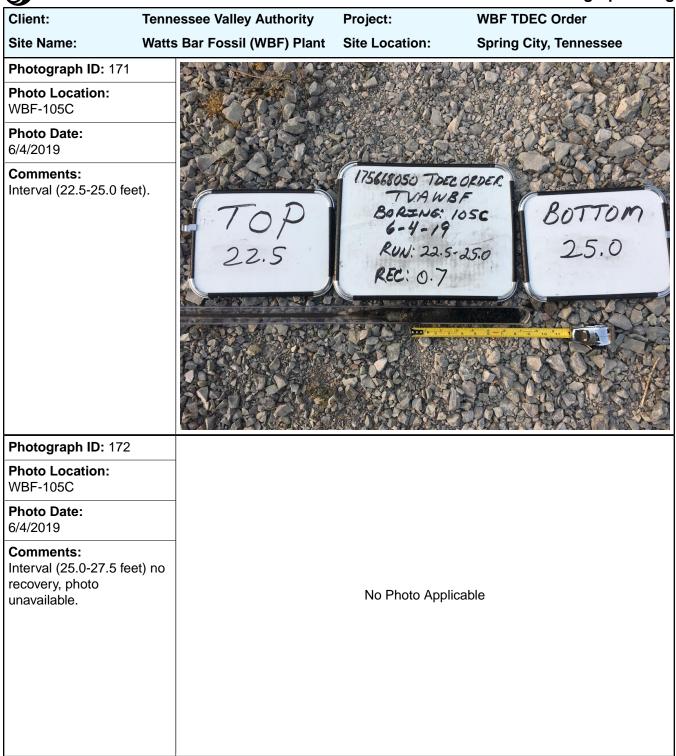


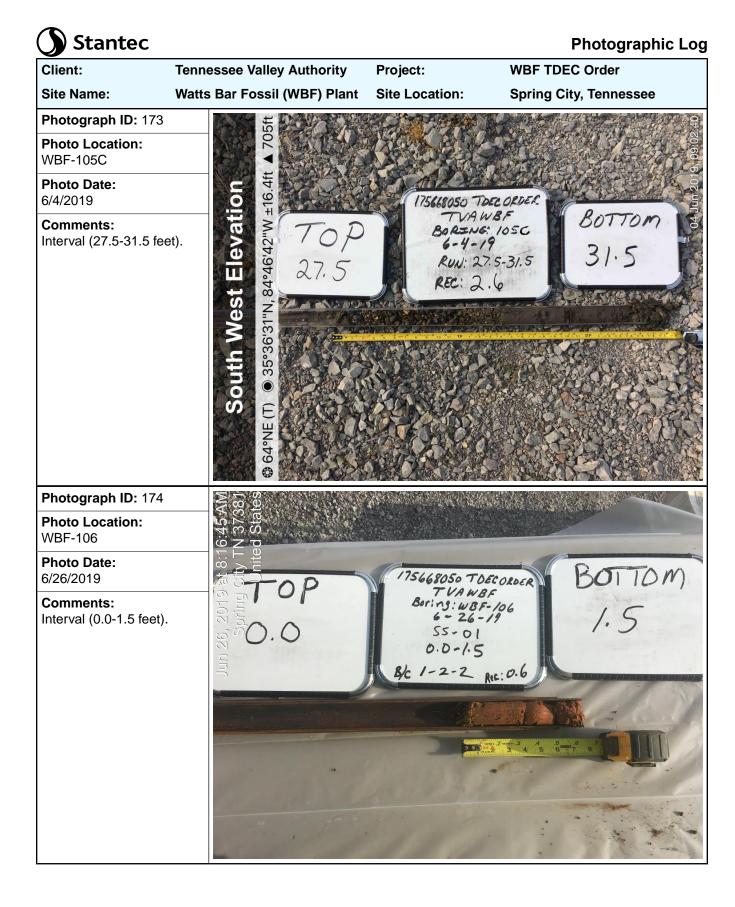


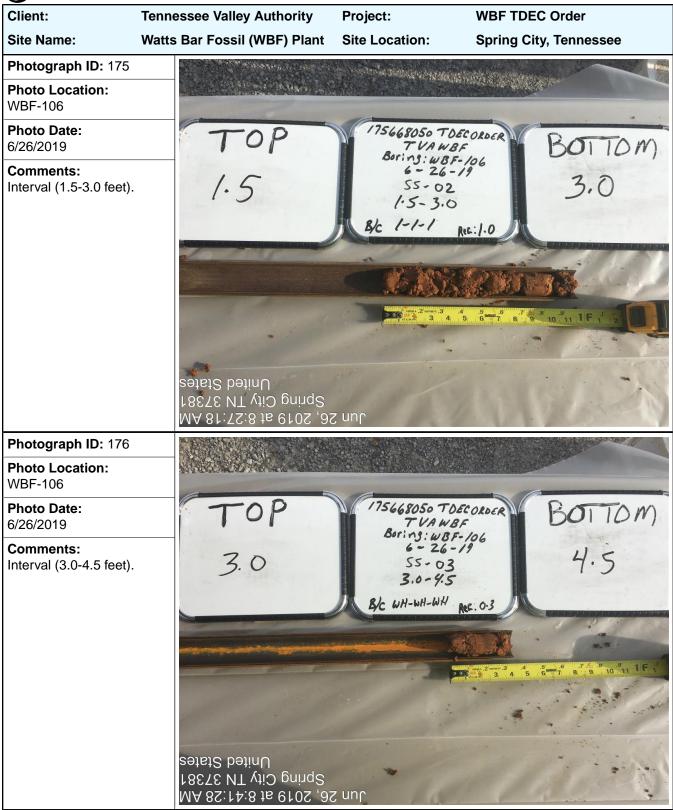


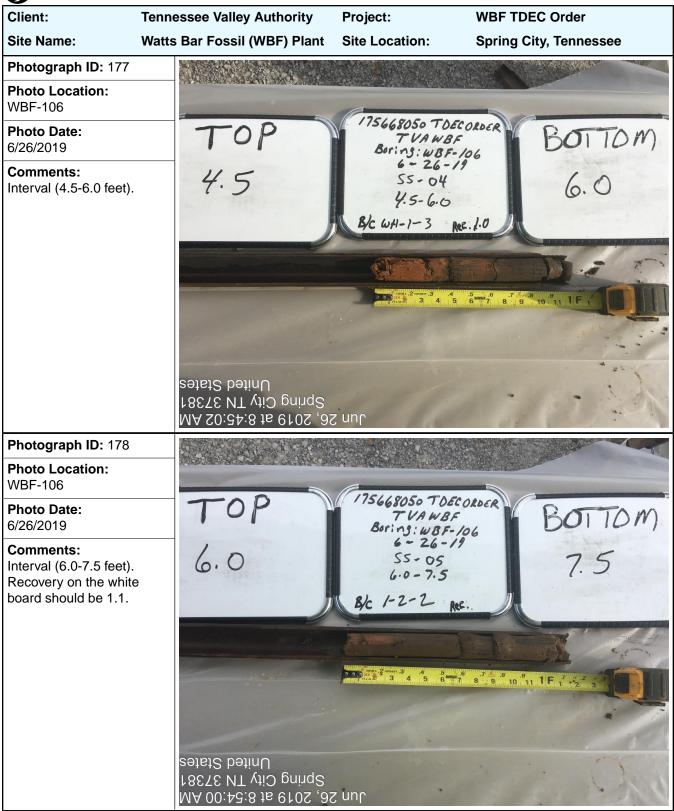


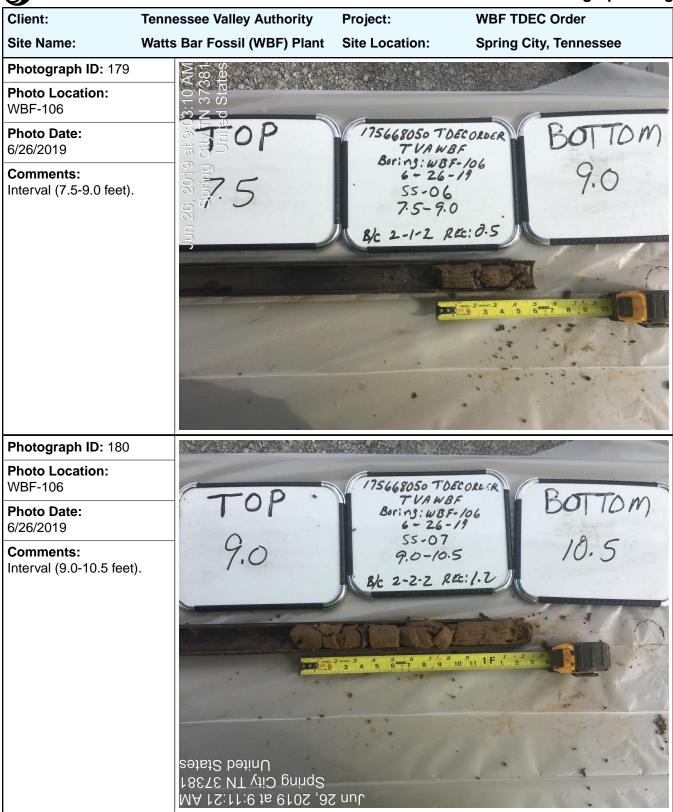


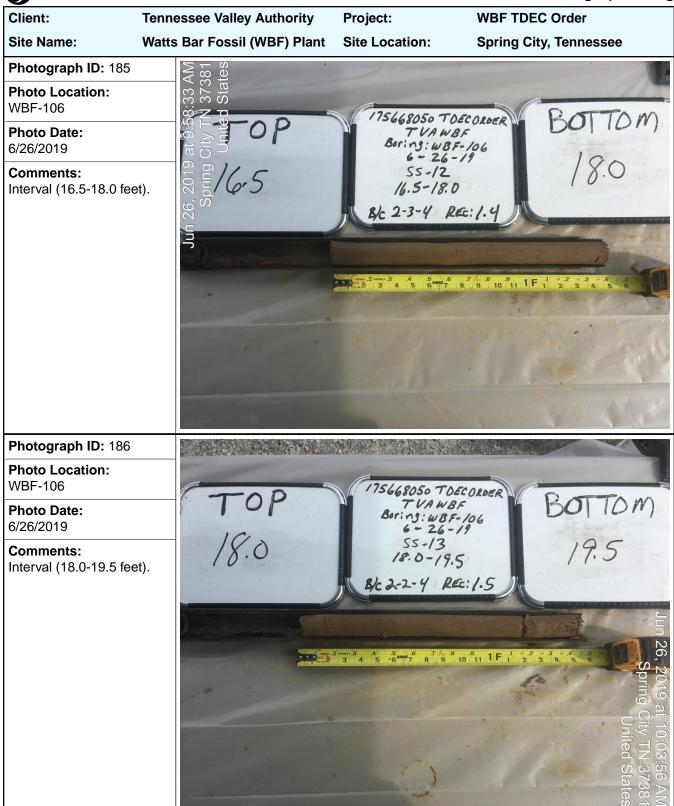


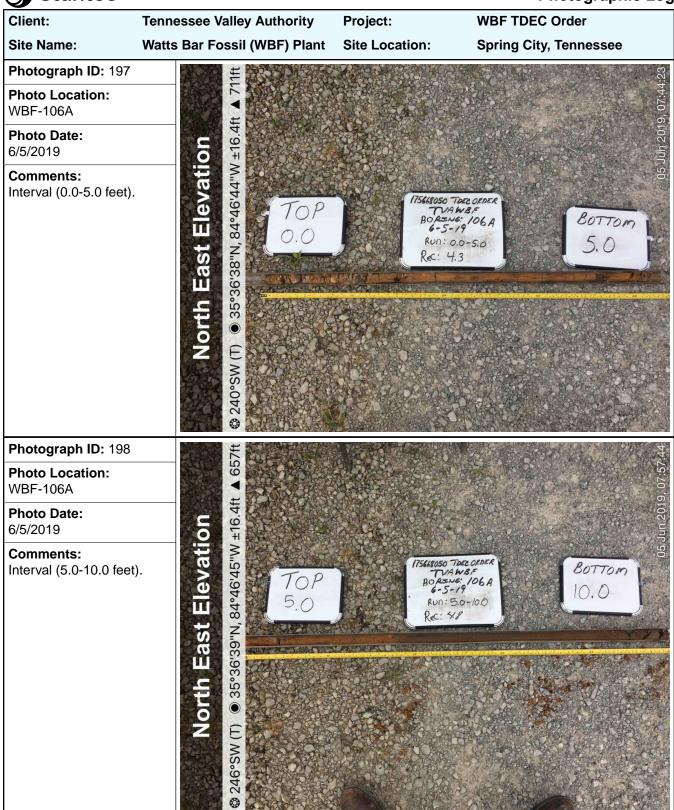


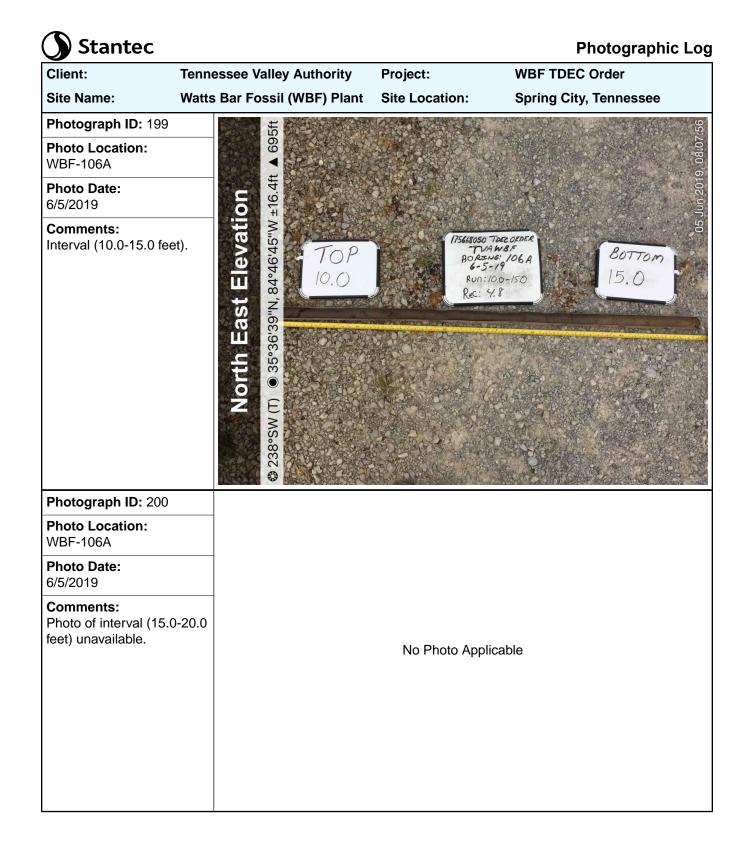






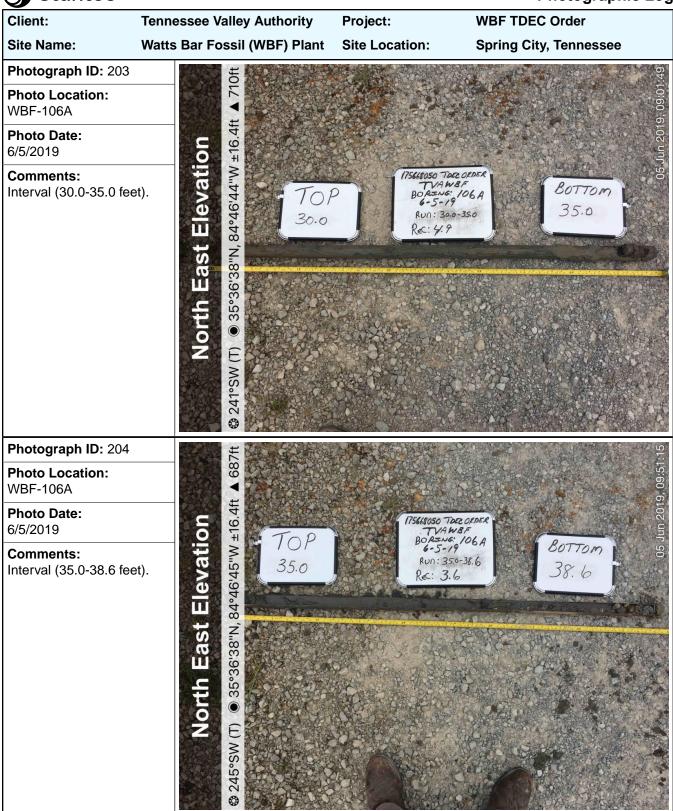


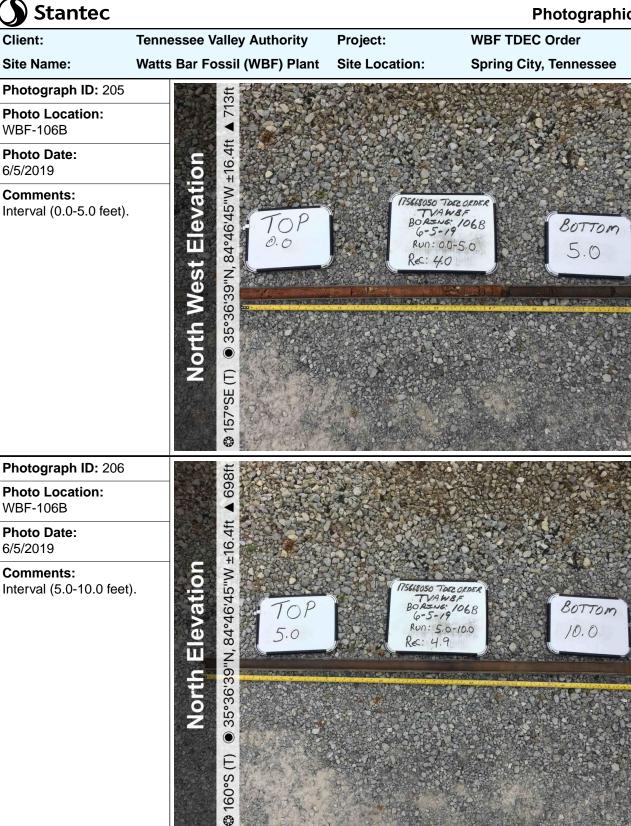


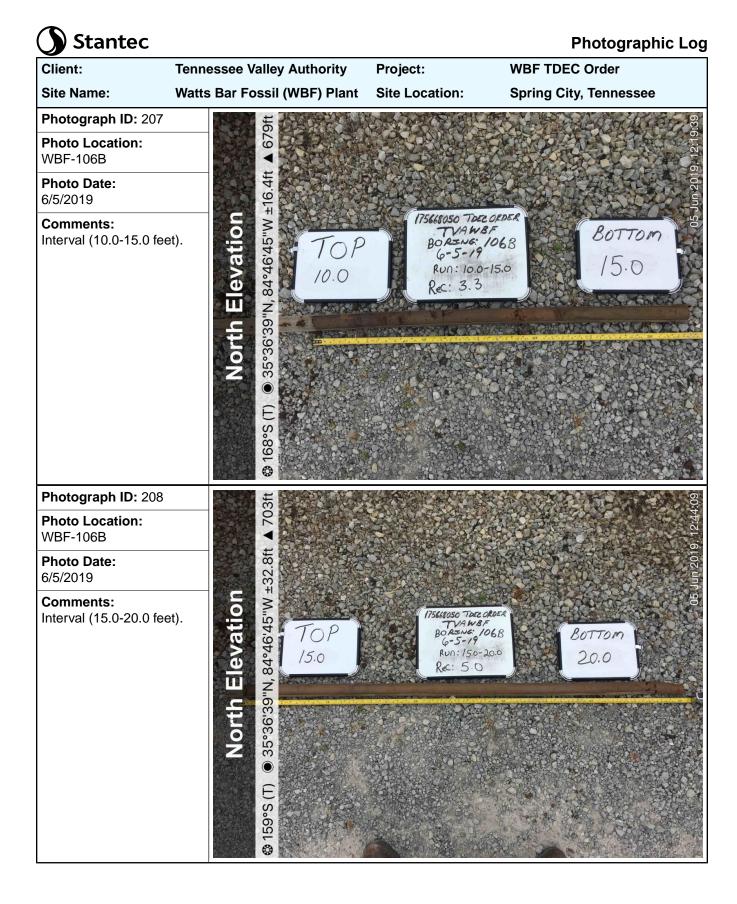


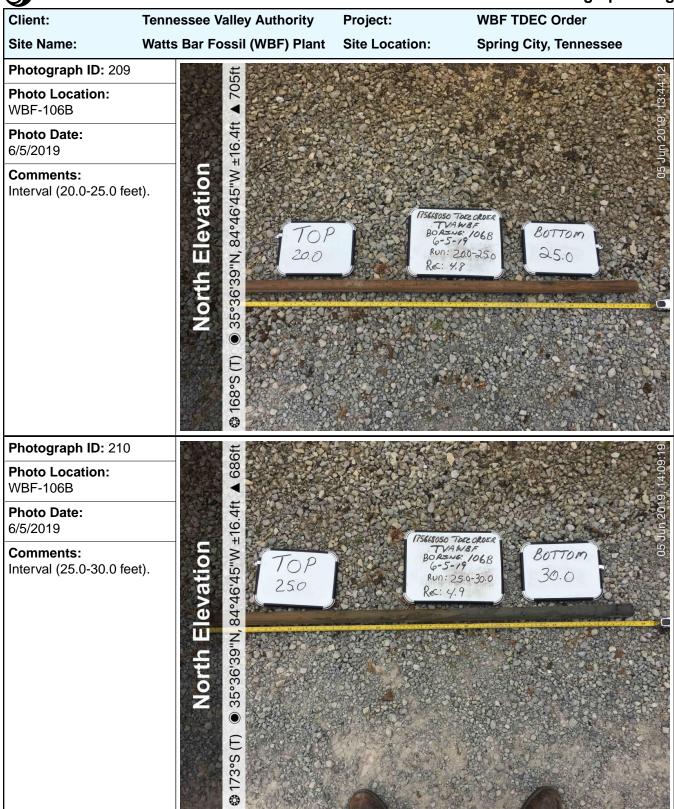


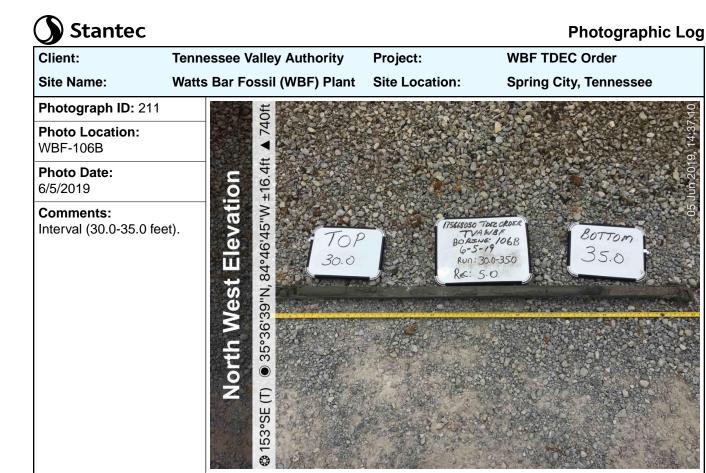
Client:	Tennessee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 195 Photo Location: WBF-106	28 AM 37381 States		
Photo Date: 6/26/2019		175668050 TDEC TVAWBF Boring: WBF-10 6-26-19 S5-22 31.5-33.0 B/C WH-1-1 REC:	33.0
Comments: Interval (31.5-33.0 fee	et). 50'7.5		
	unn		8 9 10 11 1F 1 2 3 4 5 6
Photograph ID: 196			
Photo Location: WBF-106			
Photo Date: 6/26/2019			
Comments: Photo of interval (33.0 feet) unavailable.)-34.5	No Photo Applic	cable





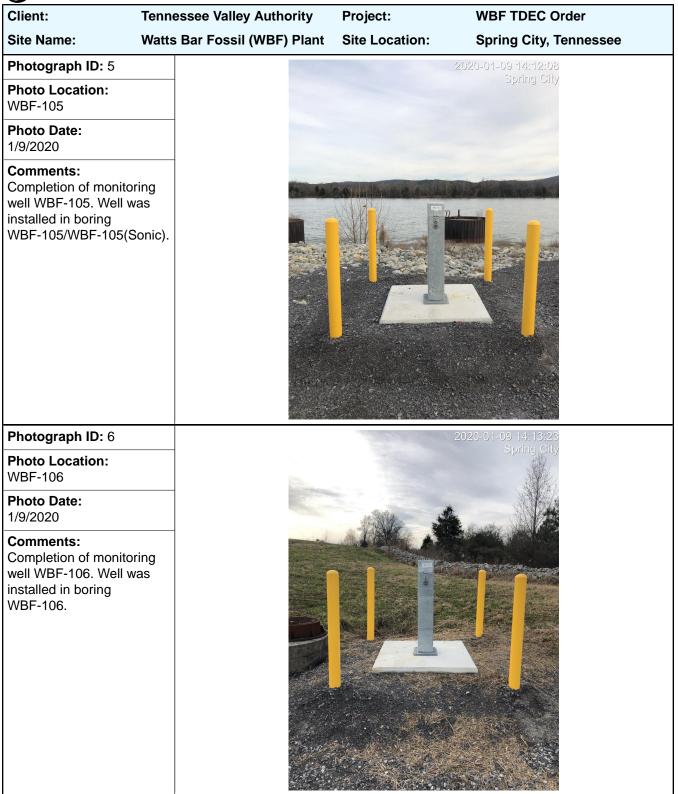






ATTACHMENT D.2

Photographic Log of Monitoring Wells

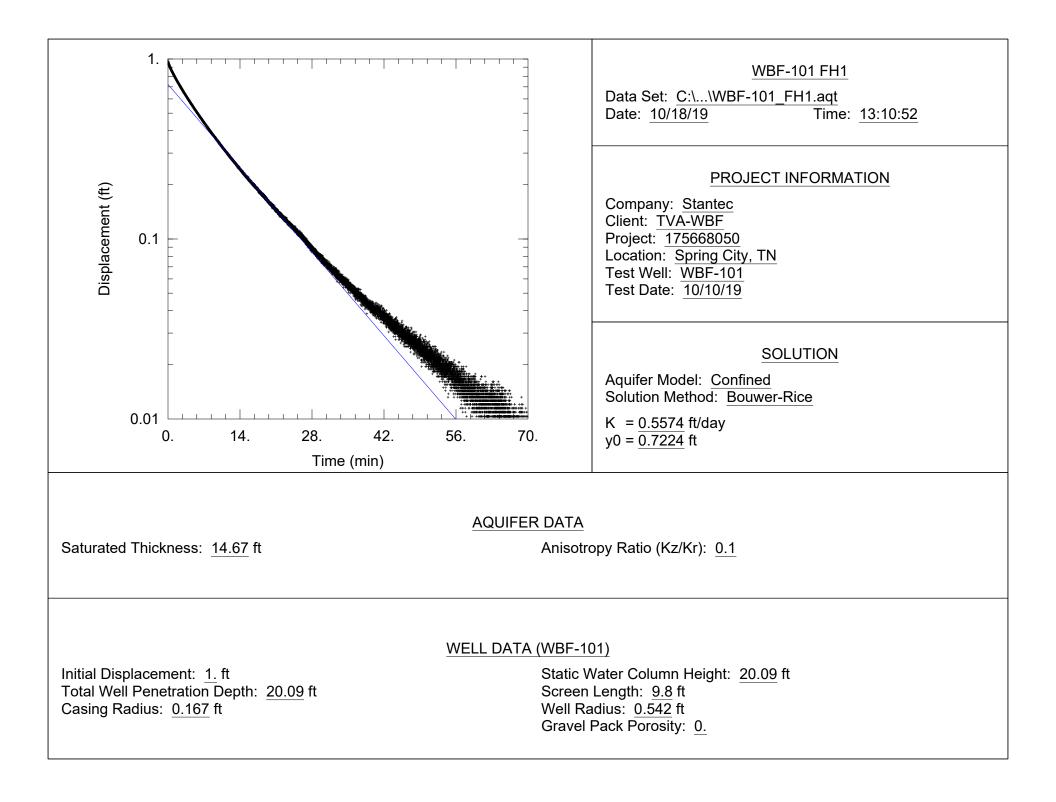


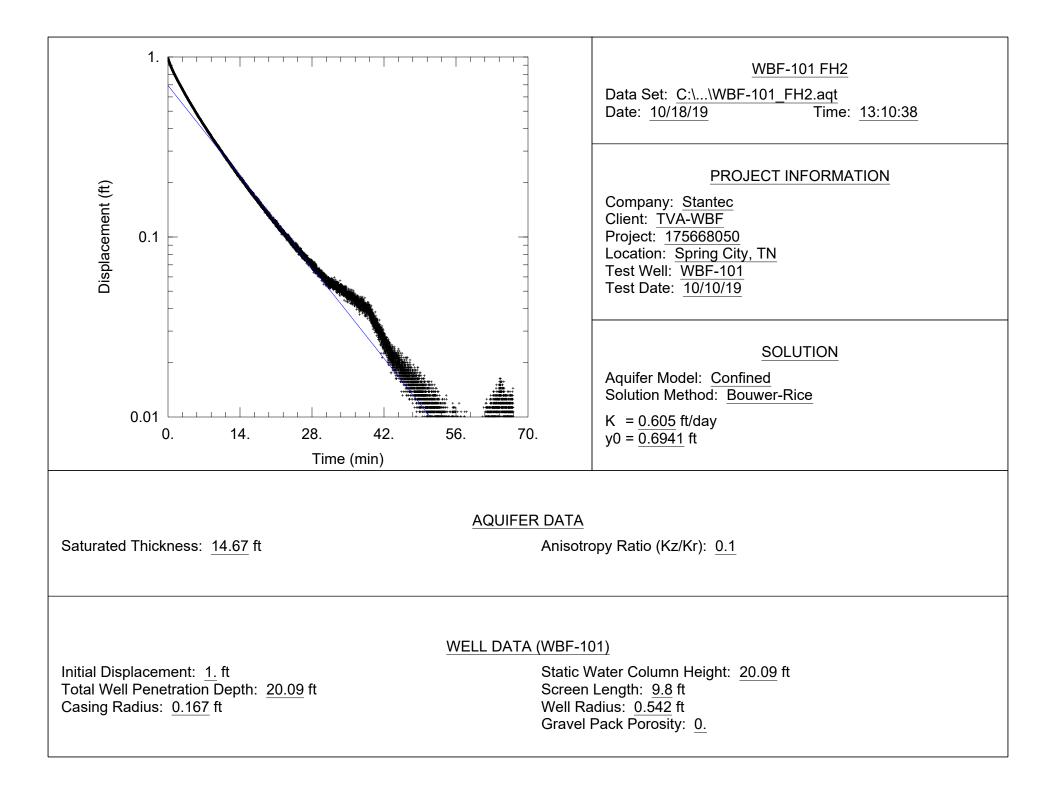
Client:	Tennessee Valley Authority	Project:	WBF TDEC Order
Site Name:	Watts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 1 Photo Location: WBF-101			2020-01-09 13:58:38 Spring City
Photo Date: 1/9/2020			
Comments: Completion of monito well WBF-101. Well v installed in boring WBF-101.			
Photograph ID: 2			2020-01-09 14:04:14
Photo Location: WBF-102		NW/2	Spring City
Photo Date: 1/9/2020			A CONTRACT OF A CONTRACT.
Comments: Completion of monito well WBF-102. Well w installed in boring WBF-102Alt2(Sonic)	was		

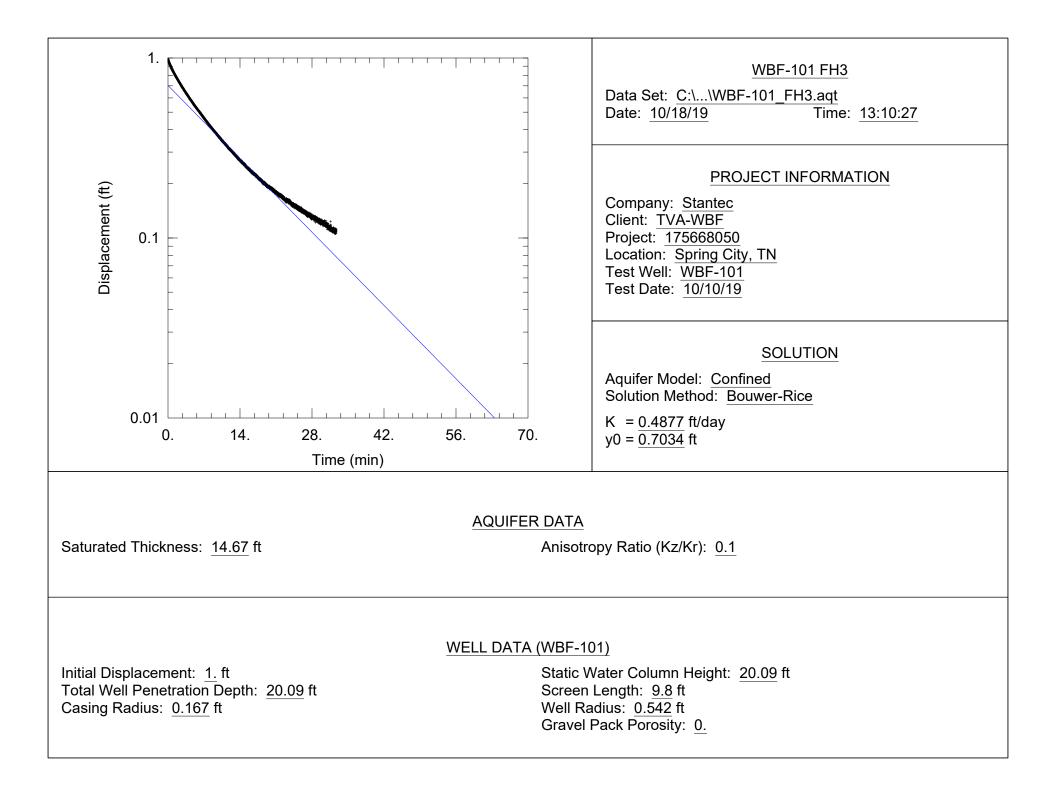
Client: To	ennessee Valley Authority	Project:	WBF TDEC Order
	Vatts Bar Fossil (WBF) Plant	Site Location:	Spring City, Tennessee
Photograph ID: 3 Photo Location: WBF-103			20-01-01-21-00-24 Anno Tr
Photo Date: 1/9/2020			
Comments: Completion of monitoring well WBF-103. Well was installed in boring WBF-103.			
Photograph ID: 4		20	20-01-09 14:10:38
Photo Location: WBF-104			Spring City
Photo Date: 1/9/2020			
Comments: Completion of monitoring well WBF-104. Well was installed in boring WBF-104.			

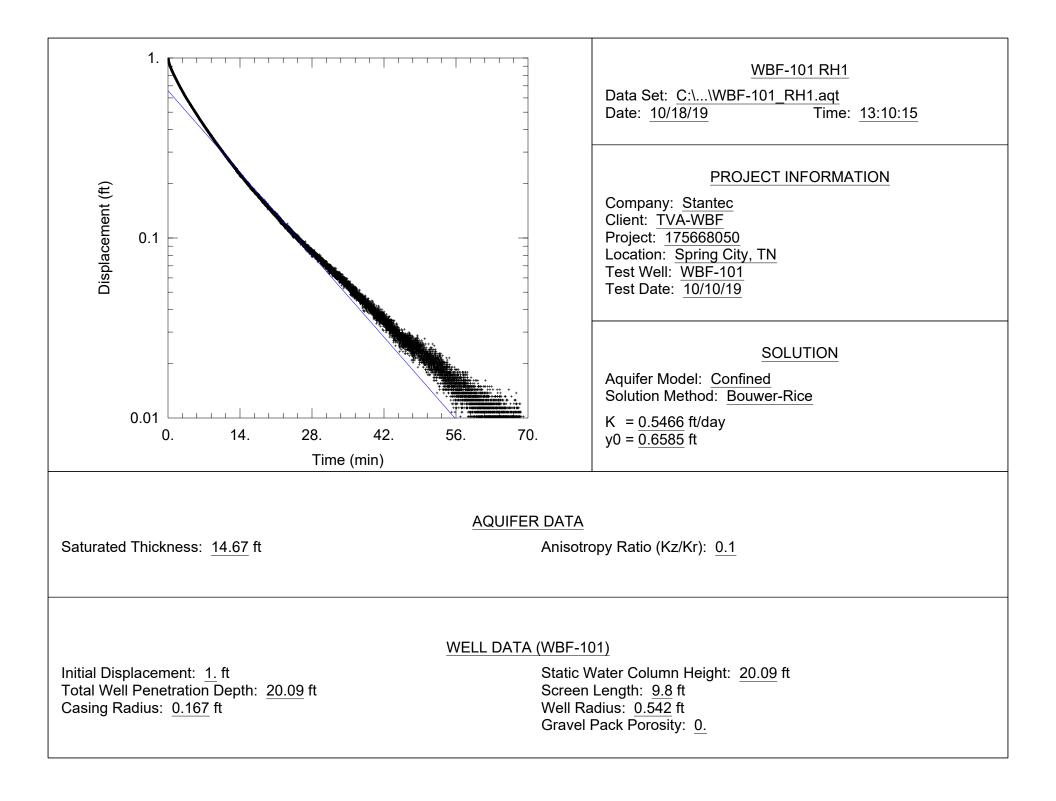
APPENDIX E – SLUG TEST RESULTS

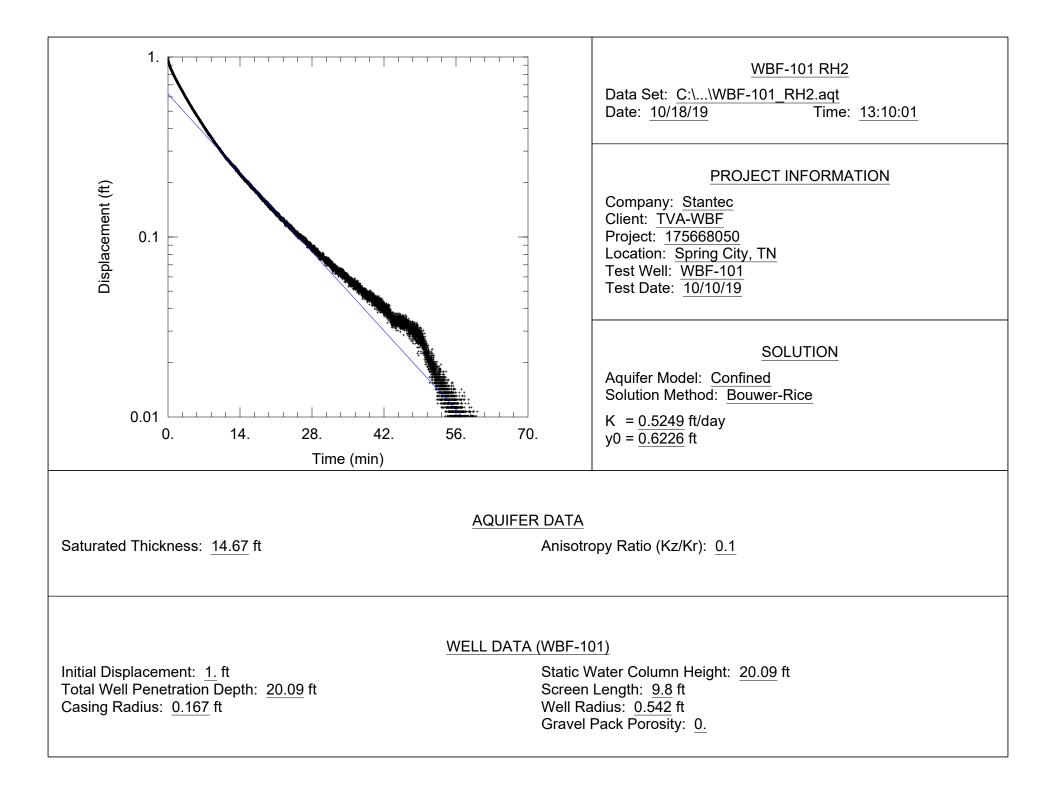
Slug Test Results Hydrogeological Investigation TVA WBF Plant

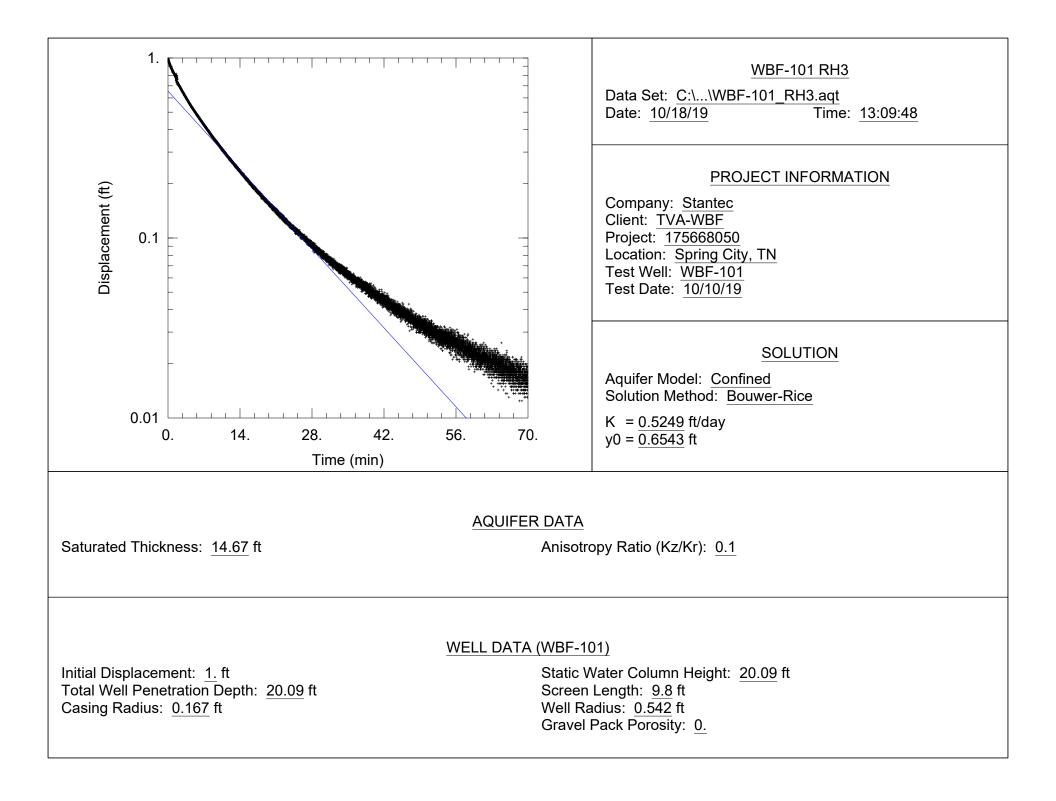

Well ID	Test	Test Date	Bouwer-Rice Hydraulic Conductivity (ft/day)	Bouwer-Rice Hydraulic Conductivity (cm/sec)
WBF-101 -	Falling Head 1		0.5574	1.97E-04
	Falling Head 2		0.6050	2.13E-04
	Falling Head 3	10/10/2019	0.4877	1.72E-04
	Rising Head 1	10/10/2019	0.5466	1.93E-04
	Rising Head 2		0.5249	1.85E-04
	Rising Head 3		0.5249	1.85E-04
WBF-103	Falling Head 1	10/10/2019	20.10	7.09E-03
	Falling Head 2	10/11/2019	20.73	7.31E-03
	Falling Head 3	10/11/2019	20.43	7.21E-03
	Rising Head 1	10/10/2019	20.50	7.23E-03
	Rising Head 2	10/11/2019	20.78	7.33E-03
	Rising Head 3	10/11/2019	20.99	7.40E-03
WBF-104	Falling Head 1	10/9/2019	0.7549	2.66E-04
	Falling Head 2	10/9/2019	0.7126	2.51E-04
	Falling Head 3	10/10/2019 0.5379		1.90E-04
VVDF-104	Rising Head 1	10/9/2019	0.5977	2.11E-04
	Rising Head 2	10/9/2019	0.6548	2.31E-04
	Rising Head 3	10/10/2019	0.5818	2.05E-04
WBF-105	Falling Head 1		1.288	4.54E-04
	Falling Head 2		1.265	4.46E-04
	Falling Head 3	10/9/2019	1.575	5.56E-04
	Rising Head 1	10/9/2019	1.215	4.29E-04
	Rising Head 2		1.205	4.25E-04
	Rising Head 3		1.692	5.97E-04
WBF-106	Falling Head 1		0.7830	2.76E-04
	Falling Head 2		0.6935	2.45E-04
	Falling Head 3	10/8/2019	0.7872	2.78E-04
	Rising Head 1	10/0/2019	0.7632	2.69E-04
	Rising Head 2		0.7868	2.78E-04
	Rising Head 3		0.7751	2.73E-04

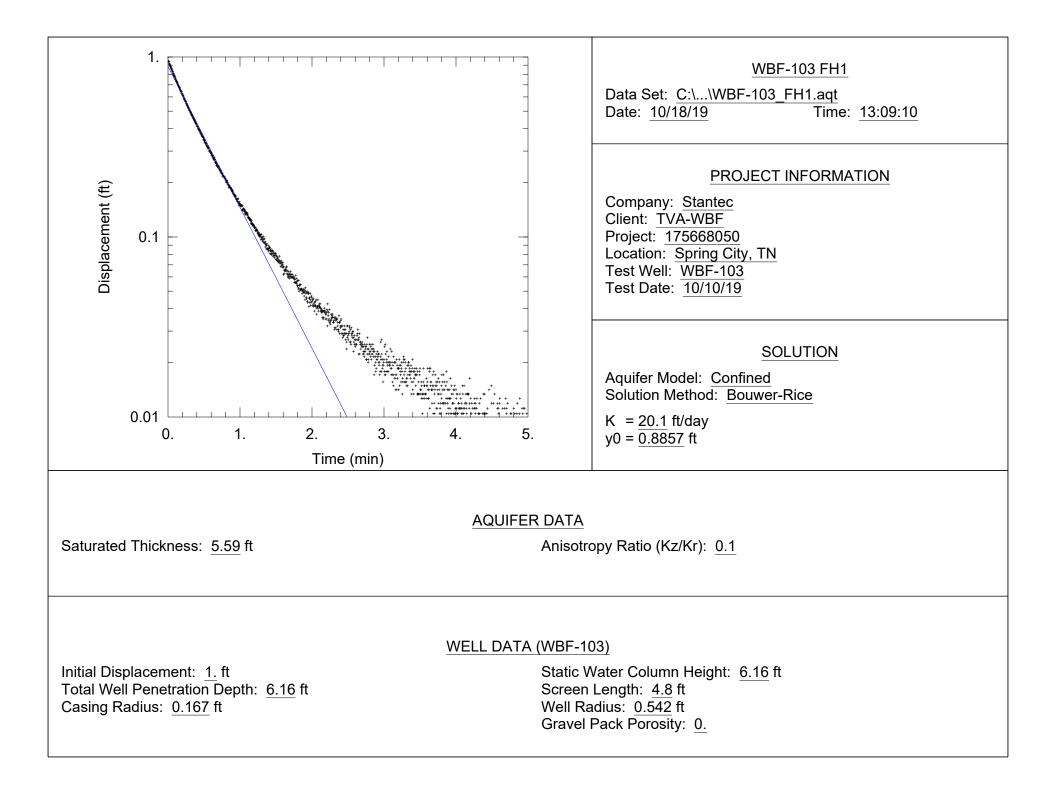

Notes

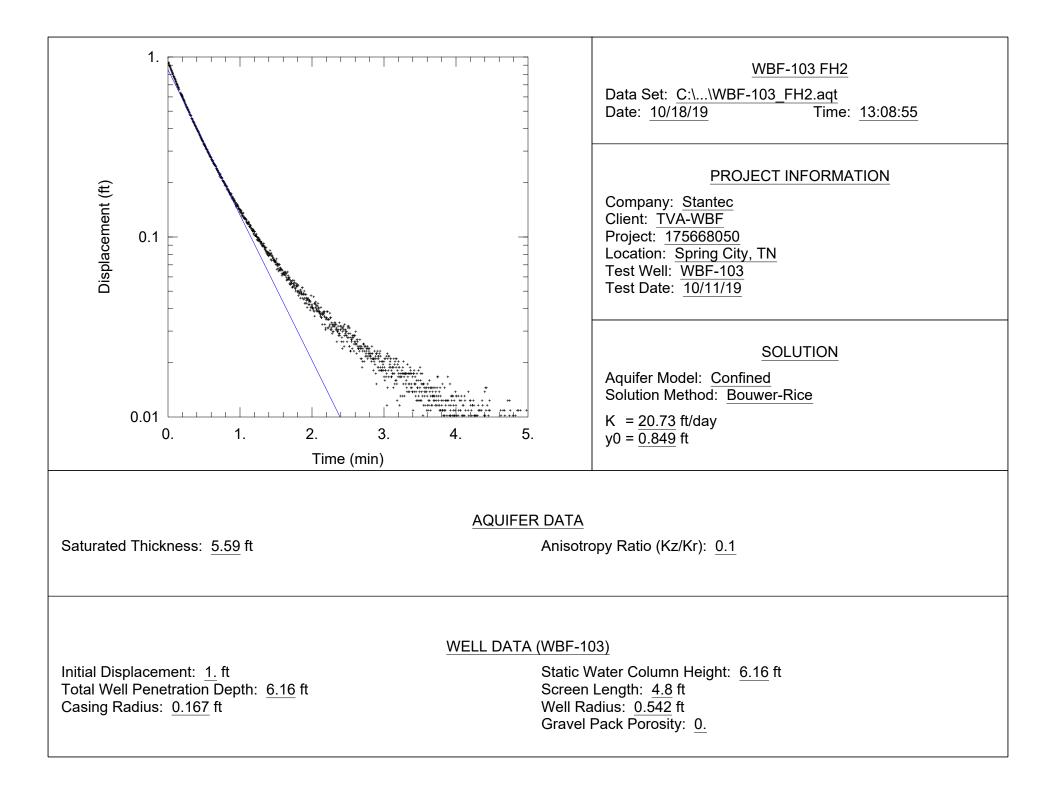

ft/day - feet per day

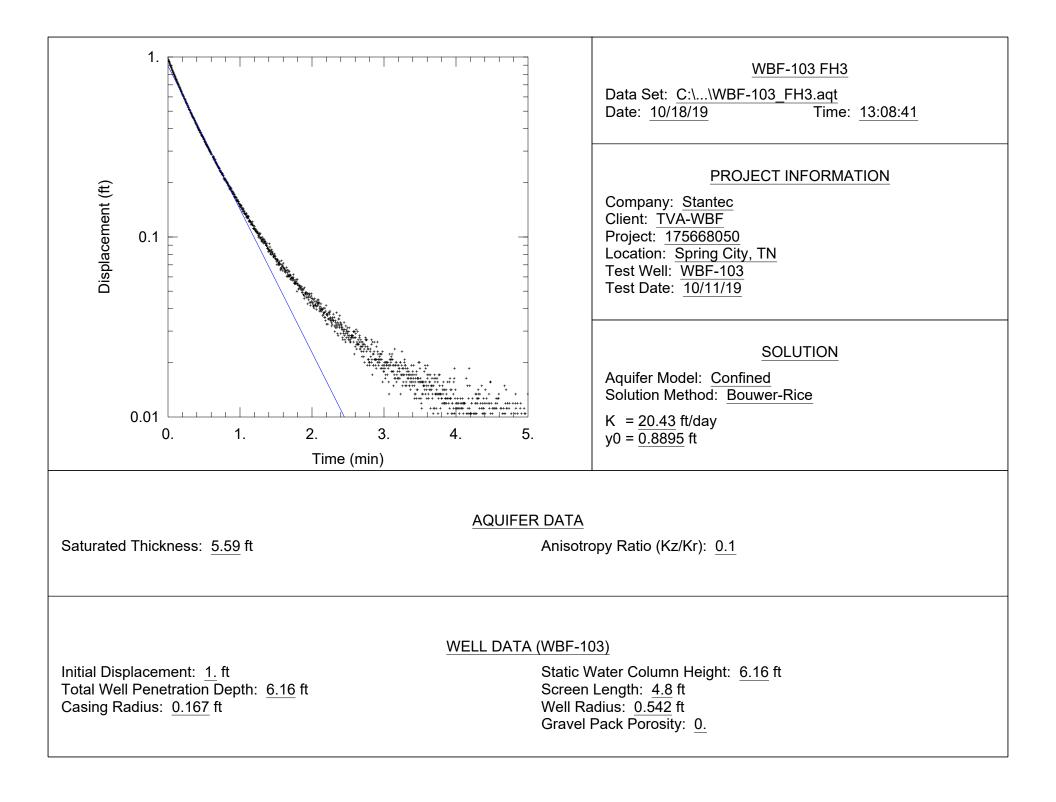

cm/sec - centimeters per second

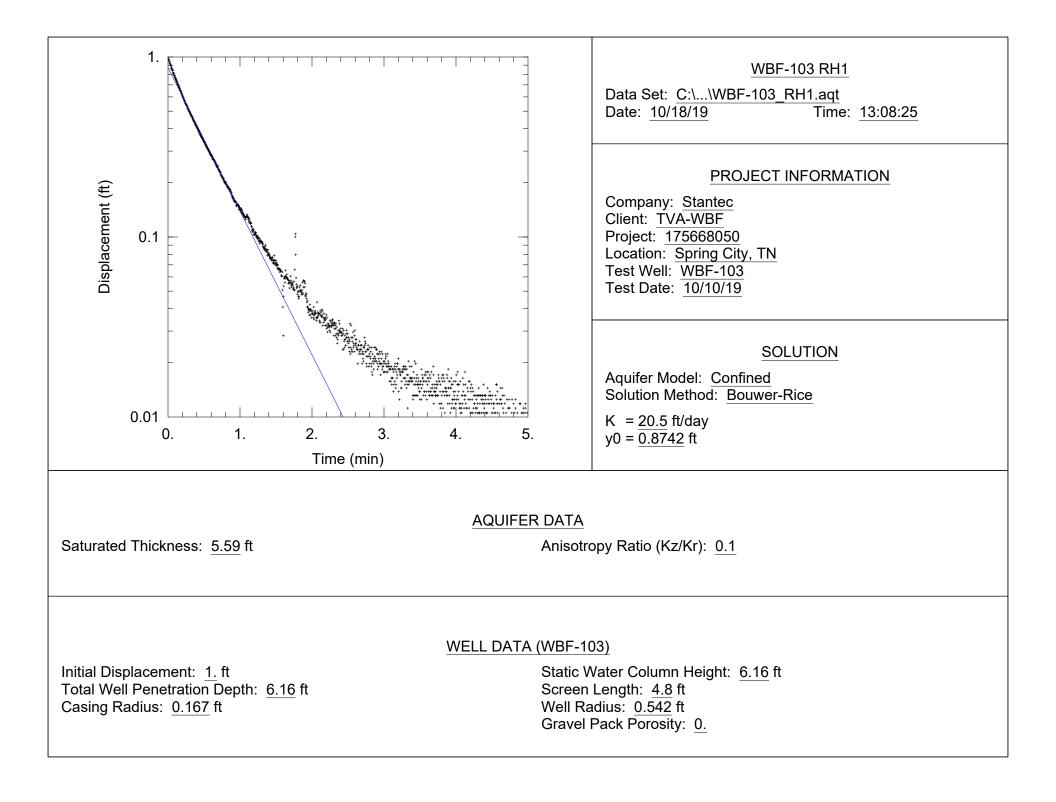

Slug test data analysis was completed using AQTESOLVTM, Version 4.50 Professional

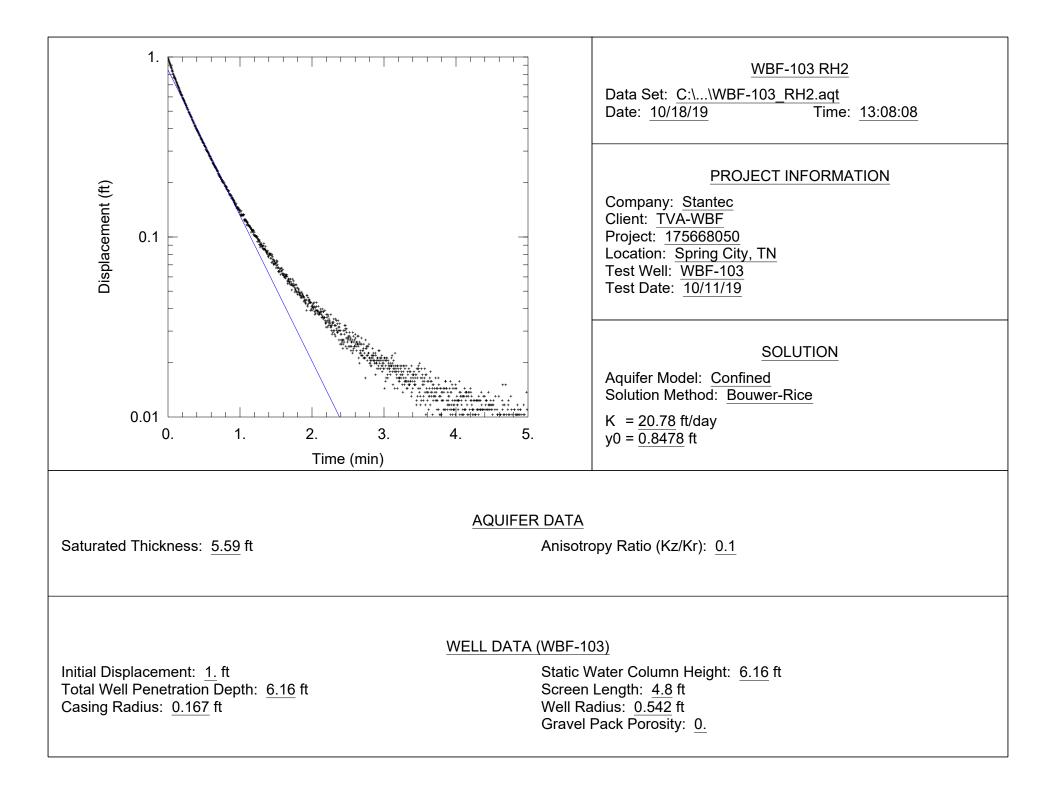


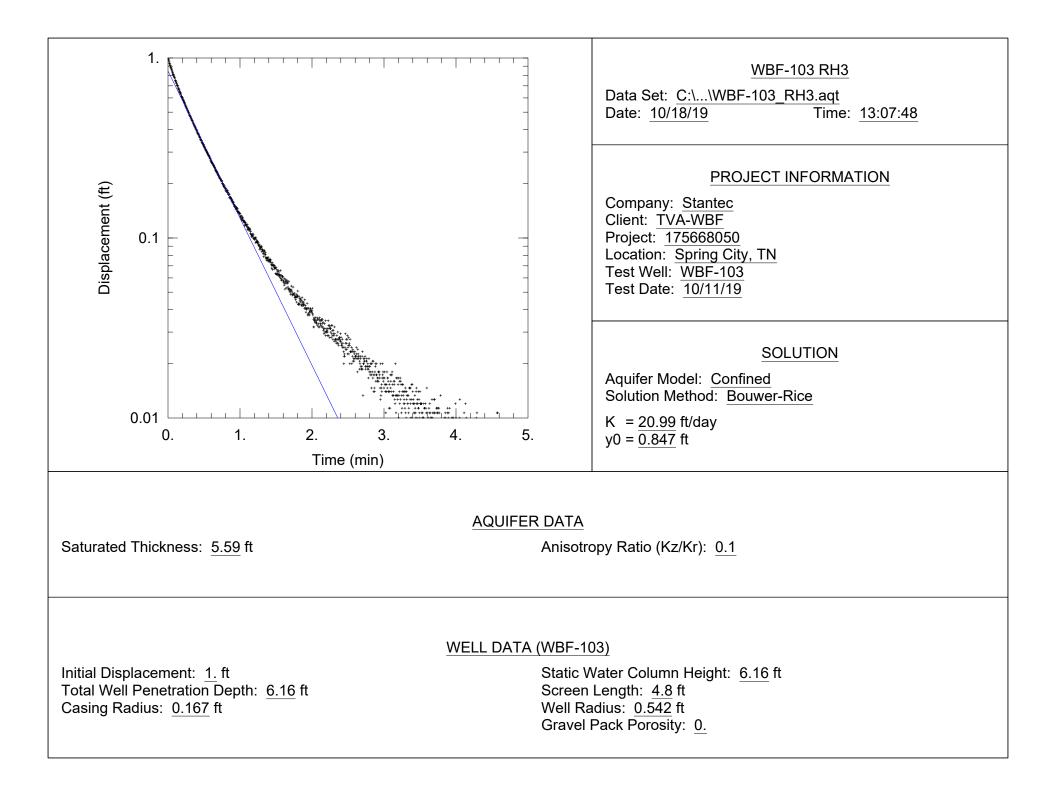


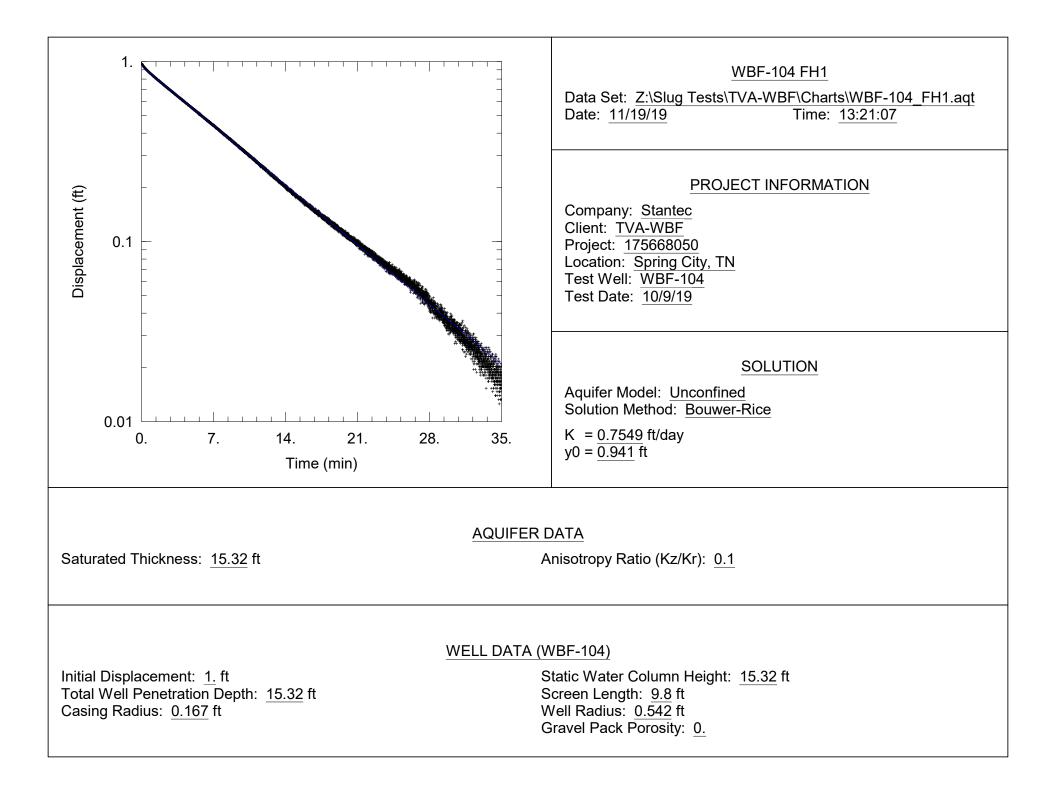


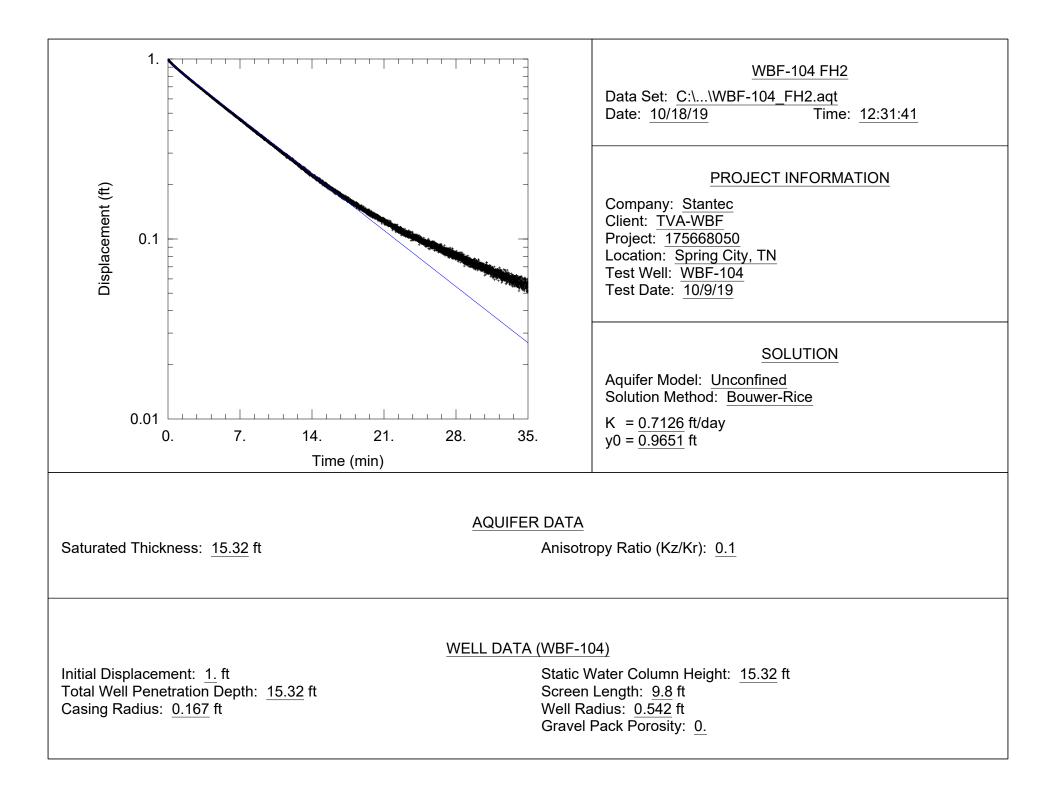


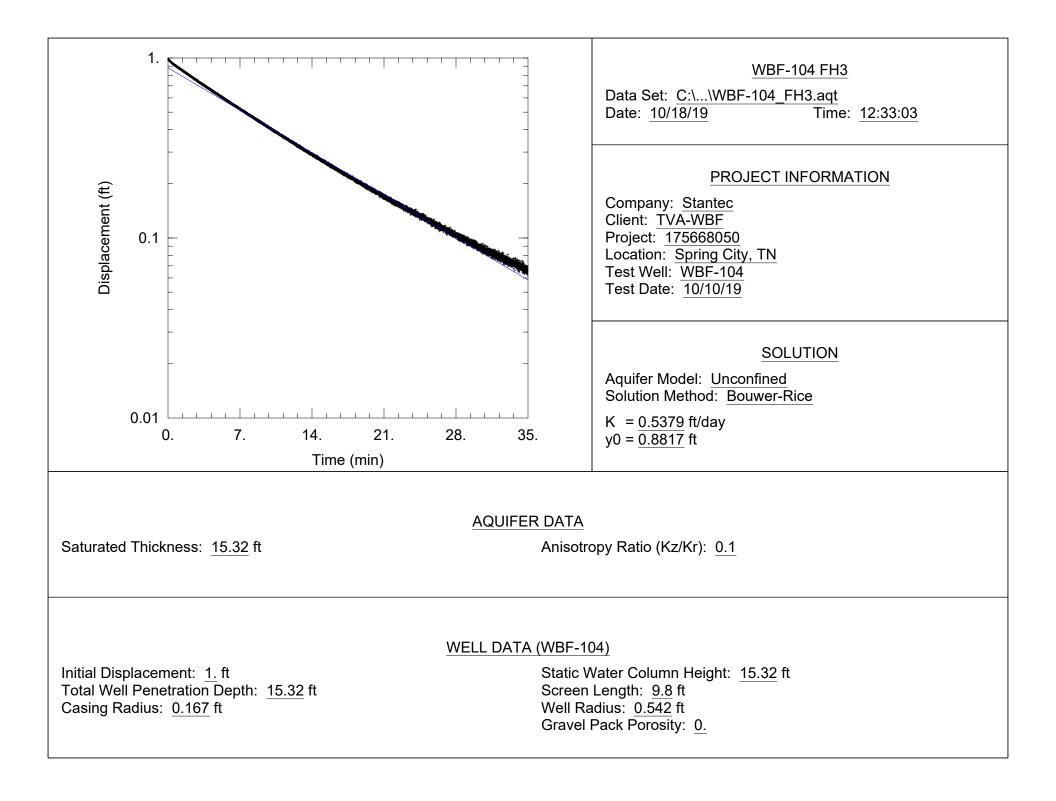


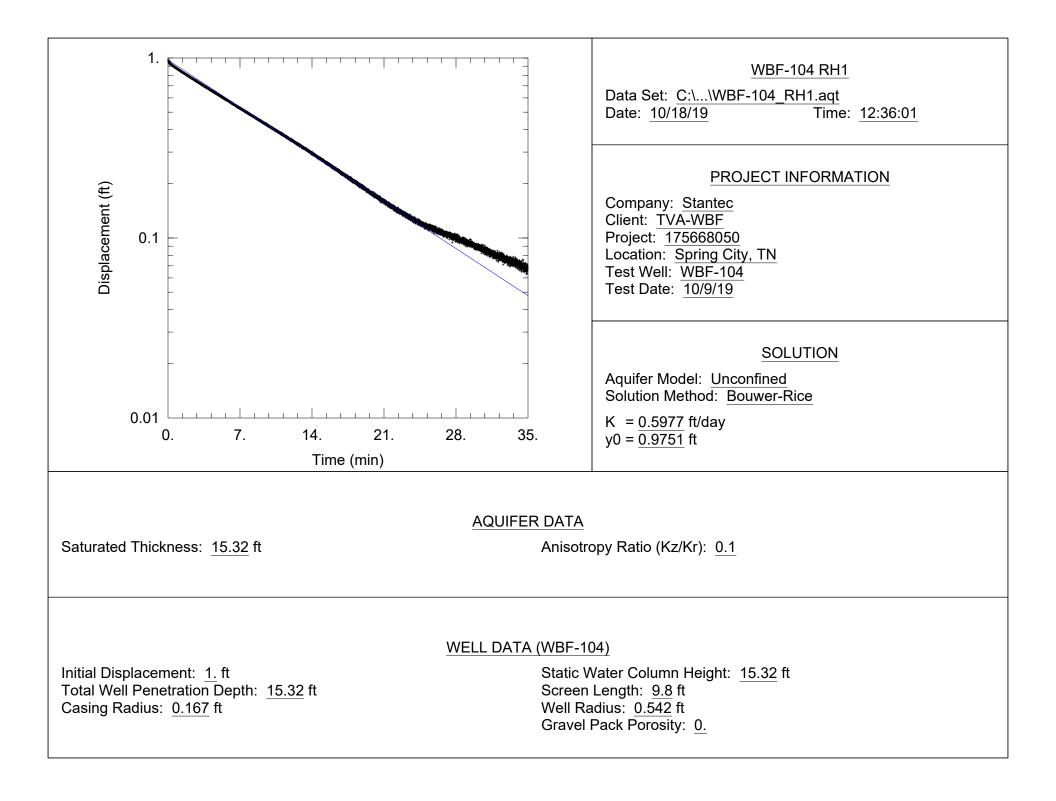


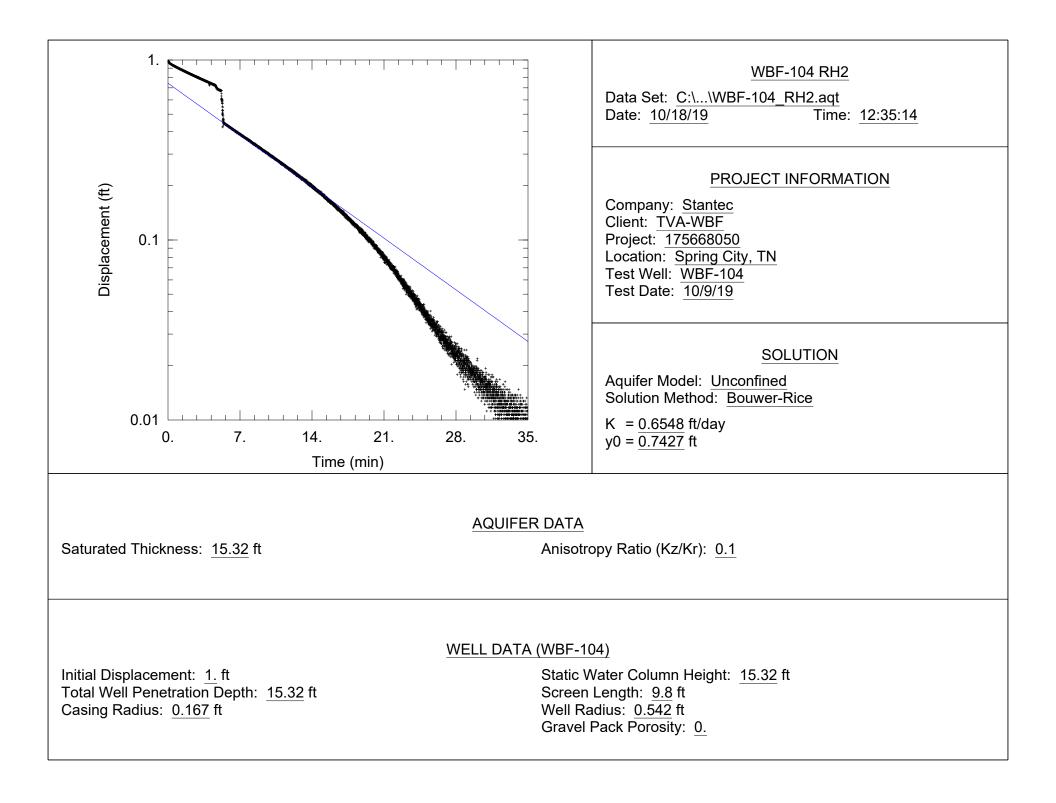


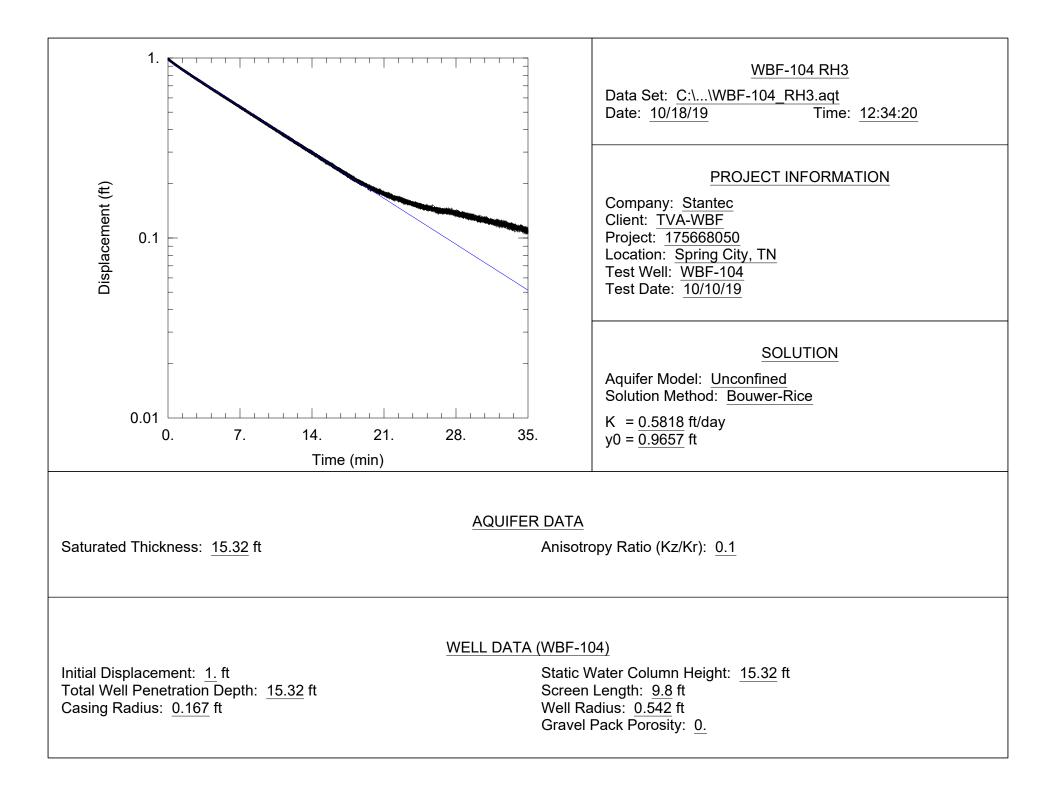


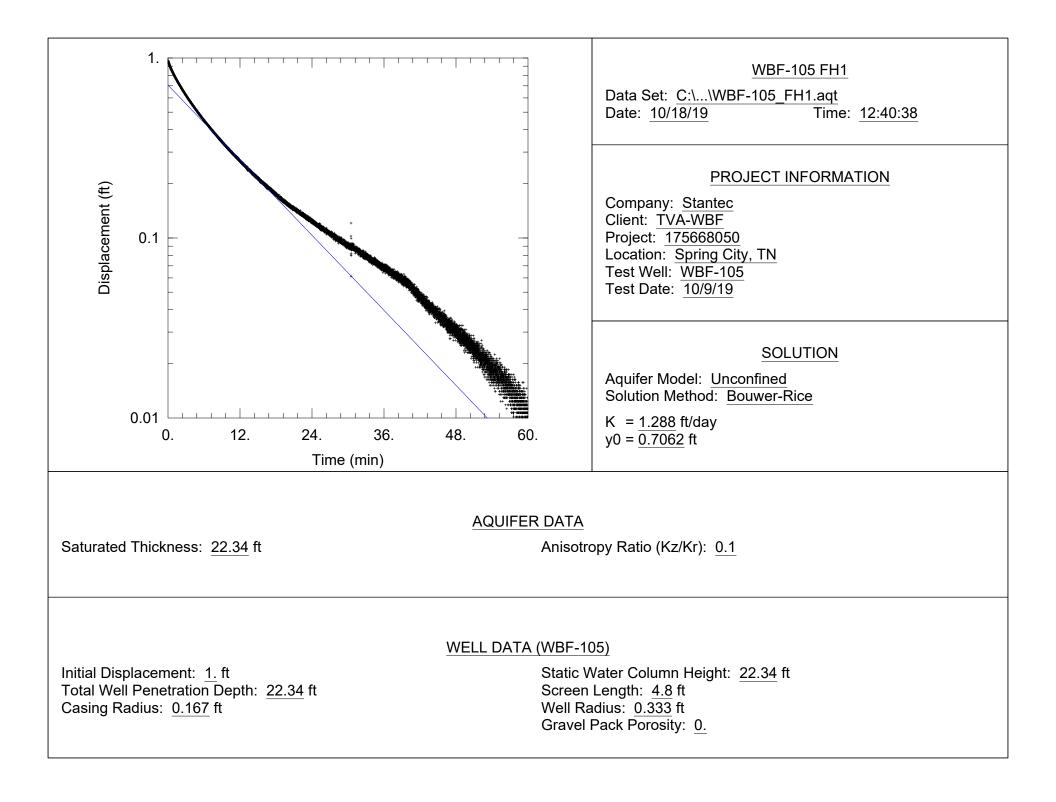


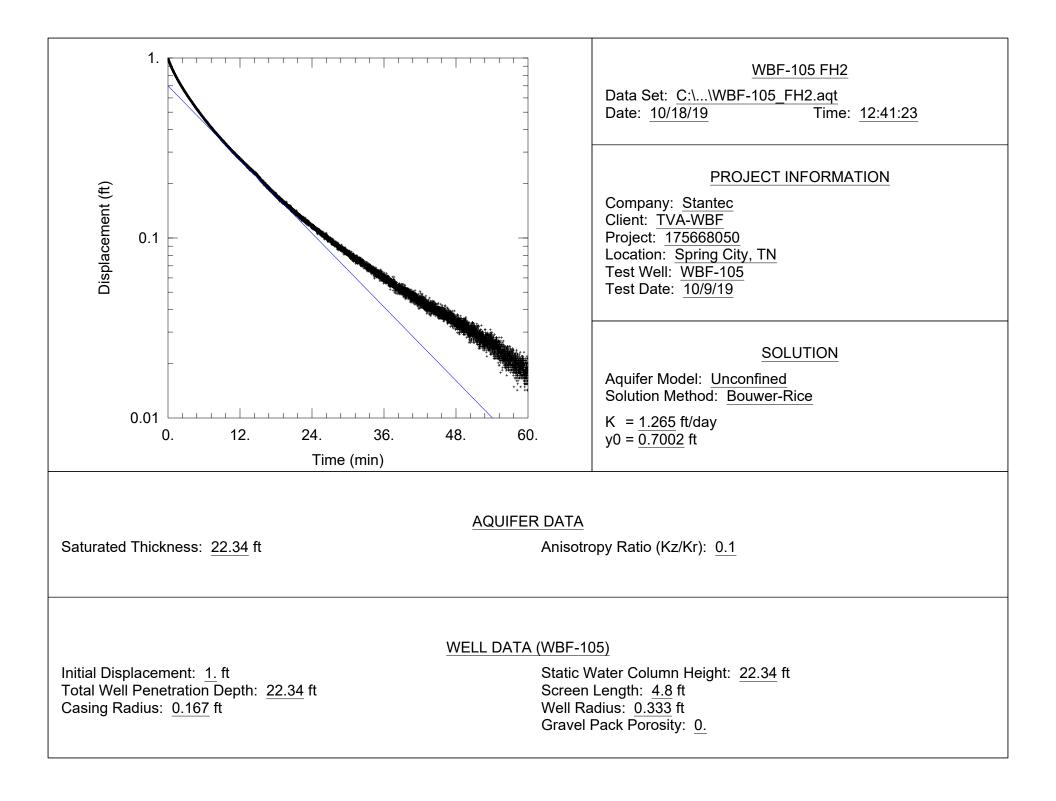


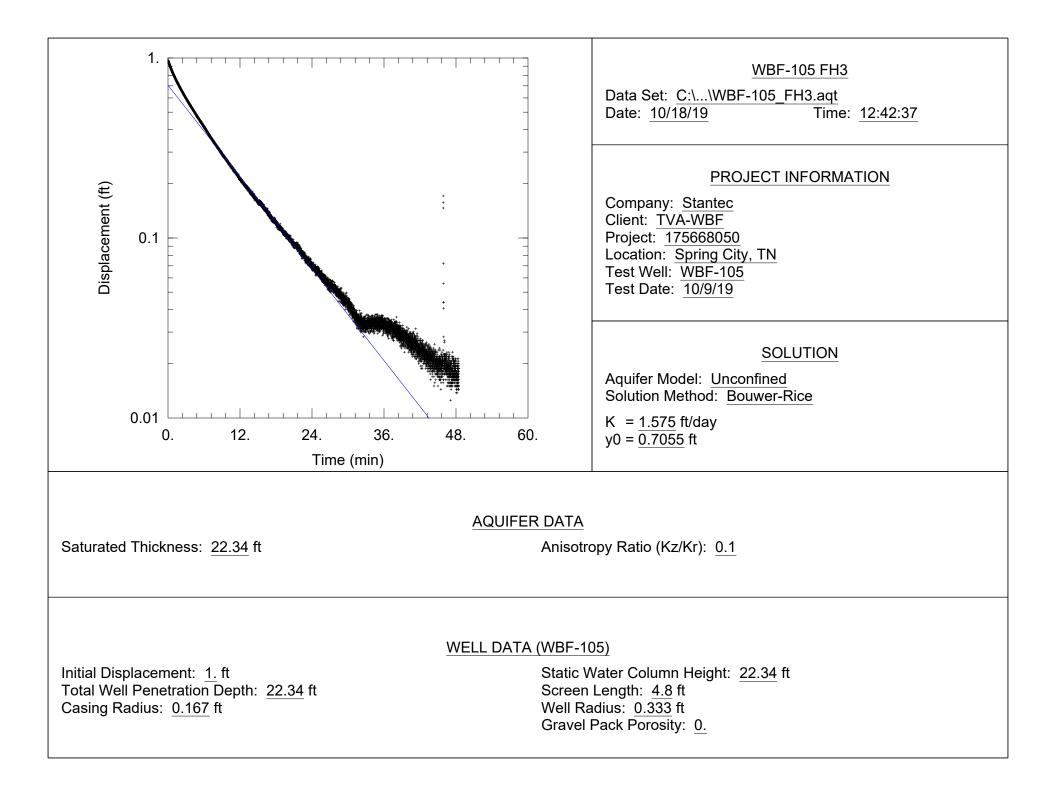


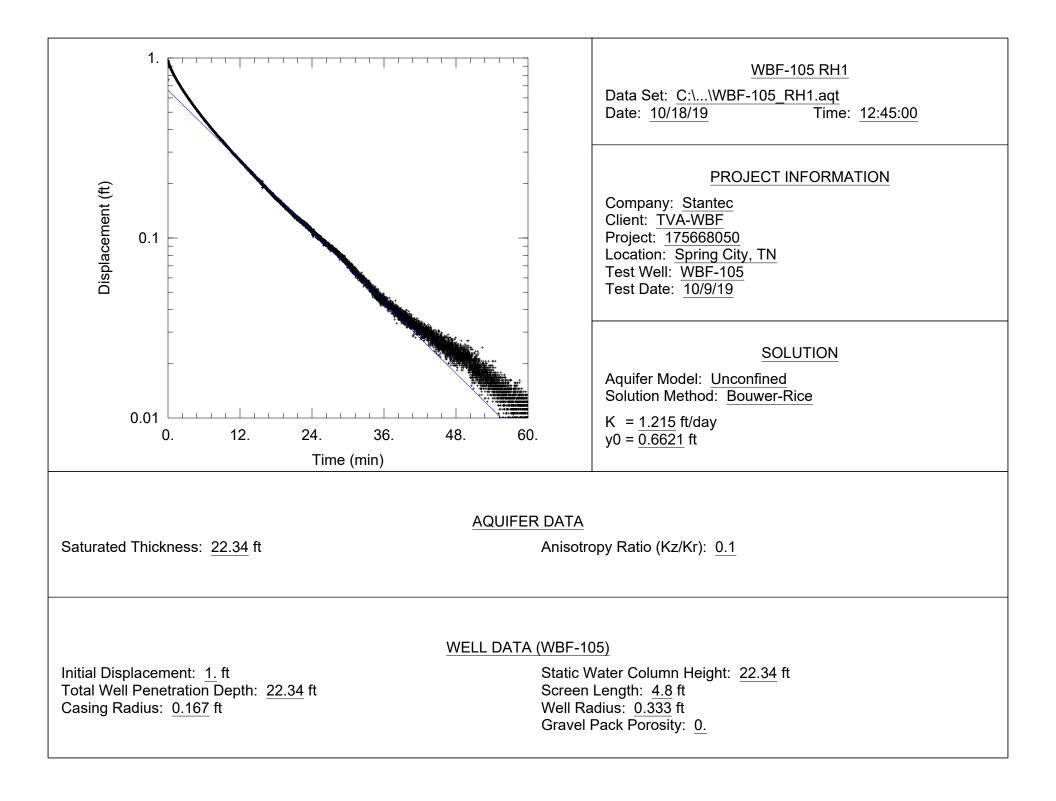


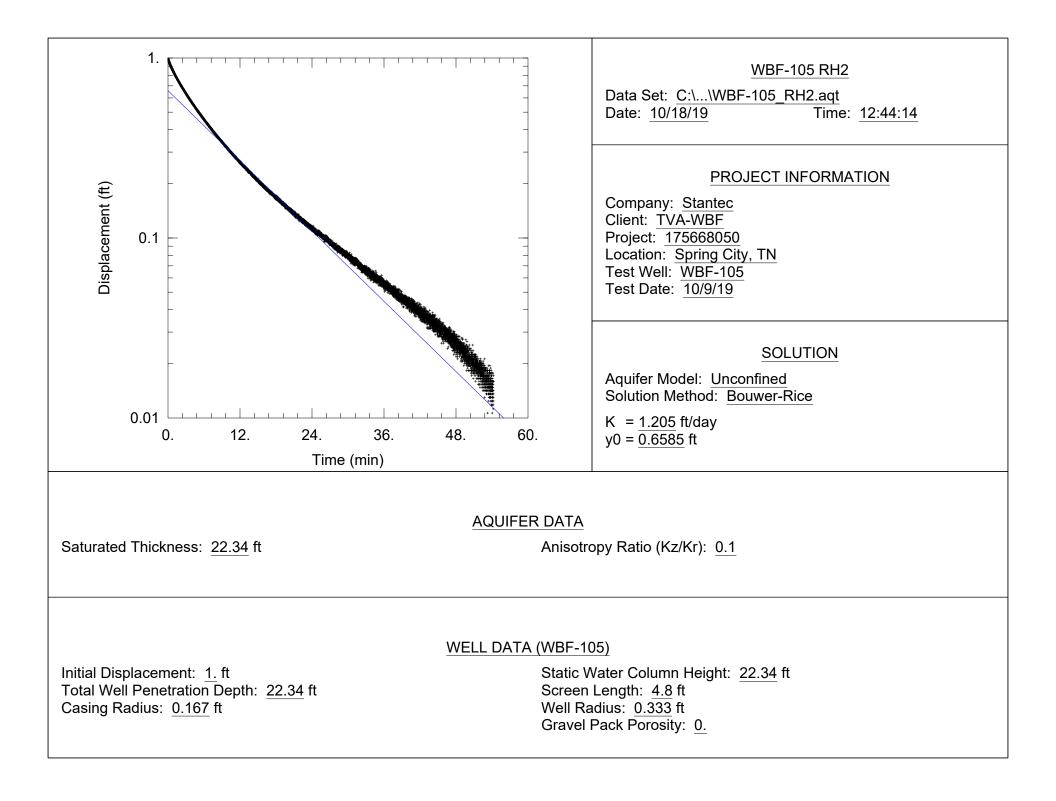


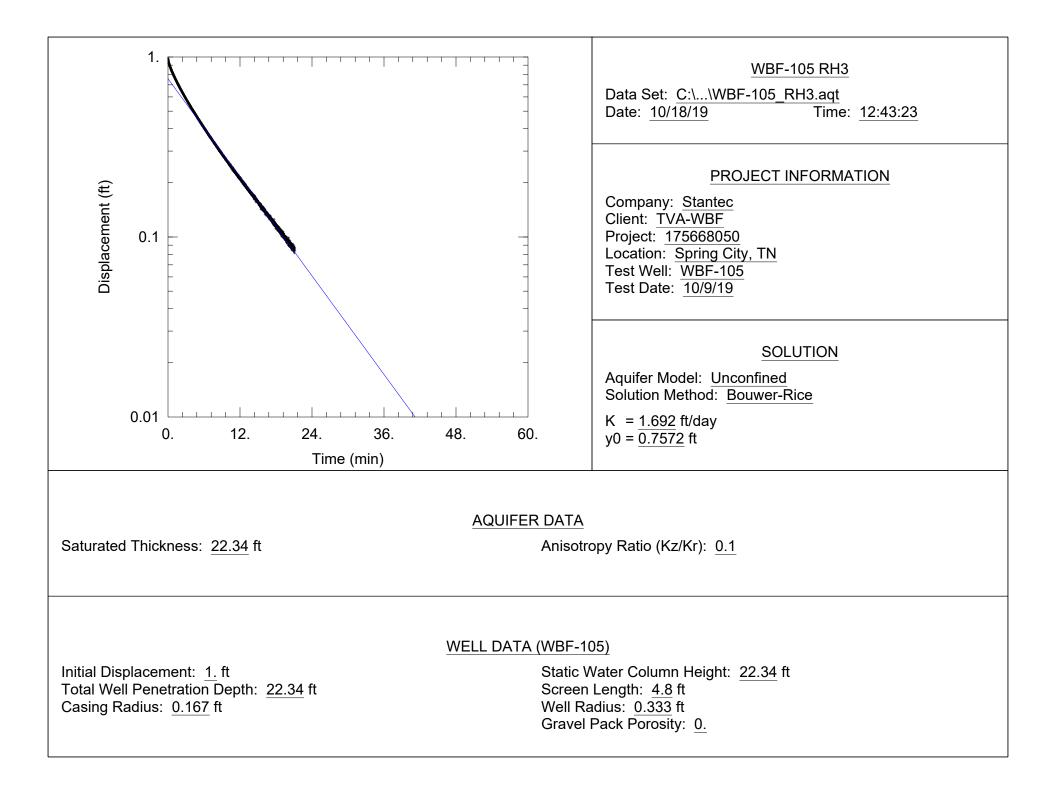


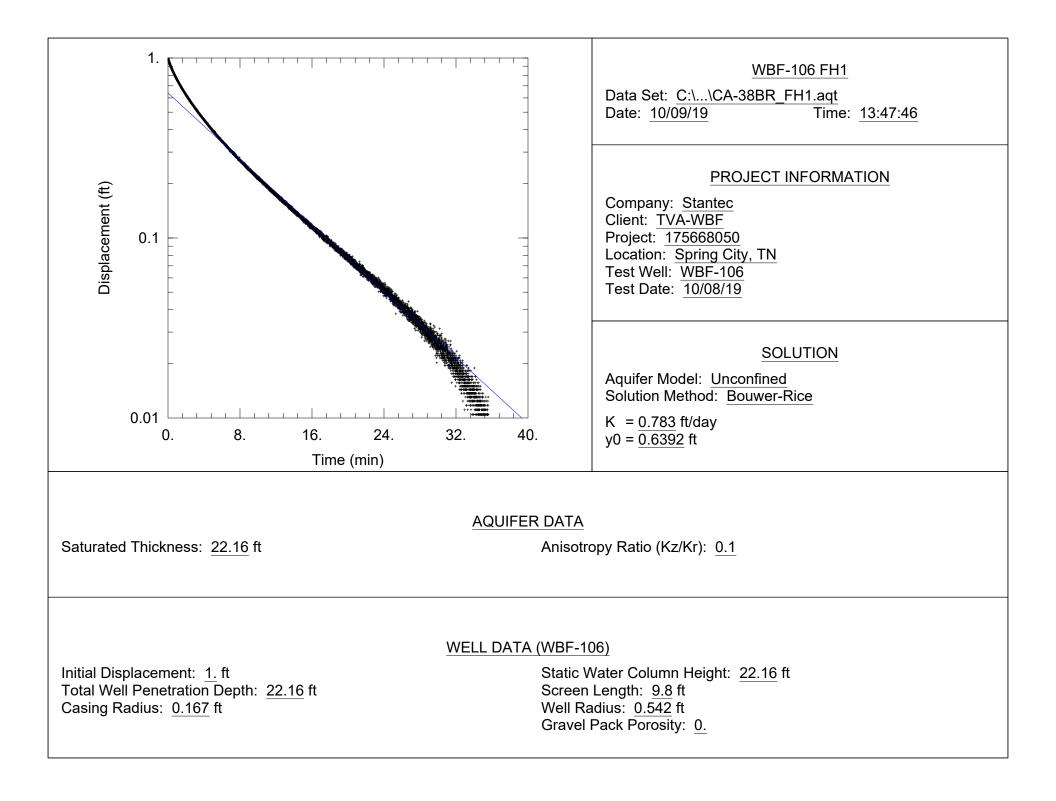


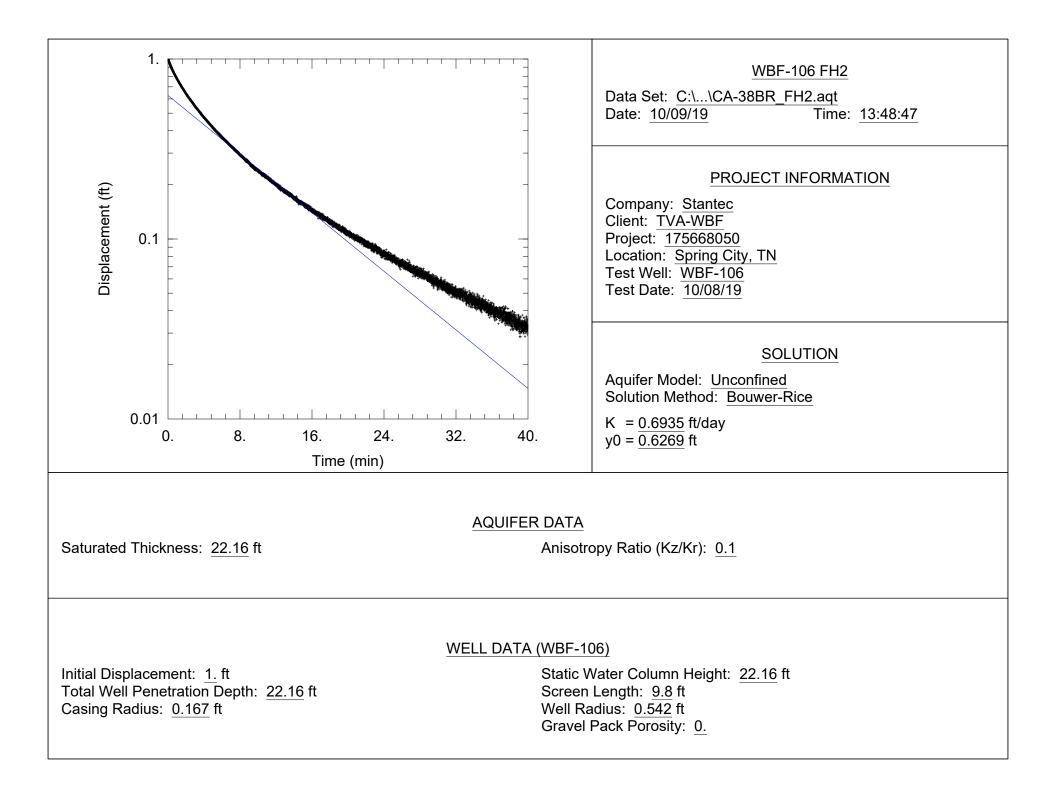


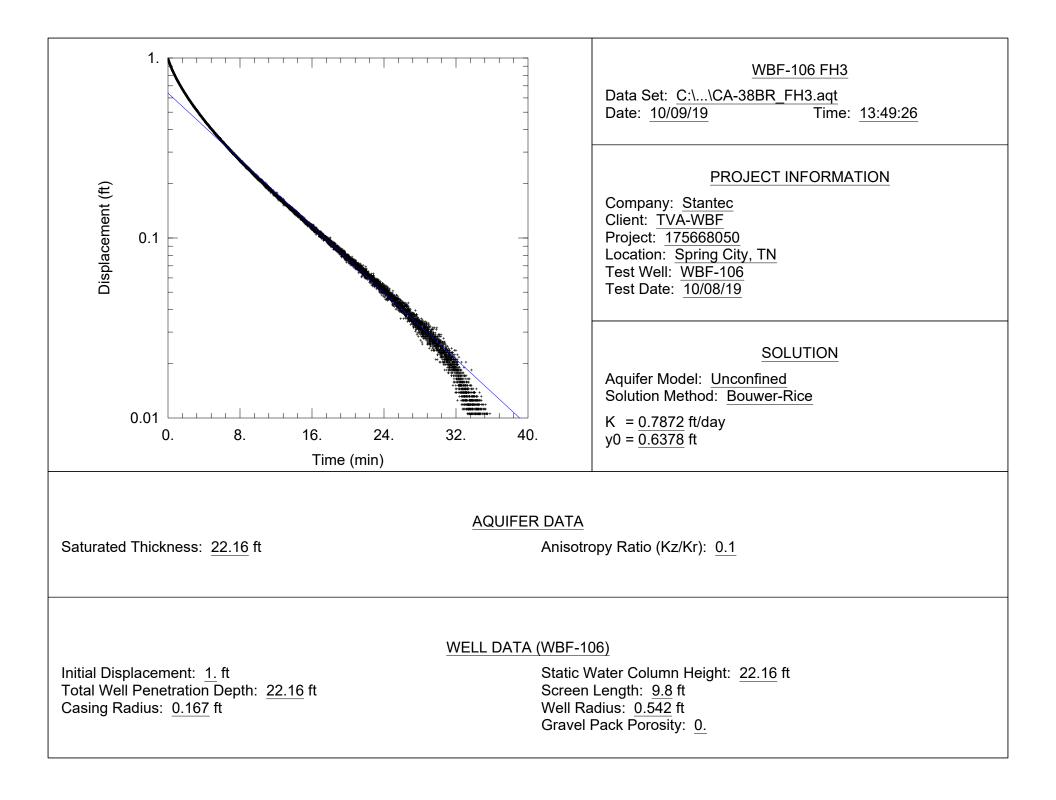


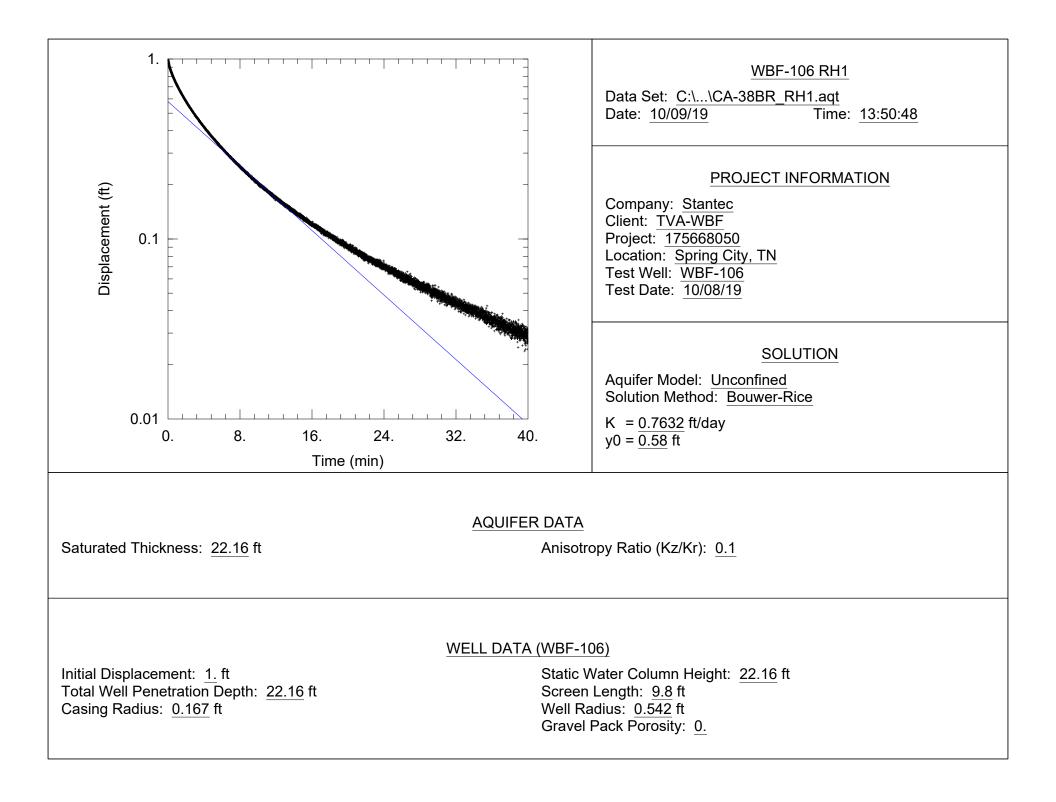


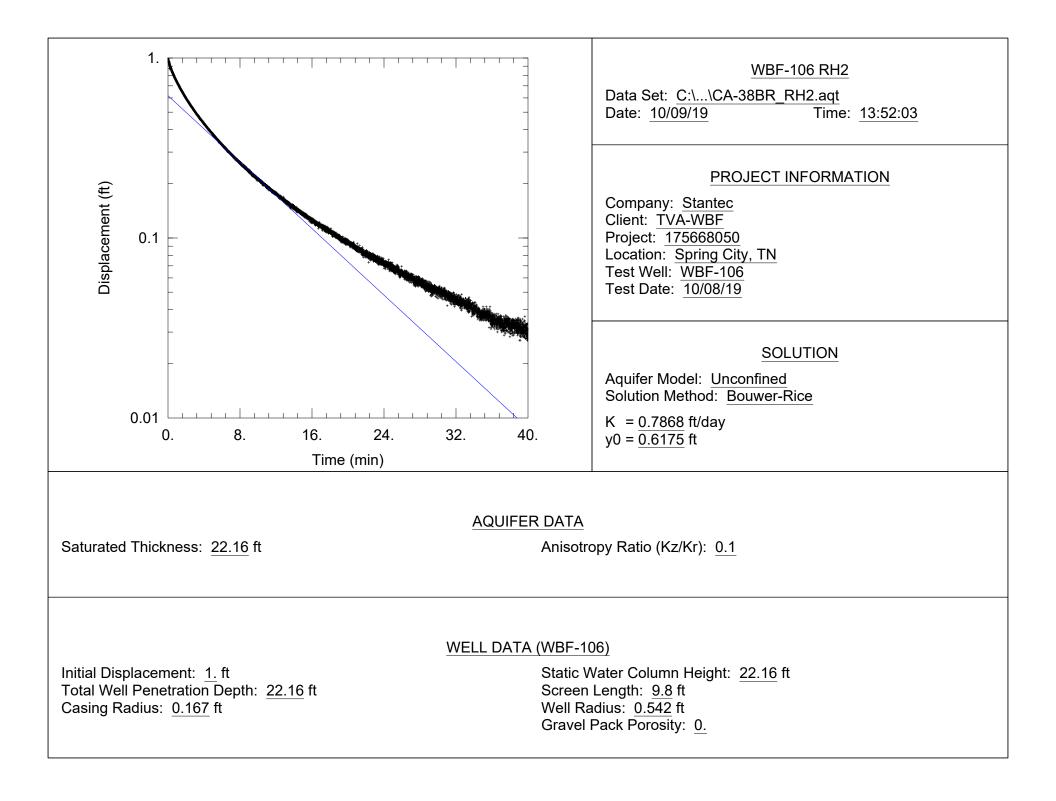


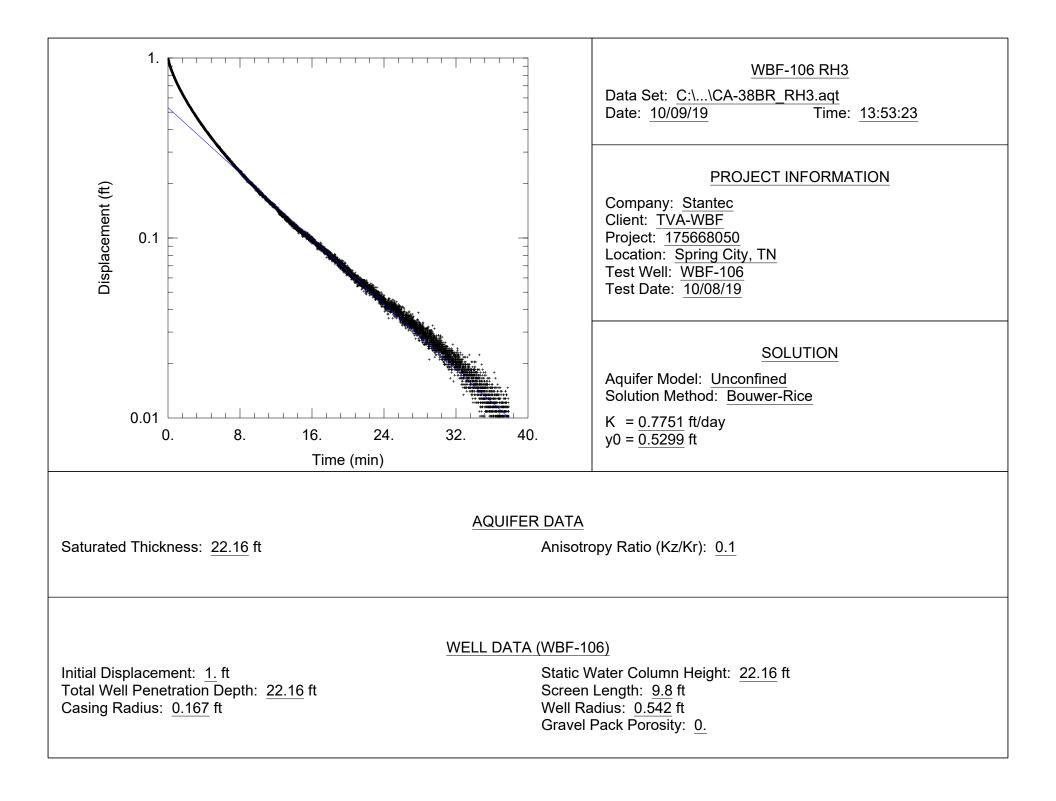












APPENDIX H.3

GROUNDWATER INVESTIGATION EVENT #1 SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Groundwater Investigation Event #1 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plan Watts Bar Fossil Plant Spring City, Tennessee

April 23, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	April 23, 2021

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Groundwater Investigation Event #1 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by

Carole M. Farr, Senior Principal Geologist

Approved by 700

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

ABBR	EVIATIONS	II
1.0	INTRODUCTION	1
2.0	OBJECTIVE AND SCOPE	3
3.0	FIELD ACTIVITIES	4
3.1	WORK LOCATIONS	
3.2	DOCUMENTATION	5
	3.2.1 Field Forms	
	3.2.2 Equipment Calibration	7
3.3	SAMPLING METHODS	7
	3.3.1 Static Water Level Measurements	7
	3.3.2 Groundwater Purging & Sampling	8
3.4	INVESTIGATION DERIVED WASTE	9
3.5	SAMPLE SHIPMENT	9
3.6	VARIATIONS1	0
4.0	SUMMARY1	1
5.0	REFERENCES1	2

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well Network Exhibit A.2 – Groundwater Elevation Contour Map, Event #1 (August 26, 2019) Exhibit A.3 – Pore Water Elevation Contour Map, Event #1 (August 26, 2019)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

 Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104
CFR	Code of Federal Regulations
COC	Chain-of-Custody
DO	Dissolved Oxygen
EAR	Environmental Assessment Report
EIP	Environmental Investigation Plan
ENV	Environmental
EnvStds	Environmental Standards, Inc.
Event #1	Groundwater investigation sampling event performed August 26-28, 2019
FSP	Field Sampling Personnel
ft	Feet
GEL	GEL Laboratories LLC
ID	Identification
IDW	Investigation Derived Waste
mg/L	Milligrams per Liter
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order No. OGC15-0177
TestAmerica	Eurofins TestAmerica Inc.
ті	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Bar Fossil Plant

Introduction April 23, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed August 26-28, 2019 (Event #1) at TVA's Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #1 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #1 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the WBF Plant:

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #1 is the first in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance oversight

Introduction April 23, 2021

on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #1. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the WBF Plant are made and documented in the EAR.

Objective and Scope April 23, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the WBF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #1, performed in August 2019, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the WBF Plant Hydrogeological Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data. Temporary well and piezometer installation activities are described in the WBF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the WBF Plant CCR Material Characteristics SAR.

3

Field Activities April 23, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #1 were conducted August 26-28, 2019. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During Event #1, Stantec conducted the following field activities:

- Measured groundwater levels at six monitoring wells installed for the TDEC Order and four monitoring wells and three piezometers installed for other environmental programs (10 total monitoring wells)
- Measured pore water levels at four temporary wells and three piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River
- Collected groundwater samples from six monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization
 at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, two field blanks, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the WBF Plant (Ash Pond and Slag Disposal Area) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #1 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the WBF Plant for the National Pollutant Discharge Elimination System (NPDES) permit closure program. Monitoring wells that are sampled as part of other environmental programs are not sampled as part of the groundwater investigation for the TDEC Order.

Field Activities April 23, 2021

Groundwater levels were measured in TDEC Order monitoring wells as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the WBF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2, and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order groundwater investigation monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and the NPDES permit closure program, which includes wells MW-1, MW-2, MW-3, and WBF-100, will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Groundwater Level Measurement Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

Field Activities April 23, 2021

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. No signs of damage or necessary repairs were noted during Event #1.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well identification (ID), time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in feet (ft) below top of casing.

3.2.1.5 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer ID, serial number, time, digits, temperature, and length of the wire in ft. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the

Field Activities April 23, 2021

corresponding COC. COCs were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lovell Field (KCHA) in Chattanooga, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #1.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 10 monitoring wells and pore water levels at three temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On August 26, 2019, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Three groundwater and three pore water measurements were also obtained from transducers installed within six total piezometers. There was no groundwater level measured in piezometer WBF-B03B during the gauging event because the sensor was not recording data.

Additionally, a surface water level measurement for the Tennessee River was provided by TVA using the reading recorded closest to noon for the tailwater level below the Watts Bar Dam. The surface water staff gauge location is indicated on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

Field Activities April 23, 2021

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples (as specified in the SAP) were collected from six monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 5% microSiemens per centimeter
- Turbidity Less than 10 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 10 NTUs
- DO Less than 0.5 milligrams per Liter (mg/L) or ± 10% for values above 0.5 mg/L.

For five of the monitoring wells (WBF-101, WBF-103 through WBF-106), after water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. One monitoring well (WBF-102) achieved stabilization, but exhibited low yield and had insufficient water volume to collect the sample. In accordance with the SAP, the sampling team discontinued purging after standing water was removed. The well was capped, locked, and allowed to recover overnight. The following morning, a depth to water measurement indicated that sufficient recovery had occurred (a minimum of 80% of its initial water column height within the casing) to collect the sample. The low-flow pumping rate was re-established, one set of water quality parameters was recorded, and then the groundwater sample was collected.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line. Turbidity readings at the wells stabilized below 10 NTUs, therefore samples were not collected for dissolved metals analysis. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final turbidity measurements were made.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*. FSP secured caps on each bottle, attached a custody seal across the cap, and placed the

Field Activities April 23, 2021

bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control.*

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 Code of Federal Regulations (CFR) 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with WBF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the WBF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the WBF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and shipped under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

Field Activities April 23, 2021

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. No variations in scope or procedures were documented during field activities.

Summary April 23, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #1 at the WBF Plant. The scope of work for Event #1 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data.

Event #1 included collecting groundwater level measurements at 10 monitoring wells and three piezometers; pore water measurements at four temporary wells and three piezometers in the CCR units; and a surface water measurement at one gauge located in the Tennessee River. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided on Exhibits A.2 and A.3.

Groundwater quality measurements and groundwater analytical samples were collected at six monitoring wells as summarized in Table B.2. Groundwater quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at the six sampling locations. Well WBF-102 was sampled as a low yield well on August 28, 2019 due to insufficient water volume following field parameter stabilization on August 27, 2019. The final stabilized measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated or verified by EnvStds.

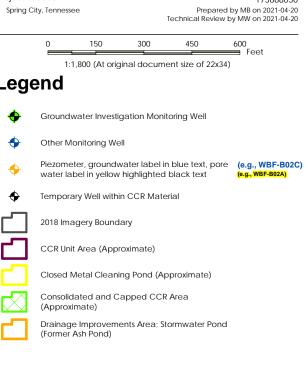
Stantec has completed Event #1 of the groundwater investigation at the WBF Plant in Spring City, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #1 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete datasets from the six groundwater sampling events will be evaluated along with data collected under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References April 23, 2021

5.0 REFERENCES

- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. November 2018.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant*. Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.


- TVA. ENV-TI-05.80.03, Field Record Keeping.
- TVA. ENV-TI-05.80.04, Field Sampling Quality Control.
- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.06, Handling and Shipping of Samples.
- TVA. ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.
- TVA. ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA. ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

APPENDIX A - EXHIBITS

Exhibit No. A.1 Title Monitoring Well Network Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order Project Location Spring City, Tennessee Prepa Technical Revie 0 150 300 450 1:1,800 (At original document size of 22) Legend Coundwater Investigation Monitoring Well

175668050

CCR: Coal combustion residuals

Notes

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

Exhibit No.

Title

Groundwater Elevation Contour Map, Event #1 (August 26, 2019)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

-	ocation City, Tennessee				175668050 d by DMB on 2021-04-20 ew by MD on 2021-04-20
	0	150	300	450	600 Feet
	1:1,80)0 (At origi	nal docum	ent size of 22x	
.ege	end				
\$	Groundwater groundwater			g Well e mean sea lev	vel (ft amsl)
•	Other Monitor groundwater		n ft amsl		
•	Piezometer, g pore water la				(e.g., WBF-B020 <mark>(e.g., WBF-B02A)</mark>
+	Temporary we pore water ele		it amsl; value	e not used for a	contouring
	Interpolated (amsl)	Groundwat	er Contour (5 ft interval; el	evations are in ft
	 Groundwater 	Contour (5	; ft interval; e	elevations are i	n ft amsl)
	2018 Imagery	Boundary			
	CCR Unit Area	a (Approxin	nate)		
	Closed Metal	Cleaning F	ond (Appro	ximate)	
	Consolidated	and Capp	ed CCR Are	a (Approxima	te)
	Drainage Imp	provements	Area; Storm	water Pond (F	ormer Ash Pond)
CR: Coal (combustion residu	Jals			
ver Gauge	e (Not Shown - Se	e Note 4) sur	face water ele	evation in ft amsl	
	ter elevation displ uch as well constru				
					monitoring event.
	/WPZ sensors mon nd the location is			undwater elevat	ions in the same
	vas not detected				
Imager Ground 2018) a Surface located For PZ's	nd manual adj e water elevatic d ~4,000 ft North with multiple in	IVA (9/12/2 s were crea justment on is measu h of well We nstruments i	2018) and Bl ated using Su ured from the BF-106 n CCR mate	NG Imagery urfer Version 16 e tailwater read rial, the readin	100 Feet 5.1.350 (December 13, ding from Watts Bar Da ng with the highest por d of being erroneous.
White an Buren	Cumberlan		Roane	Loudon	Tennessee

Polk

Clay

North Carolina

Exhibit No. A.3

Title

Pore Water Elevation Contour Map, Event #1 (August 26, 2019)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

, Tennesse	e 150			d by DMB on 2021-04-20 ew by MD on 2021-04-20			
0	150			,			
	150	300	450	600 Feet			
1:1	,800 (At orig	inal docume	ent size of 22>	(34)			
nd							
roundwa			g Well e mean sea lev	vel (ft amsl);			
Other Monitoring Well groundwater elevation in ft amsl; value not used for contouring							
iezomete ore wate	(e.g., WBF-B02C) <mark>(e.g., WBF-B02/</mark>						
	well in CCR relevation in	ft amsl					
ore water	Contour (2 f	't interval; elev	ations are in f	't amsl)			
018 Imag	ery Boundary	,					
CR Unit A	.rea (Approxi	imate)					
Closed Metal Cleaning Pond (Approximate)							
Consolidat	ed and Cap	ped CCR Are	a (Approxima	te)			
rainage li	mprovement	s Area; Storm	water Pond (F	ormer Ash Pond)			
	018 Image CR Unit A losed Me	018 Imagery Boundary CR Unit Area (Approx losed Metal Cleaning consolidated and Cap	018 Imagery Boundary CR Unit Area (Approximate) losed Metal Cleaning Pond (Appro onsolidated and Capped CCR Are	CR Unit Area (Approximate)			

CCR: Coal combustion residuals

River Gauge (Not Shown - See Note 4) surface water elevation in ft amsl

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

*** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

dry: water was not detected

Notes

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and BING Imagery
 Pore water contours were created with manual adjustment using Surfer
 Version 16 (December 13, 2018)
 Surface water characteristics is many additional for a structure of the st Λ
- Surface water elevation is measured from the tailwater reading from Watts Bar Dam located -4,000 ft North of well WBF-106 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. 5

APPENDIX B - TABLES

TABLE B.1a – Groundwater Level Measurements Watts Bar Fossil Plant August 2019

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells										
WBF-00-GW-43-001	MW-1	26-Aug-19	8.58	711.92	703.34	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays
WBF-00-GW-43-002	MW-2	26-Aug-19	20.04	704.29	684.25	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand
NBF-00-GW-43-003	MW-3	26-Aug-19	12.95	696.22	683.27	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand
WBF-00-GW-43-004	WBF-100	26-Aug-19	42.75	741.49	698.74	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvial silts and clays
NBF-00-GW-43-005	WBF-101	26-Aug-19	15.70	703.15	687.45	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts / alluvial sand
NBF-00-GW-43-006	WBF-102	26-Aug-19	22.37	723.98	701.61	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay
NBF-00-GW-43-007	WBF-103	26-Aug-19	14.96	725.09	710.13	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay / alluvial sand
WBF-00-GW-43-008	WBF-104	26-Aug-19	14.11	697.45	683.34	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts / alluvial sand
NBF-00-GW-43-009	WBF-105	26-Aug-19	13.56	704.50	690.94	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand
WBF-00-GW-43-010	WBF-106	26-Aug-19	14.24	706.34	692.10	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial silty sand and alluvial sand
Piezometers										
n/a	WBF-B02C	26-Aug-19	11.9	n/a	707.2	719.1	680.5	38.6	n/a	Alluvial sandy silt
ı/a	WBF-B03B	29-Aug-19	NM	n/a	NM	699.9	665.9	34.0	n/a	Alluvial sand with silt and gravel
n/a	WBF-B04C	26-Aug-19	13.4	n/a	700.0	713.4	668.4	45.0	n/a	Alluvial silty sand / alluvial sandy gravel
n/a	WBF-B05C	26-Aug-19	12.4	n/a	704.8	717.2	668.2	49.0	n/a	Alluvial silty sand
Surface Water Gauge										
Fennessee River	n/a	26-Aug-19	n/a	n/a	683.79	n/a	n/a	n/a	n/a	n/a

Notes:

bgs below ground surface			
btoc	below top of casing		
ft	feet		
ID	identification		
msl	mean sea level		
n/a	not applicable		
NM	not measured		
UNID	Unique Numerical Identification		

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

5. Groundwater level was not measured in the piezometer as noted above because the sensor was not recording data.

Page 1 of 1

	Piezometer									
Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation	
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs		
Temporary Wells										
WBF-TW02	26-Aug-19	dry	718.34	dry	n/a	n/a	n/a	9.1 - 18.9	CCR	
WBF-TW03	26-Aug-19	18.09	721.19	703.10	n/a	n/a	n/a	15.8 - 25.6	CCR	
WBF-TW04	26-Aug-19	12.85	719.27	706.42	n/a	n/a	n/a	7.5 - 17.3	CCR	
WBF-TW05	26-Aug-19	14.37	717.97	703.60	n/a	n/a	n/a	11.5 - 16.3	CCR	
Piezometers										
WBF-B02A	26-Aug-19	8.0	n/a	711.1	719.1	699.5	19.6	n/a	CCR	
WBF-B04A	26-Aug-19	9.4	n/a	704.0	713.4	696.4	17.0	n/a	CCR	
WBF-B05A	26-Aug-19	13.2	n/a	704.0	717.2	696.2	21.0	n/a	CCR	

Notes:

bgs	below ground surface
btoc	below top of casing
CCR	coal combustion residuals
dry	water was not detected
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable

1. Top of casing elevations, screened intervals, and screened formations were obtained from boring logs, well details, and well survey data.

2. For piezometers, ground surface elevations, pore water elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

3. Depth to pore water in piezometers and pore water elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

4. Screened interval shown for temporary wells is below ground surface when drilled.

							Analy	sis Type			
Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Total Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
WBF-101	WBF-GW-005-20190827	Normal Environmental Sample	х	х	х	х	х	Х	х	х	х
WBF-102	WBF-GW-006-20190828	Normal Environmental Sample	х	х	х	х	х	Х	х	х	х
WBF-103	WBF-GW-007-20190827	Normal Environmental Sample	х	х	х	х	х	х	х	х	х
WBF-104	WBF-GW-008-20190827	Normal Environmental Sample	х	х	х	х	х	Х	х	х	х
WBF-105	WBF-GW-009-20190828	Normal Environmental Sample	х	х	х	х	х	Х	х	х	х
WBF-106	WBF-GW-010-20190828	Normal Environmental Sample	х	х	х	х	х	х	х	х	х
VVBF-106	WBF-GW-DUP01-20190828	Field Duplicate Sample		х	x	x	х	x	x	x	x

Notes:

Total and Dissolved Metals	SW-846 6020A
Total and Dissolved Mercury	SW-846 7470A
Anions	SW-846 9056A
Alkalinity	SM2320B
Total Dissolved Solids	SM2540C
Radium-226	EPA 903.0
Radium-228	EPA 904.0
Radium-226+228	CALC
ID	identification

1. Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

TABLE B.3 – Summary of Groundwater Quality Parameters Watts Bar Fossil Plant August 2019

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	WBF-101 27-Aug-19 WBF-GW-005-20190827 32.2 ft Normal Environmental Sample Final QC Review	WBF-102 28-Aug-19 WBF-GW-006-20190828 23 ft Normal Environmental Sample Final QC Review	WBF-103 27-Aug-19 WBF-GW-007-20190827 19.5 ft Normal Environmental Sample Final QC Review	WBF-104 27-Aug-19 WBF-GW-008-20190827 26.4 ft Normal Environmental Sample Final QC Review	WBF-105 28-Aug-19 WBF-GW-009-20190828 35.1 ft Normal Environmental Sample Final QC Review	WBF-106 28-Aug-19 WBF-GW-010-20190828 32.6 ft Normal Environmental Sample Final QC Review
Field Parameters							
Dissolved Oxygen	%	7.2	8.0	11.4	21.0	4.0	2.5
Dissolved Oxygen	mg/L	0.64	0.74	1.04	1.82	0.35	0.24
ORP	mV	-105.8	55.4	248.0	149.0	-125.0	-66.5
pH (field)	SU	6.67	6.38	5.48	5.50	6.53	6.32
Specific Cond. (Field)	uS/cm	666	1,551	989.7	2,645	972	1,122
Temperature, Water (C)	DEG C	21.5	19.7	19.8	22.4	21.6	20.4
Turbidity, field	NTU	6.59	1.22	1.56	1.81	4.32	8.15

Notes:

%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

1. Well WBF-102 had insufficient water for sampling following stabilization of water quality parameters on August 27, 2019. Field parameters shown above are final stabilized parameters from August 27, 2019. The groundwater level in the well recovered to 80% of its initial static level and was sampled on August 28, 2019.

Sample Location	1			WBF-101	WBF-102	WBF-103	WBF-104	WBF-105	WBF-1	06
Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	27-Aug-19 WBF-GW-005-20190827 32.2 ft Normal Environmental Sample Final-Verified	28-Aug-19 WBF-GW-006-20190828 23 ft Normal Environmental Sample Final-Verified	27-Aug-19 WBF-GW-007-20190827 19.5 ft Normal Environmental Sample Final-Verified	27-Aug-19 WBF-GW-008-20190827 26.4 ft Normal Environmental Sample Final-Verified	28-Aug-19 WBF-GW-009-20190828 35.1 ft Normal Environmental Sample Final-Verified	28-Aug-19 WBF-GW-010-20190828 32.6 ft Normal Environmental Sample Final-Verified	28-Aug-19 WBF-GW-DUP01-20190828 32.6 ft Field Duplicate Sample Final-Verified
Total Metals										
Antimony	ug/L	6 ^A	n/v	<0.378	<0.378	<0.378	<0.378	0.563 U*	<0.378	<0.378
Arsenic	ug/L	10 ^A	n/v	1.31	0.495 J	<0.323	0.701 J	1.32	1.70	1.72
Barium	ug/L	2,000 ^A	n/v	466	61.5	120	21.1	112	51.4	51.0
Beryllium	ug/L	4 ^A	n/v	0.213 J	<0.182	<0.182	0.182 J	<0.182	<0.182	<0.182
Boron	ug/L	n/v	n/v	51.8 U*	105 U*	80.2 U*	4,940	52.3 U*	57.7 U*	43.1 U*
Cadmium	ug/L	5 ^A	n/v	<0.125	0.178 J	<0.125	7.60^A	<0.125	<0.125	<0.125
Calcium	ug/L	n/v	n/v	105,000	309,000	21,600	581,000	127,000	161,000	163,000
Chromium	ug/L	100 ^A	n/v	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	1.61 J
Cobalt	ug/L	n/v	6 ^B	0.782	11.1 ^B	1.03	437 ^B	0.151 J	2.19	2.13
Copper	ug/L	n/v	n/v	<0.627	1.02 J	<0.627	1.06 J	0.930 J	<0.627	0.723 J
Lead	ug/L	n/v	15 ^B	<0.128	<0.128	<0.128	0.232 J	<0.128	0.251 J	0.226 J
Lithium	ug/L	n/v	40 ^B	<3.39	3.46 U*	<3.39	5.98 U*	5.46 U*	3.81 U*	4.42 U*
Magnesium	ug/L	n/v	n/v	13,600	55,800	4,670	69,700	19,100	34,800	35,000
Mercury	ug/L	2 ^A	n/v	0.160 J	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101
Molybdenum	ug/L	n/v	100 ^B	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	<0.336	2.21	2.70	65.6	<0.336	0.359 J	0.469 J
Potassium	ug/L	n/v	n/v	919	1,580	4,450	1,610	894	1,010	1,020
Selenium	ug/L	50 ^A	n/v	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	n/v	n/v	10,600	11,800	5,830	29,800	29,700	31,600	31,700
Thallium	ug/L	2 ^A	n/v	0.190 J	<0.148	<0.148	<0.148	<0.148	<0.148	<0.148
Vanadium	ug/L	n/v	n/v	<0.991	1.57	0.999 J	1.02	<0.991	<0.991	1.07
Zinc	ug/L	n/v	n/v	3.88 U*	6.25 U*	6.70 U*	102	4.51 U*	5.44 U*	5.06 U*
Anions										
Chloride	mg/L	n/v	n/v	4.60	19.8	5.63	5.03	4.24	3.30	3.38
Fluoride	mg/L	4 ^A	n/v	0.0587 J	0.0439 J	<0.0263	<0.0658	0.0790 J	0.0899 J	0.0861 J
Sulfate	mg/L	n/v	n/v	193	664	84.7	1,970	341	527	527
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v	n/v	157	367	60.4	70.3	173	140	138
Alkalinity, Carbonate	mg/L	n/v	n/v	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	157	367	60.4	70.3	173	140	138
Total Dissolved Solids	mg/L	n/v	n/v	425	1,280	184	2,720	654	878	895

Notes:

A	EPA Maximum Contaminant Level
В	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
n/v	No standard/guideline value
6.5 ^A	Concentration is greater than or equal to the indicated standard.
<0.03	analyte was not detected at a concentration greater than the Method Detection Limit
-	parameter not analyzed / not available
ft	feet below top of casing
ID	identification
J	quantitation is approximate due to limitations identified during data validation
mg/L	milligrams per Liter
U*	result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level
ug/L	micrograms per Liter
(TN MCL)	Tennessee Maximum Contaminant Level

1. Level of review is defined in the Quality Assurance Project Plan.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	WBF-101 27-Aug-19 WBF-GW-005-20190827 32.2 ft Normal Environmental Sample Final-Verified	WBF-102 28-Aug-19 WBF-GW-006-20190828 23 ft Normal Environmental Sample Final-Verified	WBF-103 27-Aug-19 WBF-GW-007-20190827 19.5 ft Normal Environmental Sample Final-Verified	WBF-104 27-Aug-19 WBF-GW-008-20190827 26.4 ft Normal Environmental Sample Final-Verified	WBF-105 28-Aug-19 WBF-GW-009-20190828 35.1 ft Normal Environmental Sample Final-Verified	WBF-1 28-Aug-19 WBF-GW-010-20190828 32.6 ft Normal Environmental Sample Final-Verified	06 28-Aug-19 WBF-GW-DUP01-20190828 32.6 ft Field Duplicate Sample Final-Verified
Radiological Parameters										
Radium-226	pCi/L	n/v	n/v	0.624 +/-(0.579)U	0.477 +/-(0.594)U	0.539 +/-(0.601)U	0.541 +/-(0.608)U	0.847 +/-(0.698)U	0.623 +/-(0.591)U	0.342 +/-(0.539)U
Radium-228	pCi/L	n/v	n/v	0.535 +/-(0.466)U	0.225 +/-(0.389)U	0.208 +/-(0.347)U	-0.0176 +/-(0.367)U	0.0921 +/-(0.352)U	0.519 +/-(0.407)U	0.260 +/-(0.446)U
Radium-226+228	pCi/L	5 ^A	n/v	1.16 +/-(0.743)U	0.702 +/-(0.710)U	0.747 +/-(0.694)U	0.541 +/-(0.710)U	0.939 +/-(0.782)U	1.14 +/-(0.718)U	0.602 +/-(0.700)U

Notes:

A EPA Maximum	Contaminant Level
---------------	-------------------

в CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

n/v No standard/guideline value

feet below top of casing ft

ID identification

pCi/L picoCurie per Liter

U not detected

1. Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.4 GROUNDWATER INVESTIGATION EVENT #2 SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Groundwater Investigation Event #2 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plant Watts Bar Fossil Plant Spring City, Tennessee

April 23, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	April 23, 2021

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Groundwater Investigation Event #2 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

In Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by

- Crys

Carolyn Sexton, Senior Hydrogeologist

Approved by

Rebekah Brooks, Principal Hydrogeologist.

Table of Contents

ABBR	EVIATION	S	II
1.0	INTRODU	CTION	1
2.0	OBJECTI	VE AND SCOPE	3
3.0	FIELD AC	TIVITIES	4
3.1	WORK LC	DCATIONS	4
3.2	DOCUME	NTATION	5
	3.2.1	Field Forms	
	3.2.2	Equipment Calibration	7
3.3	SAMPLIN	G METHODS	
	3.3.1	Static Water Level Measurements	
	3.3.2	Groundwater Purging & Sampling	8
3.4		GATION DERIVED WASTE	
3.5	SAMPLE	SHIPMENT	9
3.6		DNS	
	3.6.1	Variations in Scope	10
	3.6.2	Variations in Procedures	10
4.0	SUMMAR	Υ	11
5.0	REFEREN	ICES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well Network

Exhibit A.2 – Groundwater Elevation Contour Map, Event #2 (October 28, 2019)

Exhibit A.3 – Pore Water Elevation Contour Map, Event #2 (October 28, 2019)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104
CEC	Civil and Environmental Consultants, Inc.
CFR	Code of Federal Regulations
COC	Chain-of-Custody
DO	Dissolved Oxygen
EAR	Environmental Assessment Report
EIP	Environmental Investigation Plan
ENV	Environmental
EnvStds	Environmental Standards, Inc.
Event #2	Groundwater investigation sampling event performed October 28-31, 2019
FSP	Field Sampling Personnel
ft	Feet
GEL	GEL Laboratories LLC
ID	Identification
IDW	Investigation Derived Waste
mg/L	Milligrams per Liter
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order No. OGC15-0177
TestAmerica	Eurofins TestAmerica Inc.
TI	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Bar Fossil Plant

Introduction April 23, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed October 28-31, 2019 (Event #2) at TVA's Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #2 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #2 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the WBF Plant.

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #2 is the second in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance

Introduction April 23, 2021

oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #2. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the WBF Plant are made and documented in the EAR.

Objective and Scope April 23, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the WBF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #2, performed in October 2019, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the WBF Plant Hydrogeological Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data. Temporary well and piezometer installation activities are described in the WBF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the WBF Plant CCR Material Characteristics SAR.

3

Field Activities April 23, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #2 were conducted October 28-31, 2019. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation. In addition, on behalf of TDEC, Civil and Environmental Consultants, Inc. (CEC) collected split groundwater samples during this sampling event. Additional information regarding CEC split sample collection is provided in Section 3.3.2.

During Event #2, Stantec conducted the following field activities:

- Measured groundwater levels at six monitoring wells installed for the TDEC Order and three monitoring wells and four piezometers installed for other environmental programs (nine total monitoring wells)
- Measured pore water levels at four temporary wells and three piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River
- Collected groundwater samples from six monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, three field blanks, two equipment blanks, and one tubing blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the WBF Plant (Ash Pond and Slag Disposal Area) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #2 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the WBF Plant for the National Pollutant Discharge Elimination System (NPDES) permit closure program. Monitoring wells that are

Field Activities April 23, 2021

sampled as part of other environmental programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the WBF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2, and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order groundwater investigation monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and the NPDES permit closure program, which includes wells MW-1, MW-2, MW-3, and WBF-100, will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Groundwater Level Measurement Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

Field Activities April 23, 2021

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. No signs of damage or necessary repairs were noted during Event #2.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well identification (ID), time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in feet (ft) below top of casing.

3.2.1.5 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer ID, serial number, time, digits, temperature, and length of the wire in ft. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

Field Activities April 23, 2021

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lovell Field (KCHA) in Chattanooga, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #2.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at nine monitoring wells and pore water levels at four temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On October 28, 2019, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*. A groundwater level measurement could not be obtained at monitoring well MW-2 because the water level was below the dedicated pump intake depth.

Groundwater and pore water measurements were also obtained from transducers installed within four piezometers and three piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River was provided by TVA using the reading recorded closest to noon for the tailwater level below the Watts Bar Dam. The surface water staff gauge location is indicated on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements in wells and

Field Activities April 23, 2021

piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples (as specified in the SAP) were collected from six monitoring wells as shown in Table B.2 in Appendix B. Split samples collected by CEC during Event #2 are also identified in Table B.2. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*. One exception occurred at well WBF-102 where the initial depth to water was below the dedicated pump intake depth. Therefore, a decontaminated, non-dedicated pump and new disposable tubing were used to obtain that groundwater sample in accordance with ENV-TI-05.80.42.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to the values below to meet overall programmatic objectives for groundwater investigations at the WBF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than five Nephelometric Turbidity Units (NTUs) or ± 10% for values above five NTUs
- DO Less than 0.5 milligrams per Liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Laboratory-provided, prepreserved sample containers were filled directly from the pump discharge line. Turbidity readings at the wells stabilized below five NTUs, therefore samples were not collected for dissolved metals analysis. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were recorded.

Field Activities April 23, 2021

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody.* FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control.*

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 Code of Federal Regulations (CFR) 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with WBF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the WBF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the WBF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and shipped under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

Field Activities April 23, 2021

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #2 at the WBF Plant.

3.6.1 Variations in Scope

Variations in scope are provided below.

 On October 28, 2019, a static water level measurement was not obtained at well MW-2 because the depth to water was below the dedicated pump intake. A groundwater contour map was prepared based on available static groundwater level measurements made during Event #2 for evaluation in the EAR.

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

• As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations.

Summary April 23, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #2 at the WBF Plant. The scope of work for Event #2 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data.

Event #2 included collecting groundwater level measurements at nine monitoring wells and four piezometers, pore water measurements at four temporary wells and three piezometers in the CCR units, and a surface water measurement at one gauge located in the Tennessee River. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1a, and A.3.

Groundwater quality measurements and groundwater analytical samples were collected at six monitoring wells as summarized in Table B.2. Groundwater quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at each sampling location. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated and/or verified by EnvStds.

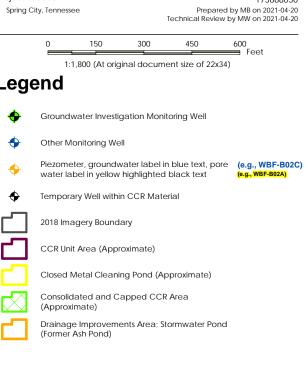
Stantec has completed Event #2 of the groundwater investigation at the WBF Plant in Spring City, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #2 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete datasets from the six groundwater sampling events will be evaluated along with data collected under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References April 23, 2021

5.0 REFERENCES

- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. November 2018.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant*. Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.


- TVA. ENV-TI-05.80.03, Field Record Keeping.
- TVA. ENV-TI-05.80.04, Field Sampling Quality Control.
- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.06, Handling and Shipping of Samples.
- TVA. ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.
- TVA. ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA. ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

APPENDIX A - EXHIBITS

Exhibit No. A.1 Title Monitoring Well Network Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order Project Location Spring City, Tennessee Prepa Technical Revie 0 150 300 450 1:1,800 (At original document size of 22) Legend Coundwater Investigation Monitoring Well

175668050

CCR: Coal combustion residuals

Notes

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

Exhibit No.

Title

Groundwater Elevation Contour Map, Event #2 (October 28, 2019)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Spring (City, Tennesse	e	Te		175668050 d by DMB on 2021-04-20 w by MD on 2021-04-20
	0	150	300	450	600
	1:1,	800 (At origi	nal documer	nt size of 22x	34) Feet
Leg	-				
�			on Monitoring n feet above i		vel (ft amsl)
•	Other Mon groundwat	itoring Well er elevation i	n ft amsl		
•			er label in blue w highlighted		(e.g., WBF-B020 <mark>(e.g., WBF-B02A)</mark>
\$	Temporary pore water	well in CCR elevation in f	it amsl; value i	not used for c	contouring
	Interpolate amsl)	d Groundwat	er Contour (5	ft interval; ele	evations are in ft
	Groundwa	ter Contour (5	i ft interval; ele	evations are i	n ft amsl)
	2018 Image	ery Boundary			
凸	CCR Unit A	rea (Approxir	nate)		
	Closed Me	tal Cleaning F	ond (Approxi	mate)	
	Consolidat	ed and Capp	ed CCR Area	(Approximat	ie)
凸	Drainage Ir	mprovements	Area; Stormw	ater Pond (Fo	ormer Ash Pond)
CCR: Coal	combustion res	siduals			
			face water elev		
depth to gr	oundwater co	uld not be mea	sured.		ntial elevation when
			it used as input f ng screened in a		
		nonitoring pore n is shown by a		ndwater elevat	ions in the same
dry: water \ lotes	was not detect	ed			
 Image Ground (Decended) Surface Watts E For PZ's the hig 	ry Provided b dwater conto mber 13, 2018 e water eleva 3ar Dam loca s with multiple hest pore wa	y TVA (9/12/2 burs were crea 3) and manua ation is measu ated ~4,000 ft a instruments i	atePlane Tenr 018) and BIN ated using Sur al adjustment red from the t North of well \ n CCR materia is displayed, u	G Imagery fer Version 16 ailwater reac NBF-106 al, the readin	.1.350 ding from g with
White	Cumbe	rland	Jun David	N Ki	ox 5 Sevier
- Com		12	Roane	Loudon	Topport
Van Buren / Watt	s Bar Fossil Plai		- shere	rever (
	lledsoe	Rhea K		μ	
Z	San	Nierys	McMinn 2	Monroe	Swain
Sequatchie	1 - 2	r L	ζ]	Graham
~ /	/	y z	~	n	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V	Hamilton	Bradley	Polk	N	lorth
5)	4			roling

mployees, consultants and agents, from any and all claims arising in any way from the content or provision of the data. onsibility for data supplied in electr

Exhibit No. A.3

Title Pore Water Elevation Contour Map, Event #2 (October 28, 2019)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

,	Location City, Tennesse	e	т	175668050 Prepared by DMB on 2021-04-20 Technical Review by MD on 2021-04-20				
			I	echinical Revie	w by WD 0112021-04-20			
	0	150	300	450	600 Feet			
	1:1	,800 (At origi	nal docume	nt size of 22x				
.eg	end							
م	groundwa	ter Investigati ter elevation i used for conto	n feet above		el (ft amsl);			
		itoring Well ter elevation i	n ft amsl; valu	e not used for	contouring			
•		r, groundwate r label in yello			(e.g., WBF-B02C) <mark>(e.g., WBF-B02/</mark>			
÷	Temporary well in CCR pore water elevation in ft amsl							
	 Pore wate 	r Contour (2 ft	interval; eleva	ations are in ft	amsl)			
	2018 Imag	ery Boundary						
	CCR Unit A	rea (Approxir	nate)					
	Closed Metal Cleaning Pond (Approximate)							
	Consolidated and Capped CCR Area (Approximate)							
	Drainage Improvements Area; Stormwater Pond (Former Ash							

CCR: Coal combustion residuals

River Gauge (Not Shown - See Note 4) surface water elevation in ft amsl

< Groundwater elevations are rounded to nearest foot to constrain potential elevation when depth to groundwater could not be measured.

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

*** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

dry: water was not detected

Notes

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and BING Imagery
 Pore water contours were created with manual adjustment using Surfer
 Version 16 (December 13, 2018)
 Surface under state the state of the sta Λ
- Surface water elevation is measured from the tailwater reading from Watts Bar Dam located -4,000 ft North of well WBF-106 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. 5

APPENDIX B - TABLES

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells						-	•			
WBF-00-GW-43-001	MW-1	28-Oct-19	9.03	711.92	702.89	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays
WBF-00-GW-43-002	MW-2	28-Oct-19	NM	704.29	NM	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand
WBF-00-GW-43-003	MW-3	28-Oct-19	14.68	696.22	681.54	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand
WBF-00-GW-43-004	WBF-100	28-Oct-19	43.53	741.49	697.96	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvial silts and clays
WBF-00-GW-43-005	WBF-101	28-Oct-19	17.35	703.15	685.80	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-006	WBF-102	28-Oct-19	23.25	723.98	700.73	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay
WBF-00-GW-43-007	WBF-103	28-Oct-19	14.83	725.09	710.26	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay / alluvial sand
WBF-00-GW-43-008	WBF-104	28-Oct-19	15.65	697.45	681.80	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-009	WBF-105	28-Oct-19	15.13	704.50	689.37	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand
WBF-00-GW-43-010	WBF-106	28-Oct-19	15.01	706.34	691.33	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial silty sand and alluvial sand
Piezometers						-	•			
n/a	WBF-B02C	28-Oct-19	13.3	n/a	705.8	719.1	680.5	38.6	n/a	Alluvial sandy silt
n/a	WBF-B03B	28-Oct-19	4.7	n/a	695.2	699.9	665.9	34.0	n/a	Alluvial sand with silt and gravel
n/a	WBF-B04C	28-Oct-19	14.7	n/a	698.7	713.4	668.4	45.0	n/a	Alluvial silty sand / alluvial sandy gravel
n/a	WBF-B05C	28-Oct-19	13.7	n/a	703.5	717.2	668.2	49.0	n/a	Alluvial silty sand
Surface Water Gauge	•			•		-	•			
Tennessee River	n/a	28-Oct-19	n/a	n/a	681.88	n/a	n/a	n/a	n/a	n/a

bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable
NM	not measured
UNID	Unique Numerical Identification

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

5. A groundwater level was not measured in well MW-2 because the meter was obstructed by the pump.

					Piezometer				
Temporary Well /		Depth to	Top of Casing	Pore Water	Ground Surface	Piezometer	Piezometer	Screened	
Piezometer ID	Date Measured	Pore Water	Elevation	Elevation	Elevation	Sensor Elevation	Sensor Depth	Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									
WBF-TW02	28-Oct-19	dry	718.34	dry	n/a	n/a	n/a	9.1 - 18.9	CCR
WBF-TW03	28-Oct-19	19.91	721.19	701.28	n/a	n/a	n/a	15.8 - 25.6	CCR
WBF-TW04	28-Oct-19	14.42	719.27	704.85	n/a	n/a	n/a	7.5 - 17.3	CCR
WBF-TW05	28-Oct-19	16.15	717.97	701.82	n/a	n/a	n/a	11.5 - 16.3	CCR
Piezometers									
WBF-B02A	28-Oct-19	11.1	n/a	708.0	719.1	699.5	19.6	n/a	CCR
WBF-B04A	28-Oct-19	11.2	n/a	702.2	713.4	696.4	17.0	n/a	CCR
WBF-B05A	28-Oct-19	14.9	n/a	702.3	717.2	696.2	21.0	n/a	CCR

bgs	below ground surface
btoc	below top of casing
CCR	coal combustion residuals
dry	water was not detected
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable

1. Top of casing elevations, screened intervals, and screened formations were obtained from boring logs, well details, and well survey data.

2. For piezometers, ground surface elevations, pore water elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

3. Depth to pore water in piezometers and pore water elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

4. Screened interval shown for temporary wells is below ground surface when drilled.

				nalysis Type							
Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Total Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
WBF-101	WBF-GW-005-20191031	Normal Environmental Sample	х	x	х	х	х	х	х	x	х
WBF-102	WBF-GW-006-20191030	Normal Environmental Sample	х	x	х	х	х	х	х	х	х
WBF-103	WBF-GW-007-20191029	Normal Environmental Sample	х	x	х	х	х	х	х	x	х
WBF-104	WBF-GW-008-20191029	Normal Environmental Sample	х	х	х	х	х	х	х	х	х
WBF-105	WBF-GW-009-20191030	Normal Environmental Sample	х	x	х	х	х	x	х	x	х
	WBF-GW-010-20191030	Normal Environmental Sample	х	x	х	х	х	х	х	х	х
WBF-106	WBF-GW-DUP01-20191030	Field Duplicate Sample		x	х	х	х	х	х	х	х

Total and Dissolved Metals	SW-846 6020A
Total and Dissolved Mercury	SW-846 7470A
Anions	EPA 300.0/SW 9056
Alkalinity	SM2320B
Total Dissolved Solids	SM2540C
Radium-226	EPA 903.0
Radium-228	EPA 904.0
Radium-226+228	CALC
ID	identification

1. Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

2. CEC collected split samples from WBF-103, WBF-104 and WBF-105.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	WBF-101 31-Oct-19 WBF-GW-005-20191031 32.2 ft Normal Environmental Sample Final QC Review	WBF-102 30-Oct-19 WBF-GW-006-20191030 23.9 ft Normal Environmental Sample Final QC Review	WBF-103 29-Oct-19 WBF-GW-007-20191029 19.5 ft Normal Environmental Sample Final QC Review	WBF-104 29-Oct-19 WBF-GW-008-20191029 26.4 ft Normal Environmental Sample Final QC Review	WBF-105 30-Oct-19 WBF-GW-009-20191030 35.1 ft Normal Environmental Sample Final QC Review	WBF-106 30-Oct-19 WBF-GW-010-20191030 32.6 ft Normal Environmental Sample Final QC Review
Field Parameters							
Dissolved Oxygen	%	4.3	24.2	2.5	7.8	2.8	5.1
Dissolved Oxygen	mg/L	0.41	2.26	0.22	0.70	0.26	0.48
ORP	mV	-34.1	35.0	23.9	5.1	-46.4	48.3
pH (field)	SU	6.65	6.60	5.68	5.48	6.51	5.59
Specific Cond. (Field)	uS/cm	667	1,253	299.5	2,147	964	984
Temperature, Water (C)	DEG C	20.2	19.3	21.5	21.7	19.2	19.6
Turbidity, field	NTU	0.39	2.74	4 17	0.13	4 81	2.01

%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

Sample Location				WBF-101	WBF-102	WBF-103	WBF-104	WBF-105	WBF-1	06
Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	31-Oct-19 WBF-GW-005-20191031 32.2 ft Normal Environmental Sample Validated	30-Oct-19 WBF-GW-006-20191030 23.9 ft Normal Environmental Sample Validated	29-Oct-19 WBF-GW-007-20191029 19.5 ft Normal Environmental Sample Validated	29-Oct-19 WBF-GW-008-20191029 26.4 ft Normal Environmental Sample Validated	30-Oct-19 WBF-GW-009-20191030 35.1 ft Normal Environmental Sample Validated	30-Oct-19 WBF-GW-010-20191030 32.6 ft Normal Environmental Sample Validated	30-Oct-19 WBF-GW-DUP01-20191030 32.6 ft Field Duplicate Sample Validated
Total Metals			• • • • • • • • • • • • •				•	•		
Antimony	ug/L	6 ^A	n/v	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Arsenic	ug/L	10 ^A	n/v	1.68	0.468 J	0.324 J	0.594 J	1.54	0.733 J	0.735 J
Barium	ug/L	2,000 ^A	n/v	416	60.6	155	27.3	101	34.4	33.6
Beryllium	ug/L	4 ^A	n/v	0.317 U*	<0.182	<0.182	<0.182	<0.182	<0.182	<0.182
Boron	ug/L	n/v	n/v	<38.6	90.8	52.2 J	3,750	56.1 J	260	261
Cadmium	ug/L	5 ^A	n/v	<0.125	0.127 J	<0.125	10.5 ^A	<0.125	0.958 J	1.05
Calcium	ug/L	n/v	n/v	105,000	212,000	36,400	442,000	135,000	162,000	166,000
Chromium	ug/L	100 ^A	n/v	<1.53	2.74 U*	2.04 U*	1.70 U*	2.04 U*	1.76 U*	1.96 U*
Cobalt	ug/L	n/v	6 ^B	1.20	1.15	2.34	379 ^B	0.113 J	80.7 ^B	79.2 ^B
Copper	ug/L	n/v	n/v	<0.627	2.06 U*	1.22 U*	2.10 U*	1.02 U*	1.71 U*	0.894 U*
Lead	ug/L	n/v	15 ^B	<0.128	<0.128	<0.128	0.178 J	<0.128	0.137 J	0.348 J
Lithium	ug/L	n/v	40 ^B	4.23 J	<3.39	<3.39	4.06 J	<3.39	3.83 J	4.36 J
Magnesium	ug/L	n/v	n/v	14,200	31,000	7,390	53,900	19,400	24,500	24,400
Mercury	ug/L	2 ^A	n/v	<0.101	0.564	<0.101	<0.101	<0.101	<0.101	<0.101
Molybdenum	ug/L	n/v	100 ^B	<0.610	0.713 J	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	0.532 U*	1.31 U*	3.16	66.9	<0.336	15.8	16.1
Potassium	ug/L	n/v	n/v	1,040	2,350	6,530	1,660	915	5,300	5,290
Selenium	ug/L	50 ^A	n/v	<1.51	5.48	<1.51	<1.51	<1.51	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	n/v	n/v	11,100	58,800	11,600	35,700	30,500	8,840	8,890
Thallium	ug/L	2 ^A	n/v	0.692 U*	<0.148	<0.148	<0.148	<0.148	<0.148	<0.148
Vanadium	ug/L	n/v	n/v	<0.991	1.68	1.22 U*	1.18 U*	1.01	1.01	<0.991
Zinc	ug/L	n/v	n/v	<3.22	7.24 U*	8.94 U*	113	<3.22	42.1	39.9
Anions										
Chloride	mg/L	n/v	n/v	5.15	18.5	4.51	5.53	5.21	4.15	4.32
Fluoride	mg/L	4 ^A	n/v	0.0602 U*	0.0415 U*	0.0443 U*	0.0411 U*	0.0741 U*	0.0783 U*	0.0789 U*
Sulfate	mg/L	n/v	n/v	158	545	71.3	1,380	335	511	515
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v	n/v	147	246	78.2	60.7	153	35.4	35.2
Alkalinity, Carbonate	mg/L	n/v	n/v	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	147	246	78.2	60.7	153	35.4	35.2
Total Dissolved Solids	mg/L	n/v	n/v	427	1,140	196	2,130	657	793	794

A	EPA Maximum Contaminant Level
В	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
n/v	No standard/guideline value
6.5 ^A	Concentration is greater than or equal to the indicated standard.
<0.03	analyte was not detected at a concentration greater than the Method Detection Limit
-	parameter not analyzed / not available
ft	feet below top of casing
ID	identification
J	quantitation is approximate due to limitations identified during data validation
mg/L	milligrams per Liter
U*	result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level
ug/L	micrograms per Liter
(TN MCL)	Tennessee Maximum Contaminant Level

1. Level of review is defined in the Quality Assurance Project Plan.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	WBF-101 31-Oct-19 WBF-GW-005-20191031 32.2 ft Normal Environmental Sample Validated	WBF-102 30-Oct-19 WBF-GW-006-20191030 23.9 ft Normal Environmental Sample Validated	WBF-103 29-Oct-19 WBF-GW-007-20191029 19.5 ft Normal Environmental Sample Validated	WBF-104 29-Oct-19 WBF-GW-008-20191029 26.4 ft Normal Environmental Sample Validated	WBF-105 30-Oct-19 WBF-GW-009-20191030 35.1 ft Normal Environmental Sample Validated	WBF-1 30-Oct-19 WBF-GW-010-20191030 32.6 ft Normal Environmental Sample Validated	06 30-Oct-19 WBF-GW-DUP01-20191030 32.6 ft Field Duplicate Sample Validated
Radiological Parameters										
Radium-226	pCi/L	n/v	n/v	0.688 +/-(0.448)	0.553 +/-(0.462)U	0.543 +/-(0.584)U	0.325 +/-(0.383)U	0.310 +/-(0.364)U	0.411 +/-(0.399)U	0.322 +/-(0.433)U
Radium-228	pCi/L	n/v	n/v	0.260 +/-(0.349)U	-0.0587 +/-(0.214)U	0.302 +/-(0.310)U	0.150 +/-(0.271)U	0.507 +/-(0.366)U	0.192 +/-(0.277)U	0.214 +/-(0.273)U
Radium-226+228	pCi/L	5 ^A	n/v	0.947 +/-(0.568)J	0.553 +/-(0.509)U	0.845 +/-(0.661)U	0.476 +/-(0.469)U	0.817 +/-(0.516)U	0.603 +/-(0.486)U	0.535 +/-(0.512)U

EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations) No standard/guideline value в

n/v

ft feet below top of casing

ID identification

quantitation is approximate due to limitations identified during data validation J

pCi/L U picoCurie per Liter

not detected

1. Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.5 GROUNDWATER INVESTIGATION EVENT #3 SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Groundwater Investigation Event #3 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plant Watts Bar Fossil Plant Spring City, Tennessee

July 2, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	April 23, 2021
1	Addresses June 8, 2021 TDEC Review Comments and Issued for TDEC	July 2, 2021

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Groundwater Investigation Event #3 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by

Carolyn Sexton, Senior Hydrogeologist

Approved by

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

ABBF	REVIATIONS		II
1.0	INTRODUCTION	l	1
2.0	OBJECTIVE AN	D SCOPE	3
3.0	FIELD ACTIVITI	ES	4
3.1		DNS	
3.2	DOCUMENTATI	ON	5
	3.2.1 Field	Forms	5
	3.2.2 Equip	ment Calibration	7
3.3	SAMPLING MET	HODS	7
		Water Level Measurements	
	3.3.2 Grour	ndwater Purging & Sampling	7
3.4	INVESTIGATION	I DERIVED WASTE	9
3.5	SAMPLE SHIPM	ENT	9
3.6	VARIATIONS		9
	3.6.1 Variat	ions in Scope	9
	3.6.2 Variat	ions in Procedures	10
4.0	SUMMARY		11
5.0	REFERENCES		12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well Network

Exhibit A.2 – Groundwater Elevation Contour Map, Event #3 (January 6-7, 2020)

Exhibit A.3 – Pore Water Elevation Contour Map, Event #3 (January 6-7, 2020)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104
CFR	Code of Federal Regulations
COC	Chain-of-Custody
DO	Dissolved Oxygen
EAR	Environmental Assessment Report
EIP	Environmental Investigation Plan
ENV	Environmental
EnvStds	Environmental Standards, Inc.
Event #3	Groundwater investigation sampling event performed January 6-9, 2020
FSP	Field Sampling Personnel
ft	Feet
GEL	GEL Laboratories LLC
ID	Identification
IDW	Investigation Derived Waste
mg/L	Milligrams per Liter
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order No. OGC15-0177
TestAmerica	Eurofins TestAmerica Inc.
ТІ	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Bar Fossil Plant

Introduction July 2, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed January 6-9, 2020 (Event #3) at TVA's Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #3 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #3 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the WBF Plant.

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #3 is the third in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance oversight

Introduction July 2, 2021

on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #3. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the WBF Plant are made and documented in the EAR.

Objective and Scope July 2, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the WBF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #3, performed in January 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the WBF Plant Hydrogeological Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data. Temporary well and piezometer installation activities are described in the WBF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the WBF Plant CCR Material Characteristics SAR.

Field Activities July 2, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #3 were conducted January 6-9, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also provided quality reviews of field documentation.

During Event #3, Stantec conducted the following field activities:

- Measured groundwater levels at six monitoring wells installed for the TDEC Order and four monitoring wells and four piezometers installed for other environmental programs (10 total monitoring wells)
- Measured pore water levels at four temporary wells and three piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River
- Collected groundwater samples from six monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, three field blanks, and one equipment blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the WBF Plant (Ash Pond and Slag Disposal Area) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #3 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the WBF Plant for the National Pollutant Discharge Elimination System (NPDES) permit closure program. Monitoring wells that are sampled as part of other environmental programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide

Field Activities July 2, 2021

information to prepare groundwater contour maps for this SAR and the WBF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order groundwater investigation monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and the NPDES permit closure program, which includes wells MW-1, MW-2, MW-3, and WBF-100, will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Groundwater Level Measurement Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well*

Field Activities July 2, 2021

Inspection and Maintenance. Inspection results were documented on a *Monitoring Well Inspection Checklist.* No signs of damage or necessary repairs were noted during Event #3.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well identification (ID), time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in feet (ft) below top of casing.

3.2.1.5 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer ID, serial number, time, digits, temperature, and length of the wire in feet. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody*.

Field Activities July 2, 2021

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lovell Field (KCHA) in Chattanooga, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #3.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 10 monitoring wells and pore water levels at four temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On January 6-7, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Groundwater and pore water measurements were also obtained from transducers installed within four piezometers and three piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River was provided by TVA using the reading recorded closest to noon for the tailwater level below the Watts Bar Dam. The surface water staff gauge location is indicated on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples (as specified in the SAP) were collected from six monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

Field Activities July 2, 2021

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to the values below to meet overall programmatic objectives for groundwater investigations at the WBF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per Liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Turbidity readings at the wells stabilized below 5 NTUs, therefore samples were not collected for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were recorded.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody.* FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control.*

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 Code of Federal Regulations (CFR) 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

Field Activities July 2, 2021

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with WBF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the WBF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the WBF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and shipped under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for the groundwater investigation sampling Event #3 at the WBF Plant.

3.6.1 Variations in Scope

There were no variations in scope during the groundwater investigation sampling Event #3 at the WBF Plant.

Field Activities July 2, 2021

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

- As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations.
- On January 6-7, 2020, the depth to static groundwater level measurements at the monitoring wells were not all collected within a single day; however, they were collected within a span of less than 24 hours.
- pH 4 and pH 10 were not within the afternoon calibration verification acceptance criteria on January 7, 2020. These calibration variations were evaluated as part of the data validation/verification process performed by EnvStds.

Summary July 2, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #3 at the WBF Plant. The scope of work for Event #3 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data.

Event #3 included collecting groundwater level measurements at 10 monitoring wells and four piezometers, pore water measurements at four temporary wells and three piezometers in the CCR units, and a surface water measurement at one gauge located in the Tennessee River. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1a, and A.3.

Groundwater quality measurements and groundwater analytical samples were collected at six monitoring wells as summarized in Table B.2. Groundwater quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at each sampling location. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated and/or verified by EnvStds.

Stantec has completed Event #3 of the groundwater investigation at the WBF Plant in Spring City, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #3 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete datasets from the six groundwater sampling events will be evaluated along with data collected under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References July 2, 2021

5.0 REFERENCES

- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. November 2018.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant*. Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

- TVA. ENV-TI-05.80.03, Field Record Keeping.
- TVA. ENV-TI-05.80.04, Field Sampling Quality Control.
- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.06, Handling and Shipping of Samples.
- TVA. ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.
- TVA. ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA. ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

APPENDIX A - EXHIBITS

mer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Exhibit No. **A.1** Title

Monitoring Well Network

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project L	ocation				175668050
Spring C	City, Tenness	ee			ared by MB on 2021-04-20 iew by MW on 2021-04-20
				Teenniedi Kevi	
	0	150	300	450	600 Feet
	1:	1,800 (At orig	ginal docum	ent size of 22	
Leg	end				
3					
÷	Ground	water Investi	igation Moni	toring Well	
•	Other M	Ionitoring We	ell		
	Piezome	eter, around	water label ir	n blue text, p	ore (e.g., WBF-B02C)
+		bel in yellow			(e.g., WBF-B02A)
+	Tempora	ary Well with	in CCR Mate	erial	
	2018 lm	agery Bound	lary		
口	CCR Un	it Area (App	roximate)		
口	Closed	Metal Cleani	ing Pond (Ap	oproximate)	
	Consolio (Approx	dated and C imate)	apped CCR	Area	
		e Improvem Ash Pond)	ents Area; SI	ormwater Po	ond

CCR: Coal combustion residuals

Notes

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

laimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Exhibit No.

A.Z

Groundwater Elevation Contour Map, Event #3 (January 6-7, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

roject Lo Spring C	ity, Tennesse	e	Te		175668050 d by DMB on 2021-06-15 w by MD on 2021-06-15
	0	150	300	450	600 Feet
		,800 (At origin	al documen	t size of 22x3	
.ege	and				
•		ater Investigatio ter elevation in			el (ft amsl)
•		nitoring Well ter elevation in	ft amsl		
•		r, groundwater r label in yellow			(e.g., WBF-B02C <mark>(e.g., WBF-B02A)</mark>
+		v well in CCR r elevation in ft	amsl; value n	ot used for c	ontouring
	Interpolate amsl)	ed Groundwate	r Contour (5 f	t interval; ele	evations are in ft
	Groundwo	ater Contour (5	ft interval; ele [,]	vations are ir	n ft amsl)
	2018 Imag	ery Boundary			
	CCR Unit A	Area (Approxim	ate)		
	Closed Me	etal Cleaning Po	ond (Approxin	nate)	
	Consolidat	ted and Cappe	ed CCR Area	(Approximate	e)
	Drainage I	mprovements A	Area; Stormwo	ater Pond (Fo	ormer Ash Pond)
CR: Coa	l combustio	n residuals			
iver Gauç	ge (Not Sho	wn - See Note 4	4) surface wat	er elevation	in ft amsl
		on displayed bu construction of			ntouring due rent hydrogeologic ur
		ors monitoring p and the locatio			
otes					
Imager Ground (Decen Surface Watts B For PZ's the high is suspe Althoug	y Provided & water cont nber 13, 201 water elev ar Dam loce with multipl hest pore w cted of bein gh gauging	NAD 1983 Sta by TVA (9/12/20 ours were creat 8) and manual ation is measure ated ~4,000 ft N e instruments in ater elevation is ng erroneous. occurred on Ja ary 6, 2020 is shoc	118) and BING ted using Surfe adjustment ed from the to lorth of well W CCR materia s displayed, ur unuary 6 and 7	Imagery er Version 16. allwater read (BF-106 II, the reading nless that rea 7, 2020, the riv	.1.350 ling from g with ading
White	Cumbe	erland	-	Knc	ox 5 Sevier
- V		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Roane	E Z	× ×
an Buren / Watts	s Bar Fossil Pla		مس تعرب	Loudon	Tennesseè
<u> </u>	edsoe		1 and 1	so when	Blount
2	C.B.	SMeigs			Swain
	Many		McMinn کې	Monroe	1 min
iequatchie	/ ~	1 th	-		Graham

Clay

North Carolina

Poll

Stantec

Exhibit No. A.3

Title

Pore water Elevation Contour Map, Event #3 (January 6-7, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project L	ocation				175668050
Spring (City, Tennessee	9	Te	by DMB on 2021-04-20 w by MD on 2021-04-20	
	0	150	300	450	600 Feet
	1:1,	800 (At origin	al documen	t size of 22x3	4)
Leg	end				
+	groundwat	er Investigatio er elevation in sed for contou	feet above n		el (ft amsl);
•	Other Moni groundwat	toring Well er elevation in	ı ft amsl; value	not used for	contouring
•		, groundwater label in yellow			(e.g., WBF-B02C) <mark>(e.g., WBF-B02A)</mark>
\	Temporary pore water	well in CCR elevation in ft	amsl		
	Pore water	Contour (2 ft i	nterval; eleva	tions are in ft	amsl)
	2018 Image	ery Boundary			
	CCR Unit A	rea (Approxim	ate)		
	Closed Met	al Cleaning Po	ond (Approxir	nate)	
	Consolidate	ed and Cappe	ed CCR Area	(Approximate	2)
	Drainage Ir	nprovements /	Area; Stormwa	ater Pond (Fo	rmer Ash Pond)

CCR: Coal combustion residuals

River Gauge (Not Shown - See Note 4) surface water elevation in ft amsl

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

 *** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

Notes

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet Imagery Provided by TVA (9/12/2018) and BING Imagery Pore water contours were created with manual adjustment using Surfer Version 16 (December 13, 2018) Λ
- Surface water elevation is measured from the tailwater reading from Watts Bar Dam located -4,000 ft North of well WBF-106 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. 5

APPENDIX B - TABLES

TABLE B.1a – Groundwater Level Measurements Watts Bar Fossil Plant January 2020

						Piezometer				
UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezome
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells						-			-	
WBF-00-GW-43-001	MW-1	7-Jan-20	6.31	711.92	705.61	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays
WBF-00-GW-43-002	MW-2	6-Jan-20	20.74	704.29	683.55	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand
WBF-00-GW-43-003	MW-3	6-Jan-20	12.89	696.22	683.33	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand
WBF-00-GW-43-004	WBF-100	7-Jan-20	41.88	741.49	699.61	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvia
WBF-00-GW-43-005	WBF-101	6-Jan-20	15.00	703.15	688.15	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts
WBF-00-GW-43-006	WBF-102	7-Jan-20	21.02	723.98	702.96	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay
WBF-00-GW-43-007	WBF-103	7-Jan-20	13.74	725.09	711.35	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay
WBF-00-GW-43-008	WBF-104	6-Jan-20	13.75	697.45	683.70	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts
WBF-00-GW-43-009	WBF-105	6-Jan-20	12.94	704.50	691.56	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand
WBF-00-GW-43-010	WBF-106	6-Jan-20	13.08	706.34	693.26	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial
Piezometers	•					•	•		•	
n/a	WBF-B02C	7-Jan-20	10.6	n/a	708.5	719.1	680.5	38.6	n/a	Alluvial sandy silt
n/a	WBF-B03B	7-Jan-20	2.7	n/a	697.2	699.9	665.9	34.0	n/a	Alluvial sand with silt
n/a	WBF-B04C	7-Jan-20	12.5	n/a	700.9	713.4	668.4	45.0	n/a	Alluvial silty sand / all
n/a	WBF-B05C	7-Jan-20	11.1	n/a	706.1	717.2	668.2	49.0	n/a	Alluvial silty sand
Surface Water Gauge	•					•	•		•	
Tennessee River	n/a	6-Jan-20	n/a	n/a	685.07	n/a	n/a	n/a	n/a	n/a
Tennessee River	n/a	7-Jan-20	n/a	n/a	685.15	n/a	n/a	n/a	n/a	n/a

Notes:

bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable
UNID	Unique Numerical Identification

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA. Elevations for both days of gauging are included, but only the datum for January 6 was used for preparing contour maps.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

neter Sensor Formation

lays

ivial silts and clays ilts / alluvial sand clay clay / alluvial sand

ilts / alluvial sand

ial silty sand and alluvial sand

silt and gravel ′ alluvial sandy gravel

					Piezometer				
Temporary Well /		Depth to	Top of Casing	Pore Water	Ground Surface	Piezometer	Piezometer	Screened	
Piezometer ID	Date Measured	Pore Water	Elevation	Elevation	Elevation	Sensor Elevation	Sensor Depth	Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									
WBF-TW02	7-Jan-20	23.09	718.34	695.25	n/a	n/a	n/a	9.1 - 18.9	CCR
WBF-TW03	7-Jan-20	17.31	721.19	703.88	n/a	n/a	n/a	15.8 - 25.6	CCR
WBF-TW04	7-Jan-20	11.65	719.27	707.62	n/a	n/a	n/a	7.5 - 17.3	CCR
WBF-TW05	7-Jan-20	14.59	717.97	703.38	n/a	n/a	n/a	11.5 - 16.3	CCR
Piezometers									
WBF-B02A	7-Jan-20	8.3	n/a	710.8	719.1	699.5	19.6	n/a	CCR
WBF-B04A	7-Jan-20	9.3	n/a	704.1	713.4	696.4	17.0	n/a	CCR
WBF-B05A	7-Jan-20	13.0	n/a	704.2	717.2	696.2	21.0	n/a	CCR

bgs	below ground surface
btoc	below top of casing
CCR	coal combustion residuals
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable

1. Top of casing elevations, screened intervals, and screened formations were obtained from boring logs, well details, and well survey data.

2. For piezometers, ground surface elevations, pore water elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

3. Depth to pore water in piezometers and pore water elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

4. Screened interval shown for temporary wells is below ground surface when drilled.

							Analy	sis Type			
Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Total Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
WBF-101	WBF-GW-005-20200109	Normal Environmental Sample	х	х	х	х	х	х	х	x	x
WBF-102	WBF-GW-006-20200108	Normal Environmental Sample	х	х	х	х	х	х	х	х	х
WBF-103	WBF-GW-007-20200107	Normal Environmental Sample	х	х	х	х	х	x	х	x	х
WBF-104	WBF-GW-008-20200107	Normal Environmental Sample	х	х	х	х	х	х	х	х	х
WBF-105	WBF-GW-009-20200108	Normal Environmental Sample	х	х	х	х	х	x	х	x	х
	WBF-GW-010-20200108	Normal Environmental Sample	х	х	х	х	х	х	х	х	х
WBF-106	WBF-GW-DUP01-20200108	Field Duplicate Sample		х	х	х	Х	Х	х	х	х

Total and Dissolved Metals	SW-846 6020A
Total and Dissolved Mercury	SW-846 7470A
Anions	EPA 300.0/SW 9056
Alkalinity	SM2320B
Total Dissolved Solids	SM2540C
Radium-226	EPA 903.0
Radium-228	EPA 904.0
Radium-226+228	CALC
ID	identification

1. Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	WBF-101 9-Jan-20 WBF-GW-005-20200109 32.2 ft Normal Environmental Sample Final QC Review	WBF-102 8-Jan-20 WBF-GW-006-20200108 23 ft Normal Environmental Sample Final QC Review	WBF-103 7-Jan-20 WBF-GW-007-20200107 19.5 ft Normal Environmental Sample Final QC Review	WBF-104 7-Jan-20 WBF-GW-008-20200107 26.4 ft Normal Environmental Sample Final QC Review	WBF-105 8-Jan-20 WBF-GW-009-20200108 35.1 ft Normal Environmental Sample Final QC Review	WBF-106 8-Jan-20 WBF-GW-010-20200108 32.6 ft Normal Environmental Sample Final QC Review
Field Parameters	Onito						
Dissolved Oxygen	%	3.8	59.0	13.5	7.2	3.3	5.5
Dissolved Oxygen	mg/L	0.38	5.80	1.26	0.79	0.34	0.54
ORP	mV	-44.8	64.1	326.3	266.4	-102.9	121.0
pH (field)	SU	6.43	6.93	5.79	5.78	6.69	5.46
Specific Cond. (Field)	uS/cm	1,026	547.3	352.4	1,313	1,034	1,071
Temperature, Water (C)	DEG C	15.3	16.9	17.4	15.5	15.3	16.6
Turbidity, field	NTU	4.92	0.63	4 63	0.35	4.58	4.95

%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

Sample Location				WBF-101	WBF-102	WBF-103	WBF-104	WBF-105	WBF-1	06
Sample Date Sample ID Sample Depth Sample Type Level of Review	Units		CCR Rule GWPS	9-Jan-20 WBF-GW-005-20200109 32.2 ft Normal Environmental Sample Final-Verified	8-Jan-20 WBF-GW-006-20200108 23 ft Normal Environmental Sample Final-Verified	7-Jan-20 WBF-GW-007-20200107 19.5 ft Normal Environmental Sample Final-Verified	7-Jan-20 WBF-GW-008-20200107 26.4 ft Normal Environmental Sample Final-Verified	8-Jan-20 WBF-GW-009-20200108 35.1 ft Normal Environmental Sample Final-Verified	8-Jan-20 WBF-GW-010-20200108 32.6 ft Normal Environmental Sample Final-Verified	8-Jan-20 WBF-GW-DUP01-20200108 32.6 ft Field Duplicate Sample Final-Verified
Total Metals	Units	LFANICES	CON Nule GWP3							
Antimony	ug/L	6 ^A	n/v	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Arsenic	ug/L	10 ^A	n/v	2.18 U*	0.866 U*	0.781 U*	0.872 U*	1.70 U*	1.02 U*	0.848 U*
Barium	ug/L	2,000 ^A	n/v	141	36.7	76.4	23.2	110	30.2	30.5
Beryllium	ug/L	4 ^A	n/v	<0.182	0.486 U*	0.235 U*	0.198 U*	0.238 U*	0.642 U*	0.566 U*
Boron	ug/L	n/v	n/v	547	60.2 J	58.8 J	1,910	<38.6	237	235
Cadmium	ug/L	5 ^A	n/v	0.695 J	<0.217	<0.217	6.08 ^A	<0.217	0.980 J	0.938 J
Calcium	ug/L	n/v	n/v	157,000	89,300	40,200	208,000	132,000	163,000	166,000
Chromium	ug/L	100 ^A	n/v	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53	<1.53
Cobalt	ug/L	n/v	6 ^B	73.3 ^B	<0.134	4.44	167 ^B	0.262 U*	78.4 ^B	79.5 ^B
Copper	ug/L	n/v	n/v	<0.627	1.71 U*	<0.627	<0.627	0.736 U*	<0.627	1.98 U*
Lead	ug/L	n/v	15 ^B	<0.128	<0.128	<0.128	<0.128	<0.128	<0.128	<0.128
Lithium	ug/L	n/v	40 ^B	<3.39	4.23 J	<3.39	<3.39	<3.39	3.93 J	3.88 J
Magnesium	ug/L	n/v	n/v	22,700	13,100	8,290	25,500	20,600	25,200	25,500
Mercury	ug/L	2 ^A	n/v	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101
Molybdenum	ug/L	n/v	100 ^B	<0.610	4.32 J	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	10.5	1.27 U*	3.40 U*	32.2	0.865 U*	16.5	16.2
Potassium	ug/L	n/v	n/v	1,310	3,210	7,500	909	857	5,440	5,490
Selenium	ug/L	50 ^A	n/v	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	n/v	n/v	13,800	7,430	10,200	14,500	29,400	7,350	7,430
Thallium	ug/L	2 ^A	n/v	<0.148	<0.148	0.649 U*	<0.148	<0.148	0.570 U*	0.205 U*
Vanadium	ug/L	n/v	n/v	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991
Zinc	ug/L	n/v	n/v	23.4	<3.22	4.66 J	48.0	<3.22	35.5	35.1
Anions										
Chloride	mg/L	n/v	n/v	5.67	4.53	4.58	2.95	5.59	4.90	4.56
Fluoride	mg/L	4 ^A	n/v	0.0396 J	0.0989 J	0.0362 J	0.0777 J	0.0722 J	0.0584 J	0.0508 J
Sulfate	mg/L	n/v	n/v	355	90.2 J	86.6	726	350 J	524 J	570 J
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v	n/v	148	226	73.5	41.9	136	34.0	34.7
Alkalinity, Carbonate	mg/L	n/v	n/v	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	148	226	73.5	41.9	136	34.0	34.7
Total Dissolved Solids	mg/L	n/v	n/v	695	386	230	1,050	710	891	847

А	EPA Maximum Contaminant Level
В	CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
n/v	No standard/guideline value
6.5 ^A	Concentration is greater than or equal to the indicated standard.
<0.03	analyte was not detected at a concentration greater than the Method Detection Limit
-	parameter not analyzed / not available
ft	feet below top of casing
ID	identification
J	quantitation is approximate due to limitations identified during data validation
mg/L	milligrams per Liter
U*	result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level
ug/L	micrograms per Liter
(TN MCL)	Tennessee Maximum Contaminant Level

1. Level of review is defined in the Quality Assurance Project Plan.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	WBF-101 9-Jan-20 WBF-GW-005-20200109 32.2 ft Normal Environmental Sample Final-Verified	WBF-102 8-Jan-20 WBF-GW-006-20200108 23 ft Normal Environmental Sample Final-Verified	WBF-103 7-Jan-20 WBF-GW-007-20200107 19.5 ft Normal Environmental Sample Final-Verified	WBF-104 7-Jan-20 WBF-GW-008-20200107 26.4 ft Normal Environmental Sample Final-Verified	WBF-105 8-Jan-20 WBF-GW-009-20200108 35.1 ft Normal Environmental Sample Final-Verified	WBF-1 8-Jan-20 WBF-GW-010-20200108 32.6 ft Normal Environmental Sample Final-Verified	06 8-Jan-20 WBF-GW-DUP01-20200108 32.6 ft Field Duplicate Sample Final-Verified
Radiological Parameters										
Radium-226	pCi/L	n/v	n/v	0.627 +/-(0.524)U	-0.225 +/-(0.407)U	0.440 +/-(0.542)U	-0.0750 +/-(0.402)U	0.301 +/-(0.538)U	0.823 +/-(0.675)U	0.768 +/-(0.632)U
Radium-228	pCi/L	n/v	n/v	0.289 +/-(0.304)U	0.213 +/-(0.328)U	0.134 +/-(0.352)U	0.0847 +/-(0.313)U	0.229 +/-(0.357)U	0.511 +/-(0.398)U	-0.0265 +/-(0.258)U
Radium-226+228	pCi/L	5 ^A	n/v	0.916 +/-(0.606)U	0.213 +/-(0.522)U	0.574 +/-(0.646)U	0.0847 +/-(0.510)U	0.530 +/-(0.645)U	1.33 +/-(0.784)U	0.768 +/-(0.682)U

- А
- EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations) No standard/guideline value в
- n/v ft
- feet below top of casing
- ID identification
- pCi/L U picoCurie per Liter not detected

1. Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.6

GROUNDWATER INVESTIGATION EVENT #4 SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Groundwater Investigation Event #4 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plant Watts Bar Fossil Plant Spring City, Tennessee

April 23, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	April 23, 2021

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Groundwater Investigation Event #4 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by

Carolyn Sexton, Senior Hydrogeologist

Approved by

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

ABBR	EVIATIONSI	i
1.0	INTRODUCTION 1	
2.0	OBJECTIVE AND SCOPE	;
3.0	FIELD ACTIVITIES	ł
3.1	WORK LOCATIONS	ł
3.2	DOCUMENTATION	5
	3.2.1 Field Forms	
	3.2.2 Equipment Calibration	7
3.3	SAMPLING METHODS	
	3.3.1 Static Water Level Measurements	
	3.3.2 Groundwater Purging & Sampling	
3.4	INVESTIGATION DERIVED WASTE)
3.5	SAMPLE SHIPMENT)
3.6	VARIATIONS	
	3.6.1 Variations in Scope10)
	3.6.2 Variations in Procedures)
4.0	SUMMARY11	
5.0	REFERENCES12	2

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well Network

Exhibit A.2 – Groundwater Elevation Contour Map, Event #4 (March 2, 2020)

Exhibit A.3 – Pore Water Elevation Contour Map, Event #4 (March 2, 2020)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104
CFR	Code of Federal Regulations
COC	Chain-of-Custody
DO	Dissolved Oxygen
EAR	Environmental Assessment Report
EIP	Environmental Investigation Plan
ENV	Environmental
EnvStds	Environmental Standards, Inc.
Event #4	Groundwater investigation sampling event performed March 2-4, 2020
FSP	Field Sampling Personnel
ft	Feet
GEL	GEL Laboratories LLC
ID	Identification
IDW	Investigation Derived Waste
mg/L	Milligrams per Liter
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order No. OGC15-0177
TestAmerica	Eurofins TestAmerica Inc.
ТІ	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Bar Fossil Plant

Introduction April 23, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed March 2-4, 2020 (Event #4) at TVA's Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #4 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #4 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the WBF Plant.

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #4 is the fourth in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance

Introduction April 23, 2021

oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #4. The remaining sampling events will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the WBF Plant are made and documented in the EAR.

Objective and Scope April 23, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the WBF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #4, performed in March 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the WBF Plant Hydrogeological Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data. Temporary well and piezometer installation activities are described in the WBF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the WBF Plant CCR Material Characteristics SAR.

Field Activities April 23, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #4 were conducted March 2-4, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation.

During Event #4, Stantec conducted the following field activities:

- Measured groundwater levels at six monitoring wells installed for the TDEC Order and four monitoring wells and four piezometers installed for other environmental programs (10 total monitoring wells)
- Measured pore water levels at four temporary wells and three piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River
- Collected groundwater samples from six monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, two field blanks, one equipment blank, one filter blank, and one tubing blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the WBF Plant (Ash Pond and Slag Disposal Area) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #4 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the WBF Plant for the National Pollutant Discharge Elimination System (NPDES) permit closure program. Monitoring wells that are sampled as part of other environmental programs are not sampled as part of the groundwater investigation for the TDEC Order.

Field Activities April 23, 2021

Groundwater levels were measured in TDEC Order monitoring wells as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the WBF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order groundwater investigation monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and the NPDES permit closure program, which includes wells MW-1, MW-2, MW-3, and WBF-100, will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Groundwater Level Measurement Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

Field Activities April 23, 2021

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. No signs of damage or necessary repairs were noted during Event #4.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well identification (ID), time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in feet (ft) below top of casing.

3.2.1.5 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer ID, serial number, time, digits, temperature, and length of the wire in feet. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness,

Field Activities April 23, 2021

and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lovell Field (KCHA) in Chattanooga, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #4.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 10 monitoring wells and pore water levels at four temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On March 2, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Groundwater and pore water measurements were also obtained from transducers installed within four piezometers and three piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River was provided by TVA using the reading recorded closest to noon for the tailwater level below the Watts Bar Dam. The surface water staff gauge location is indicated on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

Field Activities April 23, 2021

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples (as specified in the SAP) were collected from six monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to the values below to meet overall programmatic objectives for groundwater investigations at the WBF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per Liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Due to a final turbidity reading higher than 5 NTUs at well WBF-101, an additional sample was collected at that well and submitted to the laboratory for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line with the exception of the dissolved metals sample, which was collected via a new 0.45-micron disposable inline filter attached to the end of the discharge line to field filter the sample. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were recorded.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody.* FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control.*

Field Activities April 23, 2021

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 Code of Federal Regulations (CFR) 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with WBF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the WBF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the WBF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and shipped under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to

Field Activities April 23, 2021

complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for the groundwater investigation sampling Event #4 at the WBF Plant.

3.6.1 Variations in Scope

There were no variations in scope during the groundwater investigation sampling Event #4 at the WBF Plant.

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

• As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations.

Summary April 23, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #4 at the WBF Plant. The scope of work for Event #4 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data.

Event #4 included collecting groundwater level measurements at 10 monitoring wells and four piezometers, pore water measurements at four temporary wells and three piezometers in the CCR units, and a surface water measurement at one gauge located in the Tennessee River. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1a, and A.3.

Groundwater quality measurements and groundwater analytical samples were collected at six monitoring wells as summarized in Table B.2. Groundwater quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at each sampling location. The final measurements prior to initiating sample collection are presented in Table B.3.

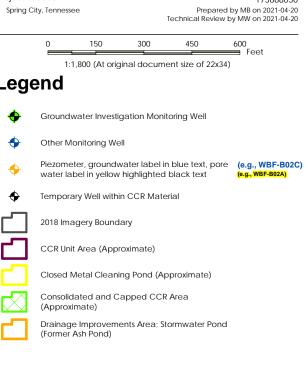
Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated and/or verified by EnvStds.

Stantec has completed Event #4 of the groundwater investigation at the WBF Plant in Spring City, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #4 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete datasets from the six groundwater sampling events will be evaluated along with data collected under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References April 23, 2021

5.0 **REFERENCES**

- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. November 2018.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.
- Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.
- TVA. ENV-TI-05.80.03, Field Record Keeping.


TVA. ENV-TI-05.80.04, Field Sampling Quality Control.

- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.06, Handling and Shipping of Samples.
- TVA. ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.
- TVA. ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.
- TVA. ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

APPENDIX A - EXHIBITS

Exhibit No. A.1 Title Monitoring Well Network Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order Project Location Spring City, Tennessee Prepa Technical Revie 0 150 300 450 1:1,800 (At original document size of 22) Legend Coundwater Investigation Monitoring Well

175668050

CCR: Coal combustion residuals

Notes

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

Exhibit No. A.2

Title

Groundwater Elevation Contour Map, Event #4 (March 2, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project I	ocation				475//0050
,	City, Tennessee		Te		175668050 by DMB on 2021-04-20 v by MD on 2021-04-20
	0	150	300	450	600 Feet
	1:1,8	00 (At origina	al documen	t size of 22x3	
Leg	end				
¢		r Investigatior elevation in 1		Well nean sea leve	l (ft amsl)
•	Other Monito groundwater	ring Well elevation in t	ft amsl		
+		groundwater abel in yellow			(e.g., WBF-B02C) <mark>(e.g., WBF-B02A)</mark>
+	Temporary w pore water e		amsl; value n	ot used for co	ontouring
	Interpolated amsl)	Groundwate	r Contour (5 I	ft interval; elev	ations are in ft
	- Groundwate	r Contour (5 f	t interval; ele	vations are in	ft
	2018 Imagery	y Boundary			
	CCR Unit Are	a (Approxima	ate)		
	Closed Meta	l Cleaning Po	nd		
	Consolidated	d and Cappe	d CCR Area		
	Drainage Im	provements A	rea; Stormwa	ater Pond (For	mer Ash
CCR: Co	al combustion r	esiduals			
River Gau	uge (Not Showr	n - See Note 4) surface wa	ter elevation i	n ft amsl
	water elevation s such as well co				touring due ent hydrogeologic unit.
same bo	d VWPZ sensors rehole, and the				er elevations in the
2. Image 3. Groun	linate System: 1 ery Provided by Idwater contou Imber 13, 2018)	TVA (9/12/20 ⁻ rs were create	18) and BINC ed using Surf	6 Imagery	

- (December 13, 2018) and manual adjustment Surface water elevation is measured from the tailwater reading from Watts Bar Dam located ~4,000 ft North of well WBF-106 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. 5

Exhibit No. A.3

Title

Pore Water Elevation Contour Map, Event #4 (March 2, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project L	ocation				175668050			
Spring (City, Tennessee	Prepared by DMB on 2021-04-20 Technical Review by MD on 2021-04-20						
	0	150	300	450	600 Feet			
		0 (At origin	al documen	t size of 22x3	,			
Leg	end							
\$	Groundwater groundwater value not used	elevation in	feet above n		el (ft amsl);			
•	Other Monitor groundwater		ft amsl; value	not used for	contouring			
÷	Piezometer, gi pore water lai				(e.g., WBF-B02C) <mark>(e.g., WBF-B02A)</mark>			
+	Temporary we pore water ele		amsl					
	Interpolated F	ore water C	Contour (2 ft ir	terval; eleva	tions are in ft amsl)			
	Pore water Co	ontour (2 ft ir	nterval; eleva	tions are in ft	amsl)			
	2018 Imagery	Boundary						
	CCR Unit Area	ı (Approxim	ate)					
	Closed Metal	Cleaning Po	ond (Approxin	nate)				
	Consolidated	and Cappe	ed CCR Area	(Approximate	2)			
	Drainage Imp	rovements A	Area; Stormwa	ater Pond (Fo	rmer Ash Pond)			
CCR: Coa	al combustion re	siduals						
River Gau	ige (Not Shown	- See Note 4	l) surface wat	er elevation i	n ft amsl			
	vater elevation of such as well co				touring due rent hydrogeologic unit			

 *** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

Notes

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet Imagery Provided by TVA (9/12/2018) and BING Imagery Pore water contours were created with manual adjustment using Surfer Version 16 (December 13, 2018) Λ
- Surface water elevation is measured from the tailwater reading from Watts Bar Dam located -4,000 ft North of well WBF-106 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. 5

APPENDIX B - TABLES

TABLE B.1a – Groundwater Level Measurements Watts Bar Fossil Plant March 2020

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells										
WBF-00-GW-43-001	MW-1	2-Mar-20	5.56	711.92	706.36	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays
WBF-00-GW-43-002	MW-2	2-Mar-20	17.91	704.29	686.38	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand
WBF-00-GW-43-003	MW-3	2-Mar-20	10.73	696.22	685.49	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand
WBF-00-GW-43-004	WBF-100	2-Mar-20	40.89	741.49	700.60	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvial silts and clays
WBF-00-GW-43-005	WBF-101	2-Mar-20	13.14	703.15	690.01	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-006	WBF-102	2-Mar-20	19.75	723.98	704.23	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay
WBF-00-GW-43-007	WBF-103	2-Mar-20	14.19	725.09	710.90	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay / alluvial sand
WBF-00-GW-43-008	WBF-104	2-Mar-20	11.88	697.45	685.57	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-009	WBF-105	2-Mar-20	11.48	704.50	693.02	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand
WBF-00-GW-43-010	WBF-106	2-Mar-20	12.67	706.34	693.67	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial silty sand and alluvial sand
Piezometers	•									
n/a	WBF-B02C	2-Mar-20	9.3	n/a	709.8	719.1	680.5	38.6	n/a	Alluvial sandy silt
n/a	WBF-B03B	2-Mar-20	1.6	n/a	698.3	699.9	665.9	34.0	n/a	Alluvial sand with silt and gravel
n/a	WBF-B04C	2-Mar-20	11.3	n/a	702.1	713.4	668.4	45.0	n/a	Alluvial silty sand / alluvial sandy gravel
n/a	WBF-B05C	2-Mar-20	9.8	n/a	707.4	717.2	668.2	49.0	n/a	Alluvial silty sand
Surface Water Gauge	-	÷				-				
Tennessee River	n/a	2-Mar-20	n/a	n/a	684.44	n/a	n/a	n/a	n/a	n/a

Notes:

bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable
UNID	Unique Numerical Identification

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

					Piezometer				
Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									
WBF-TW02	2-Mar-20	23.13	718.34	695.21	n/a	n/a	n/a	9.1 - 18.9	CCR
WBF-TW03	2-Mar-20	14.55	721.19	706.64	n/a	n/a	n/a	15.8 - 25.6	CCR
WBF-TW04	2-Mar-20	9.59	719.27	709.68	n/a	n/a	n/a	7.5 - 17.3	CCR
WBF-TW05	2-Mar-20	11.89	717.97	706.08	n/a	n/a	n/a	11.5 - 16.3	CCR
Piezometers									
WBF-B02A	2-Mar-20	7.2	n/a	711.9	719.1	699.5	19.6	n/a	CCR
WBF-B04A	2-Mar-20	7.1	n/a	706.3	713.4	696.4	17.0	n/a	CCR
WBF-B05A	2-Mar-20	10.1	n/a	707.1	717.2	696.2	21.0	n/a	CCR

bgs	below ground surface
btoc	below top of casing
CCR	coal combustion residuals
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable

1. Top of casing elevations, screened intervals, and screened formations were obtained from boring logs, well details, and well survey data.

2. For piezometers, ground surface elevations, pore water elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

3. Depth to pore water in piezometers and pore water elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

4. Screened interval shown for temporary wells is below ground surface when drilled.

		Analysis Type											
Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Dissolved Metals	Total Mercury	Dissolved Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
WBF-101	WBF-GW-005-20200303	Normal Environmental Sample	х	х	x	x	x	х	х	х	x	х	x
WBF-102	WBF-GW-006-20200303	Normal Environmental Sample	х	х		х		х	х	х	х	Х	х
WBF-103	WBF-GW-007-20200303	Normal Environmental Sample	х	х		х		х	х	х	x	х	х
WBF-104	WBF-GW-008-20200304	Normal Environmental Sample	х	х		х		х	х	х	х	Х	х
WBF-105	WBF-GW-009-20200304	Normal Environmental Sample	х	х		х		х	х	х	x	х	х
WBF-106	WBF-GW-010-20200304	Normal Environmental Sample	х	х		х		х	х	х	х	Х	х
WBF-100	WBF-GW-DUP01-20200304	Field Duplicate Sample		х		х		х	х	х	х	х	х

Total and Dissolved Metals	SW-846 6020A
Total and Dissolved Mercury	SW-846 7470A
Anions	EPA 300.0/SW846 9056
Alkalinity	SM2320B
Total Dissolved Solids	SM2540C
Radium-226	EPA 903.0
Radium-228	EPA 904.0
Radium-226+228	CALC
ID	identification

1. Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	WBF-101 3-Mar-20 WBF-GW-005-20200303 32.2 ft Normal Environmental Sample Final QC Review	WBF-102 3-Mar-20 WBF-GW-006-20200303 23 ft Normal Environmental Sample Final QC Review	WBF-103 3-Mar-20 WBF-GW-007-20200303 19.5 ft Normal Environmental Sample Final QC Review	WBF-104 4-Mar-20 WBF-GW-008-20200304 26.4 ft Normal Environmental Sample Final QC Review	WBF-105 4-Mar-20 WBF-GW-009-20200304 35.1 ft Normal Environmental Sample Final QC Review	WBF-106 4-Mar-20 WBF-GW-010-20200304 32.6 ft Normal Environmental Sample Final QC Review
Field Parameters							
Dissolved Oxygen	%	2.8	36.9	21.5	4.0	1.9	2.9
Dissolved Oxygen	mg/L	0.27	3.60	2.14	0.40	0.18	0.27
ORP	mV	28.7	76.1	121.6	102.4	-119.0	64.2
pH (field)	SU	5.76	6.98	5.52	5.54	6.70	5.61
Specific Cond. (Field)	uS/cm	1,508	527.7	153.9	1,904	892	891
Temperature, Water (C)	DEG C	17.6	16.9	15.9	15.0	17.1	17.0
Turbidity, field	NTU	18.1	0.36	0.86	1.45	4.45	3.97

%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

Sample Location			ĺ	WBF-101	WBF-102	WBF-103	WBF-104	WBF-105	WBF-1	06
Sample Date Sample ID Sample Depth Sample Type				3-Mar-20 WBF-GW-005-20200303 32.2 ft Normal Environmental Sample	3-Mar-20 WBF-GW-006-20200303 23 ft Normal Environmental Sample	3-Mar-20 WBF-GW-007-20200303 19.5 ft Normal Environmental Sample	4-Mar-20 WBF-GW-008-20200304 26.4 ft Normal Environmental Sample	4-Mar-20 WBF-GW-009-20200304 35.1 ft Normal Environmental Sample	4-Mar-20 WBF-GW-010-20200304 32.6 ft Normal Environmental Sample	4-Mar-20 WBF-GW-DUP01-20200304 32.6 ft Field Duplicate Sample
Level of Review	Units	FPA MCI s	CCR Rule GWPS	Final-Verified	Final-Verified	Final-Verified	Final-Verified	Final-Verified	Final-Verified	Final-Verified
Total Metals	0	217(11020		8		1	1	•	8	
Antimony	ug/L	6 ^A	n/v	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Arsenic	ug/L	10 ^A	n/v	1.94	0.483 J	<0.313	0.318 J	1.35	0.468 J	0.576 J
Barium	ug/L	2,000 ^A	n/v	34.1	50.5	83.2	43.4	97.4	33.2	33.0
Beryllium	ug/L	4 ^A	n/v	0.338 J	<0.182	<0.182	0.229 J	<0.182	<0.182	<0.182
Boron	ug/L	n/v	n/v	2,030	60.5 J	<38.6	3,570	49.7 J	212	217
Cadmium	ug/L	5 ^A	n/v	3.76	<0.217	<0.217	7.28^A 450,000	<0.217	0.354 J	0.375 J
Calcium Chromium	ug/L ug/L	n/v 100 ^A	n/v n/v	302,000 <1.53	99,300 <1.53	17,800 1.55 J	450,000 <1.53	133,000 <1.53	161,000 <1.53	161,000 <1.53
Cobalt	ug/L ug/L	100 n/v	6 ^B	297 ^B	<0.134	1.12	256 ^B	<0.134	72.4 ^B	73.4 ^B
Copper	ug/L	n/v	n/v	<0.627	0.670 J	2.92	<0.627	<0.134	<0.627	<0.627
Lead	ug/L	n/v	15 ^B	0.238 J	<0.128	6.21	<0.128	<0.128	<0.128	0.208 J
Lithium	ug/L	n/v	40 ^B	3.80 J	<3.39	<3.39	<3.39	<3.39	<3.39	<3.39
Magnesium	ug/L	n/v	n/v	39,900	12,800	4,110	52,800	19,300	23,000	23,300
Mercury	ug/L	2 ^A	n/v	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101	<0.101
Molybdenum	ug/L	n/v	100 ^B	<0.610	2.86 J	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	47.3	< 0.336	1.66	51.0	<0.336	13.8	14.0
Potassium Selenium	ug/L ug/L	n/v 50 ^A	n/v n/v	2,400 <1.51	2,720 <1.51	4,060 <1.51	1,340 <1.51	832 <1.51	4,720 <1.51	4,770 <1.51
Silver	ug/L	50 100 _(TN MCL) ^A	n/v	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	n/v	n/v	23,600	9,430	5,370	23,300	29,300	8,240	8,250
Thallium	ug/L	2 ^A	n/v	<0.148	0.237 J	<0.148	<0.148	<0.148	<0.148	<0.148
Vanadium	ug/L	n/v	n/v	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991
Zinc	ug/L	n/v	n/v	145	<3.22	9.38	91.1	<3.22	34.4	36.2
Dissolved Metals						ſ	ſ	I	1	
Antimony	ug/L	6 ^A	n/v n/v	<0.378	-	-	-	-	-	-
Arsenic Barium	ug/L ug/L	10 ^A 2,000 ^A	n/v n/v	1.76 35.1	-	-	-	-	-	-
Beryllium	ug/L	2,000 4 ^A	n/v	0.269 J	-	-	-	_		-
Boron	ug/L	n/v	n/v	2,000	-	-	-	-	-	-
Cadmium	ug/L	5 ^A	n/v	3.30	-	-	-	-	-	-
Calcium	ug/L	n/v	n/v	299,000	-	-	-	-	-	-
Chromium	ug/L	100 ^A	n/v	<1.53	-	-	-	-	-	-
Cobalt	ug/L	n/v n/v	6 ^B	295 ^B	-	-	-	-	-	-
Copper Lead	ug/L ug/L	n/v n/v	15 ^B	<0.627 <0.128	-	-	-	-	-	-
Lithium	ug/L	n/v	40 ^B	3.69 J	-	-	-	_		
Magnesium	ug/L	n/v	n/v	38,900	-	-	-	-	-	-
Mercury	ug/L	2 ^A	n/v	<0.101	-	-	-	-	-	-
Molybdenum	ug/L	n/v	100 ^B	<0.610	-	-	-	-	-	-
Nickel	ug/L	100 _(TN MCL) ^A	n/v	48.4	-	-	-	-	-	-
Potassium	ug/L	n/v	n/v	2,320	-	-	-	-	-	-
Selenium	ug/L	50 ^A	n/v	<1.51	-	-	-	-	-	-
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	-	-	-	-	-	-
Sodium Thallium	ug/L ug/L	n/v 2 ^A	n/v n/v	23,700 <0.148	-	-				-
Vanadium	ug/L ug/L	n/v	n/v	<0.148	-	-	-	-	-	-
Zinc	ug/L	n/v	n/v	143	-	-	-			-
Anions										
Chloride	mg/L	n/v	n/v	6.33	8.42	5.51	5.54	5.52	4.88	4.86
Fluoride	mg/L	4 ^A	n/v	0.0557 J	0.0816 J	0.0276 J	0.0368 J	0.0530 J	0.0267 J	0.0291 J
Sulfate	mg/L	n/v	n/v	884	141	67.4	1,510	347	550	522
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v n/v	n/v n/v	81.6 <5.00	210 <5.00	36.7 <5.00	49.4 <5.00	109 <5.00	10.9 J <5.00	20.6 J <5.00
Alkalinity, Carbonate Alkalinity, Total as CaCO3	mg/L mg/L	n/v n/v	n/v n/v	<5.00 81.6	<5.00 210	<5.00 36.7	<5.00 49.4	<5.00	<5.00 10.9 J	<5.00 20.6 J
Total Dissolved Solids	mg/L	n/v	n/v	1.340	464	162	1,720	640	791	794

n/v

в

- EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)
- No standard/guideline value

- n/v
 No standard/guideline value

 6.5^A
 Concentration is greater than or equal to the indicated standard.

 <0.03</td>
 analyte was not detected at a concentration greater than the Method Detection Limit

 parameter not analyzed / not available

 ft
 feet below top of casing

 ID
 identification

 J
 quantitation is approximate due to limitations identified during data validation

 mg/L
 micrograms per Liter

 ug/L
 Tennessee Maximum Contaminant Level

1. Level of review is defined in the Quality Assurance Project Plan.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	WBF-101 3-Mar-20 WBF-GW-005-20200303 32.2 ft Normal Environmental Sample Final-Verified	WBF-102 3-Mar-20 WBF-GW-006-20200303 23 ft Normal Environmental Sample Final-Verified	WBF-103 3-Mar-20 WBF-GW-007-20200303 19.5 ft Normal Environmental Sample Final-Verified	WBF-104 4-Mar-20 WBF-GW-008-20200304 26.4 ft Normal Environmental Sample Final-Verified	WBF-105 4-Mar-20 WBF-GW-009-20200304 35.1 ft Normal Environmental Sample Final-Verified	WBF-1 4-Mar-20 WBF-GW-010-20200304 32.6 ft Normal Environmental Sample Final-Verified	06 4-Mar-20 WBF-GW-DUP01-20200304 32.6 ft Field Duplicate Sample Final-Verified
Radiological Parameters										
Radium-226	pCi/L	n/v	n/v	0.639 +/-(0.605)U	0.910 +/-(0.681)U	0.537 +/-(0.554)U	1.20 +/-(0.727)	1.33 +/-(0.785)	0.433 +/-(0.540)U	0.558 +/-(0.618)U
Radium-228	pCi/L	n/v	n/v	0.0791 +/-(0.323)U	0.484 +/-(0.425)U	0.215 +/-(0.435)U	0.166 +/-(0.354)U	0.182 +/-(0.247)U	0.179 +/-(0.247)U	0.326 +/-(0.460)U
Radium-226+228	pCi/L	Δ.	n/v	0.718 +/-(0.686)U	1.39 +/-(0.802)U	0.752 +/-(0.704)U	1.36 +/-(0.808)J	1.51 +/-(0.823)J	0.612 +/-(0.594)U	0.884 +/-(0.770)U

А

- EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations) No standard/guideline value feet below top of casing в
- n/v ft
- ID identification
- quantitation is approximate due to limitations identified during data validation J
- pCi/L U picoCurie per Liter not detected

1. Level of review is defined in the Quality Assurance Project Plan.

Page	1	of	1

APPENDIX H.7

GROUNDWATER INVESTIGATION EVENT #5 SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Groundwater Investigation Event #5 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plant Watts Bar Fossil Plant Spring City, Tennessee

April 23, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	April 23, 2021

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Groundwater Investigation Event #5 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by

Carolyn Sexton, Senior Hydrogeologist

Approved by

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

ABBR	BREVIATIONS	II
1.0	INTRODUCTION	1
2.0	OBJECTIVE AND SCOPE	3
3.0	FIELD ACTIVITIES	
3.1	WORK LOCATIONS	
3.2	DOCUMENTATION	5
	3.2.1 Field Forms	5
	3.2.2 Equipment Calibration	7
3.3	SAMPLING METHODS	
	3.3.1 Static Water Level Measurements	
	3.3.2 Groundwater Purging & Sampling	8
3.4	INVESTIGATION DERIVED WASTE	
3.5	SAMPLE SHIPMENT	9
3.6	VARIATIONS	
	3.6.1 Variations in Scope	
	3.6.2 Variations in Procedures	10
4.0	SUMMARY	11
5.0	REFERENCES	12

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well Network

Exhibit A.2 – Groundwater Elevation Contour Map, Event #5 (April 27, 2020)

Exhibit A.3 – Pore Water Elevation Contour Map, Event #5 (April 27, 2020)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104
CEC	Civil and Environmental Consultants, Inc.
CFR	Code of Federal Regulations
COC	Chain-of-Custody
DO	Dissolved Oxygen
EAR	Environmental Assessment Report
EIP	Environmental Investigation Plan
ENV	Environmental
EnvStds	Environmental Standards, Inc.
Event #5	Groundwater investigation sampling event performed April 27-29, 2020
FSP	Field Sampling Personnel
ft	Feet
GEL	GEL Laboratories LLC
ID	Identification
IDW	Investigation Derived Waste
mg/L	Milligrams per Liter
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order No. OGC15-0177
TestAmerica	Eurofins TestAmerica Inc.
TI	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Bar Fossil Plant

Introduction April 23, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed April 27-29, 2020 (Event #5) at TVA's Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #5 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #5 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the WBF Plant.

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #5 is the fifth in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance oversight

Introduction April 23, 2021

on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #5. The remaining sampling event will be completed before overall conclusions and findings about the groundwater investigation and groundwater conditions at the WBF Plant are made and documented in the EAR.

Objective and Scope April 23, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the WBF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #5, performed in April 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the WBF Plant Hydrogeological Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data. Temporary well and piezometer installation activities are described in the WBF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the WBF Plant CCR Material Characteristics SAR.

Field Activities April 23, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #5 were conducted April 27-29, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also conducted audits of field activities and provided quality reviews of field documentation. In addition, on behalf of TDEC, Civil and Environmental Consultants, Inc. (CEC) collected split groundwater samples during this sampling event. Additional information regarding CEC split sample collection is provided in Section 3.3.2.

During Event #5, Stantec conducted the following field activities:

- Measured groundwater levels at six monitoring wells installed for the TDEC Order and four monitoring wells and four piezometers installed for other environmental programs (10 total monitoring wells)
- Measured pore water levels at four temporary wells and three piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River
- Collected groundwater samples from six monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, three field blanks, one equipment blank, one filter blank, and one tubing blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the WBF Plant (Ash Pond and Slag Disposal Area) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #5 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the WBF Plant for the National Pollutant Discharge Elimination System (NPDES) permit closure program. Monitoring wells that are

Field Activities April 23, 2021

sampled as part of other environmental programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide information to prepare groundwater contour maps for this SAR and the WBF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order groundwater investigation monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and the NPDES permit closure program, which includes wells MW-1, MW-2, MW-3, and WBF-100, will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Groundwater Level Measurement Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

Field Activities April 23, 2021

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well Inspection and Maintenance*. Inspection results were documented on a *Monitoring Well Inspection Checklist*. Stantec documented observations and conditions on a well inspection form for this event.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well identification (ID), time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in feet (ft) below top of casing.

3.2.1.5 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer ID, serial number, time, digits, temperature, and length of the wire in ft. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

Field Activities April 23, 2021

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lovell Field (KCHA) in Chattanooga, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #5.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 10 monitoring wells and pore water levels at four temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On April 27, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Groundwater and pore water measurements were also obtained from transducers installed within four piezometers and three piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River was provided by TVA using the reading recorded closest to noon for the tailwater level below the Watts Bar Dam. The surface water staff gauge location is indicated on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore

Field Activities April 23, 2021

water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples (as specified in the SAP) were collected from six monitoring wells as shown in Table B.2 in Appendix B. Split samples collected by CEC during Event #5 are also identified in Table B.2. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to the values below to meet overall programmatic objectives for groundwater investigations at the WBF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than five Nephelometric Turbidity Units (NTUs) or ± 10% for values above five NTUs
- DO Less than 0.5 milligrams per Liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Due to final turbidity readings higher than five NTUs at wells WBF-101 and WBF-106, an additional sample was collected at each of those wells and submitted to the laboratory for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line with the exception of the dissolved metals samples, which were collected via new 0.45-micron disposable inline filters attached to the end of the discharge lines to field filter the samples. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were recorded.

Field Activities April 23, 2021

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody.* FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control.*

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 Code of Federal Regulations (CFR) 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with WBF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the WBF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the WBF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and shipped under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

Field Activities April 23, 2021

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for groundwater investigation sampling Event #5 at the WBF Plant.

3.6.1 Variations in Scope

There were no variations in scope during the groundwater investigation sampling Event #5 at the WBF Plant.

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

• As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations.

Summary April 23, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #5 at the WBF Plant. The scope of work for Event #5 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data.

Event #5 included collecting groundwater level measurements at 10 monitoring wells and four piezometers, pore water measurements at four temporary wells and three piezometers in the CCR units, and a surface water measurement at one gauge located in the Tennessee River. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided in Table B.1a, and A.3.

Groundwater quality measurements and groundwater analytical samples were collected at six monitoring wells as summarized in Table B.2. Groundwater quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at each sampling location. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated and/or verified by EnvStds.

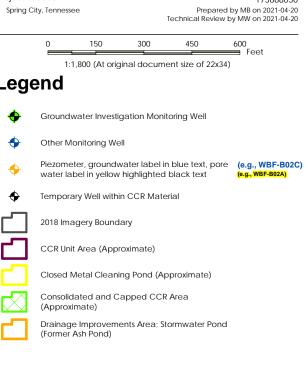
Stantec has completed Event #5 of the groundwater investigation at the WBF Plant in Spring City, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #5 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete datasets from the six groundwater sampling events will be evaluated along with data collected under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References April 23, 2021

5.0 REFERENCES

- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. November 2018.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.


- TVA. ENV-TI-05.80.03, Field Record Keeping.
- TVA. ENV-TI-05.80.04, Field Sampling Quality Control.
- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.06, Handling and Shipping of Samples.
- TVA. ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.
- TVA. ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA. ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

APPENDIX A - EXHIBITS

Exhibit No. A.1 Title Monitoring Well Network Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order Project Location Spring City, Tennessee Prepa Technical Revie 0 150 300 450 1:1,800 (At original document size of 22) Legend Coundwater Investigation Monitoring Well

175668050

CCR: Coal combustion residuals

Notes

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

Exhibit No.

Title

Groundwater Elevation Contour Map, Event #5 (April 27, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Spring City, Tenne	essee	Te		175668050 I by DMB on 2021-04-20 w by MD on 2021-04-20			
0	150	300	450	600 Feet			
	1:1,800 (At origir	al documen	t size of 22x3	34)			
_egend							
	water Investigatio water elevation ir			el (ft amsl)			
	1onitoring Well water elevation ir	n ft amsl					
	eter, groundwate ater label in yellov			(e.g., WBF-B02C <mark>(e.g., WBF-B02A)</mark>			
	ary well in CCR ater elevation in fl	: amsl; value r	ot used for co	ontouring			
Interpol amsl)	ated Groundwate	er Contour (5	ft interval; ele	vations are in ft			
Ground	water Contour (5	ft interval; ele	vations are in	ı ft			
2018 lm	agery Boundary						
	it Area						
Closed	Closed Metal Cleaning Pond						
Consoli	dated and Capp	ed CCR Area					
Drainag	je Improvements	Area; Stormw	ater Pond (Fo	rmer Ash			
CCR: Coal combus	tion residuals						
River Gauge (Not S	hown - See Note	4) surface wa	ter elevation i	in ft amsl			
Groundwater elev o factors such as v				ntouring due rent hydrogeologic ur			
** Nested VWPZ se ame borehole, an				er elevations in the			
otes			5				
	em: NAD 1983 Sta d by TVA (9/12/20			00 Feet			
Groundwater co	ontours were crea	ted using Surf		1.350			
	2018) and manua levation is measu		ailwater readi	ing from			
	ocated ~4,000 ft f						
	tiple instruments ir water elevation						
is suspected of k	eing erroneous.						
Vibrating Wire P	ezometer reading	gs were collec	ted on 4/28/2	2020			
White Cu	mberland	Roane	S Kno	x 5 Sevier			
Van Buren Watts Bar Fossil	Plant 2	w com	Loudon	Tennessee			
Bledsoe	Rhea	the a	June .	Blount			

Polk

Clay

North Carolina

consultants and agents, from any and all claims arising in any way from the content or provision of the data. sibility for data

Exhibit No. A.3

Title Pore Water Elevation Contour Map, Event #5 (April 27, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

Project L	ocation				175668050		
Spring C	City, Tennessee				l by DMB on 2021-04-20 w by MD on 2021-04-20		
	0	150	300	450	600 Feet		
	1:1,80	0 (At origin	al docume	ent size of 22x3			
_eg	end						
\$	Groundwater groundwater value not use	elevation in	feet above	g Well e mean sea leve	el (ft amsl);		
+	Other Monitor groundwater		ı ft amsl; val	ue not used for	contouring		
÷	Piezometer, g pore water la				(e.g., WBF-B02C) (e.g., WBF-B02A		
+	Temporary well in CCR pore water elevation in ft amsl						
	 Interpolated Pore water Contour (2 ft interval; elevations are in ft amsl) 						
	Pore water Co	ontour (2 ft i	nterval; elev	vations are in ft	amsl)		
	2018 Imagery Boundary						
	CCR Unit Area (Approximate)						
	Closed Metal Cleaning Pond (Approximate)						
	Consolidated and Capped CCR Area (Approximate)						
	Drainage Improvements Area; Stormwater Pond (Former Ash Pond)						
CCR: Coa	al combustion re	esiduals					
River Gau	ige (Not Shown	- See Note	4) surface w	ater elevation	in ft amsl		
	vater elevation such as well co				ntouring due rent hydrogeologic ur		
	d VWPZ sensors ehole, and the				ter elevations in the		

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and BING Imagery
 Pore water contours were created with manual adjustment using Surfer
 Version 16 (December 13, 2018)
 Surface water elevation is measured from the tailwater reading from Watts Bar Dam
 located -4,000 ft North of well WBF-106
 For PTe with multitude instruments in CCP material, the reading with the biobest pore 4
- For P2's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. Vibrating Wire Piezometer readings were collected on 4/28/2020

APPENDIX B - TABLES

TABLE B.1a – Groundwater Level Measurements Watts Bar Fossil Plant April 2020

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc	
Monitoring Wells										
WBF-00-GW-43-001	MW-1	27-Apr-20	5.82	711.92	706.10	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays
WBF-00-GW-43-002	MW-2	27-Apr-20	18.15	704.29	686.14	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand
WBF-00-GW-43-003	MW-3	27-Apr-20	10.81	696.22	685.41	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand
WBF-00-GW-43-004	WBF-100	27-Apr-20	40.96	741.49	700.53	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvial silts and clays
WBF-00-GW-43-005	WBF-101	27-Apr-20	13.48	703.15	689.67	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-006	WBF-102	27-Apr-20	19.77	723.98	704.21	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay
WBF-00-GW-43-007	WBF-103	27-Apr-20	14.50	725.09	710.59	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay / alluvial sand
WBF-00-GW-43-008	WBF-104	27-Apr-20	11.89	697.45	685.56	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts / alluvial sand
WBF-00-GW-43-009	WBF-105	27-Apr-20	11.51	704.50	692.99	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand
WBF-00-GW-43-010	WBF-106	27-Apr-20	12.64	706.34	693.70	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial silty sand and alluvial sand
Piezometers	•	•								
n/a	WBF-B02C	28-Apr-20	9.7	n/a	709.4	719.1	680.5	38.6	n/a	Alluvial sandy silt
n/a	WBF-B03B	28-Apr-20	2.0	n/a	697.9	699.9	665.9	34.0	n/a	Alluvial sand with silt and gravel
n/a	WBF-B04C	28-Apr-20	11.5	n/a	701.9	713.4	668.4	45.0	n/a	Alluvial silty sand / alluvial sandy gravel
n/a	WBF-B05C	28-Apr-20	10.1	n/a	707.1	717.2	668.2	49.0	n/a	Alluvial silty sand
Surface Water Gauge	-	-				-	-			
Tennessee River	n/a	27-Apr-20	n/a	n/a	683.98	n/a	n/a	n/a	n/a	n/a

Notes:

bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable
UNID	Unique Numerical Identification

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

					Piezometer				
Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells ¹									-
WBF-TW02	27-Apr-20	23.04	718.34	695.30	n/a	n/a	n/a	9.1 - 18.9	CCR
WBF-TW03	27-Apr-20	10.00	721.19	711.19	n/a	n/a	n/a	15.8 - 25.6	CCR
WBF-TW04	27-Apr-20	14.92	719.27	704.35	n/a	n/a	n/a	7.5 - 17.3	CCR
WBF-TW05	27-Apr-20	11.70	717.97	706.27	n/a	n/a	n/a	11.5 - 16.3	CCR
Piezometers ²									
WBF-B02A	28-Apr-20	7.6	n/a	711.5	719.1	699.5	19.6	n/a	CCR
WBF-B04A	28-Apr-20	6.8	n/a	706.6	713.4	696.4	17.0	n/a	CCR
WBF-B05A	28-Apr-20	10.5	n/a	706.7	717.2	696.2	21.0	n/a	CCR

bgs	below ground surface
btoc	below top of casing
CCR	coal combustion residuals
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable

1. Top of casing elevations, screened intervals, and screened formations were obtained from boring logs, well details, and well survey data.

2. For piezometers, ground surface elevations, pore water elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

3. Depth to pore water in piezometers and pore water elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

4. Screened interval shown for temporary wells is below ground surface when drilled.

						A	nalysis Type						
Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Dissolved Metals	Total Mercury	Dissolved Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
WBF-101	WBF-GW-005-20200429	Normal Environmental Sample	x	х	x	х	x	х	х	х	x	x	x
WBF-102	WBF-GW-006-20200427	Normal Environmental Sample	х	х		х		х	х	х	х	х	х
WBF-103	WBF-GW-007-20200428	Normal Environmental Sample	х	х		х		х	х	х	х	х	х
WBF-104	WBF-GW-008-20200428	Normal Environmental Sample	х	х		х		х	х	х	х	х	х
WBF-105	WBF-GW-009-20200428	Normal Environmental Sample	х	х		х		х	х	х	х	х	х
WBF-106	WBF-GW-010-20200429	Normal Environmental Sample	х	х	х	х	х	х	х	х	х	х	х
VVDF-100	WBF-GW-DUP01-20200429	Field Duplicate Sample		х	x	x	x	х	x	х	x	х	x

Total and Dissolved Metals	SW-846 6020A
Total and Dissolved Mercury	SW-846 7470A
Anions	EPA 300.0/SW846 9056
Alkalinity	SM2320B
Total Dissolved Solids	SM2540C
Radium-226	EPA 903.0
Radium-228	EPA 904.0
Radium-226+228	CALC
ID	identification

1. Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

2. CEC collected split samples from WBF-103, WBF-104 and WBF-105.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	WBF-101 29-Apr-20 WBF-GW-005-20200429 32.2 ft Normal Environmental Sample Final QC Review	WBF-102 27-Apr-20 WBF-GW-006-20200427 23 ft Normal Environmental Sample Final QC Review	WBF-103 28-Apr-20 WBF-GW-007-20200428 19.5 ft Normal Environmental Sample Final QC Review	WBF-104 28-Apr-20 WBF-GW-008-20200428 26.4 ft Normal Environmental Sample Final QC Review	WBF-105 28-Apr-20 WBF-GW-009-20200428 35.1 ft Normal Environmental Sample Final QC Review	WBF-106 29-Apr-20 WBF-GW-010-20200429 32.6 ft Normal Environmental Sample Final QC Review
Field Parameters							
Dissolved Oxygen	%	6.2	27.8	17.6	8.5	3.0	4.6
Dissolved Oxygen	mg/L	0.66	2.70	1.84	0.83	0.27	0.44
ORP	mV	-54.6	69.8	237.6	145.9	-116.1	3.2
pH (field)	SU	6.48	6.62	5.15	5.48	6.52	6.07
Specific Cond. (Field)	uS/cm	859	739	178.0	2,150	1,016	1,086
Temperature, Water (C)	DEG C	18.2	17.0	15.8	17.4	19.5	18.5
Turbidity, field	NTU	59.8	0.27	0.78	0.76	4.50	58.7

%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

Sample Location				WBF-101	WBF-102	WBF-103	WBF-104	WBF-105	WBF-1	06
Sample Date Sample ID Sample Depth				29-Apr-20 WBF-GW-005-20200429 32.2 ft	27-Apr-20 WBF-GW-006-20200427 23 ft	28-Apr-20 WBF-GW-007-20200428 19.5 ft	28-Apr-20 WBF-GW-008-20200428 26.4 ft	28-Apr-20 WBF-GW-009-20200428 35.1 ft	29-Apr-20 WBF-GW-010-20200429 32.6 ft	29-Apr-20 WBF-GW-DUP01-20200429
Sample Type				Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Normal Environmental Sample	Field Duplicate Sample
Level of Review				Final-Verified	Final-Verified	Final-Verified	Final-Verified	Final-Verified	Final-Verified	Final-Verified
Total Metals	Units	EPA MCLs	CCR Rule GWPS							
		c ^A	<i>wh</i> (1.07 U*	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
Antimony Arsenic	ug/L ug/L	6 ^A 10 ^A	n/v n/v	1.19 U*	0.464 U*	<0.378	<0.578 0.559 U*	1.27 U*	0.921 U*	0.921 U*
Barium	ug/L	2,000 ^A	n/v	238	52.2	70.5	38.3	101	27.7	27.6
Beryllium	ug/L	4 ^A	n/v	<0.182	<0.182	<0.182	0.200 U*	<0.182	<0.182	<0.182
Boron	ug/L	n/v	n/v	90.4	42.0 J	<38.6	3,420	47.8 J	66.4 J	51.5 J
Cadmium	ug/L	5 ^A	n/v	0.414 U*	<0.217	<0.217	6.87 ^A	<0.217	<0.217	<0.217
Calcium	ug/L	n/v	n/v	126,000	131,000	20,600	456,000	140,000	160,000	160,000
Chromium	ug/L	100 ^A	n/v	<1.53 6.82 J^B	<1.53	<1.53	<1.53 249^B	<1.53	<1.53 25.9^B	<1.53 26.3^B
Cobalt	ug/L	n/v	6 ⁸	6.82 J 4.36 U*	<0.134 0.804 U*	0.903 U*	0.878 U*	0.212 U* <0.627	25.9 3.89 U*	2.33 U*
Copper Lead	ug/L ug/L	n/v n/v	n/v 15 ⁸	4.36 U*	<0.128	<0.627 <0.128	0.878 U*	<0.128	0.138 U*	2.33 U 0.131 U*
Lithium	ug/L	n/v	40 ^B	<3.39	5.63 U*	4.97 U*	7.07 U*	6.41 U*	<3.39	<3.39
Magnesium	ug/L	n/v	n/v	16,400	18,000	4,660	52,800	19,200	28,400	28,400
Mercury	ug/L	2 ^A	n/v	<0.130	0.543	<0.130	<0.130	<0.130	<0.130	<0.130
Molybdenum	ug/L	n/v	100 ^B	<0.610	1.62 U*	<0.610	<0.610	<0.610	<0.610	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	1.72 U*	0.362 U*	1.38 U*	50.2	<0.336	4.57	4.69
Potassium	ug/L	n/v	n/v	1,150	2,690	4,050	1,390	911	2,740	2,750
Selenium	ug/L	50 ^A	n/v	<1.51	2.48 J	<1.51	<1.51	<1.51	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v n/v	<0.177 11,500	<0.177 12,300	<0.177	<0.177 22,200	<0.177	< 0.177	<0.177 27,900
Sodium Thallium	ug/L ug/L	n/v 2 ^A	n/v	0.281 U*	0.148 U*	5,540 <0.148	0.231 U*	29,600 <0.148	27,900 0.153 U*	<0.148
Vanadium	ug/L	n/v	n/v	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991	<0.991
Zinc	ug/L	n/v	n/v	8.02	<3.22	<3.22	87.5	<3.22	10.8	11.2
Dissolved Metals							•		•	
Antimony	ug/L	6 ^A	n/v	0.528 J	-	-	-	-	<0.378	<0.378
Arsenic Barium	ug/L	10 ^A	n/v n/v	1.15 224	-	-	-	-	0.852 J 26.8	0.780 J 28.1
Beryllium	ug/L ug/L	2,000 ^A 4 ^A	n/v	<0.182	-	-	-	-	<0.182	<0.182
Boron	ug/L	n/v	n/v	113	-	-	-	-	61.8 J	49.8 J
Cadmium	ug/L	5 ^A	n/v	0.364 J	-	-	-	-	<0.217	<0.217
Calcium	ug/L	n/v	n/v	125,000	-	-	-	-	157,000	163,000
Chromium	ug/L	100 ^A	n/v	<1.53	-	-	-	-	<1.53	<1.53
Cobalt	ug/L	n/v	6 ^B	8.82 J ^B	-	-	-	-	26.0 ^B	26.6 ^B
Copper Lead	ug/L ug/L	n/v n/v	n/v 15 ⁸	3.66 U* 0.169 J	-	-	-	-	3.95 U* <0.128	2.99 U* <0.128
Lithium	ug/L	n/v	40 ^B	<3.39	-	-	-	-	<3.39	<3.39
Magnesium	ug/L	n/v	n/v	16,300	-	-	-	-	27,900	28,700
Mercury	ug/L	2 ^A	n/v	<0.130	-	-	-	-	<0.130	<0.130
Molybdenum	ug/L	n/v	100 ^B	<0.610	-	-	-	-	<0.610	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	1.48	-	-	-	-	4.62	4.55
Potassium	ug/L	n/v	n/v	1,110	-	-	-	-	2,710	2,790
Selenium	ug/L	50 ^A	n/v	<1.51	-	-	-	-	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	-	-	-	-	<0.177	<0.177
Sodium Thallium	ug/L ug/L	n/v 2 ^A	n/v n/v	11,400 0.406 J	-	-	-	-	27,300 <0.148	28,200 <0.148
Vanadium	ug/L	∠ n/v	n/v	<0.991	-	-	-	-	<0.140	<0.991
Zinc	ug/L	n/v	n/v	7.95	-	-	-	-	11.4	11.1
Anions										
Chloride	mg/L	n/v	n/v	6.31	12.2	5.26	5.55	5.68	4.50	4.84
Fluoride Sulfate	mg/L	4 ^A n/v	n/v n/v	0.0985 U* 238	0.126 U* 194	0.0450 U* 61.6	0.0622 U* 1,280	0.115 U* 329	0.132 U* 453	0.140 U* 465
General Chemistry	mg/L	11/V	11/V	230	194	01.0	1,200	329	400	400
Alkalinity, Bicarbonate	mg/L	n/v	n/v	126	252	44.4	55.5	110	77.1	69.2
Alkalinity, Carbonate	mg/L	n/v	n/v	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
Alkalinity, Total as CaCO3	mg/L	n/v	n/v	126	252	44.4	55.5	110	77.1	69.2
Total Dissolved Solids	mg/L	n/v	n/v	551	562	183	2,000	668	862	836

Δ в n/v

EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

No standard/guideline value

- Concentration is greater than or equal to the indicated standard.
 Co.03 analyte was not detected at a concentration greater than the Method Detection Limit
 parameter not analyzed / not available
 ft feet below top of casing

ID J mg/L U*

- reet below top of casing identification quantitation is approximate due to limitations identified during data validation milligrams per Liter result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level

ug/L (TN MCL) micrograms per Liter Tennessee Maximum Contaminant Level

1. Level of review is defined in the Quality Assurance Project Plan.

Sample Location				WBF-101	WBF-102	WBF-103	WBF-104	WBF-105	WBF-1	06
Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	29-Apr-20 WBF-GW-005-20200429 32.2 ft Normal Environmental Sample Final-Verified	27-Apr-20 WBF-GW-006-20200427 23 ft Normal Environmental Sample Final-Verified	28-Apr-20 WBF-GW-007-20200428 19.5 ft Normal Environmental Sample Final-Verified	28-Apr-20 WBF-GW-008-20200428 26.4 ft Normal Environmental Sample Final-Verified	28-Apr-20 WBF-GW-009-20200428 35.1 ft Normal Environmental Sample Final-Verified	29-Apr-20 WBF-GW-010-20200429 32.6 ft Normal Environmental Sample Final-Verified	29-Apr-20 WBF-GW-DUP01-20200429 Field Duplicate Sample Final-Verified
Radiological Parameters										
Radium-226	pCi/L	n/v	n/v	0.405 +/-(0.583)U	0.310 +/-(0.517)U	0.561 +/-(0.480)U	0.309 +/-(0.502)U	0.886 +/-(0.639)	1.21 +/-(0.751)J	0.213 +/-(0.523)UJ
Radium-228	pCi/L	n/v	n/v	0.287 +/-(0.283)U	0.290 +/-(0.322)U	-0.00991 +/-(0.351)U	0.449 +/-(0.298)	0.350 +/-(0.281)U	0.575 +/-(0.387)	0.151 +/-(0.313)U
Radium-226+228	pCi/L	- 4	n/v	0.691 +/-(0.648)U	0.600 +/-(0.609)U	0.561 +/-(0.594)U	0.758 +/-(0.584)J	1.24 +/-(0.698)J	1.78 +/-(0.845)J	0.364 +/-(0.609)UJ

А

EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations) No standard/guideline value в

n/v

ft feet below top of casing

ID identification

quantitation is approximate due to limitations identified during data validation J

pCi/L U picoCurie per Liter not detected

1. Level of review is defined in the Quality Assurance Project Plan.

APPENDIX H.8

GROUNDWATER INVESTIGATION EVENT #6 SAMPLING AND ANALYSIS REPORT

Watts Bar Fossil Plant Groundwater Investigation Event #6 Sampling and Analysis Report

TDEC Commissioner's Order: Environmental Investigation Plant Watts Bar Fossil Plant Spring City, Tennessee

April 23, 2021

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

Revision Record

Revision	Description	Date
0	Submittal to TDEC	April 23, 2021

Sign-off Sheet

This document entitled Watts Bar Fossil Plant Groundwater Investigation Event #6 Sampling and Analysis Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

Michael J. Winkler, Geologic Associate

Reviewed by

Carolyn Sexton, Senior Hydrogeologist

Approved by

Rebekah Brooks, Principal Hydrogeologist

Table of Contents

EVIATIONSI	I
INTRODUCTION	1
OBJECTIVE AND SCOPE	3
FIELD ACTIVITIES	4
DOCUMENTATION	5
3.2.2 Equipment Calibration	7
INVESTIGATION DERIVED WASTE	9
3.6.2 Variations in Procedures10)
SUMMARY1	1
REFERENCES12	2
	INTRODUCTION

LIST OF APPENDICES

APPENDIX A - EXHIBITS

Exhibit A.1 – Monitoring Well Network

- Exhibit A.2 Groundwater Elevation Contour Map, Event #6 (July 6, 2020)
- Exhibit A.3 Pore Water Elevation Contour Map, Event #6 (July 6, 2020)

APPENDIX B - TABLES

Table B.1a – Groundwater Level Measurements

Table B.1b – Pore Water Level Measurements

Table B.2 – Summary of Groundwater Samples

Table B.3 – Summary of Groundwater Quality Parameters

Table B.4 – Groundwater Analytical Results for Metals, Anions, and General Chemistry

Table B.5 – Groundwater Analytical Results for Radiological Parameters

Abbreviations

CCR	Coal Combustion Residuals
CCR Parameters	Constituents listed in Appendices III and IV of 40 CFR 257 and five inorganic constituents included in Appendix I of Tennessee Rule 0400-11-0104
CFR	Code of Federal Regulations
COC	Chain-of-Custody
DO	Dissolved Oxygen
EAR	Environmental Assessment Report
EIP	Environmental Investigation Plan
ENV	Environmental
EnvStds	Environmental Standards, Inc.
Event #6	Groundwater investigation sampling event performed July 6-8, 2020
FSP	Field Sampling Personnel
ft	Feet
GEL	GEL Laboratories LLC
ID	Identification
IDW	Investigation Derived Waste
mg/L	Milligrams per Liter
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
ORP	Oxidation-Reduction Potential
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
QC	Quality Control
SAP	Sampling and Analysis Plan
SAR	Sampling and Analysis Report
Stantec	Stantec Consulting Services Inc.
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order No. OGC15-0177
TestAmerica	Eurofins TestAmerica Inc.
ТІ	Technical Instruction
TVA	Tennessee Valley Authority
WBF Plant	Watts Bar Fossil Plant

Introduction April 23, 2021

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this sampling and analysis report (SAR) on behalf of the Tennessee Valley Authority (TVA) to document the completion of activities related to a groundwater investigation sampling event performed July 6-8, 2020 (Event #6) at TVA's Watts Bar Fossil Plant (WBF Plant) located in Spring City, Tennessee.

The purpose of the groundwater investigation, upon completion of six groundwater sampling events, is to characterize groundwater conditions at the WBF Plant in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order No. OGC15-0177 (TDEC Order) to TVA (TDEC 2015). The TDEC Order sets forth a "process for the investigation, assessment, and remediation of unacceptable risks" at TVA's coal ash disposal sites in Tennessee.

The purpose of this SAR is to document the work completed during groundwater sampling Event #6 of 6 total events and to present the information and data collected during the execution of the Groundwater Investigation Sampling and Analysis Plan (SAP) (Stantec 2018a). This SAR is not intended to provide conclusions or evaluations of results. The scope of the groundwater investigation represented herein was conducted pursuant to the SAP and is part of a larger environmental investigation at the WBF Plant. The data provided in this SAR are not inclusive of other programmatic data that exist for the site. The evaluation of the results will include data from the six groundwater sampling events and consider other aspects of the environmental investigation, as well as data collected under other State and/or coal combustion residuals (CCR) programs. This evaluation will be presented in the Environmental Assessment Report (EAR).

Event #6 activities were performed in general accordance with the following documents developed by TVA to support fulfilling the requirements of the TDEC Order at the WBF Plant.

- Groundwater Investigation SAP (Stantec 2018a)
- Environmental Investigation Plan (EIP) (Stantec 2018b)
- Quality Assurance Project Plan (QAPP) (Environmental Standards, Inc. 2018).

The Groundwater Investigation SAP was updated based on TVA- and TDEC-approved Programmaticand Project-specific changes. Minor variations in scope and procedures from those outlined in the SAP occurred during field activities due to field conditions and programmatic updates and are referenced in Section 3.6.

Event #6 is the last in a series of six planned sampling events for the groundwater investigation. Stantec performed the field work activities for this event. Laboratory analysis of constituents was performed by GEL Laboratories LLC (GEL) in Charleston, South Carolina (radium samples only) and Eurofins TestAmerica, Inc. (TestAmerica) in Pittsburgh, Pennsylvania (other analytes). Quality assurance

Introduction April 23, 2021

oversight on data acquisition protocols, sampling practices, and data validation or verification was performed by Environmental Standards, Inc. (EnvStds) under direct contract to TVA.

This report summarizes the groundwater investigation activities for Event #6. Overall conclusions and findings about the groundwater investigation and groundwater conditions at the WBF Plant will be made and documented in the EAR.

Objective and Scope April 23, 2021

2.0 OBJECTIVE AND SCOPE

The primary objectives of the groundwater investigation conducted pursuant to the Groundwater Investigation SAP (which includes six sampling events) are to characterize existing groundwater quality and to evaluate groundwater flow conditions at the WBF Plant in response to the TDEC Order. The approach to characterizing the groundwater conditions is to:

- Collect groundwater samples for chemical analyses to evaluate the potential presence of constituents related to CCR in groundwater
- Measure groundwater and surface water elevations for subsequent evaluation of direction and rate of groundwater flow.

The scope of work intended to achieve the objectives of the groundwater investigation consists of six sampling events at a frequency of one event every two months for one year to characterize seasonal groundwater quality and flow direction. This report describes the activities related to Event #6, performed in July 2020, the scope of which included:

- Collecting groundwater and surface water level measurements
- Collecting field measurements of groundwater quality parameters
- Collecting groundwater samples and associated quality control (QC) samples for laboratory analysis.

These activities were carried out after the installation of permanent monitoring wells specified in the Groundwater Investigation SAP. Details of the monitoring well installation activities are provided in the WBF Plant Hydrogeological Investigation SAR.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data. Temporary well and piezometer installation activities are described in the WBF Plant Exploratory Drilling SAR, and temporary well gauging and sampling information is provided in the WBF Plant CCR Material Characteristics SAR.

Field Activities April 23, 2021

3.0 FIELD ACTIVITIES

Groundwater investigation field activities for Event #6 were conducted July 6-8, 2020. Stantec performed groundwater level measurements and sample collection activities based on guidance and specifications in TVA's Environmental (ENV) Technical Instructions (TIs), the SAP, the QAPP, and applicable United States Environmental Protection Agency documents except as noted in the Variations section of this report. As part of TVA's commitment to generate representative and reliable data, data validation and/or verification of laboratory analytical results were performed by EnvStds under direct contract with TVA. EnvStds also provided quality reviews of field documentation.

During Event #6, Stantec conducted the following field activities:

- Measured groundwater levels at six monitoring wells installed for the TDEC Order and four monitoring wells and nine piezometers installed for other environmental programs (10 total monitoring wells)
- Measured pore water levels at four temporary wells and four piezometers installed in the CCR units
- Measured the surface water level at one location in the Tennessee River
- Collected groundwater samples from six monitoring wells installed for the TDEC Order
- Recorded field measurements of groundwater quality parameters during purging and stabilization at the sampled monitoring wells
- Collected QC samples including one field duplicate, one matrix spike/matrix spike duplicate, two field blanks, one equipment blank, one filter blank, and one tubing blank
- Shipped the collected samples to GEL in Charleston, South Carolina, and TestAmerica in Pittsburgh, Pennsylvania.

Details on each activity are presented in the sections below.

3.1 WORK LOCATIONS

The TDEC Order CCR units at the WBF Plant (Ash Pond and Slag Disposal Area) as well as the monitoring wells, temporary wells, and piezometers sampled and/or gauged during Event #6 are shown on Exhibit A.1 in Appendix A. TVA is currently sampling groundwater at the WBF Plant for the National Pollutant Discharge Elimination System (NPDES) permit closure program. Monitoring wells that are sampled as part of other environmental programs are not sampled as part of the groundwater investigation for the TDEC Order.

Groundwater levels were measured in TDEC Order monitoring wells as well as in select additional wells and piezometers from other environmental programs, as shown in Table B.1a in Appendix B, to provide

Field Activities April 23, 2021

information to prepare groundwater contour maps for this SAR and the WBF Plant EAR. Pore water levels measured in temporary wells and piezometers installed in the CCR units are presented in Table B.1b. Groundwater and pore water elevations are shown on Exhibits A.2 and A.3 in Appendix A. Groundwater elevation contours are depicted on Exhibit A.2 and pore water elevation contours are depicted on Exhibit A.3.

Groundwater analytical and field duplicate samples were collected from the TDEC Order groundwater investigation monitoring wells as shown in Table B.2 in Appendix B. Groundwater analytical data collected for the TDEC Order and the NPDES permit closure program, which includes wells MW-1, MW-2, MW-3, and WBF-100, will be provided in the EAR.

3.2 DOCUMENTATION

Stantec maintained field documentation in accordance with ENV-TI-05.80.03, *Field Record Keeping*, and the QAPP. Field activities and data were recorded on program-specific field forms. Health and safety forms were completed in accordance with TVA and Stantec health and safety requirements. Additional information regarding field documentation is provided below.

3.2.1 Field Forms

Stantec used program-specific field forms to record field observations and data for specific activities. Field forms used during the groundwater investigation included:

- Daily Field Activity Log
- Monitoring Well Inspection Checklist
- Equipment Calibration Form
- Groundwater Level Measurement Form
- Vibrating Wire Piezometer Measurement Form
- Groundwater Sampling Form
- Chain-of-Custody (COC).

3.2.1.1 Daily Field Activity Log

Stantec field sampling personnel (FSP) recorded field activities, observations, and data on a *Daily Field Activity Log* to chronologically document the field program. Deviations from the SAP, TIs, or QAPP were documented on the *Daily Field Activity Log*.

3.2.1.2 Monitoring Well Inspection Checklist

Prior to measuring water levels, Stantec FSP inspected each monitoring well for damage or indications that the well integrity had been compromised in accordance with ENV-TI-05.80.21, *Monitoring Well*

Field Activities April 23, 2021

Inspection and Maintenance. Inspection results were documented on a *Monitoring Well Inspection Checklist.* Stantec documented observations and conditions on a well inspection form for this event.

3.2.1.3 Equipment Calibration Form

Stantec FSP performed daily calibration of the water quality meter and turbidity meter and documented the results on an *Equipment Calibration Form*. The form documented the calibration results for temperature, turbidity, specific conductance, pH, dissolved oxygen (DO), and oxidation-reduction potential (ORP), and verified that the field instruments' sensors were operating within acceptance criteria. Refer to Section 3.2.2 for additional details on equipment calibration procedures.

3.2.1.4 Groundwater Level Measurement Form

Stantec FSP recorded groundwater level field measurement data on a *Groundwater Level Measurement Form* in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. The form includes the monitoring well identification (ID), time, and depth to water measured from a standardized reference point on the top of each well casing, recorded in feet (ft) below top of casing.

3.2.1.5 Vibrating Wire Piezometer Measurement Form

Stantec FSP recorded field measurement data on a *Vibrating Wire Piezometer Measurement Form*. The form includes the vibrating wire piezometer ID, serial number, time, digits, temperature, and length of the wire in feet. The readings were used to calculate the pressure head (ft of water) above the vibrating wire sensor to obtain the groundwater or pore water elevation.

3.2.1.6 Groundwater Sampling Form

Stantec FSP recorded the depth to water, purge flow rate, volume of groundwater purged, temperature, pH, specific conductance, DO, ORP, turbidity, color of water, and other observations during groundwater purging and sampling activities at each monitoring well in accordance with ENV-TI-05.80.42, *Groundwater Sampling*. Field measurements were recorded on a *Groundwater Sampling Form*. The form also documents the time intervals between measurement of field parameters, low-flow extraction rates, water level drawdown, and water quality parameter measurements until stabilization criteria were met.

3.2.1.7 Chain-of-Custody

Stantec FSP completed *COC* documentation for each groundwater sample collected. The sample ID, sample location, type of sample, sampling date and time, analyses requested, sample pH, and sample custody record were recorded on the *COC*. The Field Team Leader reviewed the *COC* for completeness, and the FSP conducted a QC check of samples in each cooler compared to sample IDs on the corresponding *COC*. *COCs* were completed in accordance with ENV-TI-05.80.02, Sample Labeling and Custody.

Field Activities April 23, 2021

3.2.2 Equipment Calibration

Field instruments used to collect, generate, or measure water quality parameters were calibrated each day prior to use as specified in the SAP, QAPP, and ENV-TI-05.80.46, *Field Measurement Using a Multi-Parameter Sonde.* Afternoon calibration verifications were performed to evaluate if these instruments remained within acceptance criteria during sampling. Temperature and barometric pressure instrument readings were verified using a calibrated National Institute of Standards and Technology traceable thermometer and National Weather Service (via mesowest.utah.edu) barometric pressure readings for Lovell Field (KCHA) in Chattanooga, Tennessee, respectively. Additional details regarding equipment calibration were recorded on an *Equipment Calibration Form*, as described in Section 3.2.1.3.

3.3 SAMPLING METHODS

The following sections present monitoring well data collection and sampling procedures used during Event #6.

3.3.1 Static Water Level Measurements

FSP measured static groundwater levels at 10 monitoring wells and pore water levels at four temporary wells in accordance with ENV-TI-05.80.44, *Groundwater Level and Well Depth Measurement*. On July 6, 2020, static groundwater and pore water level readings were measured and recorded to the nearest 0.01 ft from a reference point on the top of each well casing using an electronic water level indicator. Water level indicator probes were decontaminated prior to the first use and between measurements, and the decontamination was documented as specified in ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*. Depth to groundwater and pore water measurements were recorded on a *Groundwater Level Measurement Form*.

Groundwater and pore water measurements were also obtained from transducers installed within nine piezometers and four piezometers, respectively. Additionally, a surface water level measurement for the Tennessee River was provided by TVA using the reading recorded closest to noon for the tailwater level below the Watts Bar Dam. The surface water staff gauge location is indicated on Exhibit A.1 in Appendix A.

Groundwater level data and pore water level data are shown in Tables B.1a and B.1b, respectively, in Appendix B. A groundwater elevation contour map based on groundwater measurements in wells and piezometers, along with pore water elevations, is included as Exhibit A.2 in Appendix A. Similarly, a pore water elevation contour map based on pore water measurements in wells and piezometers, along with groundwater elevations, is included as Exhibit A.3 in Appendix A.

3.3.2 Groundwater Purging & Sampling

Analytical and field duplicate samples (as specified in the SAP) were collected from six monitoring wells as shown in Table B.2 in Appendix B. Monitoring wells were purged using dedicated bladder pumps equipped with dedicated tubing using low-flow purging and sampling techniques as specified in ENV-TI-05.80.42, *Groundwater Sampling*.

Field Activities April 23, 2021

During the purging process, water quality field parameters including pH, specific conductance, temperature, ORP, and DO were measured using water quality meters (YSI ProPlus with flow-through cell) and recorded on field forms. Depth to water and turbidity were measured and recorded using decontaminated electronic water-level indicators (Heron Dipper-T) and calibrated turbidimeters (Hach 2100Q). Field parameters were measured and recorded on *Groundwater Sampling Forms* during purging until readings were stabilized as specified in the SAP. As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to the values below to meet overall programmatic objectives for groundwater investigations at the WBF Plant. Well purging was considered complete when three consecutive readings were within the following stabilization limits:

- pH ± 0.1 Standard Units
- Specific Conductance ± 3% microSiemens per centimeter
- Turbidity Less than 5 Nephelometric Turbidity Units (NTUs) or ± 10% for values above 5 NTUs
- DO Less than 0.5 milligrams per Liter (mg/L) or ± 10% for values above 0.5 mg/L.

After water quality stabilization criteria were achieved, the final field parameter results were recorded, purging was discontinued, and a sample was collected as specified in the SAP. Due to final turbidity readings higher than 5 NTUs at wells WBF-101 and WBF-106, an additional sample was collected at each of those wells and submitted to the laboratory for dissolved metals analysis.

Laboratory-provided, pre-preserved sample containers were filled directly from the pump discharge line with the exception of the dissolved metals samples, which were collected via new 0.45-micron disposable inline filters attached to the end of the discharge lines to field filter the samples. FSP wore new, clean nitrile gloves when handling sample containers and did not touch the interior of containers or container caps. New gloves were used when handling each sample. When filling sample bottles, care was taken to minimize sample aeration (i.e., water was directed down the inner walls of the sample bottle) and to avoid overfilling and diluting preservatives. Each sample bottle was capped before filling the next bottle. Following completion of sampling, final field parameter measurements were recorded.

Sample containers were labeled and handled in accordance with ENV-TI-05.80.02, *Sample Labeling and Custody.* FSP secured caps on each bottle, attached a custody seal across the cap, and placed the bottles in a cooler on ice within 15 minutes of collection. QC samples were collected in accordance with ENV-TI-05.80.04, *Field Sampling Quality Control.*

Groundwater samples were analyzed for the CCR-related constituents listed in Appendices III and IV of 40 Code of Federal Regulations (CFR) 257. In addition, five inorganic constituents listed in Appendix I of Tennessee Rule 0400-11-01-.04 and not included in the 40 CFR 257 Appendices III and IV were analyzed to maintain continuity with TDEC environmental programs. These additional TDEC Appendix I constituents included copper, nickel, silver, vanadium, and zinc. The combined federal CCR Appendices III and IV constituents and TDEC Appendix I inorganic constituents will hereafter be referred to collectively as "CCR Parameters." For geochemical evaluation, major cations/anions not included in the

Field Activities April 23, 2021

CCR Parameters were included in the analyses. The additional geochemical parameters included bicarbonate, carbonate, magnesium, potassium, and sodium.

3.4 INVESTIGATION DERIVED WASTE

Investigation derived waste (IDW) generated during groundwater investigation activities included:

- Used calibration solutions
- Purge water
- Decontamination fluids
- Disposable personal protective equipment (PPE)
- General trash.

IDW was handled in accordance with ENV-TI-05.80.05, *Field Sampling Equipment Cleaning and Decontamination*; ENV-TI-05.80.42, *Groundwater Sampling* (purge water); the WBF Plant-specific waste management plan; and local, state, and federal regulations. Transportation and disposal of IDW was coordinated with WBF Plant facility management. Used calibration solution was containerized and stored for disposal as directed by the WBF Plant facility management. Purge water and decontamination fluids were containerized for later disposal as specified in the WBF Plant-specific waste management plan. Used disposable PPE (e.g., nitrile gloves) and general trash generated throughout the day were placed in garbage bags and disposed of in a general trash dumpster onsite at the end of each day.

3.5 SAMPLE SHIPMENT

Samples were packed and shipped under *COC* procedures specified in ENV-TI-05.80.06, *Handling and Shipping of Samples*. The samples were shipped by FedEx to GEL in Charleston, South Carolina (radium samples only), and to TestAmerica in Pittsburgh, Pennsylvania (other analytes). The laboratories submitted sample receipt confirmation forms to EnvStds for review and confirmation.

3.6 VARIATIONS

The proposed scope and procedures for the groundwater investigation were outlined in the SAP, QAPP, and applicable TVA TIs as detailed in the sections above. Variations in scope or procedures discussed with TDEC and/or TVA, changes based on field conditions, or additional field sampling performed to complete the scope of work in the SAP are described in the following sections. As discussed below, these variations do not impact the overall usability and representativeness of the dataset provided in this SAR for the groundwater investigation sampling Event #6 at the WBF Plant.

3.6.1 Variations in Scope

There were no variations in scope during the groundwater investigation sampling Event #6 at the WBF Plant.

Field Activities April 23, 2021

3.6.2 Variations in Procedures

Variations in procedures occurring in the field are provided below.

• As approved by TDEC, the specific conductance and turbidity stabilization limits were revised to meet overall programmatic objectives for groundwater investigations.

Summary April 23, 2021

4.0 SUMMARY

The data presented in this report are only for groundwater investigation sampling Event #6 at the WBF Plant. The scope of work for Event #6 was to:

- Collect groundwater samples for chemical analyses to assist with subsequent evaluation of the potential presence of CCR-related constituents in groundwater
- Measure groundwater and surface water elevations to assist with subsequent evaluation of groundwater flow direction and rate after multiple data sets have been collected.

In addition, pore water measurements from piezometers and temporary wells installed in the CCR units at the WBF Plant are presented in this SAR for comparison with groundwater data.

Event #6 included collecting groundwater level measurements at 10 monitoring wells and nine piezometers, pore water measurements at four temporary wells and four piezometers in the CCR units, and a surface water measurement at one gauge located in the Tennessee River. Groundwater and surface water measurements and elevations are provided in Table B.1a, and pore water measurements and elevations are provided on Exhibits A.2 and A.3.

Groundwater quality measurements and groundwater analytical samples were collected at six monitoring wells as summarized in Table B.2. Groundwater quality parameters were recorded during purging. Stabilization criteria for pH, specific conductance, turbidity, and DO were achieved at each sampling location. The final measurements prior to initiating sample collection are presented in Table B.3.

Groundwater analytical data for CCR Parameters and geochemical parameters are presented in Table B.4. Analytical data for radium analyses are presented in Table B.5. Analytical data were reported by GEL and TestAmerica, and then validated and/or verified by EnvStds.

Stantec has completed Event #6 of the groundwater investigation at the WBF Plant in Spring City, Tennessee, in accordance with the Groundwater Investigation SAP as documented herein. The data collected during Event #6 are usable for reporting and evaluation in the EAR and meet the objectives of the TDEC Order EIP. The complete datasets from the six groundwater sampling events will be evaluated along with data collected under other TDEC Order SAPs, as well as data collected under other State and CCR programs. This evaluation will be provided in the EAR.

References April 23, 2021

5.0 REFERENCES

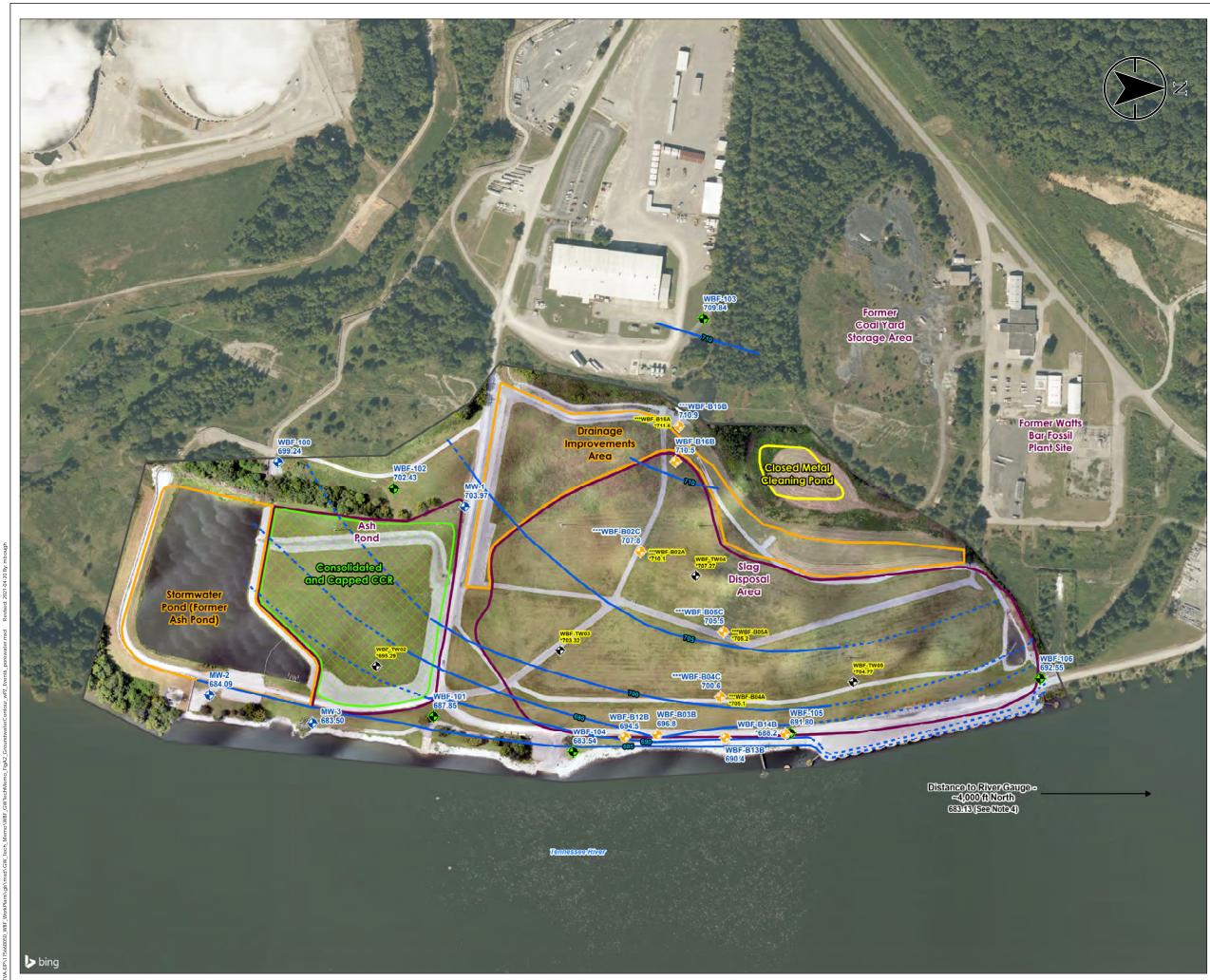
- Environmental Standards, Inc. 2018. *Quality Assurance Project Plan for the Tennessee Valley Authority Watts Bar Fossil Plant Environmental Investigation*. Revision 2. November 2018.
- Stantec Consulting Services Inc. (Stantec). 2018a. *Groundwater Investigation Sampling and Analysis Plan, Watts Bar Fossil Plant.* Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Stantec. 2018b. *Environmental Investigation Plan, Watts Bar Fossil Plant*. Revision 3. Prepared for Tennessee Valley Authority. November 19, 2018.
- Tennessee Department of Environment and Conservation. 2015. Commissioner's Order No. OGC15-0177.

Tennessee Valley Authority (TVA). ENV-TI-05.80.02, Sample Labeling and Custody.

- TVA. ENV-TI-05.80.03, Field Record Keeping.
- TVA. ENV-TI-05.80.04, Field Sampling Quality Control.
- TVA. ENV-TI-05.80.05, Field Sampling Equipment Cleaning and Decontamination.
- TVA. ENV-TI-05.80.06, Handling and Shipping of Samples.
- TVA. ENV-TI-05.80.21, Monitoring Well Inspection and Maintenance.
- TVA. ENV-TI-05.80.42, Groundwater Sampling.
- TVA. ENV-TI-05.80.44, Groundwater Level and Well Depth Measurement.

TVA. ENV-TI-05.80.46, Field Measurement Using a Multi-Parameter Sonde.

APPENDIX A - EXHIBITS


Exhibit No. **A**.1 Title Monitoring Well Network Client/Project Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order Project Location 175668050 Prepared by MB on 2021-04-20 Technical Review by MW on 2021-04-20 Spring City, Tennessee 600 Feet 150 300 450 1:1,800 (At original document size of 22x34) Legend Groundwater Investigation Monitoring Well \bullet • Other Monitoring Well Piezometer, groundwater label in blue text, pore (e.g., WBF-B02C) water label in yellow highlighted black text (e.g., WBF-B02A) Temporary Well within CCR Material • 2018 Imagery Boundary ┛ CCR Unit Area (Approximate) Closed Metal Cleaning Pond (Approximate) Consolidated and Capped CCR Area (Approximate) Drainage Improvements Area; Stormwater Pond (Former Ash Pond) CCR: Coal combustion residuals

Notes

1. Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet 2. Imagery Provided by TVA (9/12/2018) and BING Imagery

Exhibit No. A.2

Title

Groundwater Elevation Contour Map, Event #6 (July 6, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

	ocation				175668050
Spring	City, Tennessee	9	Te		by DMB on 2021-04-20 v by MD on 2021-04-20
	0	150	300	450	600 Feet
	1:1,	800 (At origin	al documen	t size of 22x3	
_eg	end				
		er Investigatio er elevation in			el (ft amsl)
•	Other Moni groundwat	toring Well er elevation in	ft amsl		
÷		, groundwater label in yellow			(e.g., WBF-B02C) <mark>(e.g., WBF-B02A)</mark>
\$		well in CCR elevation in ft	amsl; value n	ot used for co	ontouring
	Interpolate amsl)	d Groundwate	er Contour (5 1	t interval; elev	vations are in ft
	Groundwat	er Contour (5	ft interval; ele	vations are in	ft
	2018 Image	ery Boundary			
凸	CCR Unit A	rea			
╝	Closed Met	al Cleaning Po	ond		
	Consolidate	ed and Cappe	ed CCR Area		
凸	Drainage Ir	nprovements /	Area; Stormwa	ater Pond (For	mer Ash
CR: Coa	al combustion	residuals			
iver Gau	uae (Not Shov	vn - See Note 4	1) surface wa	er elevation i	n ft amsl

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

*** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

Notes

- Jores

 Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet

 Imagery Provided by TVA (9/12/2018) and BING Imagery

 Groundwater contours were created using Surfer Version 16.1.350 (December 13, 2018) and manual adjustment

 Surface water elevation is measured from the tailwater reading from Watts Bar Dam located ~4,000 ft North of well WBF-106

 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous.

consultants and agents, from any and all claims arising in any way from the content or provision of the data. nsibility for data supplied in elect

Exhibit No. A.3

Title

Pore Water Elevation Contour Map, Event #6 (July 6, 2020)

Client/Project

Tennessee Valley Authority Watts Bar Fossil (WBF) Plant TDEC Order

oject Location Spring City, Tennessee		Te		17566 by DMB on 2021 w by MD on 2021
	150			-
0	150	300	450	600 Feet
_ `	00 (At origin	al documen	t size of 22x3	4)
.egend				
	elevation in	n Monitoring feet above n uring		el (ft amsl);
Other Monito groundwate		ft amsl; value	not used for	contouring
		label in blue v highlighted l		(e.g., WBF-B02 <mark>(e.g., WBF</mark> -
Temporary w pore water e		amsl		
Interpolated	Pore water (Contour (2 ft ir	nterval; elevat	tions are in ft an
Pore water C	ontour (2 ft i	nterval; eleva	tions are in ft	amsl)
2018 Imager	y Boundary			
CCR Unit Are	a (Approxim	ate)		
Closed Meta	I Cleaning P	ond (Approxir	nate)	
Consolidated	and Cappe	ed CCR Area	(Approximate	2)
Drainage Im	provements	Area; Stormwa	ater Pond (For	rmer Ash Pond)
CR: Coal combustion r	esiduals			
iver Gauge (Not Showr		1) surface wai	er elevation i	n ft amsl

*Groundwater elevation displayed but not used as input for contouring due to factors such as well construction or being screened in a different hydrogeologic unit.

 *** Nested VWPZ sensors monitoring pore water and groundwater elevations in the same borehole, and the location is shown by a single symbol.

Notes

- Coordinate System: NAD 1983 StatePlane Tennessee FIPS 4100 Feet
 Imagery Provided by TVA (9/12/2018) and BING Imagery
 Pore water contours were created with manual adjustment using Surfer
 Version 16 (December 13, 2018)
 Surface water contact as the set of t Λ
- Surface water elevation is measured from the tailwater reading from Watts Bar Dam located -4,000 ft North of well WBF-106 For PZ's with multiple instruments in CCR material, the reading with the highest pore water elevation is displayed, unless that reading is suspected of being erroneous. 5

APPENDIX B - TABLES

TABLE B.1a – Groundwater Level Measurements Watts Bar Fossil Plant July 2020

UNID	Well / Piezometer ID	Date Measured	Depth to Groundwater	Top of Casing Elevation	Groundwater Elevation	Piezometer Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation	
			ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft btoc		
Monitoring Wells											
WBF-00-GW-43-001	MW-1	6-Jul-20	7.95	711.92	703.97	n/a	n/a	n/a	23.3 - 33.3	Alluvial silts and clays	
WBF-00-GW-43-002	MW-2	6-Jul-20	20.20	704.29	684.09	n/a	n/a	n/a	22.7 - 32.4	Alluvial sand	
WBF-00-GW-43-003	MW-3	6-Jul-20	12.72	696.22	683.50	n/a	n/a	n/a	21.6 - 31.6	Alluvial sand	
WBF-00-GW-43-004	WBF-100	6-Jul-20	42.25	741.49	699.24	n/a	n/a	n/a	47.7 - 57.8	Alluvial sand / alluvial silts and clays	
WBF-00-GW-43-005	WBF-101	6-Jul-20	15.30	703.15	687.85	n/a	n/a	n/a	27.3 - 37.1	Alluvial clay and silts / alluvial sand	
WBF-00-GW-43-006	WBF-102	6-Jul-20	21.55	723.98	702.43	n/a	n/a	n/a	19.4 - 24.2	Alluvial sand with clay	
WBF-00-GW-43-007	WBF-103	6-Jul-20	15.25	725.09	709.84	n/a	n/a	n/a	17.0 - 21.8	Alluvial sand with clay / alluvial sand	
WBF-00-GW-43-008	WBF-104	6-Jul-20	13.91	697.45	683.54	n/a	n/a	n/a	21.5 - 31.3	Alluvial clay and silts / alluvial sand	
WBF-00-GW-43-009	WBF-105	6-Jul-20	12.70	704.50	691.80	n/a	n/a	n/a	32.2 - 37.0	Alluvial silty sand	
WBF-00-GW-43-010	WBF-106	6-Jul-20	13.79	706.34	692.55	n/a	n/a	n/a	27.8 - 37.6	Alluvial clay / alluvial silty sand and alluvial sand	
Piezometers	•			•		•					
n/a	WBF-B02C	6-Jul-20	11.3	n/a	707.8	719.1	680.5	38.6	n/a	Alluvial sandy silt	
n/a	WBF-B03B	6-Jul-20	3.1	n/a	696.8	699.9	665.9	34.0	n/a	Alluvial sand with silt and gravel	
n/a	WBF-B04C	6-Jul-20	12.8	n/a	700.6	713.4	668.4	45.0	n/a	Alluvial silty sand / alluvial sandy gravel	
n/a	WBF-B05C	6-Jul-20	11.7	n/a	705.5	717.2	668.2	49.0	n/a	Alluvial silty sand	
n/a	WBF-B12B	6-Jul-20	4.9	n/a	694.5	699.4	674.4	25.0	n/a	Alluvial sandy silt	
n/a	WBF-B13B	6-Jul-20	9.2	n/a	690.4	699.6	674.6	25.0	n/a	Alluvial sandy silt	
n/a	WBF-B14B	6-Jul-20	12.7	n/a	688.2	700.9	676.1	24.8	n/a	Alluvial silty sand	
n/a	WBF-B15B	6-Jul-20	3.8	n/a	710.9	714.7	692.7	22.0	n/a	Alluvial clayey gravel	
n/a	WBF-B16B	6-Jul-20	3.1	n/a	710.5	713.6	692.6	21.0	n/a	Shale	
Surface Water Gauge	1	1					•			•	
Tennessee River	n/a	6-Jul-20	n/a	n/a	683.13	n/a	n/a	n/a	n/a	n/a	

Notes:

bgs	below ground surface
btoc	below top of casing
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable
UNID	Unique Numerical Identification

1. Top of casing elevations, screened intervals, and screened formations were obtained from the TVA Well Inventory Log provided by TVA.

2. Tennessee River data point is the reading closest to noon recorded by the automated staff gauge provided by TVA.

3. Ground surface elevations, groundwater elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

4. Depth to groundwater in piezometers and groundwater elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

					Piezometer				
Temporary Well / Piezometer ID	Date Measured	Depth to Pore Water	Top of Casing Elevation	Pore Water Elevation	Ground Surface Elevation	Piezometer Sensor Elevation	Piezometer Sensor Depth	Screened Interval	Screened / Piezometer Sensor Formation
		ft btoc	ft msl	ft msl	ft msl	ft msl	ft bgs	ft bgs	
Temporary Wells									
WBF-TW02	6-Jul-20	23.05	718.34	695.29	n/a	n/a	n/a	9.1 - 18.9	CCR
WBF-TW03	6-Jul-20	17.87	721.19	703.32	n/a	n/a	n/a	15.8 - 25.6	CCR
WBF-TW04	6-Jul-20	12.00	719.27	707.27	n/a	n/a	n/a	7.5 - 17.3	CCR
WBF-TW05	6-Jul-20	13.20	717.97	704.77	n/a	n/a	n/a	11.5 - 16.3	CCR
Piezometers									-
WBF-B02A	6-Jul-20	9.0	n/a	710.1	719.1	699.5	19.6	n/a	CCR
WBF-B04A	6-Jul-20	8.3	n/a	705.1	713.4	696.4	17.0	n/a	CCR
WBF-B05A	6-Jul-20	12.0	n/a	705.2	717.2	696.2	21.0	n/a	CCR
WBF-B15A	6-Jul-20	3.1	n/a	711.6	714.7	704.7	10.0	n/a	CCR

bgs	below ground surface
btoc	below top of casing
CCR	coal combustion residuals
ft	feet
ID	identification
msl	mean sea level
n/a	not applicable

1. Top of casing elevations, screened intervals, and screened formations were obtained from boring logs, well details, and well survey data.

2. For piezometers, ground surface elevations, pore water elevations, and piezometer data were obtained from geotechnical instrumentation database. Piezometer sensor formations were obtained from boring logs. Data from vibrating wire piezometers were averaged for the measurement date.

3. Depth to pore water in piezometers and pore water elevations at all locations are calculated values. Accuracy of piezometer data is to 0.1 ft.

4. Screened interval shown for temporary wells is below ground surface when drilled.

						A	nalysis Type						
Location ID	Sample ID	Sample Type	Field Parameters	Total Metals	Dissolved Metals	Total Mercury	Dissolved Mercury	Anions	Alkalinity	Total Dissolved Solids	Radium-226	Radium-228	Radium-226+228
WBF-101	WBF-GW-005-20200707	Normal Environmental Sample	x	х	x	x	x	х	x	х	х	х	x
WBF-102	WBF-GW-006-20200707	Normal Environmental Sample	x	x		x		х	х	х	х	x	x
WBF-103	WBF-GW-007-20200707	Normal Environmental Sample	x	x		x		х	х	х	х	x	x
	WBF-GW-008-20200708	Normal Environmental Sample	x	x		x		х	х	х	х	x	x
WBF-104	WBF-GW-DUP01-20200708	Field Duplicate Sample		x		x		х	х	х	х	x	x
WBF-105	WBF-GW-009-20200707	Normal Environmental Sample	x	x		x		х	х	х	х	x	x
WBF-106	WBF-GW-010-20200708	Normal Environmental Sample	х	x	х	x	х	х	х	х	х	x	x

Total and Dissolved Metals	SW-846 6020A
Total and Dissolved Mercury	SW-846 7470A
Anions	EPA 300.0/SW846 9056
Alkalinity	SM2320B
Total Dissolved Solids	SM2540C
Radium-226	EPA 903.0
Radium-228	EPA 904.0
Radium-226+228	CALC
ID	identification

1. Field and laboratory quality control sample results except for field duplicates are not included in report tables but were used for data validation.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	WBF-101 7-Jul-20 WBF-GW-005-20200707 32.2 ft Normal Environmental Sample Final QC Review	WBF-102 7-Jul-20 WBF-GW-006-20200707 23 ft Normal Environmental Sample Final QC Review	WBF-103 7-Jul-20 WBF-GW-007-20200707 19.5 ft Normal Environmental Sample Final QC Review	WBF-104 8-Jul-20 WBF-GW-008-20200708 26.4 ft Normal Environmental Sample Final QC Review	WBF-105 7-Jul-20 WBF-GW-009-20200707 35.1 ft Normal Environmental Sample Final QC Review	WBF-106 8-Jul-20 WBF-GW-010-20200708 32.6 ft Normal Environmental Sample Final QC Review
Field Parameters							
Dissolved Oxygen	%	4.3	7.0	12.7	6.3	4.2	3.3
Dissolved Oxygen	mg/L	0.38	0.65	1.19	0.60	0.36	0.30
ORP	mV	-87.6	197.9	139.9	149.3	-97.8	-44.9
pH (field)	SU	6.66	6.52	5.21	5.34	6.52	6.13
Specific Cond. (Field)	uS/cm	843	1,305	184.0	2,741	1,070	1,174
Temperature, Water (C)	DEG C	21.4	18.4	20.5	20.9	23.5	21.0
Turbidity, field	NTU	18.0	0.70	2.99	0.41	3.78	6.95

%	percent
Cond.	conductance
DEG C	degrees Celsius
ft	feet below top of casing
ID	identification
mg/L	milligrams per Liter
mV	milliVolts
NTU	Nephelometric Turbidity Unit
ORP	Oxidation Reduction Potential, measured using a silver reference electrode which has a standard potential of 200 mV
SU	Standard Units
uS/cm	microSiemens per centimeter

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review				WBF-101 7-Jul-20 WBF-GW-005-20200707 32.2 ft Normal Environmental Sample Validated	WBF-102 7-Jul-20 WBF-GW-006-20200707 23 ft Normal Environmental Sample Validated	WBF-103 7-Jul-20 WBF-GW-007-20200707 19.5 ft Normal Environmental Sample Validated	WBF- 8-Jul-20 WBF-GW-008-20200708 26.4 ft Normal Environmental Sample Validated	104 8-Jul-20 WBF-GW-DUP01-20200708 Field Duplicate Sample Validated	WBF-105 7-Jul-20 WBF-GW-009-20200707 35.1 ft Normal Environmental Sample Validated	WBF-106 8-Jul-20 WBF-GW-010-20200708 32.6 ft Normal Environmental Sample Validated
	Units	EPA MCLs	CCR Rule GWPS							
Total Metals			I				1	1		
Antimony	ug/L	6 ^A	n/v	<0.378	<0.378 0.393 J	< 0.378	<0.378	<0.378	<0.378 1.39	<0.378 1.66 U*
Arsenic Barium	ug/L ug/L	10 ^A	n/v n/v	0.922 J 334	0.393 J 42.9	<0.313 81.7	0.685 U* 33.8	0.658 U* 34.7	96.1	35.9
Beryllium	ug/L	2,000 ^A 4 ^A	n/v	<0.182	92.3 0.261 U*	<0.182	0.309 J	0.332 J	0.347 U*	<0.182
Boron	ug/L	n/v	n/v	42.5 J	58.6 J	41.8 J	4,260 J	4,500 J	47.8 J	65.2 U*
Cadmium	ug/L	5 ^A	n/v	<0.217	<0.217	<0.217	8.14 ^A	8.32 ^A	<0.217	0.218 J
Calcium	ug/L	n/v	n/v	114,000	220,000	17,600	576,000	587,000	128,000	158,000
Chromium	ug/L	100 ^A	n/v	<1.53	<1.53	<1.53	<1.53	<1.53	10.9 U*	<1.53
Cobalt	ug/L	n/v	6 ^B	0.462 J	<0.134	0.905	365 ^B	373 ⁸	<0.134	10.3 ⁸
Copper	ug/L	n/v	n/v	<0.627	<0.627	<0.627	<0.627	<0.627	<0.627	<0.627
Lead	ug/L	n/v	15 ⁸	<0.128	<0.128	<0.128	0.214 U*	0.217 U*	<0.128	0.223 U*
Lithium	ug/L	n/v	40 ^B	<3.39 15,200	<3.39 34,100	<3.39 4,030	3.59 J 64,500	4.10 J 65,700	<3.39 18,100	<3.39 29,800
Magnesium Mercury	ug/L ug/L	n/v 2 ^A	n/v n/v	<0.130	34,100	4,030 <0.130	<0.130	<0.130	<0.130	<0.130
Molybdenum	ug/L	n/v	100 ^B	<0.610	<0.610	<0.610	<0.610	<0.610	1.40 J	<0.610
Nickel	ug/L	100 _(TN MCL) A	n/v	<0.336	0.726 U*	2.33 U*	67.5	69.3	0.360 U*	1.79 U*
Potassium	ug/L	n/v	n/v	968	1,560	3,520	1,640	1,670	891	1,580
Selenium	ug/L	50 ^A	n/v	<1.51	2.45 J	<1.51	<1.51	<1.51	<1.51	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177	<0.177
Sodium	ug/L	n/v	n/v	10,300	14,100	6,220	26,200	26,000	27,500	29,200
Thallium	ug/L	2 ^A	n/v	<0.148	0.263 J	<0.148	0.209 U*	0.250 U*	0.294 J	0.307 U*
Vanadium	ug/L	n/v	n/v	<0.991	<0.991	<0.991	<0.991	<0.991	1.40	<0.991
Zinc Dissolved Metals	ug/L	n/v	n/v	9.61	4.14 J	6.65	125	126	4.39 J	6.09
Antimony	ug/L	6 ^A	n/v	<0.378	-	-	-	-	-	<0.378
Arsenic	ug/L ug/L	6 10 ^A	n/v	0.739 J	-	-	-	-	-	1.60
Barium	ug/L	2,000 ^A	n/v	346	_	-	-	-	_	34.5
Beryllium	ug/L	4 ^A	n/v	<0.182	-	-	-	-	-	<0.182
Boron	ug/L	n/v	n/v	38.9 J	-	-	-	-	-	55.8 U*
Cadmium	ug/L	5 ^A	n/v	<0.217	-	-	-	-	-	<0.217
Calcium	ug/L	n/v	n/v	114,000	-	-	-	-	-	152,000
Chromium	ug/L	100 ^A	n/v	2.13 U*	-	-	-	-	-	<1.53
Cobalt	ug/L	n/v	6 ^B	0.410 J	-	-	-	-	-	9.84 ^B
Copper Lead	ug/L ug/L	n/v n/v	n/v 15 ^B	<0.627 <0.128	-	-	-	-	-	<0.627 0.185 J
Lithium	ug/L	n/v	40 ^B	<3.39	_		_		_	<3.39
Magnesium	ug/L	n/v	40 n/v	15,300	-	-	-	-	-	29,300
Mercury	ug/L	2 ^A	n/v	<0.130	-	-	-	-	-	<0.130
Molybdenum	ug/L	n/v	100 ⁸	<0.610	-	-	-	-	-	<0.610
Nickel	ug/L	100 _(TN MCL) ^A	n/v	<0.336	-	-	-	-	-	1.75
Potassium	ug/L	n/v	n/v	977	-	-	-	-	-	1,500
Selenium	ug/L	50 ^A	n/v	<1.51	-	-	-	-	-	<1.51
Silver	ug/L	100 _(TN MCL) ^A	n/v	<0.177	-	-	-	-	-	<0.177
Sodium	ug/L	n/v	n/v	10,300	-	-	-	-	-	29,300
Thallium Vanadium	ug/L ug/L	2 ^A n/v	n/v n/v	<0.148 <0.991	-	-	-	-	-	0.257 U* <0.991
Zinc	ug/L ug/L	n/v n/v	n/v n/v	10.3	-	-	-		-	6.41
Anions						1	1	1		••••
Chloride	mg/L	n/v	n/v	7.05	25.8	5.63	7.08	7.06	6.02	4.96
Fluoride	mg/L	4 ^A	n/v	0.110 U*	0.0629 U*	0.0669 U*	0.149 U*	0.158 U*	0.132 U*	0.133 U*
Sulfate	mg/L	n/v	n/v	240	452	60.8	1,750	1,770	349	481
General Chemistry										
Alkalinity, Bicarbonate	mg/L	n/v	n/v	129	301	36.7	55.1	54.4	115	122
Alkalinity, Carbonate	mg/L mg/L	n/v n/v	n/v n/v	<5.00 129	<5.00 301	<5.00 36.7	<5.00 55.1	<5.00 54.4	<5.00 115	<5.00 122
Alkalinity, Total as CaCO3										

Δ

в

n/v

EPA Maximum Contaminant Level

CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations)

No standard/guideline value

N/V Stahlaruguideline value
 Concentration is greater than or equal to the indicated standard.
 Co.03 analyte was not detected at a concentration greater than the Method Detection Limit
 parameter not analyzed / not available
 ft feet below top of casing
 Detection detected

ID J mg/L U* identification

quantitation is approximate due to limitations identified during data validation milligrams per Liter result should be considered "not detected" because it was detected in an associated field or laboratory blank at a similar level

ug/L micrograms per Liter (TN MCL) Tennessee Maximum Contaminant Level

1. Level of review is defined in the Quality Assurance Project Plan.

Sample Location Sample Date Sample ID Sample Depth Sample Type Level of Review	Units	EPA MCLs	CCR Rule GWPS	WBF-101 7-Jul-20 WBF-GW-005-20200707 32.2 ft Normal Environmental Sample Validated	WBF-102 7-Jul-20 WBF-GW-006-20200707 23 ft Normal Environmental Sample Validated	WBF-103 7-Jul-20 WBF-GW-007-20200707 19.5 ft Normal Environmental Sample Validated	WBF-1 8-Jul-20 WBF-GW-008-20200708 26.4 ft Normal Environmental Sample Validated	04 8-Jul-20 WBF-GW-DUP01-20200708 Field Duplicate Sample Validated	WBF-105 7-Jul-20 WBF-GW-009-20200707 35.1 ft Normal Environmental Sample Validated
Radiological Parameters									
Radium-226	pCi/L	n/v	n/v	0.0206 +/-(0.395)U	0.475 +/-(0.565)U	-0.0548 +/-(0.389)U	0.500 +/-(0.523)U	0.370 +/-(0.552)U	0.522 +/-(0.527)U
Radium-228	pCi/L	n/v	n/v	0.269 +/-(0.298)U	0.474 +/-(0.381)U	0.430 +/-(0.354)U	0.502 +/-(0.415)U	0.903 +/-(0.434)	0.792 +/-(0.451)
Radium-226+228	pCi/L	- A	n/v	0.290 +/-(0.495)U	0.949 +/-(0.681)U	0.430 +/-(0.526)U	1.00 +/-(0.668)U	1.27 +/-(0.702)J	1.31 +/-(0.694)J

А

EPA Maximum Contaminant Level CCR Rule GWPS (Federal Register / Vol. 83, No. 146 / Monday, July 30, 2018 / Rules and Regulations) No standard/guideline value в

n/v ft feet below top of casing

ID identification

quantitation is approximate due to limitations identified during data validation J

pCi/L picoCurie per Liter

Ü not detected

1. Level of review is defined in the Quality Assurance Project Plan.

WBF-106 8-Jul-20 WBF-GW-010-20200708 32.6 ft Normal Environmental Sample Validated

0.461 +/-(0.509)U
-0.116 +/-(0.432)U
0.461 +/-(0.668)U

APPENDIX H.9 TECHNICAL EVALUATION OF WATER USE SURVEY

Appendix H.9 - Technical Evaluation of Water Use Survey

TDEC Commissioner's Order: Environmental Assessment Report Watts Bar Fossil Plant Spring City, Tennessee

March 31, 2024

Prepared for:

Tennessee Valley Authority Chattanooga, Tennessee

Prepared by:

Stantec Consulting Services Inc. Lexington, Kentucky

REVISION LOG

Revision	Description	Date
0	Submittal to TDEC	November 7, 2023
1	Addresses January 31, 2024 TDEC Review Comments and Issued for TDEC	March 31, 2024

Sign-off Sheet

This document entitled Appendix H.9 - Technical Evaluation of Water Use Survey was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Tennessee Valley Authority (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by _

Hom

Stu Gross, Senior Project Manager

Reviewed by

John Griggs, Senior Principal

Carolen Approved by

Carole M. Farr, PG, Senior Principal Geologist

Table of Contents

ABBR	EVIATION	S	11
1.0	INTRODU	CTION	1
-	UPDATED	JSE SURVEY O WATER USE SURVEY Data Sources and Evaluation	1
3.0		ICES	

LIST OF TABLES

Table H.9-1 – WBF Plant Area Public Water Service Providers Table H.9-2 – WBF Plant Parcel Data Inside Survey Area

LIST OF EXHIBITS

Exhibit H.9-1 - Water Use Survey Area

Abbreviations

EAR	Environmental Assessment Report.
EIP	Environmental Investigation Plan
GIS	Geographic Information System
NRC	Nuclear Regulatory Commission
Stantec	Stantec Consulting Services Inc.
Survey Area	WBF Plant ½-mile boundary
the Survey	Desktop Survey
TDEC	Tennessee Department of Environment and Conservation
TDEC Order	Commissioner's Order OGC15-0177
TVA	Tennessee Valley Authority
US	United States
USGS	United States Geological Survey
WBF Plant	Watts Bar Fossil Plant
WBN	Watts Bar Nuclear

Introduction March 31, 2024

1.0 INTRODUCTION

Stantec Environmental Consulting Services, Inc (Stantec), on behalf of the Tennessee Valley Authority (TVA), has prepared this technical evaluation appendix to summarize applicable historical and recent water use survey information in the area surrounding TVA's Watts Bar Fossil Plant (WBF Plant) in Spring City, Tennessee. This technical appendix provides a detailed evaluation of this information for the Environmental Assessment Report (EAR) in support of fulfilling the requirements for the Tennessee Department of Environment and Conservation (TDEC) issued Commissioner's Order OGC15-0177 (TDEC Order) Program (TDEC 2015).

2.0 WATER USE SURVEY

As part of the Environmental Investigation Plan (EIP) (TVA 2018), TDEC required TVA to conduct a water use survey to determine if surface water or groundwater (water wells or springs) are being used by local residents or by TVA as domestic water supplies. In 2008, TVA conducted a survey of domestic water supplies within a 1-mile boundary of the WBF Plant. In response to the TDEC Order, TVA agreed to update the 2008 survey by reviewing the state database to identify existing private water wells or surface water supplies within ½-mile of the boundary of the WBF Plant, including water well inventory records on file with TDEC for Rhea and Meigs Counties. This area is referred to herein as the Survey Area and is illustrated on Exhibit H.9-1. The results of the updated Water Use Survey are presented in this appendix.

2.1 UPDATED WATER USE SURVEY

The first step of the Water Use Survey was a desktop survey (the Survey) to identify potentially usable private wells and springs. The Survey included: reviewing well logs obtained from TDEC, historical hydrogeologic reports provided by TVA and aerial photographs; and contacting public water supply providers in the vicinity of the WBF Plant. The goal of the Survey was to identify potential and known wells or springs within the Survey Area. Details of the Survey are provided in the following sections.

2.1.1 Data Sources and Evaluation

The following information and historical reports were obtained and reviewed:

- TVA Potential Groundwater Quality Impacts at TVA Steam Plants, Report No. WR28-2-520-119 (TVA 1982) (herein referred to as the "1982 TVA report")
- United States Nuclear Regulatory Commission (US NRC) Watts Bar Nuclear Plant Unit 2 Final Environmental Statement (US NRC 2013) (herein referred to as the "2013 NRC report")
- TVA Watts Bar Nuclear Plant Unit 2 Final Supplemental Environmental Impact Statement for the Completion and Operation of Unit 2 (TVA 2007) (herein referred to as the "2007 TVA report")

Water Use Survey March 31, 2024

- United States Geological Survey (USGS) Public Water-Supply Systems and Associated Water Use in Tennessee, 2005 (Robinson & Brooks 2010)
- PowerPoint presentation for Watts Bar Fossil Plant (TVA 2016)
- November 2019 Aerial Photographs (Google Earth 2020)

The following documents, obtained from government agencies, were also reviewed:

- Parcel data received from Meigs and Rhea Counties (Meigs County 2020) (Rhea County 2020)
- Well construction information received from Luke Ewing, TDEC Division of Water Resources, Drinking Water Unit (Ewing 2020)
- USGS National Water Information System online mapping database (USGS 2020)
- Watts Bar Utility 872 2019 Water Quality Data Report (WBUD 2019)
- North Utility District of Rhea County Water Quality Report 2019 (NUDRC 2020)
- Local Public Water Supply Information
 - Telephone Interview Wesley Barger, Watts Bar Utility District (Barger 2020)
 - Email Communication Jerry Harris, Town of Decatur Water System (Harris 2020)
 - Email Communication Danah Thunquist, Spring City (Thunquist 2020)

2.1.1.1 Desktop Survey Results

The findings from the main data sources reviewed as part of this Survey are presented below.

Public Water Service Providers

Public water surrounding the WBF Plant is supplied by three separate public water districts; the Town of Decatur Water System, the Watts Bar Utility District, and the Town of Spring City Water Utility. However, only the Watts Bat Utility District is believed to provide water to the WBF Plant. The public water services provided the following information:

- Jerry Harris with the Town of Decatur Water System reported that the northern extent of their service area is greater than two miles south of the WBF Plant and does not extend into the Survey Area.
- Wesley Barger with the Watts Bar Utility District provided information of water mains extending
 into or near the Survey Area. The data was incomplete, but a water main appears to be present
 west of the Survey Area which extends into the existing Watts Bar Nuclear facility. Mr. Barger did
 not provide information regarding the Utility District's water source; however, the USGS reported
 that the district obtains potable water from two wells located more than two miles northwest of the

Water Use Survey March 31, 2024

WBF Plant (Brooks & Robinson 2010). The Watts Bar Utility District is the only area public water supplier whose service area extends into the Survey Area.

• The Town of Spring City did not respond to Stantec's request for information. However, publicly available information suggests that their service area is more than three miles northwest of the WBF Plant.

Table H.9-1 summarizes the identified public water suppliers.

Meigs and Rhea County Parcel Information

Stantec obtained complete parcel information from Rhea County in electronic format and assimilated the information into Stantec's geographic information system (GIS) database for the land surrounding the WBF Plant. Parcel information for Meigs County was obtained by review of online GIS parcel data available on the Meigs County website. Stantec used this data to populate Table H.9-2 which includes six parcels partially or fully within the Survey Area. The parcel information included the following water supply classifications:

- Individual (3 parcels)
- Public (3 parcels).

The 3 parcels listed as having an "individual" water supply are parcels that have no known connection to a municipal water supply. The 3 parcels identified as having a "public" water supply are served by a municipal water supply or have no known water supply.

TDEC Water Well Logs

TDEC provided an electronic list of the recorded water well logs within and near the Survey Area (Ewing 2020). Some well logs included the well depth and other well construction details. Stantec geo-referenced the listed latitude/longitude of each well log using GIS to plot the well locations on a map. The provided coordinates were imported into GIS "as is" without modification. No TDEC well logs were identified in the Survey Area.

Historical Reports

Stantec reviewed available reports prepared by TVA and US NRC for references of potable water supplies and use within the vicinity of the WBF Plant. The 1982 TVA report stated the following, "*At Watts Bar, the potable water is supplied by three wells located 2.5 miles northwest of the plant site...*" The 2007 TVA report stated that potable water is provided to the WBF Plant by the Watts Bar Utility District. The 2013 US NRC report stated the following, "*No water supply wells are located on the WBN site....The Watts Bar Utility District provides potable water for the WBN site. The utility withdraws water from wells approximately 4.0 km (2.5 mi) from the site."* Neither report included a potable water use study. During April 2016, TVA presented a PowerPoint presentation summarizing the history of the WBF Plant. The presentation included discussion of a previous groundwater use survey (believed to be the 2008 survey referenced in the EIP) conducted for an area within a 1-mile radius of the WBF Plant and concluded that

References March 31, 2024

the nearest drinking water wells were at least four miles from the WBF Plant and that domestic private or public drinking water sampling was not necessary. No potable wells were identified within the Survey Area in the historical reports.

Recent Aerial Photograph Review

Stantec reviewed the November 2019 Google Earth© aerial photograph (most recent photograph available) to identify buildings or structures (i.e., residences, businesses) in the Survey Area that are likely to require a potable water source. If a parcel was identified by Meigs or Rhea counties as having an "individual" water source and a building was present, then it was assumed that a private well used for domestic or business purposes was present at the parcel. Alternatively, if a parcel was identified with an "individual" listing but no evidence of recent or current buildings or structures was observed, then it was considered unlikely for a private well to be present or currently in use at the parcel. Based on the aerial review, no buildings or other structures were observed on the three parcels identified as having "individual" water sources. Therefore, no potential wells were identified in the Survey Area in the aerial photograph review.

2.1.1.2 Summary of Desktop Survey Findings

Based on the results of the Survey, no wells or springs potentially used for domestic or business purposes were identified in the Survey Area, as shown on Exhibit H.9-1.

3.0 **REFERENCES**

- Barger, Wesley (Watts Bar Utility District). (2020). Telephone Interview with Rex Key (Stantec), June 29, 2020.
- Ewing, Luke (TDEC Division of Water Resources, Drinking Water Unit). (2020). Email to Rex Key (Stantec). June 25, 2020.
- Google Earth. (2020). November 2019 Aerial Photographs of Meigs and Rhea County, Tennessee. Viewed August 21, 2020.
- Harris, Jerry (Town of Decatur Water System). (2020). Email to Rex Key (Stantec). June 25, 2020.
- Meigs County. (2020). Online GIS database for Knox County. Viewed July 2020, from https://www.arcgis.com/apps/View/index.html?appid=4f0c76d9ad714ef0bee353563cc59483.
- NUDRC, (2019). North Utility District of Rhea County Water Quality Report. Viewed June 25, 2020, from https://nudrc.org/water-quality-report.

Rhea County. (2019). GIS-ready Electronic Parcel Data of Rhea County. July 2020.

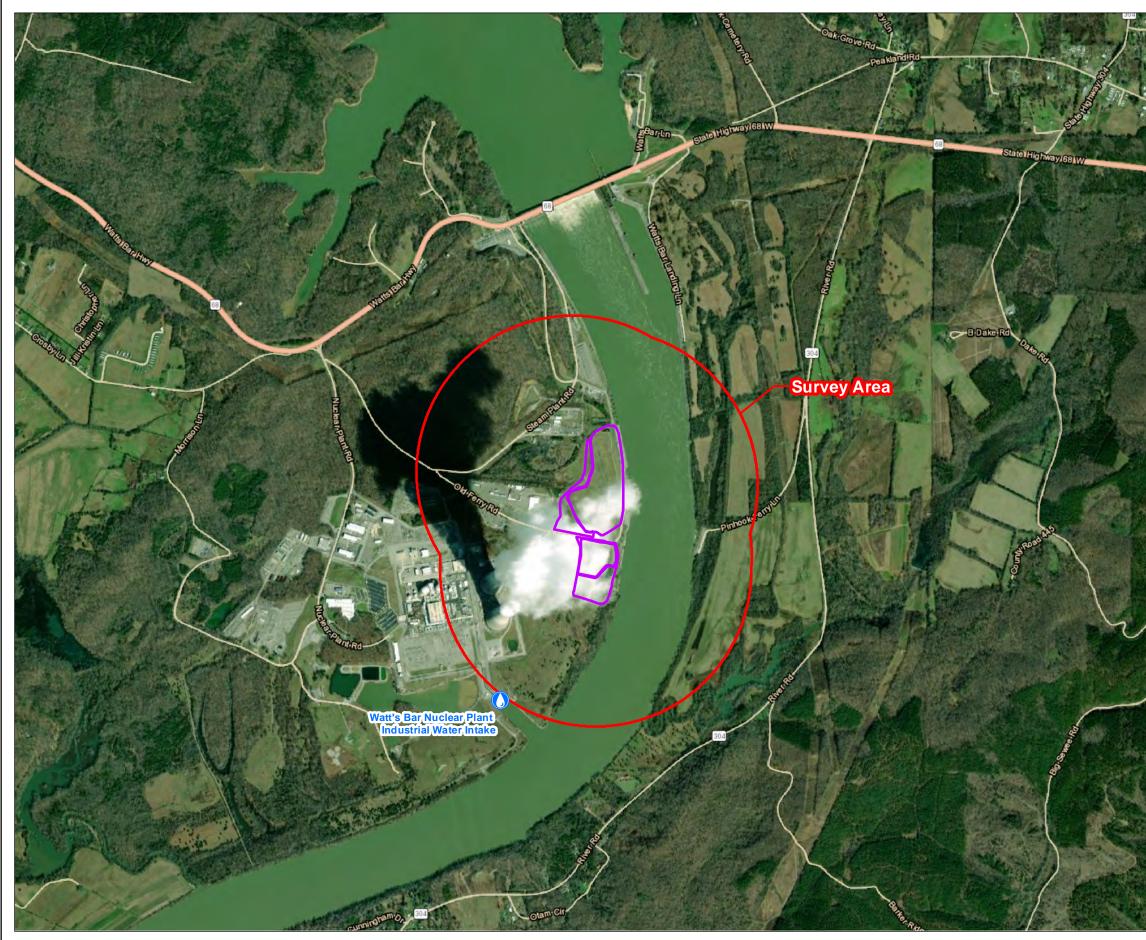
Thunquist, Danah (Spring City). (2020). Email from Rex Key (Stantec). June 24, 2020.

TVA. (1982). Potential Groundwater Quality Impacts at TVA Steam Plants, Report No. WR28-2-520-119.

References March 31, 2024

- TVA Watts Bar Nuclear Plant (WBN) Unit 2 Final Supplemental Environmental Impact Statement for the Completion and Operation of Unit 2. June 2007.
- TVA. (2016). Power Point Presentation Watts Bar Fossil Plant. April 27, 2016.
- Robinson, J.A., and Brooks, J.M. (2010). Public Water-Supply Systems and Associated Water Use in Tennessee. 2005: U.S. Geological Survey Open-File Report 2010–1226.
- USGS. (2020). National Water Information System online mapping database. Viewed June 26, 2020, from https://maps.waterdata.usgs.gov/mapper/index.html.
- US NRC. (2013). Final Environmental Statement Related to the Operation of Watts Bar Nuclear Plant, Unit 2 Document NURED-0498 Supplement 2, Vol 1. May 2013.
- WBUD. (2019). Watts Bar Utility 872 2019 Water Quality Data Report. Viewed June 25, 2020, from https://www.wbud.org/forms/ccr/2019872.pdf.

TABLES


Table H.9-1 – WBF Plant Area Public Water Service ProvidersWatts Bar Fossil Plant

Public Water Supply Provider	Service Area in Relation to WBF Plant	Does Service Area Extend into Survey Area (Yes/No)	Water Source/Intake Location	Distance of Source/Intake from WBF Plant Survey Area	
Watts Bar Utility District	West	Yes - supplies potable water directly to WBF	Potable water sourced from at least two	> 2 miles northwest	
	vvest	Plant	wells		
Town of Decatur Water System	South	Νο	"Eaves Spring"	3.5 miles south	
Town of Spring City Water System	Northwest	No	Piney River	7.5 miles northwest (upstream)	

OWNER	PARCEL ADDRESS	PARCEL ID	MEIGS/RHEA COUNTY GIS WATER SERVICE DESIGNATION	RECENT AERIAL PHOTOGRAPH REVIEW NOTES	POTENTIAL PRIVATE WELLS/SPRINGS IDENTIFIED ON PARCEL AND INSIDE SURVEY AREA	TDEC WELL LOG NUMBER	TVA REPORT WELL ID
TENNESSEE VALLEY AUTHORITY	STATE HWY 68	019 021.00 (Meigs County)	Individual	No Building/Structure	No	none	none
SCHMIEL SARA GLENDA ETAL/ TRACY EDWARD EDGEMON	RIVER RD	024 002.00 (Meigs County)	Individual	No Building/Structure	No	none	none
RAY RONNIE D ETAL JUDY C RAY	RIVER RD	024 003.04 (Meigs County)	Individual	No Building/Structure	No	none	none
CEMETERY LEUTY	MORRISON LN	072 057 00700 000 2020 (Rhea County)	Public	No Building/Structure	No	none	none
TENNESSEE VALLEY AUTHORITY	MORRISON LN	072 057 00800 000 2020 (Rhea County)	Public	No Building/Structure	No	none	none
TENNESSEE VALLEY AUTHORITY (STEAM PLANT)	WATTS BAR HWY	072 057 01600 000 2020 (Rhea County)	Public	No Building/Structure	No	none	none

EXHIBIT

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and/or completeness of this information and shall not be responsibility for verifying the accuracy and/or completeness of the data.